
Internet Learning: Preliminary Steps Towards
Highly Fault-Tolerant Learning on Device Networks

Surojit Ganguli 1 Avi Amalanshu 2 Amritanshu Ranjan 1 David Inouye 1

Abstract
Distributed machine learning has grown in pop-
ularity due to data privacy, edge computing, and
large model training. A subset of this class, Verti-
cal Federated learning (VFL), aims to provide pri-
vacy guarantees in the scenario where each party
shares the same sample space but only holds a
subset of features. While VFL tackles key privacy
challenges, it often assumes perfect hardware or
communication (and may perform poorly under
other conditions). This assumption hinders the
broad deployment of VFL, particularly on edge
devices, which may need to conserve power and
may connect or disconnect at any time. To ad-
dress this gap, we define the paradigm of Internet
Learning (IL), which defines a context, of which
VFL is a subset, and puts good performance under
extreme dynamic condition of data entities as the
primary goal. As IL represents a fundamentally
different paradigm, it will likely require novel
learning algorithms beyond end-to-end backprop-
agation, which requires careful synchronization
across devices. In light of this, we provide some
potential approaches for IL context and present
preliminary analysis and experimental results on
a toy problem.

1. Introduction and Motivation
The foundation of the Internet is the development of packet
switching to replace circuit switching for communication
(Baran, 1964; Davies, 1966). Indeed, Baran (1964) moti-
vated packet switching almost entirely by the concept of
survivability or reliability of the communication network
under near catastrophic and adversarial faults (e.g., a nuclear

*Equal contribution 1Department of Electrical and Computer
Engineering, Purdue University, West Lafeyette, USA 2Electronics
and Electrical Communication Engineering, IIT Kharagpur ,
Kharagpur, India. Correspondence to: Surojit Ganguli <sgan-
guli@purdue.edu>.

In ICML Workshop on Localized Learning (LLW), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

bomb or enemy raid). The communication network would
need to autonomously and seamlessly adapt to stations be-
ing destroyed (node removal) or being repaired/added (node
addition) with (ideally) no noticeable communication loss
from the user’s perspective. Like circuit switching, current
ML algorithms (particularly standard end-to-end backprop-
agation) require careful synchronization and would likely
degrade significantly under benign failures. Yet, highly
fault-tolerant learning algorithms could have wide applica-
bility.

We highlight some real-world use cases where the data is
distributed across clients but the system’s ability to handle
dynamic changes to the network of clients is critical (e.g.,
performance under near catastrophic faults).

Use-case 1: Precision Agriculture In recent times, mod-
ernization of agriculture has been aided by the adoption of
sensor networks to aid with high crop yield (Thakur et al.,
2019). Within individual farms, the sensors may become un-
reliable given harsh outdoor conditions. Thus, sensors may
leave or join the network arbitrarily. System performance
must be reliable even in such a scenario.

Use-Case 2: Smart Cities Cities are using edge devices to
gather data to enhance quality of life. These devices form
networks that enable real-time prediction of various aspects,
e.g. traffic conditions (Sharma et al., 2021). However, there
is concern that these devices may malfunction, negatively
impacting traffic predictions. Therefore, it is important
to ensure robust system performance even in the event of
device failures.

In recent times, Federated Learning (FL) has emerged as a
popular approach to distributed machine learning when data
is distributed across clients. FL was primarily developed
with the goal of data privacy and efficient communication
(McMahan et al., 2017). FL has two standard approaches,
horizontal and vertical, based on the method of partitioning
of data among parties. The data context of Vertical FL
(VFL) involves each party sharing the same set of samples
while only possessing a portion of the features, whereas
parties in standard horizontal FL possess identical features
for unique samples (Wu et al., 2022). While there have
been studies in the realm of horizontal FL on dealing with

1

Towards Internet Learning

arbitrary joining and dropping of parties (Ruan et al., 2021;
Gu et al., 2021; Wang & Ji, 2022), no investigation into
dynamic network changes exists for VFL to the best of the
authors’ knowledge.

To fill this gap, we introduce the Internet Learning (IL)
paradigm that aims to achieve strong performance even
in the face of dynamic network conditions, particularly
extreme changes, where the features of the data samples
are distributed across clients. Based on the decentralized
and online setup envisioned for Internet Learning, we expect
a majority of the data used will be unlabeled. Thus, we
expect that the majority of learning under this paradigm will
likely be unsupervised and self-supervised.

Owing to its widespread adoption and desirable characteris-
tics such as data privacy, we suggest VFL and its variants
be used as a baseline for comparing with IL. We also pro-
pose that performance in dynamic scenarios, including near
catastrophic faults and nodes joining, be used as the primary
metric for assessing algorithms developed for IL setup.

We summarize our contributions as follows:

• We define Internet Learning and compare it to similar
learning paradigms.

• We review potential solutions via distributed backprop-
agation and localized learning methods.

• We implement preliminary baselines and evaluate net-
work performance under ideal conditions and under
device faults.

2. Internet Learning Problem Formulation
2.1. Internet Learning Definition

IL specifies both an operating context and the desired prop-
erties of a learning system. The context is comprised of two
entities: data and network. We define the following terms
to elucidate IL.

Notation Let X = {xi}ni=1 denote a dataset of with n
samples and d features. Let xS denote the subvector as-
sociated with the indices in S ⊆ {1, 2, · · · , d}, e.g., if
S = {1, 5, 8}, then xS = [x1, x5, x8]

T . For C clients, the
dataset at each client c ∈ {1, 2, · · · , C} will be denoted
by Xc. Let G = (C, E) denote a network (or graph) of
clients, where C ⊆ {1, 2, · · · , C} denotes the set of clients
(or nodes) and E denotes the set of communication edges.

Definition 1 (Partial Features Data Context). A partial fea-
tures data context means that each client has access to a
subset of the features, i.e.,

Xc = {xi,Sc
}ni=1 (1)

where Sc ⊆ {1, 2, · · · , d} for each client c.

Informally, the data context for IL is similar to that of VFL
in the sense that the clients share the same set of samples
but have access to different sets of features. One example of
this VFL data context is the setup wherein data for the same
patient is distributed across multiple hospitals and there is
little to no overlap in the data among the hospitals. Another
key example is a sensor network where each sample is based
on timestamps, i.e., each sensor observes a partial part of
the environment but the same time as other sensors.

Definition 2 (Dynamic Network Context). A dynamic net-
work means that the communication graph can change
across time indexed by t, i.e., G(t) = (C(t), E(t)), where
the time dependency can be either deterministic or stochas-
tic.

This dynamic network context includes many possible sce-
narios during both training and testing including:

1. Clients leaving or joining the network - The set of
clients can change over time either due to clients fail-
ing, clients being repaired, new clients being added, or
clients voluntarily leaving or joining. A node joining
at time t′ can be formalized as:

C(t) =
{

{1, · · · , C − 1}, t < t′

{1, · · · , C}, t ≥ t′
, (2)

where clients leaving is similar.

2. Loss of Communication - A communication link may
be completely lost. This can be formalized as an com-
munication edge between clients being removed at time
t′:

E(t) =
{

E , t < t′

E \ {(c, c′)}, t ≥ t′
, (3)

where E is the edges before the edge (c, c′) is removed.

3. Intermittent Communication - A communication link
may not always be reliable and data set may be lost.
This can be formalized as the probability that a specific
communication edge between clients c and c′ is in the
current edge set:

Pr((c, c′) ∈ E(t)) = p , (4)

where p is the probability that the edge is included.

Note that these changes to the network could be caused by
benign failures or voluntary changes to the network (e.g.,
weather or power limits) or they could be adversarially
caused by bad actors to jam specific communications or
destroy specific clients.

Given these context definitions, we now define the goal of
internet learning in terms of a risk function we define next.

2

Towards Internet Learning

Definition 3 (Internet Learning Risk). Given a dynamic net-
work G(t), the internet learning risk of the all clients’ param-
eters θ and a distributed inference algorithm Ψ(x; θ,G(t))
is defined as the expected loss, denoted by ℓ, under a test
distribution ptest(x):

RG(t)(θ,Ψ) ≜ Ex∼ptest
[ℓ(Ψ(x; θ,G(t)))] . (5)

Note that the parameters θ represent the concatenation of the
parameters at every client. Each client could have different
parameters and even different models. Some clients could
even compute deterministic functions with no parameters
though we will generally assume each client has a trainable
model. Additionally, the inference function Ψ(x; θ,G(t))
must compute the inference in a distributed manner under
the dynamic conditions given by G(t). This is more complex
than simply evaluating a model prediction at a single client
because the models at every client may be different and
the joint computation across the whole network may be
used—this is why we use the terms “system” or “network”
instead of “model” as all computation must be computed in
a distributed manner. The distributed inference algorithm
Ψ could also be trainable with parameters or be a fixed
distributed algorithm. Given this risk definition, we can now
fully define the internet learning problem.
Definition 4 (Internet Learning Problem). Given partial
features client datasets {Xc}Cc=1 (Definition 1) and a dy-
namic network G(t) (Definition 2), the internet learning
problem aims to find the optimal client parameters θ and
distributed inference algorithm Ψ that minimize the IL risk
RG(t) under the constraint that θ and Ψ are the outputs of
some distributed learning algorithm Ω({Xc}Cc=1,G(t)), i.e.,

min
θ,Ψ

RG(t)(θ,Ψ)

s.t. (θ,Ψ) = Ω({Xc}Cc=1,G′(t))
(6)

where G′(t) is the dynamic (possibly stochastic) network
during training.

As with the motivation of the internet, we are particularly in-
terested in good performance under extreme conditions such
as catastrophic failures of many nodes or quickly changing
client networks. While these extreme situations may not
be encountered in practice, designing for the extreme situa-
tions will enable performance under less extreme situations.
Like the significant change from circuit switching to packet
switching, we expect that algorithms may have to be com-
pletely redesigned to work under these extreme adverse
conditions that are not present in standard centralized learn-
ing paradigms.

We envision a successful strategy for IL will be to pursue
durable representation learning, and share model parameters
and representations among participants, relying on peer-to-
peer communication to facilitate learning and inference.

D4

D1 D2

D3

Features

Sa
m

pl
es

Features

Sa
m

pl
es

Features

Sa
m

pl
es

Features

Sa
m

pl
es

Di 1

2

Devices can join

Network connections can be added

Network connection can drop

Devices can leave

1
2

3

4

3

4

Figure 1. IL paradigm consists of a data and a network context.
In the sample setup, there are 4 devices (labelled D1,D2,D3,D4)
and each is networked to one another. The devices are free to
communicate among themselves. Each device has the same sample
space but only consist a portion of the feature space. The primary
goal in the IL context is to enable graceful performance degradation
in the event of dynamic changes, such as network connection
getting added or dropped or devices joining or leaving

This will enable highly decentralized, large scale, and fault-
tolerant distributed machine learning that is suited for the
IL context.

2.2. Metrics for Internet Learning

In a distributed learning setting, there are various metrics
that may be used for evaluating the learning strategy. For
IL, we propose IL risk as the primary metric for comparing
different approaches and algorithms. To provide a basis
for comparison, we will compare the IL risk with various
dynamic networks G(t) to the IL risk with an ideal and com-
plete static network G∗(t) = ({1, · · · , C}, {(c, c′) : c, c′ ∈
{1, · · · , C}}), which does not depend on t and where all
edges are included. The gap between these two IL risks
is the key metric for understanding an IL system. Beyond
IL risk, we will also consider secondary system metrics
such as network latency, communication, and computation
efficiency.

3. Preliminary IL Baseline: Distributed
Backpropagation

We propose a simple framework for IL using backpropa-
gation. While this may not be a practical solution, it is
a natural naı̈ve baseline. The network parameters are dis-
tributed amongst the devices in a “width-wise” manner, viz.
the perceptrons (i.e., artificial neurons) in each layer are
divided amongst participants. Input to a perceptron could be
the output of another perceptron from the same device (via
a standard feed-forward or residual connection) or from an-
other device (via communication). All of these connections

3

Towards Internet Learning

are trained using backpropagation– gradients are communi-
cated if need be.

The permitted communication is defined by two graphs: a
“direct” and a “virtual” communication graph. The former
describes which devices are connected directly to one an-
other and the latter captures the indirect, multi-hop virtual
connections between devices, where data must be relayed
by intermediate to other devices across the direct commu-
nication graph. This is illustrated in the Appendix C. A
complete virtual graph would allow any communication at
each round, but would increase latency and communication
cost. A virtual graph that matches the direct graph may
significantly reduce latency and overall communication cost
but will constrain architecture possibilities.

3.1. IL with Full Connectivity using Distributed
Backpropagation (DB-IL-FC)

When the virtual graph is complete viz. all devices are
allowed to communicate with each other, IL is compatible
with any standard neural network architecture.

In simulations with no faults and no communication latency
(or situations where the communication latency is similar
to that of computation), the network behaves identically to
a neural network with the same global architecture trained
on a single device. However, their behavior under faults
is different. Centrally training the network implies catas-
trophic failure if the device fails, whereas other participants
in IL can continue learning when a device fails. Similarly,
data-distributed learning, which generally requires a cen-
tral aggregator or an elected leader, is contingent on the
availability and sanctity of the server or leader.

3.2. Distributed Backpropagation with Partial
Connectivity for IL (DB-IL-Part)

To reduce latency and communication costs, we consider a
model where we force the virtual graph to match the direct
graph so that every layer can be computed with only one
communication round. When the virtual graph is incom-
plete and the device graph is not fully connected, the result-
ing neural network is sparsely connected. The analogous
centralized neural network could have learned connections
which are not permitted here due to lack of communication
in the IL network.

Effectively, some weights of the centralized neural network
are frozen at zero. Alternatively, the number of parameters
in the network is limited, as weights between perceptrons
on different devices are invalid. This harms the general-
ization ability given a neural network design, but reduces
communication cost (under the assumption that not all pairs
of devices on the network are directly connected).

4. Experiments
In our experiments, we simulate a network of four devices.
We train our distributed backpropagation baselines for IL
and show the effects of incomplete communication, random
communication faults, and device faults. We first train and
freeze an autoencoder, assumed to be shared across all de-
vices. We then train an IL network on the latent representa-
tions produced by the encoder (see Section 4.1). Effectively,
we use IL to train auxiliary deeper layers of the encoder.

4.1. Experimental setup

We simulate feature-parallel learning. Each device obtains
different features for a given sample, then collaborates with
the others to learn a joint representation. To simulate this,
we first split MNIST images into a 2x2 square grid of
patches. This splits the 28x28 image into 4 patches sized
14x14 each. Each patch is then passed as input to an en-
coder, which massively reduces the dimensionality of the
patch to a single dimension (i.e., a 1x1 patch). At this point,
there are 4 one-dimensional values—one to represent each
patch of the original MNIST image. These 4 values are
passed as input to the simple MLP network shown in Figure
2. Autoencoder architecture and implementation details are
discussed in Appendix B.

The distributed MLP model contains 4 input nodes, one on
each “device”. We term the set of perceptrons of a single
layer on a single device a computational unit. Here, each
computational unit is one linear perceptron. Together, the
device network resembles a neural network with 4 linear
layers. The output of the final layer receives a residual con-
nection from the input and is activated by a Leaky ReLU
with a slope of 0.01 in the left half-plane. In the final step,
the latent output from the IL Network is passed into a de-
coder which generates a reconstruction of the patch. We use
reconstruction error as the loss function for this experiment.

We simulate the distribution of layers across multiple de-
vices by using a separate PyTorch nn.Linear object for
each computational unit. Partial connection is realized using
PyTorch pre-forward hooks to drop inputs to each unit of
a device from devices which are not virtually connected to
it. The outputs from each device are concatenated to form
the input features for the next “layer” (set of computational
units).

With full connectivity, all devices can communicate with
each other in a P2P manner. To study the effects of sparse
connectivity, we employ a virtual graph that is equal to the
direct communication graph. In our case, each device can
only communicate with two “adjacent” devices, viz. there
is ring topology. We also use this framework to simulate
device and communication faults. Outputs from a device
which has “failed” are masked with zeros. Similarly, gradi-

4

Towards Internet Learning

Figure 2. DB-IL-FC Network design used to simulate four devices connected to one another. The parameters of the network are split
across the devices as shown.

ents (using backward hooks) and inputs to a device from a
failed communication are masked with zeros. More elabo-
rate details are discussed along with a quantitative analysis
of the constraints on model architectures in Appendices C
and D.

4.2. Results

A sample reconstruction for each experiment is presented
in Figure 3, and average results are summarized in Table 1.
With no communication faults during training, we observe a
normalized MSE of 0.0540. Injecting random faults at a rate
of 0.1 increases the error to 0.649. Injecting faults at rates
0.3 and 0.6 leads to a further increase of MSE to 0.1079
and 0.1161 respectively. We observe further degradation in
performance when simulating device faults during inference
at test time, i.e., when computing IL risk. Disabling one de-
vice during inference leads to an increase in MSE to 0.0650,
0.0756, 0.1320 and 0.1328 when the fault rates during train-
ing were 0.0, 0.1, 0.3 and 0.6 respectively. Training with
sparse connectivity between devices also leads to a decrease
in performance, with an MSE of 0.1100 when all devices
are functioning during inference and 0.1317 with one faulty
device.

5. Discussion and the Road to IL
The results of our experiments enforce the importance of
communication in distributed learning and motivate a closer
look at methods to improve fault tolerance. Our DB-IL
baselines show a quantitative and qualitative decline in per-
formance with an increase in faults, but DB-IL does not
suffer from a single point of failure as would most server
or leader-based distributed learning algorithms. We discuss
future areas of work within IL below.

Figure 3. A sample of reconstructions from all our experiments.
Qualitatively, the results for fault rate ≥ 0.3 are catastrophic. The
advantage of splitting the network is also observable– even when
one device fails, the network is able to produce a reconstruction.
Similarly, the advantage of connectivity is demonstrated, since the
result for partial connectivity is unacceptable. Further, for the case
of inference with one failure, although the device responsible for
the top right patch is dead, the decoder receives some contextual
information due to connectivity from other devices.

5

Towards Internet Learning

Table 1. Results of our experiments. We observe that full com-
munication between disjoint devices (DB-IL-FC) can be used to
learn meaningful global representations, and that performance de-
grades with an increase in communication failure rate. Disabling
a device during inference leads to decreased performance. The
results highlight the significant impact faults have on network per-
formance. Removing some connections during training altogether
also increases the observed error (DB-IL-Part).

REGIME FAULT RATE INFERENCE ERROR (MSE)
(Training-time) (No device fault) (With device fault)

No IL net. N/A 0.0551 N/A

DB-IL-FC

0.0 0.0540 0.0650
0.1 0.0649 0.0756
0.3 0.1079 0.1320
0.6 0.1161 0.1328

DB-IL-Part 0.0 0.1100 0.1317

5.1. Relation to Vertical Federated Learning

Vertical Federated Learning (VFL) is a distributed learning
regime for feature-split data. Similarly to IL, VFL is in-
tended for systems where individual participants alone have
incomplete information about the target. In VFL, partici-
pants first agree upon a sample to process. Each “guest”
participant has a subset of features of the target sample. The
guests use that data to train their own “lower” models and
communicate their activations to a “host” participant, which
owns labels and an “upper” model which aggregates activa-
tions and computes global losses. Based on the global loss,
the host updates the upper model updates and communicates
gradients to the lower model.

Like IL, VFL depends on communication to learn mean-
ingful joint representations. Unlike IL, standard VFL algo-
rithms only allow communication at one cut layer (between
the upper and lower models). Further, VFL is generally a
supervised paradigm, whereas IL is intended as a paradigm
for unsupervised and self-supervised representation learn-
ing. Moreover, VFL depends on a central host client to
perform aggregation over all local models. Like other such
distributed learning algorithms, the aggregator acts as a sin-
gle point of failure and an extra synchronization bottleneck.
Thus, a failure of the aggregator creates a complete system
failure. The IL paradigm is designed to be robust against
any single client failures and even more extreme situations.

VFL is practically implemented in cross-silo scenarios,
where there are a small number of participants (possibly
within the same organization) with meaningfully intersect-
ing sample spaces. That is to say, VFL participants must
have a substantial number of samples in common, and they
must also have a salient label feature. On the other hand,
IL can be extended to large-scale networks of edge devices
in the wild, since it is unsupervised and does not rely on
aligning all participants by a specific target feature.

5.2. Potential alternative training algorithms

While distributed backpropagation is a natural naı̈ve base-
line for IL, local computation is preferable for IL, as back-
propagation suffers from heavy computational overhead
which is unlikely to be suitable for asynchronous or low-
power applications. We review a variety of localized learn-
ing algorithms in the context of IL below.

Forward-forward Learning In distributed learning set-
tings using modern hardware, backpropagation sometimes
produces communication overhead, scalability limitations,
or privacy concerns due to the heavy exchange or synchro-
nization of model parameters. With faulty devices, this can
lead to slower training time and poorer accuracy. These limi-
tations can potentially be overcome by the Forward-Forward
(FF) algorithm (Hinton, 2022). FF is a greedy learning pro-
cedure that replaces the forward and backward passes of
backpropagation with two forward passes that operate on op-
posite data and objectives. Not only can FF efficiently train
devices with power limitations because it can learn in a con-
tinuous stream without having to stop to compute gradients,
but it also cultivates decentralization (and thereby privacy)
because its localized layer-wise learning can be simulated
in devices that individually learn towards a global objective.
This localized learning approach is inherently fault-tolerant
as the failure of one device should not significantly impact
the learning process of other devices.

Hebbian-based Learning Journé et al. (2022); Moraitis
et al. (2022) present SoftHebb, a biologically inspired train-
ing algorithm that implements a probabilistic understanding
of local plasticity to learn unsupervised representations with
local plasticity, which is a radically different approach to
backpropagation which uses global supervisory signals. It
addresses drawbacks such as non-bio plausibility, weight
transport, non-local learning and update locking, which are
associated with backpropgation. The authors have demon-
strated that learning representations in a deep network using
SoftHebb achieves accuracies on MNIST, CIFAR-10, STL-
10 and ImageNet, respectively to 97.4%, 80.3%, 76.2%
and 27.3%. Energy-based models using Hebbian-like con-
trastive divergence are also relevant (Høier et al., 2023;
Detorakis et al., 2018; Movellan, 1991). Since all these
methods update individual neural weights independently
of each other, each virtual connection could communicate
independently as opposed to synchronously with its layer.

Blockwise Learning Algorithms which train in a block-
wise manner have recently seen renewed interest. Due to
their local computation, they alleviate some of the “lock-
ing” synchronization constraints of end-to-end training with
backpropagation and allow for a stronger form of paral-
lelism and pipelining (Czarnecki et al., 2017). Belilovsky

6

Towards Internet Learning

et al. (2019; 2020) show that greedy layer-wise training
scales to difficult datasets such as ImageNet, and that not
freezing lower layers during training leads to performance
comparable to backpropagation on shallow networks. The
authors claim that each layer or module can be trained in-
dependently of those before it, using a replay buffer to
store activations for the next layer. They use such “forward
unlocking” to realize a fault-tolerant asynchronous model-
distributed training regime, and show its ability to train and
infer even with unstable workers. Such model parallelism
could lead to an unprecedented level of decentralization if
combined with width-wise feature parallelism based on IL’s
feature-split data context. Similarly, Siddiqui et al. (2023);
Löwe et al. (2019); Xiong et al. (2020); Wang et al. (2021)
present information theoretic objectives to achieve block-
wise unsupervised representation learning without the use
of auxiliary networks. Since these methods relax synchro-
nization constraints and do not rely on supervision, they are
candidates for an IL standard.

5.3. Security and Privacy

One of the reasons FL has gained prominence is due to
the algorithms ability to ensure that clients or devices data
remains private. Furthermore, recent research advances
have also pushed the frontiers of making FL secure and be
able to successfully resist threats and attacks. In a similar
manner, there can be further research in making IL secure
and privacy preserving.

Provided the distributed nature and the ability of the de-
vices/clients in IL to interact with each other, we are aware
that this setup is vulnerable to threats of attack and infor-
mation leakage. Thus, moving forward, we believe that
research in areas of security and privacy for IL will be a
critical topic and inspiration can be derived from related
research areas in FL.

5.4. Better evaluation metrics

It is also important to test IL on more meaningful problems.
The distributed backpropagation algorithm could be used
to train a classifier instead of an autoencoder, for example.
This would also allow information-efficient unsupervised
classification algorithms such as Forward-Forward.

Further, it is necessary to investigate training objectives
which take better advantage of communication. In our ex-
ample, strong and stable connectivity is critical to perfor-
mance. However, even with no faults, the reconstructions
from the split images are not qualitatively impressive, per-
haps since the full linear connections do not provide any
semantic structure with their context. Moreover, they are
bottlenecked by the lack of communication in the encoder
training.

5.5. Partial Timing Protocol

Our experiments were simulated with no communication la-
tency. However, communication latency is a salient practical
consideration for IL. Since there is no aggregation in IL-
based representation learning, synchronization requirements
are not strict. However, being able to handle communica-
tion and device failures requires the ability to distinguish
between missed communication and late communication.
Therefore, it is practically necessary to implement a partial
synchronization protocol. Perhaps a “best-effort” strategy
could be employed, where a crash is assumed to have oc-
curred if there is no communication within a timeout period
or number of repeated polls. Simulating experiments with
finitesimal communication latency is possible within our
framework. Combined with a semi-synchronous protocol,
this would allow for a study of the effect of variable and
increasing latency on model performance under IL.

5.6. Fault Tolerance Strategy

By not having a centralized aggregation procedure or any
other inherent synchronization requirements, our IL baseline
does not suffer from a single-point of failure. We observe
that performance instead degrades gradually as the fault
rate is increased. However, the degradation is eventually
catastrophic.

A fault tolerance strategy could lead to a more graceful
degradation in performance. The direct reliance on commu-
nication for model execution implies a passive strategy via
packet switching is possible, e.g. one based on communica-
tion only with neighbors as opposed to a global filter. IL on
a vast network with such a strategy would be highly durable
without requiring heavy computation or extra synchroniza-
tion. We present a study of fault tolerance strategies for
existing distributed learning algorithms in the Appendix A.

6. Conclusion
In this paper, we presented some ideas towards Internet
Learning. IL systems are intended to achieve a high level
of fault tolerance and survivability without synchronization
or aggregation overhead. Through our experiments, we
showed that distributing the parameters of a neural network
width-wise across participants is one feasible approach that
serves as a simple baseline.

Localized learning algorithms are a promising tool that may
improve the fault tolerance of IL by relaxing some syn-
chronization bottlenecks. The absence of backpropagation
would completely eliminate a communication requirement
and therefore a failure point. Another interesting direction to
investigate is extending the activation replay buffer system
of (Belilovsky et al., 2020) to account for feature parallelism.
This may achieve a higher level of fault tolerance and also

7

Towards Internet Learning

decentralization by jointly implementing both feature and
model parallelism.

IL would enable local networks of sensing clients to asyn-
chronously collaborate and learn meaningful representations
without needing to communicate with a central server or
bear the cost of broadcasting updates to each other. Further,
it would enable a world-wide web of learning. Instead of
solely passing data between clients, participants in this web
would process it to learn robust representations.

The decentralized nature of IL combined with model and
feature parallelism could be used to leverage large scale,
low power edge computation for deep learning. Therein,
sensing devices can process their collected data and forward
their output to intermediate clients training deeper layers.
Similarly, an edge device may extract features for infer-
ence by communicating with any other client. Since each
client is only responsible for a small subset of parameters
of the global model, participants do not take on substantial
computational workloads.

We believe IL may not only enable a much larger scale of
collaboration in distributed ML, but by practically achieving
a high level of durability and efficiency, also extend ML
applications to systems in highly decentralized and dynamic
environments where they are currently infeasible.

References
Alistarh, D., Allen-Zhu, Z., and Li, J. Byzantine

stochastic gradient descent. In Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
a07c2f3b3b907aaf8436a26c6d77f0a2-Paper.
pdf.

Baran, P. On Distributed Communications: I. Introduction
to Distributed Communications Networks. RAND Corpo-
ration, Santa Monica, CA, 1964. doi: 10.7249/RM3420.

Barrak, A., Petrillo, F., and Jaafar, F. Architecting Peer-
to-Peer Serverless Distributed Machine Learning Train-
ing for Improved Fault Tolerance. arXiv e-prints, art.
arXiv:2302.13995, February 2023. doi: 10.48550/arXiv.
2302.13995.

Belilovsky, E., Eickenberg, M., and Oyallon, E. Greedy
layerwise learning can scale to imagenet. In International
conference on machine learning, pp. 583–593. PMLR,
2019.

Belilovsky, E., Eickenberg, M., and Oyallon, E. Decoupled

greedy learning of cnns. In International Conference on
Machine Learning, pp. 736–745. PMLR, 2020.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and
Stainer, J. Machine learning with adversaries: Byzantine
tolerant gradient descent. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
f4b9ec30ad9f68f89b29639786cb62ef-Paper.
pdf.

Bouhata, D., Moumen, H., Mazari, J. A., and Bounceur, A.
Byzantine fault tolerance in distributed machine learning
: a survey, 2022.

Chen, L., Wang, H., Charles, Z., and Papailiopoulos, D.
DRACO: Byzantine-resilient distributed training via re-
dundant gradients. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pp. 903–912. PMLR, 10–
15 Jul 2018a. URL https://proceedings.mlr.
press/v80/chen18l.html.

Chen, X., Ji, J., Luo, C., Liao, W., and Li, P. When
machine learning meets blockchain: A decentralized,
privacy-preserving and secure design. In 2018 IEEE
International Conference on Big Data (Big Data), pp.
1178–1187, 2018b. doi: 10.1109/BigData.2018.8622598.

Chen, Y., Su, L., and Xu, J. Distributed statistical machine
learning in adversarial settings. Proceedings of the ACM
on Measurement and Analysis of Computing Systems, 1
(2):1–25, December 2017. doi: 10.1145/3154503. URL
https://doi.org/10.1145/3154503.

Chen, Y., Yang, Q., He, S., Shi, Z., and Chen, J. Ftpipehd: A
fault-tolerant pipeline-parallel distributed training frame-
work for heterogeneous edge devices, 2021.

Czarnecki, W. M., Świrszcz, G., Jaderberg, M., Osin-
dero, S., Vinyals, O., and Kavukcuoglu, K. Under-
standing synthetic gradients and decoupled neural inter-
faces. In Precup, D. and Teh, Y. W. (eds.), Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 904–912. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
czarnecki17a.html.

Damaskinos, G., El Mhamdi, E. M., Guerraoui, R., Patra, R.,
and Taziki, M. Asynchronous Byzantine machine learn-
ing (the case of SGD). In Dy, J. and Krause, A. (eds.),

8

https://proceedings.neurips.cc/paper_files/paper/2018/file/a07c2f3b3b907aaf8436a26c6d77f0a2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a07c2f3b3b907aaf8436a26c6d77f0a2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a07c2f3b3b907aaf8436a26c6d77f0a2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a07c2f3b3b907aaf8436a26c6d77f0a2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.mlr.press/v80/chen18l.html
https://proceedings.mlr.press/v80/chen18l.html
https://doi.org/10.1145/3154503
https://proceedings.mlr.press/v70/czarnecki17a.html
https://proceedings.mlr.press/v70/czarnecki17a.html

Towards Internet Learning

Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1145–1154. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/
v80/damaskinos18a.html.

Data, D., Song, L., and Diggavi, S. Data encoding methods
for byzantine-resilient distributed optimization. In 2019
IEEE International Symposium on Information Theory
(ISIT), pp. 2719–2723, 2019. doi: 10.1109/ISIT.2019.
8849857.

Davies, D. W. Proposal for a digital communication network.
Unpublished memo, 1966.

Detorakis, G., Bartley, T., and Neftci, E. Contrastive heb-
bian learning with random feedback weights. CoRR,
abs/1806.07406, 2018. URL http://arxiv.org/
abs/1806.07406.

El Mhamdi, E. M., Guerraoui, R., and Rouault, S. The
hidden vulnerability of distributed learning in Byzan-
tium. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 3521–3530. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/
mhamdi18a.html.

El-Mhamdi, E.-M., Guerraoui, R., Guirguis, A., Hoang,
L. N., and Rouault, S. Genuinely distributed byzantine
machine learning. In Proceedings of the 39th Symposium
on Principles of Distributed Computing. ACM, July 2020.
doi: 10.1145/3382734.3405695. URL https://doi.
org/10.1145/3382734.3405695.

Fan, X., Ma, Y., Dai, Z., Jing, W., Tan, C., and Low, B.
K. H. Fault-tolerant federated reinforcement learning
with theoretical guarantee. Advances in Neural Informa-
tion Processing Systems, 34:1007–1021, 2021.

Fawzi, H., Tabuada, P., and Diggavi, S. Secure estimation
and control for cyber-physical systems under adversarial
attacks. IEEE Transactions on Automatic Control, 59(6):
1454–1467, 2014. doi: 10.1109/TAC.2014.2303233.

Gu, X., Huang, K., Zhang, J., and Huang, L. Fast federated
learning in the presence of arbitrary device unavailability.
Advances in Neural Information Processing Systems, 34:
12052–12064, 2021.

Guo, S., Zhang, T., Yu, H., Xie, X., Ma, L., Xiang, T.,
and Liu, Y. Byzantine-resilient decentralized stochastic
gradient descent, 2021.

Gupta, N. and Vaidya, N. H. Byzantine fault-tolerant paral-
lelized stochastic gradient descent for linear regression.

In 2019 57th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pp. 415–420,
2019a. doi: 10.1109/ALLERTON.2019.8919735.

Gupta, N. and Vaidya, N. H. Randomized reactive redun-
dancy for byzantine fault-tolerance in parallelized learn-
ing, 2019b.

Gupta, N. and Vaidya, N. H. Fault-tolerance in dis-
tributed optimization: The case of redundancy. In
Proceedings of the 39th Symposium on Principles of
Distributed Computing. ACM, July 2020a. doi: 10.
1145/3382734.3405748. URL https://doi.org/
10.1145/3382734.3405748.

Gupta, N. and Vaidya, N. H. Fault-tolerance in distributed
optimization: The case of redundancy. In Proceedings of
the 39th Symposium on Principles of Distributed Com-
puting, pp. 365–374, 2020b.

Gupta, N., Doan, T. T., and Vaidya, N. H. Byzantine
fault-tolerance in decentralized optimization under 2f-
redundancy. In 2021 American Control Conference
(ACC), pp. 3632–3637, 2021a. doi: 10.23919/ACC50511.
2021.9483067.

Gupta, N., Liu, S., and Vaidya, N. Byzantine fault-tolerant
distributed machine learning with norm-based compara-
tive gradient elimination. In 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks Workshops (DSN-W), pp. 175–181, 2021b. doi:
10.1109/DSN-W52860.2021.00037.

He, L., Karimireddy, S. P., and Jaggi, M. Secure
byzantine-robust machine learning, 2021. URL https:
//openreview.net/forum?id=69EFStdgTD2.

Hinton, G. The forward-forward algorithm: Some prelim-
inary investigations. arXiv preprint arXiv:2212.13345,
2022.

Høier, R., Staudt, D., and Zach, C. Dual propagation: Accel-
erating contrastive hebbian learning with dyadic neurons,
2023.

Jin, R., He, X., and Dai, H. Distributed byzantine tolerant
stochastic gradient descent in the era of big data. In ICC
2019 - 2019 IEEE International Conference on Commu-
nications (ICC), pp. 1–6, 2019. doi: 10.1109/ICC.2019.
8761674.

Jin, R., Huang, Y., He, X., Dai, H., and Wu, T. Stochastic-
sign SGD for federated learning with theoretical guar-
antees. CoRR, abs/2002.10940, 2020. URL https:
//arxiv.org/abs/2002.10940.

Journé, A., Rodriguez, H. G., Guo, Q., and Moraitis, T.
Hebbian deep learning without feedback. arXiv preprint
arXiv:2209.11883, 2022.

9

https://proceedings.mlr.press/v80/damaskinos18a.html
https://proceedings.mlr.press/v80/damaskinos18a.html
http://arxiv.org/abs/1806.07406
http://arxiv.org/abs/1806.07406
https://proceedings.mlr.press/v80/mhamdi18a.html
https://proceedings.mlr.press/v80/mhamdi18a.html
https://doi.org/10.1145/3382734.3405695
https://doi.org/10.1145/3382734.3405695
https://doi.org/10.1145/3382734.3405748
https://doi.org/10.1145/3382734.3405748
https://openreview.net/forum?id=69EFStdgTD2
https://openreview.net/forum?id=69EFStdgTD2
https://arxiv.org/abs/2002.10940
https://arxiv.org/abs/2002.10940

Towards Internet Learning

Li, L., Xu, W., Chen, T., Giannakis, G. B., and Ling, Q.
RSA: Byzantine-robust stochastic aggregation methods
for distributed learning from heterogeneous datasets. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 33(01):1544–1551, July 2019. doi: 10.1609/
aaai.v33i01.33011544. URL https://doi.org/10.
1609/aaai.v33i01.33011544.

Liu, S. A survey on fault-tolerance in distributed optimiza-
tion and machine learning, 2021.

Liu, S., Gupta, N., and Vaidya, N. H. Approximate byzan-
tine fault-tolerance in distributed optimization. In Pro-
ceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, pp. 379–389, 2021.

Löwe, S., O’Connor, P., and Veeling, B. Putting an end to
end-to-end: Gradient-isolated learning of representations.
Advances in neural information processing systems, 32,
2019.

Lugan, S., Desbordes, P., Brion, E., Ramos Tormo, L. X.,
Legay, A., and Macq, B. Secure architectures imple-
menting trusted coalitions for blockchained distributed
learning (tclearn). IEEE Access, 7:181789–181799, 2019.
doi: 10.1109/ACCESS.2019.2959220.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Moraitis, T., Toichkin, D., Journé, A., Chua, Y., and Guo, Q.
Softhebb: Bayesian inference in unsupervised hebbian
soft winner-take-all networks. Neuromorphic Computing
and Engineering, 2(4):044017, 2022.

Movellan, J. R. Contrastive hebbian learning in the
continuous hopfield model. In Touretzky, D. S., Elman,
J. L., Sejnowski, T. J., and Hinton, G. E. (eds.), Con-
nectionist Models, pp. 10–17. Morgan Kaufmann, 1991.
ISBN 978-1-4832-1448-1. doi: https://doi.org/10.1016/
B978-1-4832-1448-1.50007-X. URL https:
//www.sciencedirect.com/science/
article/pii/B978148321448150007X.

Rabbat, M. and Nowak, R. Distributed optimization in
sensor networks. In Third International Symposium on
Information Processing in Sensor Networks, 2004. IPSN
2004, pp. 20–27, 2004. doi: 10.1145/984622.984626.

Rajput, S., Wang, H., Charles, Z., and Papailiopoulos,
D. Detox: A redundancy-based framework for faster
and more robust gradient aggregation. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,

2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
415185ea244ea2b2bedeb0449b926802-Paper.
pdf.

Rathore, S., Pan, Y., and Park, J. H. Blockdeepnet: A
blockchain-based secure deep learning for iot network.
Sustainability, 2019.

Ruan, Y., Zhang, X., Liang, S.-C., and Joe-Wong, C. To-
wards flexible device participation in federated learning.
In International Conference on Artificial Intelligence and
Statistics, pp. 3403–3411. PMLR, 2021.

Sharma, H., Haque, A., and Blaabjerg, F. Machine learning
in wireless sensor networks for smart cities: a survey.
Electronics, 10(9):1012, 2021.

Siddiqui, S. A., Krueger, D., LeCun, Y., and Deny, S. Block-
wise self-supervised learning at scale, 2023.

Su, L. and Xu, J. Securing distributed gradient descent in
high dimensional statistical learning, 2019.

Thakur, D., Kumar, Y., Kumar, A., and Singh, P. K. Applica-
bility of wireless sensor networks in precision agriculture:
A review. Wireless Personal Communications, 107:471–
512, 2019.

Tuli, S., Casale, G., and Jennings, N. R. Dragon: De-
centralized fault tolerance in edge federations. IEEE
Transactions on Network and Service Management, 20
(1):276–291, 2023. doi: 10.1109/TNSM.2022.3199886.

Wang, S. and Ji, M. A unified analysis of federated learning
with arbitrary client participation. Advances in Neural
Information Processing Systems, 35:19124–19137, 2022.

Wang, Y., Ni, Z., Song, S., Yang, L., and Huang, G. Revisit-
ing locally supervised learning: an alternative to end-to-
end training. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=fAbkE6ant2.

Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., and Luo, W.
Deepchain: Auditable and privacy-preserving deep learn-
ing with blockchain-based incentive. IEEE Transactions
on Dependable and Secure Computing, 18(5):2438–2455,
2021. doi: 10.1109/TDSC.2019.2952332.

Wu, Z., Li, Q., and He, B. Practical vertical federated
learning with unsupervised representation learning. IEEE
Transactions on Big Data, 2022.

Xia, Q., Tao, Z., Hao, Z., and Li, Q. Faba: An algo-
rithm for fast aggregation against byzantine attacks in
distributed neural networks. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI-19, pp. 4824–4830. International Joint

10

https://doi.org/10.1609/aaai.v33i01.33011544
https://doi.org/10.1609/aaai.v33i01.33011544
https://www.sciencedirect.com/science/article/pii/B978148321448150007X
https://www.sciencedirect.com/science/article/pii/B978148321448150007X
https://www.sciencedirect.com/science/article/pii/B978148321448150007X
https://proceedings.neurips.cc/paper_files/paper/2019/file/415185ea244ea2b2bedeb0449b926802-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/415185ea244ea2b2bedeb0449b926802-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/415185ea244ea2b2bedeb0449b926802-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/415185ea244ea2b2bedeb0449b926802-Paper.pdf
https://openreview.net/forum?id=fAbkE6ant2
https://openreview.net/forum?id=fAbkE6ant2

Towards Internet Learning

Conferences on Artificial Intelligence Organization, 7
2019. doi: 10.24963/ijcai.2019/670. URL https:
//doi.org/10.24963/ijcai.2019/670.

Xie, C., Koyejo, O., and Gupta, I. Generalized byzantine-
tolerant sgd, 2018a.

Xie, C., Koyejo, O., and Gupta, I. Phocas: dimensional
byzantine-resilient stochastic gradient descent. CoRR,
abs/1805.09682, 2018b. URL http://arxiv.org/
abs/1805.09682.

Xie, C., Koyejo, S., and Gupta, I. Zeno: Distributed stochas-
tic gradient descent with suspicion-based fault-tolerance.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 6893–6901. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
xie19b.html.

Xie, C., Koyejo, S., and Gupta, I. Zeno++: Robust fully
asynchronous SGD. In III, H. D. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 10495–10503. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/xie20c.html.

Xiong, Y., Ren, M., and Urtasun, R. Loco: Local contrastive
representation learning, 2020.

Yang, H., Zhang, X., Fang, M., and Liu, J. Byzantine-
resilient stochastic gradient descent for distributed learn-
ing: A lipschitz-inspired coordinate-wise median ap-
proach, 2019.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Byzantine-
robust distributed learning: Towards optimal statisti-
cal rates. In Dy, J. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 5650–5659. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/
yin18a.html.

Zhao, Y., Zhao, J., Jiang, L., Tan, R., Niyato, D., Li, Z.,
Lyu, L., and Liu, Y. Privacy-preserving blockchain-based
federated learning for iot devices, 2021.

Ángel Morell, J. and Alba, E. Dynamic and adap-
tive fault-tolerant asynchronous federated learning us-
ing volunteer edge devices. Future Generation
Computer Systems, 133:53–67, 2022. ISSN 0167-
739X. doi: https://doi.org/10.1016/j.future.2022.02.
024. URL https://www.sciencedirect.com/
science/article/pii/S0167739X22000735.

11

https://doi.org/10.24963/ijcai.2019/670
https://doi.org/10.24963/ijcai.2019/670
http://arxiv.org/abs/1805.09682
http://arxiv.org/abs/1805.09682
https://proceedings.mlr.press/v97/xie19b.html
https://proceedings.mlr.press/v97/xie19b.html
https://proceedings.mlr.press/v119/xie20c.html
https://proceedings.mlr.press/v119/xie20c.html
https://proceedings.mlr.press/v80/yin18a.html
https://proceedings.mlr.press/v80/yin18a.html
https://www.sciencedirect.com/science/article/pii/S0167739X22000735
https://www.sciencedirect.com/science/article/pii/S0167739X22000735

Towards Internet Learning

A. Fault Tolerance in Distributed Learning
There is a growing body of work on fault tolerance in distributed learning. Methods to mitigate the effects of Byzantine
clients have seen particular interest. Most state-of-the-art methods involve gradient filters. Recently, techniques based on
error correcting codes and blockchain have also been proposed. We summarize some broad strategies here. (Liu et al., 2021;
Liu, 2021; Bouhata et al., 2022; Gupta & Vaidya, 2020b) present detailed reviews.

Gradient Filters Methods such as (Barrak et al., 2023; He et al., 2021; Fan et al., 2021; Gupta et al., 2021a; Gupta &
Vaidya, 2020a; Xie et al., 2019; Alistarh et al., 2018) employ gradient (or model) filters. The goal therein is to aggregate n
gradients or local models assuming up to f may be from Byzantine agents. (Liu et al., 2021) show that when the system is
2f -redundant viz.

argmin
x

∑
i∈Ŝ

Qi(x) = argmin
x

∑
i∈S

Qi(x)

(where S is any subset of the n distributed agents s.t. |S| = n− f , Ŝ ⊆ S s.t. |Ŝ| ≥ n− 2f , and Qi is the local objective of
the ith agent), it is possible to calculate the optimal x of n− f good agents without knowing which f are faulty. The authors
relax this condition to define f − ϵ resilience (effectively, the sets of state x converging to within ϵ under f faults) and (2f, ϵ)
redundancy (effectively, relaxing exact equality in 2f -redundancy). The authors use these to provide convergence guarantees
for Comparative Gradient Elimination (CGE) (Gupta et al., 2021b) and Coordinate-wise Trimmed Mean (CwTM) (Yin
et al., 2018).

Other coordinate-wise methods include (El-Mhamdi et al., 2020; Yang et al., 2019; Xie et al., 2018b; Chen et al., 2017) and
MarMed and MeaMed from (Xie et al., 2018a). Therein, instead of generating an aggregate based on global characteristics,
each index of an incoming gradient is compared to the corresponding index of all others. The f farthest outliers for every
coordinate are suppressed. Each coordinate of the final gradient is therefore a coordinate-wise aggregation.

On the other hand, methods such as (Guo et al., 2021; Jin et al., 2020; Li et al., 2019; Xia et al., 2019) involve dampening or
dropping entire gradients that are expected to be outliers. Usually, this is based on a geometric metric such as norm (Gupta
et al., 2021b; Gupta & Vaidya, 2019a; El Mhamdi et al., 2018) or distance from mean/median such as GeoMed from (Xie
et al., 2018a). It may also be based on statistical features such as Lipschitz characteristics.

Gradient Codes There is also some recent work based on error-correcting codes (Data et al., 2019; Rajput et al., 2019;
Gupta & Vaidya, 2019b; Chen et al., 2018a). (Chen et al., 2018a) present an aggregation technique based on coding theory,
using redundancy as a repetition code. (Gupta & Vaidya, 2019b) add a reactive redundancy mechanism to identify and
suppress Byzantine workers. Being linear codes, the compuatational overhead is lower than that of many gradient filters.
Further, they are compatible with non-convex losses, which is not generally true for gradient filters.

Blockchain Methods (Weng et al., 2021; Zhao et al., 2021; Rathore et al., 2019; Lugan et al., 2019; Chen et al., 2018b)
propose methods using blockchain technology. Various validation mechanisms exist. These are used to add aggregated
models as new blocks. Consensus-based validation enables peer-to-peer computation, and mining rewards discourage
adversarial faults.

State Filters The problem of state estimation is related to distributed machine learning (being a case of distributed
optimization, if the state is linear), and moreso to IL (being a case of partial observability). The objective is to construct an
estimate of the state of a system given incomplete observations from a network of sensors. Distributed gradient descent is
one way to achieve this. As such, gradient filters are compatible (Rabbat & Nowak, 2004). Some works instead use state
filters. (Fawzi et al., 2014) propose an algorithm based on the Kalmann filter to detect adversarial attacks and produce a
robust state estimate. Similar to distributed learning, the partial states must show a form of 2f -redundancy called 2k-sparse
observability.

Crash Tolerance Tolerance to Byzantine faults encompass a wide range of scenarios, from benign communication faults,
to adversarial attacks. However, this vast literature does not extend to meta-system faults e.g. communication delay and
device failure. There is some work that proposes techniques to handle such faults. Most methods are adaptive algorithms
(Ángel Morell & Alba, 2022; He et al., 2021) or based on heartbeat monitoring and checkpointing (Ángel Morell & Alba,
2022; Chen et al., 2021; Tuli et al., 2023).

12

Towards Internet Learning

Drawbacks, and towards an IL solution The fundamental drawback of these methods is their computational overhead.
All gradient filters and codes cited are O(n2d) per round (or worse), with only some also being O(nd) where n is the
number of agents and d is model parameter size (Bouhata et al., 2022; Liu, 2021). The methods based on blockchain are
substantially costlier in time complexity and energy.

Further, the convergence of many aggregators are based on strong assumptions, for example on convexity (Liu et al., 2021;
Gupta & Vaidya, 2019a; Xie et al., 2018b; Blanchard et al., 2017) or i.i.d. data (Xie et al., 2020; 2019; Yang et al., 2019;
Su & Xu, 2019) or a combination of the two. These are not necessarily practical assumptions. Many deep models utilize
non-convex loss functions, for which some gradient filters may fail to converge altogether. Similarly, while the assumption of
i.i.d. data is not unfounded, it is impractical in federated and decentralized scenarios, and it is a threat to data privacy. Some
methods (Rajput et al., 2019; Data et al., 2019; Chen et al., 2017) rely on the assumption that all clients will independently
learn near-identical models, which is really only feasible if there is data redundancy imposed by a central allocator. Even
when all conditions are met, there is a tradeoff between tightness of convergence and rate of convergence.

It is also difficult to implement aggregation in a decentralized environment. Since all gradients must be available to any
aggregating participant, there is a high communication overhead. Further, either there must be elected leaders to perform
this aggregation (unreliable, since the leaders may be faulty) or all devices should perform aggregation by consensus (further
communication cost). Furthermore, maintaining a copy of the model and communicating updates is not feasible for low
power edge devices or large foundation models with billions or even trillions of parameters.

Mechanisms such as consensus and aggregation require synchronization between clients. In a server-client setting, the server
must wait for all gradients for the current round to arrive. In a P2P setting, clients must wait for communication from all
other devices. Asynchronous methods exist (Xie et al., 2020; Jin et al., 2019; Damaskinos et al., 2018) and are based on
other statistical properties. However, this is at the expense of even stronger requirements for convergence.

IL, by virtue of splitting the global model itself amongst participants, does not require global aggregation. Instead, identifying
adversarial or failed local neighbors should be sufficient to implement a packet switching-like strategy. This would make
fault tolerance inherent to the learning process, and mitigate constraints such as synchronization and computational overhead.

B. Autoencoder Architecture

(a) Encoder Architecture (b) Decoder Architecture

Figure 4. The parameters of this encoder-decoder architecture are shared across all devices. We use IL to process the 1 × 1 latent
representations generated by the encoder in our experiments.

The encoder (Figure 4a) receives an input patch of 14x14, viz. the partial input observed by one device. The input is passed
to a fully connected 16× 1 linear layer activated by ReLU. This is followed by another fully connected linear layer, which
further compresses the dimension to 1.

13

Towards Internet Learning

The decoder (Figure 4b) increases the data dimensionality symmetrically to the encoder. The input is passed to a fully
connected linear layer with ReLU activation, increasing the dimensionality to 16. Another fully connected linear layer
increases the data dimension to 14× 14. This network is trained on all patches for 10 epochs using an Adam optimizer with
an initial learning rate of 0.1 and a decay of γ = 0.1 every 3 epochs.

The encoder-decoder model is trained to reconstruct the original image using an MSE loss between the patch and the
14 × 14 network output. This model is frozen and identically available on all devices. We then use IL with the goal of
learning a better encoded representation. We generate new latent representations using the frozen encoder and pass it to
an IL network. To evaluate performance, we pass the resultant IL-trained latent representation through the decoder and
calculate reconstruction loss, averaged over all four patches.

C. Device and Virtual Graphs
We run our experiments under the assumption of no communication latency. The virtual graph (Figure 5b) describes all
possible network connections between devices, including those via intermediate devices. A multiple-hop connection with
zero latency is no different from a direct connection with zero latency. Therefore, in our scenario the virtual graph alone is
sufficient to describe the network behavior. However, our implementation allows for future simulations with communication
delay. In that case, the virtual graph edges are weighed based on the device graph. The virtual graph should be constructed
judiciously, since varying communication path lengths might desynchronize and slow down training. This would also make
the system less tolerant to communication faults, since intermediate connections may fail before the virtual communication
reaches its destination. Since the device graph is universally known, a simple graph traversal algorithm (say, Dijkstra’s) on
the device graph (Figure 5a) can be used to determine the least-hops path for a virtual connection before training begins.
For example (assuming all direct connections are equivalent in latency and neglecting switching latency), in Figure 5, the
latency between device 2 and 3 is thrice of that between device 4 and 3. But, they are allowed to communicate gradients and
activations to each other.

In the case of incomplete connectivity, we use a ring structure (Figure 6). We do not use any virtual-only connections
(Figure 6b), viz. only devices that are adjacent per the device graph can communicate with each other. For example, a
pair of fully connected layers in a neural network would have a 4 × 4 weight parameter, where a similar layer in our IL
example with full connectivity has four 4× 1 weight parameters (see next para.). Our example with ring connectivity has
four 3× 1 parameters, since there is no connection with the non-adjacent device. It is obvious the generalization ability
will be hampered, as the degree of freedom is lower. In the Figure 6, device 2 cannot send activations and gradients to
perceptrons on device 4, for instance.

Both the device and the virtual graph are implemented in PyTorch using custom “distributed” layers, which are a list of
linear layers corresponding to the “computational units” on each device. A distributed layer accepts a full input vector, and
uses the virtual graph to pass the relevant inputs to each computational unit. This is achieved using a PyTorch forward hook
which drops indices from the input before passing it to a computational unit. The resulting activations are then concatenated
to form the feature vector for the next layer.

D. Fault Injection
We use PyTorch hooks to simulate faults on forward passes and backward passes. We simulate two kinds of faults:

1. Device Faults: For the period of a device fault, that device does not communicate with any other devices and stops
training its on-device computational units. We implement this by dropping inputs to and outputs from computational
units on that device, effectively setting them to zero.

2. Random Communication Faults: On any call of forward() or backward(), each inter-device connection may
fail by some fixed probability. When this occurs, the respective features and gradients are masked to zero.

We test both types of faults in our experiments, and note a considerable degradation in performance. This emphasizes the
importance of communication in our paradigm and the need for a fault tolerance strategy. It is also important to note that the
network we test IL with is very shallow, with only 48 parameters in the fully-connected case. A single device fault could
invalidate 25% of all parameters. This is similarly the case for incomplete communication– as mentioned in section D of the
appendix, removing only two virtual links reduced our parameter count to 36.

14

Towards Internet Learning

(a) Device Graph (b) Virtual Graph (c) Combined Graph

Figure 5. Communication graphs for our experiments with full connectivity. Solid lines between two devices indicate they are directly
connected. Dashed lines indicate they are virtually connected, viz. either directly connected or connected via other devices.

(a) Device Graph (b) Virtual Graph

Figure 6. Communication graphs for our experiments with partial connectivity. Devices 2 and 4 cannot communicate with each other.
Device 3 and 1 also cannot communicate with each other.

15

Towards Internet Learning

For the case of random faults, the number of faults in any round is effectively the result of a binomial experiment
with n =

(
4
2

)
= 6 trials with failure probability p = failure rate. With rate = 0.6, the probability that at least

two connections will fail (viz. no more parameters are active than the ring-connected case) P(f ≥ 2) ≈ 0.96. For
rate = 0.3, P(f ≥ 2) ≈ 0.58 and for rate = 0.1 it is ≈ 0.11. This is in line with the performance degradation we
observe, and that which we see under incomplete communication and device failure. On the other hand, if there were
instead n = 8 devices viz. 192 parameters, the binomial experiment has n =

(
8
2

)
= 28. Since suppressing one inter-device

connection effectively kills L− 1 parameters (where L = 4 is the number of layers), we need f = 16 connection faults
to remove 1

4 ths of the parameters. P(f ≥ 16) ≈ 0.69 for rate = 0.6 and 0 for rate = 0.1 and 0.3. Indeed, a single
fault will affect a smaller fraction of global model parameters as the number of parameters increases. It is clear that with
larger-scale connectivity, fault tolerance will inherently improve.

16

