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Abstract

Language is never spoken in a vacuum. It is expressed and comprehended within the
holistic backdrop of the speaker’s history, actions, and environment. Since humans
are used to communicating efficiently with situated language, the practicality of
robotic assistants hinge on their ability to understand and act upon implicit and
situated instructions. In traditional instruction following paradigms, the agent
acts alone in an empty house, leading to language use that is both simplified and
artificially “complete.” In contrast, we propose situated instruction following
(SIF), which embraces the inherent underspecification and ambiguity of real-world
communication with the physical presence of a human speaker. The meaning of
situated instructions naturally unfold through the past actions and the expected
future behaviors of the human involved. Specifically, within our settings we
have instructions that (1) are ambiguously specified, (2) have temporally evolving
intent, (3) can be interpreted more precisely with the agent’s dynamic actions. Our
experiments indicate that state-of-the-art Embodied Instruction Following (EIF)
models lack holistic understanding of situated human intention.

1 Introduction

Humans communicate efficiently by providing only the necessary information, relying on shared
context like history, actions, and environment. For example, the request "Can you bring me a cup?"
varies based on context—if said near a kitchen sink with gloves, it likely refers to a dirty cup, while
near a bathroom sink, it suggests a clean one. Although clarification is possible, humans often
interpret such requests accurately using contextual cues, showing our ability to derive nuanced,
situation-specific meanings from ambiguous language.

As robotic agents increasingly become integral to our daily lives, their effectiveness and utility
critically depend on their ability to comprehend and respond to situated language— natural language
spoken by humans. Without this capability, agents may prove more of a hindrance than a help, forcing
users to perform tasks themselves rather than entrusting them to an assistant. As discussed in the field
of agent alignment [Leike et al., 2018], it is often difficult for users to precisely define or articulate
ideal task specifications. Consequently, an agent that demands detailed explanations might render
manual task execution by humans more attractive.

Current instruction-following tasks prioritize accurate low-level instruction interpretation [Anderson
et al., 2018, Gu et al., 2022, Padmakumar et al., 2021, Shridhar et al., 2020] or use commonsense
to achieve underspecified goals like object navigation [Chaplot et al., 2020, Das et al., 2018]. In
contrast, our work SIF aims to generalize Embodied Instruction Following to Situated Instruction
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Figure 1: Overview. The tasks in SIF consist of two phases: an exploration phase (phase 1) and a
task phase (phase 2). PNP represents a conventional static Pick-and-Place task used for comparison,
wherein the environment remains unchanged after the exploration phase. Shum and Sobj introduce
two novel types of situated instruction following tasks. In these tasks, the objects and human subjects
move during the task phase. Nuanced communication regarding these movements is provided,
necessitating reasoning about ambiguous and temporally evolving human intent.

Following, with instructions closer to the language naturally spoken by humans. Specifically, we
focus on three dimensions of situated reasoning:

1. Ambiguity: As in the cup example above, there is ambiguity in the instruction given by the
speaker.

2. Temporal: A speaker’s actions change how their instruction should be interpreted (e.g.,
clarifying an underspecified reference).

3. Dynamic: When the environment changes, the agent needs to decide what actions will
reduce their uncertainty (e.g., following the human).

We implement our tasks in Habitat 3.0 [Puig et al., 2023], which includes simulated human agents.
To ensure fair comparison with prior work, we include both static (prior work) and dynamic (this
work) tasks (Fig. 1). The static task follows the classic pick-and-place paradigm where the agent is
instructed to Put [Obj] in/on [Recep]. We simplify the setup by allowing the agent to explore,
minimizing the role of mapping in our reasoning benchmark.

Our benchmark focuses on dynamic tasks where the agent must combine instruction understanding
with human movement. The dynamic tasks include Sobj(object moved by human) and Shum(human
is the receptacle). In these, the agent receives goal instructions (e.g., “Bring me a mug” for Shumor
“Put the mug in the bathroom” for Sobj) along with relocation hints. In Shum, the human moves as
the task begins, signaling intent through both words and movement. The agent must efficiently follow
instructions, retrieve the object, and place it in the correct location (e.g., with the moving human in
Shumtasks).

We specifically target evaluation of state-of-the-art Embodied Instruction Following (EIF) baselines.
We implement two such systems inspired by papers on related tasks. The first baseline, which we
refer to as REASONER, is a closed-loop system incorporating a semantic map, a prompt generator,
and a Large Language Model (LLM) planner. For the prompt generator, we integrated components
from Voyager[Wang et al., 2023], LLMPlanner[Song et al., 2023], and ReAct[Yao et al., 2022],
tailoring them to suit our dataset’s specific requirements. The second baseline, PROMPTER[Inoue and
Ohashi, 2022], was very successful at executing ALFRED [Shridhar et al., 2020] tasks despite being
open-loop. We see the desired result that our static scenarios match those from existing EIF datasets
[Inoue and Ohashi, 2022, Song et al., 2023], and these LLM based approaches perform very well in
tasks requiring common sense. However, their performance significantly declines when faced with
situations that require reasoning about the human’s behavior.
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Figure 2: REASONER: (a) The semantic mapper is updated at every timestep, whereas the prompt generator
and planner are activated either upon completion of the last high-level action or when a new decision is required.
(b) The prompt consists of system prompt, environment prompt, format prompt.
2 Task

Our tasks (1) are structured into two distinct phases: (1) the exploration phase and (2) the task
phase. During the exploration phase, the agent is allotted N steps to navigate around a static house
environment where object assets are positioned. The value of N is determined to ensure the agent
has sufficient steps to thoroughly scan the environment; specifically, N = 1.5 x (the number of
steps required to achieve a complete map using frontier-based exploration techniques). Following
the exploration phase, some objects are repositioned without the agent’s knowledge. As the task
phase commences, the agent receives an instruction (e.g., “Bring me a cup,” “Put the cup in the
sink”), accompanied by either direct or ambiguous information regarding which objects have been
moved (e.g., “I took a cup with me. I’ll be getting ready for bed”). If the task involves delivering an
object to a human, the human walks into the agent’s field of view as the task begins, simultaneously
providing hints about their intended location (“I will be in the bathroom washing my face”). These
elements, along with other strategic design decisions, ensure that the exploration phase effectively
contextualizes the language directives, rendering tasks sufficiently solvable.

3 Baselines

Many recent state-of-the-art EIF agents are modular models with an LLM planner, connected to
learned/engineered episodic memory, perception, and execution tools. We present a baseline within
this high-performing family — REASONER, a closed-loop baseline that adapts FILM[Min et al.,
2021] and the prompts of llm-planner[Song et al., 2023], and ReAct [Yao et al., 2022], and prompter
[Inoue and Ohashi, 2022], an open-loop SOTA agent built for ALFRED [Shridhar et al., 2020].

Semantic Mapper. The semantic mapper creates a global representation for visual observation. As
in previous work[Chaplot et al., 2020, Min et al., 2021], we process egocentric RGB and depth into
an allocentric top-down map of obstacles and semantic categories using Detic[Zhou et al., 2022]. The
semantic categories of interest are [ObjectCat], [Recep], and “human.” In contrast to previous
works[Chaplot et al., 2020, Min et al., 2021], the most recent human and object positions are refreshed
post new observations and pick/place actions, ensuring a dynamic and accurate representation of the
environment.

Text representation generator. The semantic map and other contexts are converted into prompts.
It is a concatenation of three components: the system prompt, environment prompt, and the format
prompt:
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Table 1: SPL performance of REASONER across splits. In each sectioned-row, the top row assumes oracle
perception (semantic segmentation and manipulation); the bottom row assumes learned semantic segmentation
and heuristic manipulation. To minimize the burden on API costs and time, we have limited LLM API calls for
plan generation to 15 times.
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Oracle Oracle 98 100 95 100 100 100 98 93 98 95 100 98
Learned 46 46 59 41 30 54 52 30 69 44 47 46

REASONER Oracle 82 61 23 78 49 39 73 58 29 81 49 34
Learned 21 8 12 24 11 12 29 2 15 18 14 15

• System: The system prompt outlines the agent’s role and and encourages it to account for
uncertainty. It is presented as “You are an assistive robot in a house, aiding a human. Your
observations may be incomplete or wrong."

• Environment: The environment prompt is a conversion of the episodic memory into text
format, and contains information of the agent’s current state and previously completed/failed
actions. It is given in the following sequence: (1) observation of Pe during exploration
phase, based on the semantic map, (2) C, regarding object/ human movements, (3) the goal
instruction I , (4) the high-level action executed by agents at timesteps and their observed
consequences (success/fail), (5) the agent’s latest observation, based on the semantic map.

• Format: The format prompt explains action affordance and a format for chain of thought
[Wei et al., 2022]. It also explains the desired effect of actions (e.g. “If you want to keep
searching for object(s) or human that might exist (but you have not detected) in the current
room, choose ‘Explore Room X’ (Table 2).”)

Execution Tools Upon receiving the prompt, the planner is prompted to choose a high-level action
(Tab. 2); then corresponding execution tools are called. A complete list of tools are listed in Table 2.
When the execution is done, the tool sends this message, and the prompt generator creates a new
prompt and the planner calls a new tool.

4 Results

Results from our experiments are presented in Table 1. This table notably shows the following
facts about our dataset and baselines. First, the gap of model performance across PNP versus Shum,
Sobj shows that PNP can be solved with commonsense and mechanistic combination, and the rest
two tasks cannot. The reasoning challenges of Sobj and Shum are backed by the performance of
REASONER with oracle perception/manipulation; it shows a stark contrast in PNP tasks (∼ 80%) and
Sobj , Shum tasks (∼ 45%).

Table 3 examines model performance on clear versus ambiguous tasks. Ambiguity in Sobj tasks
emerges when multiple potential locations exist for an object, as indicated by communicative
cues. For example, the statement “I am washing my face” becomes ambiguous when multiple
bathrooms are available. Similarly, ambiguous Shum tasks occur when the human could be in several
different locations. In Shum tasks, REASONER underperforms in clear tasks due to a tendency to
conservatively judge that there is insufficient evidence of the human’s destination, even when only one
plausible location exists. REASONER attempts some calibration but generally leans towards following
the human. Qualitative analysis reveals that in ambiguous tasks, REASONER often disengages
prematurely, assuming it has accumulated enough evidence.

5 Conclusion

We present Situated Instruction Following (SIF), a new dataset to evaluate situated and holistic
understanding of language instructions. Our dataset reflects aspects of real-world instruction follow-
ing: (1) ambiguous task specification, (2) evolving intent over time, and (3) dynamic interpretation
influenced by agent action. We show that current state-of-the-art models struggle with this level of
understanding, further highlighting the complexity and uniqueness of our dataset.
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A Execution Tools

Execution tools for REASONER/PROMPTER and their working details/affordance are in Table 2.

Execution Tool Description & Affordance

Navigation
Go to Room X FMM Planner navigates to a random point in Room X.
Explore Room X FMM Planner navigates to a random point in Room X; then, agent turns 15

times to the right to look around.
Follow Human The last observed position of the human is given as the goal, to the human-

following wrapper (more explanation is Sec. ??) on top of FMM Planner.

Manipulation
Grab Obj The closest object within 2 meters of the grasper is grabbed, and agent’s

grasper is closed.
Put Obj Grasped object is put on the closest receptacle within 2 meters of the grasper

is grabbed, and agent’s grasper is opened.
Give Obj to Human The agent goes within 1 meter of the human and gives grasped object to

human, if human is visible from current view.
Table 2: Execution tools for REASONER/PROMPTER and their working details/affordance.

B Ablations Across Ambiguous/ Clear Tasks

Table 3: Ambiguous vs Clear tasks. SPL and SR of REASONER and PROMPTER with G.T./learned vision and
manipulation on Val seen & unseen combined.

Model Metric G.T. Vis. & Man. Learned Vis. & Man.

Sobj Shum Sobj Shum

Clear Amb. Clear Amb. Clear Amb. Clear Amb.

REASONER
SPL 62 52 13 42 9 11 3 17
SR 76 71 14 67 15 14 6 26

PROMPTER
SPL 38 29 3 42 11 8 0 17
SR 54 36 4 66 18 10 0 27
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