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Abstract
Generative Artificial Intelligence (GenAI) has
evolved into a transformative technology whose
unprecedented growth and public exposure have
revealed challenging issues ranging from privacy
protection to reducing factual inaccuracies and
hallucinations, model security risks, legal com-
plications, and a lack of interpretability. This
position paper examines how Differential Pri-
vacy (DP), a mathematical privacy protection
framework, can address both privacy concerns
and other systemic challenges beyond privacy in
GenAI. We argue that DP is a versatile and under-
utilized tool with significant potential to address
many critical GenAI issues. To argue our claim,
we connect the core principle of DP to these is-
sues, evaluate existing research, and pose relevant
research questions.

1. Introduction
GenAI has witnessed unprecedented growth in recent years,
evolving from a research endeavor to generating real-world
value. From producing realistic images to crafting human-
like text, GenAI continues to push technological boundaries.
However, its rapid adoption has exposed major challenges,
as issues that were once mainly of interest to the research
community have now emerged as serious problems. Some
issues relate to the development of more powerful GenAI
systems, while others focus on ethical considerations vital
for both humanitarian reasons and maintaining public trust.
Additionally, concerns around reliability and security are
crucial for advancing GenAI into safety-critical domains.

Differential Privacy (DP) is a mathematical framework that
addresses privacy protection, offering strong theoretical
guarantees (Dwork & Roth, 2014). At its core, (user-level)
DP ensures that the inclusion or exclusion of any single
user’s data has an (almost) negligible impact on the outcome
of a computation. This property makes it nearly impossi-
ble to infer whether a specific individual contributed to the
computation, thereby safeguarding their privacy. In this po-
sition paper, we argue that DP is a (1) highly versatile tool
with (2) significant untapped potential to resolve current
GenAI issues.

DP may initially seem unrelated to challenges beyond the
realm of privacy; however, its versatility, which stems from
its minimal application requirements, allows it to be de-
ployed across various domains and problems (Desfontaines,
2021). Nonetheless, this only implies that DP can techni-
cally be used to solve many issues. What justifies its use
is that its underlying paradigm—ensuring that no single in-
put disproportionately influences the output—is a desirable
quality across a wide range of applications and problems.
Additionally, unlike many other approaches, DP offers math-
ematically rigorous and reliable guarantees, making it the
ideal complement to other, more heuristic methods.

Drawing inspiration from (Hendrycks et al., 2021; Nah et al.,
2023; Singla et al., 2024), we identified key issues, con-
centrating on areas where the application of DP is most
relevant and impactful. Concretely, the issues are backdoor
attacks (Appendix A due to space constraints), data quality
challenges, harmful content generation, memorization of
Personally Identifiable Information (PII), hallucinations, the
lack of interpretability, exhaustion of high-quality data, and
the “right to erasure”.

We argue our position’s first claim by demonstrating how
DP can be applied to address a wide spectrum of challenges
in GenAI. Where prior research exists, we draw on empir-
ical findings to support our analysis. Yet, we find many
applications of DP in GenAI remain underexplored, with
little to no existing literature addressing these intersections;
this is direct evidence that supports our second claim. To
address this gap, we pose important unanswered questions
and propose future research directions. The goal of our pa-
per is to underline DP’s untapped potential and inspire
deeper exploration into its applications within GenAI.

We group the memorization of PII, data quality, and harmful
knowledge under the “Proactive Measures” cluster, based
on their resolution methods, all of which apply before model
training. Other issues are distinct enough to warrant a sepa-
rate discussion.

The remainder of the paper is structured as follows. We
begin with an informal background section on GenAI and
DP. We then address the identified issues sequentially, pro-
gressing from those most closely aligned with DP’s original
privacy-focused objective to more speculative applications.
Next, we critically examine our own position through the
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lens of an opposing viewpoint. Finally, we synthesize these
contrasting positions into a comprehensive conclusion.

2. Background
Generative Artificial Intelligence. GenAI employs Artifi-
cial Intelligence (AI) systems to develop generative models
that learn and sample from high-dimensional probability dis-
tributions, enabling the creation of new data with statistical
properties similar to the training set. These models either di-
rectly compute probability distributions or generate samples
without explicit calculations. Examples include autoregres-
sive Transformer models (Radford et al., 2018), which excel
at generating coherent text sequences, and methods such as
Generative Adversarial Networks (Goodfellow et al., 2014)
and diffusion models (Croitoru et al., 2023), which itera-
tively transform noise into photorealistic image generation
and artistic creation. These models can also be conditioned
on input parameters, guiding applications ranging from in-
teractive chatbots to controlled image generation.

Differential Privacy. Formally, a DP mechanism ensures
that the outputs computed on any two datasets differing
by only one data unit are very “close”, making it (nearly)
impossible to infer which dataset was used. The notion
of “closeness” varies slightly depending on the specific
definition of DP, with each variation defined by parame-
ter(s) that control the degree of similarity and determine
the strength of privacy guarantees (Mironov, 2017; Dong
et al., 2019). To provide its privacy guarantees, DP typ-
ically adds noise to an output to obscure the presence of
individual samples. The appropriate level of noise is es-
sential; too much randomness degrades results, while too
little weakens privacy. This constitutes the privacy-utility
tradeoff. Additionally, for any given problem, there may be
multiple ways to implement DP at the same privacy level,
each leading to different degrees of utility degradation. For
example, to compute a dataset’s mean, one could use Local
Differential Privacy (LDP) to make data points less distinct
from one another before averaging or compute the mean
first and then apply DP. The latter approach, which depends
on a trustworthy central aggregator with access to raw data,
provides enhanced utility but requires trust in the aggregator.
In contrast, the former incurs greater utility loss but elimi-
nates the need for a central aggregator. DP has two essential
properties for privacy-preserving data analysis: The post-
processing immunity ensures that once anything has been
made differentially private, this privacy guarantee cannot
be removed or weakened through subsequent operations,
enabling unrestricted downstream analysis. Group privacy
extends DP’s definition of single-entry differences between
datasets to datasets differing in multiple samples. Group pri-
vacy describes how DP’s guarantees decay gracefully with
the number of differing samples.

Differentially Private Stochastic Gradient De-
scent (DP-SGD) (Abadi et al., 2016) has emerged as
the predominant method to train Machine Learning (ML)
models under DP. In DP-SGD, gradients are clipped during
backpropagation to bound the influence of a single training
sample, followed by the addition of noise.

3. Proactive Measures
Training GenAI models requires vast amounts of data,
mainly collected from the Internet by crawling websites for
text and images, followed by a curation process. The data cu-
ration process not only reduces the size of the datasets, help-
ing to minimize computational and storage requirements
along with their associated costs, but it also serves two ad-
ditional important purposes: improving data quality and
managing potential risks related to harmful content.

Data Quality. The need for high-quality data is substanti-
ated by research demonstrating the detrimental effects of
label noise (Frenay & Verleysen, 2014) and feature inaccu-
racy (Budach et al., 2022). For generative models, higher
quality training data translates into a more accurate repre-
sentation, as measured by their benchmark performances.

Harmful Content. Harmful content encompasses informa-
tion that, when disseminated or utilized, can lead to harm,
either directly or indirectly. Both vision-based and text-
based models may reproduce harmful content. Vision-based
models are concerned with outputting depictions of racist,
sexist, and violent concepts (Bird et al., 2023) while text-
based models contend with the execution of illegal activities,
the encouragement of unethical or unsafe actions, the promo-
tion of harmful ideologies, and the spread of misinformation
(Wang et al., 2023b).

Memorization of PII. Large Language Models (LLMs)
have been shown to memorize individual samples from
their training data containing sensitive information such as
names, phone numbers, and email addresses belonging to
real people (Carlini et al., 2021; 2023a). Similarly, image
generation models produce images of real people. The unso-
licited release of private information represents a violation
of a person’s right to privacy and may expose the model
developer to litigation. Privacy concerns about the collec-
tion of user interaction data have led many companies (Mok,
2023) and even Italy (McCallum, 2023) to (temporarily)
ban specific GenAI. Memorization can cause a model to
reproduce verbatim copies (text) or near-duplicates (image)
of the original training data, leading users to inadvertently
stumble upon this data while interacting with the model as
intended. It also enables attackers to reconstruct the train-
ing data by exploiting information encoded in the model’s
weights (Song & Namiot, 2023). State-of-the-Art (SotA)
GenAI models, due to their size, are particularly vulnerable
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to memorization (Carlini et al., 2023b), a concern that is ex-
pected to grow as models scale. Additionally, the identified
memorization in ML models represents only a lower bound,
suggesting that the actual extent could be much greater.

3.1. Heuristic filtering

Current approaches to resolving the three problems rely on
heuristic filtering. To mitigate memorization of PII, dupli-
cates in the training data are removed using techniques such
as n-gram similarity detection (Lee et al., 2022), while PII
is filtered using regular expressions, named entity recogni-
tion, or rule-based logic (Microsoft Corporation). Through
OCR, these methods extend to images. Harmful content
is often addressed using keyword-based identification, AI
tools (AI, 2020), or using post-hoc methods (Section 4).
Ensuring data quality depends on the data modality: for
text, repetitive or inappropriate content is filtered (Dubey
et al., 2024), whereas for images, classifiers and checksums
help exclude undesirable content and samples with poor
aesthetic quality (Meyer et al., 2024). Despite significant
advancements over the years, heuristic filtering methods
remain inherently imperfect. This is primarily because in-
formation can inherently be conveyed in countless ways.
Furthermore, the vast size of modern datasets renders man-
ual oversight impractical. Consequently, some low-quality
or harmful samples inevitably “slip through the net”, even
under rigorous processes (Marsoof et al., 2023).

3.2. DP as a Complement to Heuristic Filtering

The core problem with heuristic filtering is that, as the say-
ing goes, “One bad apple can spoil the barrel”; it may be
sufficient for only a few “bad” samples to evade the filtering
to significantly undermine model quality. This is because
heuristic methods do not guarantee that removing undesired
samples prevents a model from compensating by extracting
more harmful information from the remaining harmful data.
In contrast, DP provides just that guarantee; while DP does
not completely eliminate the risk (and benefit) posed by
those samples, it can at least limit it. Another advantage that
DP provides is the ability to move beyond a binary choice
between complete removal or retention of data points. In-
stead, it enables a more nuanced approach, allowing data
to be “partially” removed based on customizable criteria,
making it particularly advantageous for ensuring data qual-
ity, as it allows extracting potentially useful data even from
samples of uncertain quality.

3.3. Prior Work

Previous work on the effectiveness of data poisoning (Gold-
blum et al., 2020) demonstrates that the inclusion of only
a few samples is sufficient to significantly deteriorate a
model’s quality. Though these samples are adversarially

chosen, they demonstrate the potential of a single sample.

3.4. Open Questions and Challenges

• Performance vs. Harm Mitigation Tradeoff: How do
the improvements in handling harmful samples provided
by DP compare to the decline in performance that DP
causes? How does our proposed method of applying DP
only on suspected harmful samples perform? What bene-
ficial information is lost? Are innocent models, stripped
of harmful content, still useful?

• Memorization and Duplicate Data: How does mem-
orization in private models scale with the presence of
duplicate data? DP constrains this scaling by imposing
an upper bound through group privacy. However, the
guarantees provided by DP are often overly conservative,
as real-world scenarios tend to yield tighter bounds than
predicted by DP.

4. The “Right to Erasure”
Regulations, such as the General Data Protection Regula-
tion (GDPR) and similar laws in other countries, grant citi-
zens the legal right, known as the “right to erasure”, to have
their data deleted from the storage of any data controller.
The right poses a formidable challenge for ML models, as
data controllers must not only delete an individual’s data
from their datasets but also ensure that all models trained
on that individual’s data are updated or revised accordingly.
In ML training, adding a sample to a dataset influences the
model weights–through model training–in complex and un-
traceable ways. Therefore, the only way to ensure that a
trained model has completely forgotten a person’s data is
to retrain the model from scratch using the same dataset
with that person’s data excluded (Nguyen et al., 2022). Sev-
eral approximations to the full retraining procedure, called
“approximate unlearning”, have been devised to avoid com-
putational and monetary costs. However, these methods
struggle with the stochasticity and incrementality of train-
ing, and the potential for catastrophic forgetting (Wang
et al., 2024b)—a phenomenon in which a model forgets or
unlearns more than the targeted data (French, 1999). These
three problems often result in unlearned models achieving
lower performance than fully retrained models.

Current Approaches. Two central approaches have
emerged to remove individuals’ data from already trained
models: Alignment teaches models to refuse access to harm-
ful content. It can also be used more broadly to better align
model outputs with human preferences (Bai et al., 2022; Lee
et al., 2023). However, it has proven fragile, with aligned
models potentially being manipulated or “jailbroken” to re-
veal dangerous knowledge (Wei et al., 2023). Unlearning
aims to forget knowledge of harmful content from the model,
operating on the principle that a model unable to recall spe-
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cific information cannot generate related responses (Cao &
Yang, 2015). Yet, recent research (Łucki et al., 2024) has
revealed significant limitations, including the challenge of
completely eliminating specific information without risking
catastrophic forgetting.

4.1. DP: Prevention over Remediation

Unlike alignment or unlearning methods, which act retroac-
tively, DP works proactively by guaranteeing that any user’s
impact on a trained model is minimal. One could thus argue
that if a user’s data is undetectable, it is effectively the same
as their data not being used. While it does not offer a com-
plete erasure of individual data as defined by current laws, it
represents a practical alternative—eliminating the need for
expensive retraining and reducing the unreliability and col-
lateral damage associated with post-hoc techniques—that
we believe is worth considering. Furthermore, we hypothe-
size that it is easier to apply unlearning to a private model.
Intuitively, a model that was constrained to learn less about
individuals during training should, in principle, have less
information to unlearn.

4.2. Prior Work

DP inherently satisfies the definition of unlearning proposed
by Sekhari et al. (2021), providing “unlearning for free”
when training with DP. Furthermore, Sekhari et al. (2021)
establish bounds on the number of samples that can be
unlearned before the model’s performance degrades beyond
a specified threshold. Building on this, Huang & Canonne
(2023) tighten these bounds for any unlearning algorithm
that does not rely on side information.

4.3. Open Questions and Challenges

• Alignment: How do DP and alignment interact? Is align-
ment effective in DP-trained models, and how does it
compare to nonprivate models?

• Unlearning: Does our hypothesis hold up? Is it easier
or more challenging to perform unlearning on private
models? Which factors influence the efficiency and com-
pleteness of unlearning in private models?

5. Copyright Infringement
“Copyright infringement occurs when a copyrighted work
is reproduced, distributed, ... or made into a derivative
work without the permission of the copyright owner.” (U.S.
Copyright Office) Copyright infringement lawsuits against
several developers of LLMs, image generation models, and
coding assistants are currently brought on by visual artists
(Andersen v. Stability AI Ltd., 2023), music publishers
(Concord Music Group, Inc. v. Anthropic PBC, 2024), au-
thors (Alter v. OpenAI Inc., 2023), and software developers

(Doe 1 v. GitHub, Inc., 2022) with plaintiffs claiming that
their data was used by the model developers without per-
mission or compensation.1 In the U.S., model developers
currently invoke the “fair use” exception in copyright law
to justify using copyrighted material for training purposes.
However, whether training ML models constitutes “fair use”
remains an unsettled legal question (Quang, 2021; Dornis &
Stober, 2024). Solutions to the dispute are urgently needed.
If courts uphold copyrighted data use by model develop-
ers, artists may restrict access to their data. Conversely, if
data holders win, model development could slow as devel-
opers become overly cautious in filtering copyrighted data,
hindering innovation.

The Plaintiff’s Perspective. In copyright infringement
cases involving GenAI models, plaintiffs face the challenge
of proving that their data has been misused. Misuse falls
into two categories: either the data was used to train a model,
or the model reproduced the protected data in its outputs.
Plaintiffs can use Membership Inference Attacks (MIAs) or
Dataset Inference (DI) to determine if their data was used
for training. MIAs (Song & Namiot, 2023) identify if a sin-
gle data point was used, while DI (Maini et al., 2021) shows
if any data from a set was used, though it doesn’t specify
how many or which; the choice between them depends on
the requirements of a particular lawsuit. Both methods rely
on differences between models trained with and without the
data. However, MIAs typically require at least access to the
model architecture to train reference models, which is often
unavailable for proprietary models. Furthermore, existing
high-performing MIAs rely on training several reference
models, a process infeasible with SotA models due to their
size. Proving infringement through data reproduction is
equally challenging. Generative models, by their proba-
bilistic nature, have a non-zero chance of producing any
output, raising the question of how likely “too likely” is
to constitute infringement. A potential baseline is to com-
pare the probability of the contested output in the suspect
model against a model known not to have been trained on
the data. Even more problematic are near-duplicates: deter-
mining what constitutes a near-duplicate and how to account
for all possible variations remains a serious problem.

5.1. DP for Copyright Protection

DP addresses the challenge of near-duplicates by ensur-
ing that the probabilities of generating copyrighted content
and its variations remain nearly unchanged through the in-
clusion of any copyrighted work. Privacy auditing should
then be employed to verify adherence to agreed privacy lev-
els. Established minimal privacy levels could be formalized
through legislation, allowing copyright holders to negotiate

1A different set of cases examines whether AI generated outputs
can be protected by copyright. We do not discuss these cases here.
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for more lenient levels in exchange for compensation.

5.2. Prior Work

Near Access-Freeness (NAF) bounds a model’s output to
avoid unauthorized reproduction of copyrighted material
(Vyas et al., 2023). Informally, NAF keeps a model’s output
distribution within a small divergence of a “safe” generative
model trained without access to the copyrighted elements.
While NAF shares conceptual similarities with DP, there
are differences: DP ensures that a model reveals (almost)
nothing about the presence of individual samples, which
is a stronger guarantee than NAF’s, which only requires
that the model does not produce outputs excessively similar
to copyrighted works. Through this, DP ensures that both
possible kinds of copyright infringement are avoided.

5.3. Open Questions and Challenges

• MIA Feasibility: Are MIAs and DI reliable and efficient
enough to attack even the largest SotA models? Are they
effective for all samples?

• NAF Auditing: Can we construct attacks similar to MIAs
to determine the NAF levels in place?

6. Data Bottleneck
The total amount of publicly available data on the internet
is projected to soon be fully utilized for model training. Vil-
lalobos et al. (2024) estimate that the size of datasets to train
future LLMs will match the volume of text data available
online by the end of this decade. This is concerning be-
cause data has been identified as a key driver behind model
performance (Hestness et al., 2017; Kaplan et al., 2020).
To acquire additional data, we may consider synthetic data;
however, its usefulness is heavily debated. On the one hand,
synthetic data has proven successful in enhancing the per-
formance of models in both text and vision tasks (He et al.,
2022; Lu et al., 2023). On the other hand, Geng et al. (2024)
suggest that training on the original data instead of lever-
aging it to train a synthetic data generator produces better
downstream results. Furthermore, using data generated by
GenAI to train the next generation of models initiates a de-
generative process that results in a loss of information about
the original data distribution and, ultimately, a deterioration
in the quality of downstream models trained on that data
(Shumailov et al., 2024). This process is accelerated by the
growing adoption of GenAI technology and the resulting
pervasion of internet data with GenAI-produced content.
Due to the uncertain usefulness of synthetic data, we fo-
cus on tapping into non-synthetic, human-generated data,
specifically private data and datasets curated by professional
providers. We examine the barriers that discourage indi-
viduals from sharing their private data and explore why the
emergence of professional data curators remains limited.

Individuals are often reluctant to share their information
due to privacy concerns, as personal data is sensitive, and
past privacy breaches have made people wary about entrust-
ing companies with it (Anant et al., 2020). The limited num-
ber of data providers stems from fundamental challenges
inherent to selling data products: Data is non-excludable;
once sold, it can be easily shared or resold without the
seller’s control, eroding their ability to profit. This creates a
reliance on trust between buyers and sellers: Buyers must
trust that sellers will not misuse or redistribute their data,
while sellers must ensure that the data provided delivers
tangible value once deployed. Additionally, the intrinsic
difficulty in assessing the quality and utility of data prior to
purchase complicates the pricing process (Fricker & Maksi-
mov, 2017; Cosgrove & Kuo, 2020).

6.1. DP as a Pricing Scheme

We envision a pricing scheme based on DP, where stricter
privacy protections (and lower utility) result in lower prices,
while weaker protections (and higher utility) lead to higher
prices, thus compensating users according to their loss of
privacy. This approach not only introduces a novel dimen-
sion to data trading but also inherently mitigates privacy
concerns. By leveraging DP in pricing, the scheme creates a
mutually beneficial framework for all stakeholders involved.
Sellers can adopt a versioning strategy (Shapiro & Var-
ian, 1998) that allows them to offer data at varying privacy
levels, optimizing revenue through market segmentation.
Furthermore, even if buyers copy and share purchased data,
versions with weaker privacy guarantees remain valuable.
Additionally, sellers can enter the market with highly private
data and gradually introduce less private versions, allowing
them to gauge market response and buyer trustworthiness.
Buyers are provided with an opportunity to evaluate data
quality through cheaper, more private versions before in-
vesting in more expensive, higher-utility options, helping to
address challenges in data valuation. New purchasing strate-
gies can benefit buyers, such as acquiring a wider variety of
highly private datasets instead of fewer, less private ones.

6.2. Prior Work

Li et al. (2014) explore a concrete pricing scheme with
linear queries using DP where query prices depend on the
desired precision (noise level). Their scheme involves data
owners supplying their data to market makers, who sell
linear queries to buyers. Data owners are compensated based
on their data’s contribution to a query and the precision.
Niu et al. (2018) extend the scheme to dependent data—
where data points are not independent and may influence or
reveal information about one another due to correlations or
relationships. Notably, data owners receive compensation
for privacy loss through dependencies with other samples,
even if their data was not used in a query.
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6.3. Open Questions and Challenges

The most critical question is where and how to apply DP,
as this decision shapes more than just the privacy-utility
trade-off. Options are:

• Local Differential Privacy: LDP (Section 2) foregoes
the need to trust a central aggregator. However, can high-
performing models be trained on locally-private data?

• In-the-clear Data Sharing with Privacy Auditing: This
option involves sharing unprotected data with a contrac-
tual agreement that buyers adhere to privacy-preserving
practices, verified through privacy auditing (Steinke et al.,
2023). Can we ensure compliance even in adversarial
scenarios where buyers attempt to cheat? Moreover, is
privacy auditing practical and scalable for SotA models?

• Centralized DP with Trusted Data Holders: Here, the
data holder manages training internally, avoiding raw data
sharing but incurring high computational and operational
costs. Key questions arise: Can data holders handle these
resource demands, or is a trusted third party, like a market
maker, needed? Would companies even agree to share
their training routines?

7. Hallucinations
GenAI has made remarkable strides in producing written
language and images that are, at first glance, indistinguish-
able from real data. Yet, upon closer examination, flaws
and inconsistencies in the generated output become appar-
ent. Despite its impressive linguistic and visual capabilities,
GenAI often produces factually incorrect content, deviates
from user instructions, or includes unsolicited information.
We adopt Ji et al. (2022)’s definition of hallucinations as
“generated content that is nonsensical or unfaithful to the
provided source content”. Our definition also includes con-
tent inconsistent with established facts, sometimes consid-
ered a separate issue called “factuality” (Wang et al., 2023a).
Hallucinations can severely impact both end users and de-
velopers by undermining trust, harming reputations, and
posing risks, such as generating incorrect medical advice.
The eloquence of GenAI’s textual outputs can exacerbate
this issue, as humans tend to associate eloquent language
with credibility (Rogers & Norton, 2010).

Causes of Hallucinations. Numerous factors contribute
to hallucinations in GenAI models (Ji et al., 2022). In the
following, we focus on data-related causes due to their
direct relevance to DP. Specifically, we examine three ex-
amples that effectively demonstrate the applicability of DP
in addressing hallucinations.

Immemorization is a phenomenon where, despite seeing
certain information during training, a model has not stored
it in its parameters. While the introduction of DP aggravates
this problem by restricting the amount of information that

can maximally be extracted from a single data point, relying
solely on the input context rather than parametric knowledge
is desirable for some NL applications. For such tasks, the
inability to memorize specific information from training
data turns into a strength. Source-reference divergence is
a fundamental issue that arises when there are discrepancies
between input sources and target references in training data.
For example, if an image has a mismatched caption that
includes details not in the image, training an image caption-
ing model on such data may teach it to invent unnecessary
or false information. Assuming that the number of faulty
samples is or can be limited, the use of DP guarantees that
a model that is trained on the erroneous samples is still
(almost) the same as one that was trained only on clean
data. Shortcut learning can be induced by duplicate sam-
ples in the training corpus. It teaches a model to memorize
specific phrases instead of considering the context. As the
post-processing property of DP extends its guarantee to the
probability of generating entire sequences, DP potentially
discourages shortcut learning of this kind altogether.

7.1. DP for Improved Modularity

To reduce the prevalence of hallucinations, recent advances
in AI systems prioritize modularity—designing systems
as independent, interchangeable components—over mono-
lithic architectures. For example, Retrieval-Augmented Gen-
eration (RAG) separates knowledge retrieval from language
generation, allowing models to query external databases
instead of storing all information internally (Gao et al.,
2023). This approach is similarly reflected in agentic sys-
tems, where specialized agents collaborate to tackle com-
plex tasks (Wang et al., 2024a). We conjecture that DP
encourages modularity in ML models, enabling them to
learn general patterns while remaining “fact-free”. In lan-
guage, for example, linguistic patterns are pervasive in the
dataset, while factual knowledge is limited to a few samples.
Careful tuning of privacy parameters may allow models
to acquire language structure without memorizing specific
facts, aligning with the goals of RAG.

7.2. Prior Work

To the best of our knowledge, there is no prior work on the
interplay between DP and the mitigation of hallucinations.

7.3. Open Questions and Challenges

• Immemorization: How much does DP increase immem-
orization, and how does this impact model performance?

• Fact-free models: Can the combination of an external
knowledge database and a “fact-free” model mitigate hal-
lucinations even more than normal RAG?
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8. Interpretability
We adopt Rudin et al. (2021) definition of interpretable ML
models as “obeying a domain-specific set of constraints that
allow it to be more easily understood by humans.” Inter-
pretability allows users to understand how a model reaches
its conclusions and what factors influence its decisions, fos-
tering trust and enabling informed decisions about its reli-
ability (Molnar, 2020). It is critical for ensuring fairness,
as it helps verify whether sensitive attributes like race, age,
or gender were inappropriately used in decision-making
(Marcinkevics & Vogt, 2020). Additionally, interpretability
aids in debugging by revealing why a model fails, enabling
targeted improvements, and creating a feedback loop for
refining both the model and data. It also supports knowledge
transfer by leveraging insights from past challenges.2

8.1. DP as an Interpretability Constraint

DP can be viewed as an interpretability constraint because
it limits the solutions to a ML problem to those that com-
ply with specific privacy guarantees. For instance, under
strict privacy guarantees, private models can only learn pat-
terns that are common across all samples in the dataset. As
these guarantees are relaxed, models can capture patterns
within subgroups of the data. We argue that more private
solutions are inherently simpler and thus easier to interpret,
facilitating human understanding. To demonstrate how this
approach aids in interpreting both private and non-private
models, we sketch out the following workflow: First, we
train a model with strong privacy guarantees and thoroughly
analyze its behavior—a process that is simplified when com-
bining DP with inherently interpretable models. Next, we
incrementally relax the privacy constraints and train a new
model. By contrasting this model to the previous one, we
can isolate and focus on the newly learned patterns, avoid-
ing distractions from what was already understood. This
stepwise approach allows us to systematically strip away
the “knowns” and concentrate on the differences, making it
easier to interpret the model’s evolution. Through the itera-
tive relaxation of privacy guarantees, we eventually build a
comprehensive understanding of a fully non-private model.

8.2. Prior Work

Overall, limited work exists analyzing the ramifications of
DP training on models. Prior work’s analysis of private
models is superficial, performing limited visual analyses of
learned visual concepts. Harder et al. (2020) train a piece-
wise linear model with DP-SGD and analyze the learned
filters, remarking that the interpretability of their filters
diminishes with increased privacy. Another line of work fo-

2We prioritize interpretability over explainability in our work.
Still, we encourage further exploration of the connection between
DP and explainability.

cuses on privacy-preserving model explanations and attacks
facilitated by nonprivate explanations (Nguyen et al., 2024).

8.3. Open Questions and Challenges

• Impact of DP on Learning Behavior: The application
of DP has implications for the general learning behavior
of ML models. What are the consequences of employ-
ing DP as an interpretability constraint? To explore this,
researchers can address several sub-questions:
– Are certain features or circuits less frequent or absent

under DP? This can be analyzed using autoencoders
(Bricken et al., 2023) or probes (Zhao et al., 2024).

– Does DP training reduce or amplify behaviors like syco-
phancy or biases?

– Does DP influence phenomena like grokking (Power
et al., 2022), particularly the transition from memoriza-
tion to generalization?

• Behavioral Consistency across Privacy Levels: Do in-
sights from models with strong privacy guarantees apply
to those with weaker guarantees, or does behavior signifi-
cantly change when privacy protection is reduced?

9. Alternative Views
In this section, we present an opposing position to our own
that highlights the practical shortcomings and conceptual
limitations of DP when applied to mitigate GenAI issues.

9.1. Practical Limitations

Performance Gap. The competitiveness of private LLMs
remains uncertain (Tramèr et al., 2022). Despite promising
advances in private image generation (Ghalebikesabi et al.,
2023), performance still trails nonprivate models, though
the gap is narrowing in other domains. The adoption of the
pretraining-on-public-data paradigm (Abadi et al., 2016),
along with the realization that private training requires differ-
ent hyperparameters (De et al., 2022) and the recent develop-
ment of new ML training algorithms (Kairouz et al., 2021)
have led to significant improvements in the performance
of private models. Theoretical advances in DP variations
have improved privacy loss estimation over training epochs,
enabling equal privacy guarantees with less noise.

Training Efficiency. Training with DP-SGD faces extended
training times and high memory demands due to DP-SGD’s
requirement to compute per-sample gradients. The issue is
even more pronounced when training SotA GenAI systems,
where both training durations and memory requirements
are already considerable for nonprivate models. However,
recent advancements in ML frameworks, such as just-in-
time compilation and vectorization, have greatly accelerated
training processes (Subramani et al., 2020). Similarly, inno-
vations like ghost-clipping (Li et al., 2021) trade off slight
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computational complexity gains for reduced memory usage.

Parameter Selection. DP establishes an upper limit on the
success rate of MIAs, enabling its parameters to be set based
on the desired level of protection. However, while reveal-
ing an individual’s presence in a cancer prediction dataset
is sensitive, revealing membership in a dataset containing
nearly the entire Internet is not. In these situations, guar-
antees against more relevant types of attacks take priority.
ReRo (Balle et al., 2022) provides a limit on how accurately
training data can be reconstructed, based on a specific loss
function. This helps to make DP’s guarantees more tangi-
ble, addressing a common gap in understanding (Cummings
et al., 2021). However, measuring recognizability using loss
functions remains challenging, as they often fail to align
well with human perception (Alva-Manchego et al., 2021;
Sun et al., 2024).

9.2. Conceptual Limitations

Inappropriate Privacy Units. For Internet data, it may
be difficult to accurately map data samples to individuals;
however, even that may still fall short of protecting privacy.
Linguistic exchanges and images may expose information
about third parties who are neither part of the conversation
nor present in the content. Additionally, privacy protections
diminish as more users reference the same information,
meaning frequent mentions reduce protection, contrary to
common privacy expectations. Consequently, user-level
privacy provides inadequate privacy protection. Instead, it
is more appropriate to focus on the protection of secrets
(Brown et al., 2022). However, implementing such pro-
tections demands a sophisticated understanding of natural
language and the nuanced dynamics of human interactions–
an ambitious and technically demanding prerequisite.

Comparison with Contextual Integrity. Contextual In-
tegrity (CI) (Nissenbaum, 2004) is a privacy framework that
conceptualizes privacy as the “appropriate” flow of informa-
tion, where the appropriateness is determined by contextual
norms. These norms define information flows in terms of the
sender, recipient, subject, information type, and transmis-
sion principles. In contrast to CI, DP is a context-agnostic
framework, treating all data uniformly. While this simplifies
implementation and analysis, it also highlights key limita-
tions. DP is adept at enforcing negative privacy rules, effec-
tively preventing the exposure of sensitive information, but
lacks the nuance to support positive rules—enabling the flow
of information when contextually appropriate. This rigidity
can lead to overly restrictive privacy mechanisms that fail to
accommodate real-world complexities. Conversely, CI ex-
cels in its nuanced understanding of context-specific norms,
aligning more closely with human expectations around pri-
vacy. Yet, CI offers no clear operational mechanisms to
enforce or measure appropriate information flows (Ben-

thall, 2021). Recent efforts synergize the two frameworks,
promising guidance for DP parameters and adding another
dimension to CI in the form of a “transmission property”
(Benthall & Cummings, 2024).

10. The Path Forward
Throughout this paper, we have explored the potential of
DP to address key challenges in GenAI. Simultaneously, we
have identified both practical and conceptual limitations that
demand further investigation. Where does this leave us?

Untapped Opportunities. We have demonstrated that DP
offers untapped opportunities that are ripe for exploration.
Our aim has been to inspire readers to address the open
questions we have highlighted throughout this work. From
refining current approaches to tackling entirely new chal-
lenges, the research landscape remains vast and promising.

Defining Meaningful Privacy. A critical next step is to de-
termine the levels of DP that are necessary to guard against
meaningful attacks. The emergence of Reconstruction Ro-
bustness (ReRo) has taken strides in this direction by shift-
ing focus from basic membership inference to data recon-
struction. The task now is to understand what these bounds
can protect against: What level of privacy is required to ren-
der images unrecognizable? What meaningful information
can we still garner from reconstructed texts? Some works
(Ziller et al., 2024; Schwethelm et al., 2024) have already
taken up the challenge.

Adopting DP’s paradigm. DP’s worst-case guarantees
may exceed the privacy requirements of specific use cases.
Since DP’s protections come at the price of reduced utility,
it may be necessary to adopt tailored guarantees that strike
a better balance for the task at hand. Even when diverging
from DP’s exact definition, starting from its framework and
stripping away unnecessary protections can inspire effective,
context-specific solutions.

Resolving Conceptual Challenges. We must confront the
conceptual challenges that DP faces, particularly in unstruc-
tured domains like natural language and images. Originally
designed for structured data, DP’s application to these areas
remains fraught with unresolved questions. How can we
adapt DP to handle the complexities of language and visual
data effectively? Additionally, the integration of DP with
frameworks like CI warrants deeper investigation.

Impact Statement
This paper addresses critical issues in GenAI, offering in-
sights and potential solutions that can contribute to the de-
velopment of more robust, ethical, and reliable generative
models. By tackling challenges such as hallucinations, pri-
vacy concerns, and copyright infringement, this research
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aims to pave the way for advancements that maximize the
societal and technological benefits of GenAI while minimiz-
ing risks and unintended consequences.
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Li, X., Tramèr, F., Liang, P., and Hashimoto,
T. B. Large language models can be strong dif-
ferentially private learners. ArXiv, abs/2110.05679,
2021. URL https://api.semanticscholar.
org/CorpusID:238634219.

Li, Y., Huang, H., Zhao, Y., Ma, X., and Sun, J. Backdoor-
llm: A comprehensive benchmark for backdoor attacks on
large language models. arXiv preprint arXiv:2408.12798,
2024.

Lu, Y., Shen, M., Wang, H., Wang, X., van Rechem, C.,
Fu, T., and Wei, W. Machine learning for synthetic data
generation: a review. arXiv preprint arXiv:2302.04062,
2023.

Ma, Y., Zhu, X., and Hsu, J. Data poisoning against
differentially-private learners: Attacks and defenses. In
International Joint Conference on Artificial Intelligence,
2019. URL https://api.semanticscholar.
org/CorpusID:85498668.

Maini, P., Yaghini, M., and Papernot, N. Dataset inference:
Ownership resolution in machine learning. arXiv preprint
arXiv:2104.10706, 2021.

12

https://api.semanticscholar.org/CorpusID:229934464
https://api.semanticscholar.org/CorpusID:229934464
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://api.semanticscholar.org/CorpusID:238198240
https://api.semanticscholar.org/CorpusID:238198240
https://api.semanticscholar.org/CorpusID:266933030
https://api.semanticscholar.org/CorpusID:266933030
https://api.semanticscholar.org/CorpusID:246652372
https://api.semanticscholar.org/CorpusID:246652372
https://arxiv.org/abs/2103.00039
https://arxiv.org/abs/2103.00039
https://arxiv.org/abs/2107.06499
https://arxiv.org/abs/2302.12192
https://api.semanticscholar.org/CorpusID:238634219
https://api.semanticscholar.org/CorpusID:238634219
https://api.semanticscholar.org/CorpusID:85498668
https://api.semanticscholar.org/CorpusID:85498668


660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Position: Generative AI and Differential Privacy — A Perfect Match

Marcinkevics, R. and Vogt, J. E. Interpretability
and explainability: A machine learning zoo mini-
tour. ArXiv, abs/2012.01805, 2020. URL https:
//api.semanticscholar.org/CorpusID:
227254760.

Marsoof, A., Luco, A., Tan, H., and Joty, S. Content-
filtering ai systems–limitations, challenges and regulatory
approaches. Information & Communications Technology
Law, 32(1):64–101, 2023.

McCallum, S. ChatGPT banned in Italy over privacy con-
cerns, April 2023. URL https://www.bbc.com/
news/technology-65139406. BBC News, Ac-
cessed: 2024-11-06.

Meyer, J., Padgett, N., Miller, C., and Exline, L. Public
domain 12m: A highly aesthetic image-text dataset with
novel governance mechanisms, 2024. URL https://
arxiv.org/abs/2410.23144.

Microsoft Corporation. Presidio. URL https://
microsoft.github.io/presidio/.
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Position: Generative AI and Differential Privacy — A Perfect Match

A. Backdoor Attacks
Backdoor attacks represent a sophisticated form of attack on GenAI systems.3 They introduce latent capabilities and
behaviors, triggered only under specific conditions, into the model by inserting manipulated samples into the training data
(Goldblum et al., 2020). The goals that can be achieved using backdoors can be incredibly varied and complex: In text
generation, a backdoor might cause an AI to suggest vulnerable code snippets at a higher-than-average rate (Hubinger et al.,
2024) or to express biased opinions on specific topics (Li et al., 2024). In image generation, backdoors can systematically
embed subtly biased visual representations, influencing users’ perceptions (Vice et al., 2024).

Backdoors are highly dangerous due to their subtlety; they can activate in specific contexts, like outside testing environments
or at certain times, often evading detection through traditional security assessments. Attempts to remove backdoors may
inadvertently refine a model’s ability to detect triggers, exacerbating the risk (Hubinger et al., 2024).

Backdoor attacks pose a significant threat to GenAI systems, which typically rely on vast amounts of internet-sourced data.
The openness of online content makes it relatively easy for malicious actors to introduce harmful inputs (Carlini et al., 2024).
Compounding this risk, backdoors are often model-agnostic (Zou et al., 2023), meaning they can exploit vulnerabilities
across diverse AI architectures, further exacerbating security concerns.

A.1. DP as a Defense

Backdoor attacks involve introducing carefully crafted poisoned samples into the training data to induce specific behaviors
in a model. Because DP limits the influence of any single sample, attackers may have to introduce a considerably larger
number of poisoned samples to achieve the desired effect. This not only raises the cost and complexity of an attack but also
makes it substantially easier to detect anomalies in the training data.

A.2. Prior Work

Most prior work investigating DP as a defense mechanism has focused more broadly on general data poisoning attacks.
None of these works specifically addresses GenAI.

Ma et al. (2019) demonstrate DP’s inherent protection against data poisoning, deriving bounds on the required number of
samples necessary to achieve an attacker’s goal. (Jagielski et al., 2020; Geiping et al., 2020; Xu et al., 2021) extend the
analysis to ML training using DP-SGD for Natural Language Processing (NLP) and computer vision tasks, respectively,
confirming DP’s effectiveness as a defense.

A.3. Open Questions and Challenges

• Impact on Backdoor Reliability: How does DP influence the reliability of triggering backdoors? What DP levels
effectively guard against them?

• Backdoor Goals and DP: Given the varied objectives of backdoors, are certain goals easier to achieve than others, and
does DP affect this?

• Detection: Does DP make backdoor detection more difficult? Since DP bounds both the probability of successful
triggering and detection, do these probabilities increase at the same rate, or does one grow faster, favoring attackers or
defenders?

B. Acronyms
AI Artificial Intelligence

CI Contextual Integrity

DI Dataset Inference

DP Differential Privacy

DP-SGD Differentially Private Stochastic Gradient Descent

GenAI Generative Artificial Intelligence

GDPR General Data Protection Regulation
3In this paper, we focus on backdoors introduced through data.
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LLM Large Language Model

LDP Local Differential Privacy

MIA Membership Inference Attack

ML Machine Learning

NLP Natural Language Processing

NAF Near Access-Freeness

PII Personally Identifiable Information

ReRo Reconstruction Robustness

RAG Retrieval-Augmented Generation

SotA State-of-the-Art
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