
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MIRRORCAPTCHA: WILD CAPTCHA, WILD DIS-
TRIBUTION, WILD WEB-BASED PLATFORM MEET
MULTIMODAL LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The path to fully autonomous web agents is currently hindered by a critical bot-
tleneck: their limited ability to handle CAPTCHA. Existing agent benchmarks
largely ignore this practical challenge, failing to assess an agent’s true capac-
ity in cracking CAPTCHA. To bridge this gap, we comprehensively analyze the
CAPTCHA distributions in the real world, and introduce MirrorCAPTCHA
benchmark, annotated with Weighted Pass Rate and a novel proposed metric:
Completion Degree. This benchmark is designed to serve as a “mirror” that ac-
curately reflects the automation capabilities of agents in real scenarios. We filter
out 2, 095 websites from the Common Crawl, identifying the active CAPTCHA
puzzles and classifying them into 18 distinct categories using the K-means clus-
tering algorithm. To ensure practicality, we extract a web subgraph from Common
Crawl covering these websites and employ random walks to simulate real-world
CAPTCHA encounter frequencies, yielding a realistic measure of agents’ ability.
Additionally, we develop a lightweight synthetic data pipeline to train a model,
Ovis2-Agent-CAPTCHA-8B, which significantly outperforms current state-
of-the-art closed-source models on the MirrorCAPTCHA benchmark, achieving a
9.4% higher average Weighted Pass Rate and a 2.13% higher average Completion
Degree compared with the second-place, Gemini-2.5-Pro.

1 INTRODUCTION

(a)

Drag Drop Semantic Area Reference Match Semantic Select

…

(c)(b)

Figure 1: (a) Web-based CAPTCHA platform for evaluating web agents. (b) Performance of web agents. (c)
MirrorCAPTCHA distribution. CUA and BUA denote Computer-Use Agents and Browser-Use Agents.

Multimodal web agents (He et al., 2024; Lai et al., 2024; Agashe et al., 2025; Huq et al., 2025), pow-
ered by multimodal large language models (MLLMs) (Wang et al., 2024; Lu et al., 2024; Chen et al.,
2024), are designed to perform repetitive online tasks (e.g., shopping, navigation, and booking), by
simulating human behavior. However, a significant obstacle to their full automation is the require-
ment of CAPTCHA verification during common activities like registration and login. While agents
can easily handle non-visual CAPTCHA (e.g., SMS, email), the autonomous resolution of complex

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Select all images
with a bus

submit1

Select all squares
with traffic lights

submit
2

Pick the image where
the darts add up to 8

submit
11

Click all images of the same
ANIMAL species as the sample

submit14

Use arrows to rotate the asset
to face in the same direction as

the asset in the left image

submit
7

Click the object that is different

submit12

Drag the pipe from the right
to complete the puzzle

submit5

Select in this order 榴莲酥

submit15

Enter the letters and digits
you see in the image

submit
13

Enter the letters and digits
you see in the image

submit
18

Enter the letters and digits
you see in the image

submit4

Enter the letters and digits
you see in the image

submit
3

Enter the letters and digits
you see in the image

submit6

Enter the letters and digits
you see in the image

submit10

Solve the math problem
and enter the result

submit
17

Drag the slider to
complete the puzzle

submit8

Slide right to complete
the puzzle

submit
9

Please slide to verify

submit16

Figure 2: MirrorCAPTCHA filters 2095 valid websites with deployed CAPTCHAs from Common Crawl,
covering 18 categories and 1000 puzzle samples, reflecting real-world CAPTCHA distribution.

visual challenges, such as grid selection, character recognition, and slider puzzles, remains an essen-
tial capability for their widespread deployment. Crucially, it remains unclear whether current agents
can crack complex CAPTCHA in the wild with human-level speed and accuracy.

Mainstream web agent benchmarks (e.g., VisualWebArena (Koh et al., 2024), AgentBench (Liu
et al., 2024), and ST-WebAgentBench (Levy et al., 2025)) simulate real online environments but of-
ten omit prevalent CAPTCHA challenges. While recent works have introduced CAPTCHA-specific
benchmarks, notable limitations persist. For instance, Open CaptchaWorld (Luo et al., 2025) intro-
duces the first interaction-based benchmark but is limited by an extremely small dataset size, which
fails to reflect real-world distributions and omits common Optical Character Recognition (OCR)
puzzles. MCA-Bench (Wu et al., 2025) constructs a larger-scale, synthetic, homogeneous dataset
that lacks practical realism, and some CAPTCHA types lack sufficient complexity, making accurate
assessment of agent capabilities in the wild difficult.

To address these issues, we develop MirrorCAPTCHA, a benchmark designed to be a “mirror” of
real-world CAPTCHA distribution and to accurately assess web agents’ practical automation abili-
ties. We filter out 2095 valid websites with active CAPTCHA puzzles from Common Crawl (Crawl,
2007), then classify them into 18 distinct categories, which comprise 1000 unique puzzles that
span various deep learning and web interaction tasks, as shown in Figure 2. Notably, different
CAPTCHA types are characterized by distinct frequency distributions, which are statistically de-
rived through random walks on the web subgraph extracted from Common Crawl until a stable state
is achieved. This ensures higher-frequency CAPTCHA types are assigned a larger weight in the
evaluation. Consequently, the strong performance of an agent on MirrorCAPTCHA indicates its
potential effectiveness in real-world scenarios.

Beyond the standard Weighted Pass Rate metric, we introduce a customized Completion Degree
metric for part of the CAPTCHA types. While the pass rate measures binary success, the Completion
Degree quantifies the “degree” to which an agent “solves” a CAPTCHA, offering a more nuanced
measure of its reliability. All puzzles are tested on interactive webpages, as shown in Figure 1,
to fully simulate the real-world scenarios agents encounter. Agents must perceive screenshots and
perform actions like clicking, pressing keys, and dragging elements until the task is complete.

Additionally, we develop a lightweight and scalable data synthetic pipeline to train a model,
Ovis2-Agent-CAPTCHA-8B. This model is trained on 370k synthetic CAPTCHA samples.
Experiments on MirrorCAPTCHA show that Ovis2-Agent-CAPTCHA-8B significantly outper-
forms state-of-the-art closed-source models. For instance, on the high-traffic “Patch Select” cate-
gory, our model surpasses Gemini-2.5-Pro by 30.66% in Weighted Pass Rate. The model’s
strong performance on both new metrics, including a high score in Completion Degree on challeng-
ing puzzles, highlights its potential for real-world web automation and sets a new state-of-the-art for
multimodal agents on CAPTCHA challenges.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

Web Agents. Web Agents (Gur et al., 2024; He et al., 2024; Lai et al., 2024; Agashe et al., 2025;
Huq et al., 2025; Shao et al., 2025; Erdogan et al., 2025), built upon large foundation models (Dubey
et al., 2024; Yang et al., 2025), are designed to simulate human behavior and automate repetitive web
tasks. These agents typically follow a three-step pipeline: perception (interpreting visual informa-
tion from screenshots and text), planning/reasoning (decomposing tasks and generating actions),
and execution (localizing elements and performing interactions). Recent advances, such as Auto-
GPT (Significant Gravitas, 2023), demonstrate the ability to handle complex tasks with minimal
user interaction. Similarly, multimodal agents like WebVoyager (He et al., 2024) and MMAC-
Copilot (Song et al., 2024) leverage advanced models like GPT-4V (Yang et al., 2023) and Gemini
Vision (Anil et al., 2023) to process diverse inputs, including screenshots and video content. Train-
ing strategies for these agents encompass data preprocessing, augmentation, and various fine-tuning
methods, all of which aim to improve their end-to-end performance.

Captcha Benchmarks and Models. The development of deep learning has significantly advanced
CAPTCHA recognition. Early methods relied on convolutional neural networks (CNNs) for fea-
ture extraction (Thobhani et al., 2020; Tang, 2024), while subsequent work combined CNNs and
recurrent neural networks (RNNs) to handle variable-length CAPTCHA sequences (Hu et al., 2018;
Derea et al., 2023). Generative adversarial networks (GANs) had also been used to synthesize large
datasets for training CAPTCHA-cracking models (Shu & Xu, 2019; Ye et al., 2020). However,
these models are often style-specific and lack the generalization required for real-world CAPTCHA
variants. Existing benchmarks suffer from similar limitations. BeCAPTCHA-Mouse, for exam-
ple, focuses on mouse trajectories with synthetic types, while Open CaptchaWorld (Luo et al.,
2025) omits common Optical Character Recognition (OCR) CAPTCHA and has a small data size.
MCA-Bench (Wu et al., 2025) evaluates vision-language models against synthetic, homogeneous
CAPTCHA puzzles that do not reflect the diversity and complexity of real-world challenges. This
gap, caused by a lack of benchmarks grounded in real-world distributions, prevents an accurate
assessment of web agents’ practical CAPTCHA-solving performance.

3 MIRRORCAPTCHA

MirrorCAPTCHA is a carefully curated benchmark of real-world CAPTCHA puzzles that are chal-
lenging for agents but easily solvable for humans. Most of the puzzles are directly collected from
real websites and manually annotated, with a small portion sourced from MCA-Bench. The bench-
mark is evaluated using two metrics: Weighted Pass Rate (WPR) and a newly introduced metric,
Completion Degree (CD), which applies to a fraction of CAPTCHA types.

3.1 DESKTOP WEB CURATION

MirrorCAPTCHA focuses on web agents that browse on desktop computers. To this end, the
first step is to collect a large list of commonly visited, accessible desktop websites. Common
Crawl (Crawl, 2007) provides a web graph of global internet traffic spanning the past six months,
comprising 156.1 million nodes and 2.1 billion edges. Each node denotes a website accessed from a
specific device (e.g., desktop computer, phone), and each edge corresponds to a browsing transition.

From this graph, we select the top 15, 000 nodes based on degree as initial candidate sites. We
then use a modified version WebVoyager (He et al., 2024) to query Claude-4-Sonnet for
assessing their accessibility, filtering out inaccessible webpages (see Figure 3, top). The resulting
corpus comprises 10, 000 valid websites spanning diverse domains, including entertainment, media,
and social network platforms.

3.2 CAPTCHA-CONFRONTED WEB CURATION

The next step is to identify websites that trigger CAPTCHA mechanisms. Standard user actions (e.g.,
direct registration or login by users) often do not trigger CAPTCHA, as such actions are typically
not flagged as suspicious. Therefore, we deploy autonomous agents to systematically navigate and
interact with registration and authentication workflows. This approach both increases the likelihood
of triggering CAPTCHA challenges and reflects real-world challenges faced by web agents.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1. instagram.com
2. youtube.com

3. wikipedia.org
4. apple.com
5. tiktok.com

6. amazon.com
7. weebly.com

8. shop.app
9. adobe.com
10. github.io

…
2094. windows.us
2095. eti…ins.ae

Query: Determine whether “Google.com” website can
be accessed normally.

Top-15k

instagram.com
youtube.com
wikipedia.org
…
Moovitapp.com

Response: Looking at screenshot, I can see
the website “Moovitapp.com” is fully loaded
and displaying correctly. I can conclude that
it can be accessed normally.
Action Element: None
Action Type: FINISHED
Action Value: true

moovitapp.com

1. instagram.com
2. youtube.com
3. wikipedia.org
4. googleapis.com
5. amazon.com
6. tiktok.com
7. userapi.com
8. facebook.com
…
15000. Moovitapp.com

System prompt: I need you to explore the
login and registration functions of the website
by yourself, find the interface that requires
the captcha code, and return to this captcha
code page. Please note that you should not
jump to other websites, but only explore the
website currently provided to you. Please note
that if the captcha code is similar to the
Google captcha type, you need to click Verify.

Response #1: I'm on “Syracuse.com”
website. I need to find the login and
registration functions. I can see a \"Sign
in\" button in the top right corner of the
page. Let me click on it.
ActionElement:<point>(991,147)</point>
Action Type: LEFT_CLICK
Action Value: None

Syracuse.com

Query #2: Analyze attached screenshot and
give Thought and next Action.

Response #2: I can see multiple sign-in
options including Google, Apple. I also
notice there's a \"Create one\" link at the
bottom for registration. Let me try signing
in with Google first.
Action Element:<point>(632,376)</point>
Action Type: LEFT_CLICK
Action Value: None

Syracuse.com

Query #n: Analyze attached screenshot and
give Thought and next Action.

Response #n: Excellent! This is exactly
what I was looking for. This is the classic
Google reCAPTCHA image captcha system. I
have completed the objective.
Action Element: None
Action Type: FINISHED
Action Value: true

Syracuse.com

1. instagram.com
2. youtube.com
3. wikipedia.org
4. googleapis.com
5. amazon.com
6. tiktok.com
7. userapi.com
8. facebook.com
9. github.io
10. mail.ru
11. weebly.com
…
15000. Moovitapp.com

Ex
tra

ct
 su

bg
ra

ph

Total websites: 2095
Total traffic: 50073551
Total visit frequency: 1.0

Random Walk

Patch Select

Drag Drop

Image Match

Rotation Match

Query #1: Analyze attached screenshot and
give Thought and next Action.

K-Means

…

…

…

Figure 3: MirrirCAPTCHA construction pipeline. Top: modified WebVoyager querying Claude-4-Sonnet
about website accessibility. Middle: Claude-4-Sonnet autonomously explores website functionalities that
may trigger CAPTCHA (e.g., registration, login, password reset, account recovery). Termination occurs when
a CAPTCHA is triggered, the step limit is reached, or no CAPTCHA is confirmed. Bottom left: random walk
for access probability estimation. Bottom right: K-means clustering for CAPTCHA categorization.

Figure 3 (middle) illustrates the entire free exploration process. We observe that if the agent fails
to trigger a CAPTCHA on the current website, it will randomly navigate to other sites to continue
searching for CAPTCHA challenges. Agents tend to force the completion of tasks regardless of the
rationality of their execution. To mitigate this, we impose behavioral constraints:

• Restricting exploration to registration/login interfaces
• Prohibiting site navigation beyond the given website
• Prioritizing interactions with web elements that could trigger CAPTCHA

These rules ensure reliable activation and prevent redundancy. From the 10, 000 valid websites, we
identify 2, 095 websites with CAPTCHAs deployed spanning multiple languages (English, Chinese,
Russian), and diverse puzzle types (image/patch recognition, OCR, slides, drag-and-drop, arith-
metic, and semantic tasks). While intuitive for humans, these puzzles remain difficult for agents.

Another critical consideration is that the real-world encounter frequency of a specific CAPTCHA
type is directly determined by the traffic of websites that host it. For example, high-traffic plat-
forms (e.g., Google, Facebook, YouTube), moderately popular niche sites with relatively lower traf-
fic (e.g., GitHub, Adobe), and numerous obscure small websites with minimal traffic. Therefore,
to accurately model the probability of a web agent encountering a particular CAPTCHA type, the
benchmark must account for the traffic variations among the websites that deploy it.

3.3 WEB AND CAPTCHA ACCESS PROBABILITIES

To simulate real jumping behavior among websites, we perform random walks on the subgraph
extracted from Common Crawl. Extracting nodes and edges adjacent to the 2, 095 websites yields
a connected subgraph Gs with 15 million nodes and 75 million edges. Let V := {v1, v2, ..., vn}
denote its node set and E := {e1, e2, ..., em} denote its edge set. We define the transition matrix:

Pij =

{
1

outdegree(vi)
if (vi → vj) ∈ E,

0 otherwise,
(1)

where outdegree(vi) denotes the number of outgoing edges from the node vi. We initialize the visit
probability distribution uniformly over the entire node set V:

π
(0)
i =

1

n
, ∀i = 1, 2, . . . , n. (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

After t steps, the node visit distribution is given by π(t) = π(t−1) · P. Recursively, we obtain
π(t) = π(0) · Pt, with π

(t)
i representing the probability of being at node vi after t steps. After 108

steps (the cutoff used in our study), the final visit probability distribution is:

π(108) = π(0) ·P108 , (3)

where π
(108)
i is the probability of visiting node vi. The bottom-left panel of Figure 3 illustrates

the resulting traffic distribution, where a handful of high-traffic websites (e.g., instagram.com,
youtube.com, wikipedia.org) account for nearly half of all visits, and thus half of
CAPTCHA encounters. Detailed visit probability distribution for V is provided in Appendix C.

Next, we categorize CAPTCHA types into clusters by applying K-means clustering. For each
website screenshot wi, we extract the CLIP (Radford et al., 2021) image embedding fi ∈ Rd:

fi = ϕ(wi), d = 512, (4)
and stack the vectors to form:

F = [f1, f2, . . . , fN]⊤ ∈ RN×d, N = 2095. (5)
We then apply K-means to partition F into K clusters {C1,C2, . . . ,CK} via the standard iterative
assignment-and-update procedure:

rij ← 1

[
j = argmin

l
∥fi − µl∥2

]
,

µj ⇐
∑N

i=1 rijfi∑N
i=1 rij

,

(6)

where µj denotes the centroid of cluster Cj , and rij is an indicator of whether wi belongs to Cj .
Starting from K = 2, we iteratively refine the clustering, manually examine the clustering results,
and further partition more fine-grained clusters. Ultimately, we obtain 18 distinct CAPTCHA types,
as shown in the bottom-right panel in Figure 3.

Once the clustering is completed, we compute the visit probability of each CAPTCHA category Cj

by aggregating the visit probability π
(108)
i of all websites in that cluster:

p(Cj) =
∑

wi∈Cj

π
(108)
i , j = 1, 2, . . . ,K. (7)

The resulting distribution of access frequencies across the 18 CAPTCHA categories is summarized
in Table 1, where the categories show a heavy-tailed pattern − a few dominant types (such as dis-
torted alphanumeric text or simple image-based challenges) account for the majority of real-world
traffic, whereas many others are far less prevalent. This skewed distribution will directly impact the
design of evaluation datasets and robustness benchmarks for automated CAPTCHA solvers.

The final step is to construct puzzle samples for each CAPTCHA type in proportion to visit fre-
quency: categories with higher traffic are allocated more samples, thereby mirroring real-world
CAPTCHA distribution patterns. However, some categories (e.g., OCR Gradient, Type Arithmetic)
exhibit extremely low traffic. For instance, in a benchmark with 1, 000 samples, OCR Gradient
would yield only 1-2 puzzles (1, 000× 0.00148), which is overly sparse. Conversely, Image Recog-
nition or Patch Selection may dominate with hundreds of samples, leading to redundancy.

To balance realism and robustness, we cap the number of samples per category at 50 or 100, as shown
in Table 1. See Appendix A for the comparison with OpenCaptchaWorld and MCA-Bench. During
evaluation, the true visit frequencies remain as weights when aggregating results, ensuring that the
Weighted Pass Rate reflects real-world CAPTCHA distribution while avoiding extreme sparsity or
overrepresentation. Details of this measure strategy are discussed in the following subsection.

3.4 EVALUATION METRICS

MirrorCAPTCHA employs two metrics: Weighted Pass Rate (WPR) and Completion Degree (CD).
WPR measures whether a model fully solves a CAPTCHA puzzle, weighted by real-world encounter
probabilities, and CD quantifies how close a model comes to a full solution. All CAPTCHA types
can be assessed with WPR, whereas only a subset is compatible with it. For example, Image Match
puzzles are strictly binary (match or non-match) and therefore can only be evaluated using WPR.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Statistics of the MirrorCAPTCHA benchmark by category, including website coverage, visit traffic,
relative frequency, example puzzles, task description, and number of samples. Categories are ordered by traffic:
1. Image Recognition, 2. Patch Select, 3. OCR Grey, 4. OCR Grid, 5. Drag Drop, 6. OCR ColorPure, 7. Image
Match, 8. Rotation Match, 9. Slide Puzzle, 10. OCR ColorPattern, 11. Semantic Select, 12. Semantic Area,
13. OCR Dot, 14. Reference Match, 15. Click Order, 16. Slide Line, 17. Type Arithmetic, 18. OCR Gradient.

Type name Covered Traffic Frequency CAPTCHA description Samples

Image Recognition 652 17961686 0.35871 Identify target objects grid in a 9-image grid 100
Patch Select 709 17449069 0.34847 Identify target objects patches in a 16-image grid 100

OCR Grey 95 4594340 0.09175 OCR: grayscale text, and line noise 50

OCR Grid 22 1798535 0.03592 OCR: grayscale text, grid background, and line noise 50
Drag Drop 58 1465736 0.02927 Drag small image to correct position on large image 50

OCR ColorPure 159 1408947 0.02814 OCR: color font, pure background, and color line noise 50

Image Match 18 1094478 0.02186 Select matching image from candidates based on reference 50
Rotation Match 6 1047564 0.02092 Rotate tile to correct position via slider 50

Slide Puzzle 103 811840 0.01621 Slide puzzle piece to correct position 50

OCR ColorPattern 46 428499 0.00856 OCR: color font, pattern background, and color line noise 50
Semantic Select 50 516790 0.01032 Select images from 3×3 grid following instructions 50

Semantic Area 34 514516 0.01027 Select the different icon from multiple similar ones 50
OCR Dot 57 248757 0.00497 OCR: grayscale text, pockmarked background, and line noise 50

Reference Match 26 209916 0.00419 Select from 3×3 grid based on references and instructions 50

Click Order 15 182529 0.00365 Click icons in specified sequence 50
Slide Line 13 159555 0.00319 Slide block to endpoint 50

Type Arithmetic 15 106586 0.00213 Solve arithmetic problem and enter result 50

OCR Gradient 17 74208 0.00148 OCR: grayscale font, gradient background, and line noise 50

Total 2095 50073551 1.0 – 1000

Weighted Pass Rate (WPR). The visit probability p(Cj) of a given CAPTCHA category is de-
fined in Equation 7. Let Ni denote the total number of puzzle samples in category i, and Si denote
the number of puzzles that the model fully and correctly solves. Then:

WPR =

k∑
i=1

(
pi ×

Si

Ni

)
× 100% (8)

Completion Degree (CD). CD is defined for 12 categories using 4 task-specific measures (See
Appendix B for detailed evaluation metrics):

• F1 score (van Rijsbergen, 1979): Applied to Image Recognition, Patch Select, Semantic
Select, and Reference Match; computes the F1 score between model predictions and ground
truth labels.

• Levenshtein Distance (Levenshtein, 1966): Applied to OCR Grey, OCR Gradient,
OCR Grid, OCR ColorPure, OCR ColorPattern, and OCR Dot; measures edit distance
between predicted and true strings.

• Sequence Matching: Applied to Click Order; counts one-to-one matches between the
predicted and ground truth sequences.

• Angle Distance: Applied to Rotation Match; measures angular difference between
predicted and ground truth orientations.

Taken together, WPR and CD offer a holistic evaluation of CAPTCHA-solving performance, cap-
turing both strict accuracy and partial progress.

4 OVIS2-AGENT-CAPTCHA-8B

Unlike prior deep learning models that target a single CAPTCHA type (e.g., 3×3 or 4×4 grids) with
task-specific designs, the MirrorCAPTCHA benchmark evaluates the broader capability of MLLM-
based web agents to solve diverse, real-world CAPTCHAs. This naturally raises the question: how
can we enhance a web agent’s ability to generalize across a wide range of CAPTCHA types?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Click items that bounce when dropped

Find the different object

Select in this order in the image

Enter text from image

Visual pool

Char pool

Prompt pool

Solve this simple math problem

Solve this simple math problem

Enter text from image

Select in this order in the image
…

2

X

Find the different object

Click items that can bounce

Pick the image where the
darts add up to 8

Retain reasonable

Figure 4: Synthesize CAPTCHA pipeline.

To address this, we design a lightweight, extensible
CAPTCHA synthesis pipeline in Figure 4 that can au-
tomatically generate puzzles by defining certain rules
for data organization. Leveraging this synthesized data,
we apply supervised fine-tuning (SFT) to Ovis2-8B (Lu
et al., 2024), yielding Ovis2-Agent-CAPTCHA-8B.
Ovis2-Agent-CAPTCHA-8B is trained with SFT on
370k synthesized CAPTCHA samples (including Im-
age Recognition, Patch Select, Semantic Area, OCR,
and Type Arithmetic types), augmented with limited
computer-use trajectory data to improve cross-scenario
adaptability. Training requires 35 hours on 64 H100
GPUs, enabling the model to acquire the necessary skills
in visual grounding, semantic reasoning, and interactive
operation for CAPTCHA solving.

We then benchmark the model against both open-source and closed-source counterparts. Ex-
perimental results show that Ovis2-Agent-CAPTCHA-8B not only surpasses existing open-
sourced models but also significantly outperforms state-of-the-art closed-sourced systems on Mir-
rorCAPTCHA, setting a new technical baseline for CAPTCHA-solving agents.

5 EXPERIMENTS ANALYSIS

5.1 EXPERIMENTAL SETUP

We systematically evaluate both browser-use agents and computer-use agents, each equipped with
different MLLM backbones, on the MirrorCAPTCHA benchmark. To ensure fairness, we adopt
consistent prompting strategies and uniform evaluation metrics across all models. Browser-use
agents, implemented with the set-of-mark (SOM) paradigm (Müller & Žunič, 2024), include Ope-
nAI o4-mini (OpenAI, 2025), Gemini-2.5-Pro (Anil et al., 2023), Claude-4-Sonnet (Anthropic,
2025), and GPT-4.1 (OpenAI, 2025). Computer-use agents are deployed via the augmented Web-
Voyager framework (He et al., 2024), covering Claude-4-Sonnet (Anthropic, 2025), UI-TARS-72B-
DPO (Qin et al., 2025), and our Ovis2-Agent-CAPTCHA-8B model.

Table 2: WPR on MirrorCAPTCHA for Browser-Use (OpenAI o4-mini, Gemini-2.5-Pro, Claude-4-Sonnet,
GPT-4.1) and Computer-Use Agents (Claude-4-Sonnet, UI-TARS-72B-DPO, Ovis2-Agent-CAPTCHA-8B).

CAPTCHA Type
Browser-Use Agent Computer-Use Agent

o4-mini Gemini-2.5-Pro Claude-4-Son GPT-4.1 Claude-4-Son UI-TARS Ovis2-8B

Image Recognition 53.87 64.33 3.72 47.67 35.33 40.07 66.67
Patch Select 14.72 14.67 2.76 4.67 10.00 5.39 45.33
OCR Grey 50.00 62.00 30.00 54.00 38.00 48.00 54.00
OCR Grid 36.00 54.00 20.00 44.00 22.00 37.50 52.00
Drag Drop 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OCR ColorPure 44.00 62.00 24.00 54.00 32.00 40.00 50.00
Image Match 6.67 31.03 14.29 13.33 30.00 23.33 6.67
Rotation Match 0.00 0.00 0.00 0.00 0.00 4.00 0.00
Slide Puzzle 0.00 0.00 0.00 0.00 0.00 4.00 0.00
OCR ColorPattern 62.00 74.00 28.00 64.00 32.00 52.00 60.00
Semantic Select 30.00 56.67 24.21 43.33 46.67 33.33 26.67
Semantic Area 0.00 0.00 0.00 0.00 40.00 53.33 16.67
OCR Dot 50.00 70.00 32.00 54.00 30.00 50.00 74.00
Reference Match 50.00 83.33 33.33 33.33 0.00 23.33 10.00
Click Order 0.00 0.00 0.00 0.00 0.00 3.75 1.25
Slide Line 0.00 0.00 0.00 0.00 50.00 80.00 20.00
Type Arithmetic 93.33 96.67 90.00 90.00 90.00 80.00 96.67
OCR Gradient 64.00 70.00 34.00 62.00 40.00 60.00 64.00

Average 33.66 40.22 7.77 28.58 23.58 25.85 49.57

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 WEIGHTED PASS RATE AND COMPLETION DEGREE

Table 2 reports the WPR for all models. Due to inherent limitations of the browser-use execution
framework (Müller & Žunič, 2024), such agents cannot perform operations like “Drag Drop”, “Ro-
tation match”, “Slide Puzzle”, “Semantic Area”, “Click Order” or “Slide Line”. Specifically, the
SOM mechanism treats an image as a single object and cannot localize or manipulate elements
within it. By contrast, computer-use agents directly simulate mouse interactions, enabling them to
attempt all CAPTCHA categories.

Weighted Pass Rate. Ovis2-Agent-CAPTCHA-8B achieves the highest average WPR. Notably,
on the high-traffic “Patch Select” category, it surpasses Gemini by 30.66 percentage points. For
Claude-4-Sonnet (computer-use), WPR drops to zero in some categories, largely due to sensitivity to
image resolution, which prevents reliable coordinate output for click actions. For Claude-4-Sonnet
(browser-use), failures in “Image Recognition” and “Patch Select” stem from repeated memory
read/write loops, reflecting a fundamental vulnerability of the framework.

Table 3: CD on MirrorCAPTCHA for Browser-Use (OpenAI o4-mini, Gemini-2.5-Pro, Claude-4-Sonnet, GPT-
4.1) and Computer-Use Agents (Claude-4-Sonnet, UI-TARS-72B-DPO, Ovis2-Agent-CAPTCHA-8B).

CAPTCHA Type
Browser-Use Agent Computer-Use Agent

o4-mini Gemini-2.5-Pro Claude-4-Son GPT-4.1 Claude-4-Son UI-TARS Ovis2-8B

Image Recognition 84.27 80.88 22.83 66.77 76.22 72.11 89.66
Patch Select 72.82 70.22 33.49 57.53 61.60 57.24 88.14
OCR Grey 81.53 84.52 65.84 82.52 70.41 76.08 78.84
OCR Grid 76.13 84.69 56.21 78.56 60.26 72.68 78.10
OCR ColorPure 75.66 85.30 62.15 81.41 67.47 75.60 79.14
Rotation Match 0.00 0.00 0.00 0.00 0.00 60.97 60.27
OCR ColorPattern 85.20 89.83 64.52 86.20 68.26 76.15 79.53
Semantic Select 49.48 62.22 31.11 64.32 60.37 55.95 61.25
OCR Dot 76.00 89.23 60.54 82.85 67.78 77.49 88.33
Reference Match 69.68 89.44 39.32 58.97 0.00 55.95 49.27
Click Order 0.00 0.00 0.00 0.00 0.00 11.46 10.62
OCR Gradient 85.63 85.63 65.15 89.33 71.41 82.54 84.36

Average 63.03 68.50 41.68 62.37 50.32 64.52 70.63

Completion Degree. Table 3 shows that Ovis2-Agent-CAPTCHA-8B also achieves the best av-
erage CD. Interestingly, in categories such as “Patch Select”, the WPR is relatively low across all
models, while CD remains high, indicating that models select most patches correctly but often fail
to complete the task perfectly. This suggests that higher image resolution, more query steps, or
finer-grained behavioral optimization could close the gap between CD and WPR.

Thought: I can see a CAPTCHA interface here, with
the task \“Click the object that is different\”. There‘s
an image showing a table with several objects on it,
and the instruction is to click the object that stands out
from the rest. I need to carefully examine the image to
identify which object is different. Looking at the image,
👍 I can see what appears to be a chicken in the
center-left area of the table, while the other objects
look like dogs or similar animals. The chicken appears
to be the most visually distinct object among them. I
should click on the chicken to complete this
CAPTCHA task.
Action Element: <point>(0.391, 0.727)</point>
Action Type: LEFT_CLICK
Action Value: None

Thought: I can see a CAPTCHA interface here, with
the task \“Click the object that is different\”. 👎
There‘s an image showing 4 pineapples and 1 truck
on a checkered table. The instruction asks me to
click the object that is different, which in this case is
the truck,👎 as it's the only non-fruit object among
the 4 pineapples. I need to click on the truck to
complete this CAPTCHA task
Action Element: <point>(0.494, 0.627)</point
Action Type: LEFT_CLICK
Action Value: None

Thought: I can see a CAPTCHA interface here, with
the task \“Pick the apple, then click submit\”. 👍
There are 6 images displayed in a 2x3 grid, and a
\“Submit\” button beneath it. In order to complete
the CAPTCHA, I need to: (1) Identify which images
contain \“apple\”; (2) Click them all to select them;
(3) Click the \“Submit\” button to submit my answer.
Upon looking, 👍 I can identity the \"apple\" image
at row 1 col 3. To begin, I will click the first image at
row 1 col 3 to select it.
Action Element: <point>(0.563, 0.462)</point
Action Type: LEFT_CLICK
Action Value: None

Thought: I can see a CAPTCHA interface here, with
the task \“Pick one square that shows two identical
objects, then click submit\”. There are 9 image
patches displayed in a 3x3 grid, and a \“Submit\"
button beneath it. In order to complete the
CAPTCHA, I need to: (1) Identify which image patch
shows two identical objects; (2) Click that patch to
select it; (3) Click the \"Submit\" button to submit my
answer. 👎 Looking at the patch options, I can see
that the middle patch in the second row (row 2, col 2)
shows two identical objects. I'll click it first, then
submit my answer.
Action Element: <point>(0.483, 0.593)</point>
Action Type: LEFT_CLICK
Action Value: None

(a) (b)

Figure 5: Correct vs. error cases for Ovis2-Agent-CAPTCHA-8B on (a) “Click the object that is different” and
(b) “Semantic Select”.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 SUCCESS AND FAILURE CASE ANALYSIS

Figure 5 presents typical success and failure cases. In the correct case of the “Click the object
that is different” task, the model identifies a chicken among dog-like animals and clicks the correct
location. In the error case, however, it misclassifies the objects as 4 pineapples and 1 truck. Although
it correctly identifies the truck as the outlier, the click misses the precise coordinates, causing task
failure. Similarly, in the error case, failure arises from difficulty in interpreting abstract icons. Here,
the model guesses randomly rather than reasoning about semantic differences.

These cases highlight two key limitations: (i) imprecise visual recognition of object attributes and
counts, and (ii) difficulty in extracting discriminative features from abstract images. Addressing
these issues will require improved visual feature extraction and more reliable object classification.

5.4 INFERENCE PROCESS ON CHAALENGING CAPTCHA PUZZLES

Step2: The task requires selecting images with a complete donut
hole, matching the samples. Already clicked one donut (row 2, column
3). Now, identify another donut with a complete hole: row 3, column
2 (sprinkled donut). Click this image to complete selections for this
task.\n\nAction: click(point='<point>501 755</point>')

Step1: The task is to click images with a complete donut hole like
the sample images. Analyzing the grid, the relevant images are in
row 2, column 3 (pink-background donut) and row 3, column 2
(sprinkled donut on brown background). The next step is to click the
first matching image, row 2, column 3.\n\nAction:
click(point='<point>585 646</point>')

Step3: To complete this CAPTCHA task, after selecting all images
with complete donut holes (two images selected so far), the next
logical step is to submit the selections. The \"Submit\" button is
clearly visible below the image grid, so clicking it will finalize this
task and allow progression to the next one.\n\nAction:
click(point='<point>500 833</point>')

Step4: The page clearly displays \"Test completed!\", indicating all
CAPTCHA tasks have been solved. Since the goal was to solve every
task until this message appears, the task is now complete. \nAction:
finished(content='All CAPTCHA tasks have been solved, and the page
displays \\\"Test completed!\\\", indicating the task is finished.')

Figure 6: CAPTCHA puzzle: Click the items with a complete hole, as shown in the sample images.

Step2: We can see that the three - lobed shape in the upper image
(resembling a \"3\") is the correct position for this bottom - left
three - lobed shape. So, the next step is to drag this bottom - left
three - lobed shape to the corresponding three - lobed position in
the upper image.\nAction: drag(start_point='<point>300
873</point>', end_point='<point>533 695</point>')

Step1: The task requires dragging objects to their correct positions.
Observing the bottom shapes, the cross - shaped object (right -
bottom) should be dragged to the corresponding cross - shaped
position in the upper image. The goal is to match the shapes by
dragging.\nAction: drag(start_point='<point>416 882</point>',
end_point='<point>509 423</point>')

Step3: Now that both objects have been dragged to their correct
positions, the next logical step is to submit the solution. The
\"Submit Position\" button is clearly visible on the right side of the
screen, and clicking it will finalize this CAPTCHA task
submission.\nAction: click(point='<point>721 577</point>')

Step4: The page clearly displays \"Test completed!\", which
indicates that all CAPTCHA tasks have been successfully solved. The
task requirement was to solve every task until this message appears,
so the process is now complete. \nAction: finished(content='All
CAPTCHA tasks have been solved, and the page displays \\\"Test
completed!\\\", indicating the task is finished.')

Figure 7: CAPTCHA puzzle: Drag the objects to their correct position.

Figures 6 and 7 provide a qualitative look into how web agent solves challenging CAPTCHA on
the MirrorCAPTCHA benchmark. First, it accurately interprets the natural language instructions
provided by the puzzle, such as identifying the required criteria (“items with a complete hole”)
or understanding the action needed (“Drag the objects to their correct position”). The agent then
applies its visual reasoning skills to identify the correct target elements on the webpage. Finally, it
translates this understanding into a series of precise interactive operations, including clicks, drags,
and text entry, to complete the CAPTCHA task. This seamless integration of perception, reasoning,
and execution highlights the agent’s advanced capabilities. More detailed examples of the agent’s
reasoning process are provided in Appendix D.

6 CONCLUSION

We present MirrorCAPTCHA, a benchmark designed to act as a “mirror” of real-world CAPTCHA
distributions. It filters 2, 095 valid websites with deployed CAPTCHAs from Common Crawl, cat-
egorized into 18 types spanning both deep learning and web interaction tasks. To approximate
real-world encounter frequencies, MirrorCAPTCHA employs random walks and evaluates perfor-
mance using two metrics: Weighted Pass Rate and Completion Rate. In addition, we introduce
Ovis2-Agent-CAPTCHA-8B, a model trained on a synthesized CAPTCHA dataset. Experimen-
tal results show that it significantly outperforms both open-source and closed-source counterparts,
surpassing Gemini-2.5-Pro by 9.4% in Weighted Pass Rate and achieves the highest Completion
Degree across most CAPTCHA categories.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. In ICLR, 2025.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
et al. Gemini: A family of highly capable multimodal models. In arXiv, 2023.

Anthropic. Claude api, 2025. URL https://www.anthropic.com/api. Anthropic’s Con-
versational AI API.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, et al. Expanding per-
formance boundaries of open-source multimodal models with model, data, and test-time scaling.
In arXiv, 2024.

Common Crawl. Common crawl, 2007. URL https://commoncrawl.org/. Common Crawl
corpus contains petabytes of data, regularly collected since 2008.

Zaid Derea, Beiji Zou, Amal A. Al-Shargabi, Alaa Thobhani, and Amr Abdussalam. Deep learning
based CAPTCHA recognition network with grouping strategy. Sensors, 23(23):9487, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, et al. The llama 3 herd of models. In arXiv, 2024.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents for
long-horizon tasks. In arXiv, 2025.

Izzeddin Gur, Hiroki Furuta, Austin V. Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. In ICLR, 2024.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models. In
ACL, pp. 6864–6890, 2024.

Yu Hu, Li Chen, and Jun Cheng. A captcha recognition technology based on deep learning. In
ICIEA, pp. 617–620, 2018.

Faria Huq, Zora Zhiruo Wang, Frank F. Xu, Tianyue Ou, Shuyan Zhou, Jeffrey P. Bigham, and
Graham Neubig. Cowpilot: A framework for autonomous and human-agent collaborative web
navigation. In arXiv, 2025.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Gra-
ham Neubig, Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. In ACL, pp. 881–905, 2024.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: A large language model-based
web navigating agent. In KDD, pp. 5295–5306, 2024.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10(8):707–710, 1966.

Ido Levy, Ben Wiesel, Sami Marreed, Alon Oved, Avi Yaeli, and Segev Shlomov. St-
webagentbench: A benchmark for evaluating safety and trustworthiness in web agents. In arXiv,
May 2025.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, et al. Agentbench: Evaluat-
ing llms as agents. In ICLR, 2024.

Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Han-Jia Ye. Ovis:
Structural embedding alignment for multimodal large language model. In arXiv, 2024.

10

https://www.anthropic.com/api
https://commoncrawl.org/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yaxin Luo, Zhaoyi Li, Jiacheng Liu, Jiacheng Cui, Xiaohan Zhao, and Zhiqiang Shen. Open
captchaworld: A comprehensive web-based platform for testing and benchmarking multimodal
LLM agents. In NeurIPS, 2025.

Magnus Müller and Gregor Žunič. Browser use: Enable ai to control your browser, 2024. URL
https://github.com/browser-use/browser-use.

OpenAI. Openai api, 2025. URL https://openai.com/api/. Accessed: 2023-12-01.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, et al. Ui-tars:
Pioneering automated GUI interaction with native agents. In arXiv, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
et al. Learning transferable visual models from natural language supervision. In ICML, volume
139, pp. 8748–8763, 2021.

Chenyang Shao, Xinyuan Hu, Yutang Lin, and Fengli Xu. Division-of-thoughts: Harnessing hybrid
language model synergy for efficient on-device agents. In WWW, pp. 1822–1833, 2025.

Yujin Shu and Yongjin Xu. End-to-end captcha recognition using deep cnn-rnn network. In IMCEC,
pp. 54–58, 2019.

Significant Gravitas. AutoGPT, 2023. URL https://agpt.co/.

Zirui Song, Yaohang Li, Meng Fang, Zhenhao Chen, Zecheng Shi, Yuan Huang, and Ling Chen.
Mmac-copilot: Multi-modal agent collaboration operating system copilot. In arXiv, 2024. URL
https://doi.org/10.48550/arXiv.2404.18074.

Shengyuan Tang. Research on captcha recognition technology based on deep learning. Applied and
Computational Engineering, 81:41–46, 11 2024.

Alaa Thobhani, Mingsheng Gao, Ammar Hawbani, Safwan Taher Mohammed Ali, and Amr Ab-
dussalam. Captcha recognition using deep learning with attached binary images. Electronics, 9
(9), 2020.

C. J. van Rijsbergen. Information retrieval. In Butterworth-Heinemann, 1979.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, et al. Qwen2-vl: Enhancing
vision-language model’s perception of the world at any resolution. In arXiv, 2024.

Zonglin Wu, Yule Xue, Xin Wei, and Yiren Song. Mca-bench: A multimodal benchmark for evalu-
ating CAPTCHA robustness against vlm-based attacks. In arXiv, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, et al. Qwen3 techni-
cal report. In arXiv, 2025.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan
Wang. The dawn of lmms: Preliminary explorations with gpt-4v(ision). In arXiv, 2023.

Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong Feng, Pengfei Xu, Xiaojiang
Chen, Jungong Han, and Zheng Wang. Using generative adversarial networks to break and protect
text captchas. ACM Transactions on Privacy and Security, 23, 01 2020.

11

https://github.com/browser-use/browser-use
https://openai.com/api/
https://agpt.co/
https://doi.org/10.48550/arXiv.2404.18074

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Appendix for MirrorCAPTCHA

A COMPARISON WITH EXISTING CAPTCHA DATASETS

Table 4: Comparison with Open CaptchaWorld and MCA-Bench benchmarks.

Dataset CAPTCHA
Distribution

Number of
Categories Data size CAPTCHA Categories

Open CaptchaWorld Random 20 225

Select Animal, Pick Area, Patch Select, Object Match, Misleading
Click, Geometry Click, Image Recognition, Coordinates, Place Dot,
Rotation Match, Image Matching, Connect Icon, Bingo, Dart Count,

Dice Count, Slide Puzzle, Path Finder, Click Order, Unusual
Detection, Hold Button

MCA-Bench Random 20 4, 000

3 × 3 Grid Select, 3 × 3 Jig-swap, Arithmetic Char, Arithmetic
Select, Hollow Pattern, Distort Word, Classic Char, Sequential Letter,

Bright Dist, Sliding Block, Align Sliders, Rotate Block, Geometry
Shape, Rotation Letter, Color Discrimination, Vowel Select, Full-img

Grid Select, Text-based Arithmetic, Common Sense, Invert Letter

MirrorCAPTCHA Real-world 18 1, 000

Image recognition, Patch Select, OCR Grey, OCR Grid, Drag Drop,
OCR Color-pure, Image Match, Rotation Match, Slide Puzzle, OCR
Color-pattern, Semantic Select, Semantic Area, OCR Dot, Reference
Match, CLICK Order, Slide Line, Type Arithmetic, OCR Gradient

Table 4 presents a detailed comparison of the three most recent CAPTCHA benchmarks. Both Open
CaptchaWorld (Luo et al., 2025) and MCA-Bench (Wu et al., 2025) rely on a random distribution
of CAPTCHA types, which fails to accurately reflect the real-world frequencies of these challenges.
Open CaptchaWorld includes 20 categories but has an extremely small dataset of just 225 samples,
which can lead to high randomness in evaluation. MCA-Bench is larger, with 4, 000 samples across
20 categories, but its synthetic puzzles do not capture the diversity and complexity found on real
websites. In contrast, our MirrorCAPTCHA benchmark is grounded in real-world data. It features
18 CAPTCHA types collected from 2, 095 live websites, and its distribution is statistically derived
from actual web traffic. With a total of 1, 000 puzzles, MirrorCAPTCHA provides a more realis-
tic and reliable tool for evaluating web agents, making it a “mirror” that truly reflects an agent’s
performance in real-world scenarios.

B DETAILED EVALUATION METRIC: COMPLETION DEGREE

To capture partial correctness in CAPTCHA-solving tasks, we define Completion
Degree (CD) as a family of fine-grained metrics that quantify how close a web agent’s output
is to the correct answer, even when the CAPTCHA is not fully solved.

We adopt four types of CD metrics: F1 Score, Levenshtein Distance, Sequence
Matching Accuracy, and Angle Distance Error, each aligned with the nature of spe-
cific CAPTCHA categories.

▶ F1 Score

This metric is used for puzzles that require selecting one or more items from a set, such as:

• Image Recognition
• Patch Select
• Semantic Select
• Reference Match

Definition. The F1 score is the harmonic mean of precision and recall:

F1 =
2× Precision× Recall

Precision + Recall
,

where
Precision =

TP
TP + FP

, Recall =
TP

TP + FN
,

where TP (True Positive) denotes correctly selected items, FP (False Positive) denotes wrongly
selected items, and FN (False Negative) denotes missed correct items.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Explanation: These CAPTCHA types may contain multiple correct elements. F1 score balances
correctness and completeness: selecting wrong patches lowers precision, while missing correct ones
lowers recall. F1 scores are normalized to [0, 1].

▶ Levenshtein Distance

This metric is used for CAPTCHAs that involve text recognition:

• OCR Grey
• OCR Gradient
• OCR Grid
• OCR ColorPure
• OCR ColorPattern
• OCR Dot

Definition. The Levenshtein distance measures the minimum number of single-character
edits (insertions, deletions, substitutions) needed to transform the predicted string s1 into the ground
truth s2:

Lev(s1, s2) ∈ N+.

We convert this distance into a similarity score:

CD = 1− Lev(s1, s2)
max(|s1|, |s2|)

.

A score of 1 indicates a perfect match, while a score of 0 indicates completely different strings.

Explanation. This metric captures OCR-specific errors (e.g., character substitutions) and awards
partial credit when most of the string is correct.

▶ Sequence Matching Accuracy

This metric is specifically designed for:

• Click Order

Definition. Let P be the sequence of elements clicked by the agent and G the ground truth sequence.
We compute:

CD =
1

n

n∑
i=1

1{Pi = Gi},

where n is the sequence length, Pi is the i-th clicked element, and 1{·} is the indicator function.

Explanation. This metric measures position-wise accuracy. For example, if the CAPTCHA requires
clicking “Cat→ Dog→ Bird”, this metric counts how many items are in the correct position. This
allows for partial credit even if the model only gets part of the sequence right.

▶ Angle Distance Error

This metric is used for puzzles that require rotation:

• Rotation Match

Definition. Given predicted rotation θp and ground truth θg , we compute:
∆θ = min (|θp − θg|, 360− |θp − θg|) ,

which correctly accounts for circular periodicity (e.g., 0◦ ≡ 360◦). The completion score is defined
as:

CD = 1− ∆θ

θmax
,

where θmax is the maximum possible deviation (180◦). A CD of 1 means the rotation is perfectly
aligned, 0.5 means a misalignment of 90◦, and 0 means an opposite alignment (180◦ difference).

Explanation. This metric gives proportionate credit for predictions that are close to the correct
angle, which more accurately reflects an agent’s capability in near-solved cases compared to a binary
pass/fail judgment.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C DETAILED VISIT PROBABILITY OF WEBSITES

Figure 8: Detailed visit frequencies distribution of the 2, 095 websites with deployed CAPTCHAs. The top 10
websites account for nearly half of the total traffic, reflecting real-world internet patterns.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D ADDITIONAL REASONING PROCESS ON MIRRORCAPTCHA

We provide further examples of CAPTCHA-solving processes to illustrate how the web agent inter-
acts with real-world webpages. These cases highlight the agent’s ability to interpret and reason over
CAPTCHA puzzles, make decisions, and execute corresponding interactive actions.

Step2: All CAPTCHA tasks have been solved, and the page displays
\\\"Test completed!\\\", indicating the task is finished.

Step1: The task is to find and select the unpaired shape in the image.
Analyzing the CAPTCHA, the triangular/pyramid - shaped figure in
the purple - hued area appears to have no matching pair.\nAction:
click(point='<point>433 765</point>')

Step1: The task is to identify and click the object that is different.
Observing the scene, there are multiple dark, mechanical objects and
one silver, car - like object. The silver object stands out as
different.\nAction: click(point='<point>573 640</point>')

Step2: The page clearly displays \"Test completed!\", which indicates
that task have been successfully solved.\n\nAction:
finished(content='All CAPTCHA tasks have been solved, and the page
displays \\\"Test completed!\\\", indicating the task is finished.

Figure 9: CAPTCHA puzzle: Find and select the unpaired shape in the image.

Step2: All CAPTCHA tasks have been solved, and the page displays
\\\"Test completed!\\\", indicating the task is finished.

Step1: The task is to find and select the unpaired shape in the image.
Analyzing the CAPTCHA, the triangular/pyramid - shaped figure in
the purple - hued area appears to have no matching pair.\nAction:
click(point='<point>433 765</point>')

Step1: The task is to identify and click the object that is different.
Observing the scene, there are multiple dark, mechanical objects and
one silver, car - like object. The silver object stands out as
different.\nAction: click(point='<point>573 640</point>')

Step2: The page clearly displays \"Test completed!\", which indicates
that task have been successfully solved.\n\nAction:
finished(content='All CAPTCHA tasks have been solved, and the page
displays \\\"Test completed!\\\", indicating the task is finished.

Figure 10: CAPTCHA puzzle: Click the object that is different.

Step2: Awesome! The 1st \"taxis\" image patch has been selected.
Now, I should select the 2nd patch at row 3 col 2.\n\n* Action
Element: <point>(0.445, 0.654)</point>\n* Action Type:
LEFT_CLICK\n* Action Value: None

Step1: I can see a CAPTCHA interface here, with the task \"Select
all squares with taxis\". To begin, I will click the first patch at row 3
col 1 to select it.\n\n* Action Element: <point>(0.363,
0.654)</point>\n* Action Type: LEFT_CLICK\n* Action Value: None

Step3: Awesome! The 2nd \"taxis\" image patch has been selected.
Now, I should select the 3rd patch at row 3 col 3.\n\n* Action
Element: <point>(0.534, 0.654)</point>\n* Action Type:
LEFT_CLICK\n* Action Value: None

Step4: Awesome! The 3rd \"taxis\" image patch has been selected.
Now, I should select the 4th patch at row 4 col 1.\n\n* Action
Element: <point>(0.363, 0.754)</point>\n* Action Type:
LEFT_CLICK\n* Action Value: None

Step8: Excellent! The CAPTCHA has been successfully completed.
Action Element: None\n* Action Type: FINISHED\n* Action Value:
Task completed successfully. All 6 \"taxis\" image patches were
correctly identified and selected, achieving 100% accuracy.

Step7: Excellent! I have selected every \"taxis\" image patch, 6 in
total. Now, I will click the \"Verify\" button to complete my
submission.\n\n* Action Element: <point>(0.492, 0.915)</point>\n*
Action Type: LEFT_CLICK\n* Action Value: None

Step6: Awesome! The 5th \"taxis\" image patch has been selected.
Now, I should select the 6th patch at row 4 col 3.\n\n* Action
Element: <point>(0.534, 0.754)</point>\n* Action Type:
LEFT_CLICK\n* Action Value: None

Step5: Awesome! The 4th \"taxis\" image patch has been selected.
Now, I should select the 5th patch at row 4 col 2.\n\n* Action
Element: <point>(0.445, 0.754)</point>\n* Action Type:
LEFT_CLICK\n* Action Value: None

Figure 11: CAPTCHA puzzle: Select all squares with taxis.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step2: Now that the correct square (top - right, containing two
identical S - shaped objects) has been selected, the next logical step
is to click the \"Submit\" button to submit this selection and move
forward with the CAPTCHA task.\nAction: click(point='<point>714
441</point>')

Step1: Thought: The task requires selecting a square with two
identical objects. Analyzing each square, the top - right square (first
row, third column) contains two identical S - shaped objects. The
next step is to click on this square to fulfill the task's
requirement.\nAction: click(point='<point>565 468</point>')

Step3: The page clearly displays \"Test completed!\", which
indicates that all CAPTCHA tasks have been successfully
solved.\nAction: finished(content='All CAPTCHA tasks have been
solved, and the page displays \\\"Test completed!\\\", indicating the
task is finished.')

Figure 12: CAPTCHA puzzle: Pick one square showing two identical objects, then click submit.

Step2: Perfect! I've successfully clicked the input box, indicated by
the cursor being active in the text field. Now I need to type in the
answer \"11\" for the mathematical expression \"1 + 10 =\".\n\n*
Action Element: None\n* Action Type: TYPE\n* Action Value: 11

Step1: I can see a CAPTCHA interface here, specifically a \"Math
question\" type. There is a mathematical expression \"1 + 10 =\"
displayed, and below it, there's an input box with placeholder text
\"Your answer\" where I need to enter the answer.\n\n* Action
Element: <point>(0.163, 0.657)</point>\n* Action Type:
LEFT_CLICK\n* Action Value: None

Step3: Excellent! I have successfully entered \"11\" as the answer
in the input box. Now I need to click the \"Submit\" button to submit
my response and complete this CAPTCHA task.\n\n* Action Element:
<point>(0.822, 0.657)</point>\n* Action Type: LEFT_CLICK\n*
Action Value: None

Step4: Perfect! I have successfully completed the CAPTCHA task.
Action Element: None\n* Action Type: FINISHED\n* Action Value:
Task completed successfully. I solved the math question \"1 + 10 =\"
and entered the correct answer \"11\", which was verified as
correct by the system. The test is now completed with 100%
accuracy.

Figure 13: CAPTCHA puzzle: Solve the math problem and enter the result.

Step2: Excellent! The cursor is now inside the input box, confirming
that I've clicked it. The next step is to enter the answer text
\"AZZI\".\n\n* Action Element: None\n* Action Type: TYPE\n*
Action Value: AZZI

Step1: I can see a CAPTCHA interface here, with the task \"Enter
the letters and digits you see in the image\". I need to click the input
box first, then type the answer text. To begin, I will click the input
box.\n\n* Action Element: <point>(0.159, 0.681)</point>\n* Action
Type: LEFT_CLICK\n* Action Value: None

Step3: Good job! The answer text is correctly typed in. To finish the
task, I will click the \"Submit\" button to submit the answer.\n\n*
Action Element: <point>(0.823, 0.679)</point>\n* Action Type:
LEFT_CLICK\n* Action Value: None

Step4: Excellent! The CAPTCHA has been successfully completed.
Action Element: None\n* Action Type: FINISHED\n* Action Value:
Task completed successfully. The CAPTCHA was solved correctly
with answer \"AZZI\", achieving 100% accuracy.

Figure 14: CAPTCHA puzzle: Enter the letters and digits shown in the image.

Step2: Awesome! The 1st \"palm trees\" image has been selected.
Now, I should select the 2nd image at row 1 col 2.\n\n* Action
Element: <point>(0.486, 0.477)</point>\n* Action Type:
LEFT_CLICK\n* Action Value: None

Step1: I can see a CAPTCHA interface here, with the task \"Select
all images with palm trees, then click submit\". To begin, I will click
the first image at row 1 col 1.\n\n* Action Element: <point>(0.380,
0.477)</point>\n* Action Type: LEFT_CLICK\n* Action Value: None

Step3: Excellent! I have selected every \"palm trees\" image, 2 in
total. Now, I will click the \"Submit\" button to complete my
submission.\n\n* Action Element: <point>(0.719, 0.443)</point>\n*
Action Type: LEFT_CLICK\n* Action Value: None

Step4: Excellent! I have successfully completed the CAPTCHA task.
Action Element: None\n* Action Type: FINISHED\n* Action Value:
Task completed successfully. I identified and selected all 2 \"palm
trees\" images from the CAPTCHA grid, achieving 100% accuracy.

Figure 15: CAPTCHA puzzle: Select all images with palm trees, then click submit.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Step2: The task is to click all items weighing less than the sample
cabbage. Pens weigh less than a cabbage. In the grid, the middle
image of the second row (a pen) hasn't been clicked yet. Clicking this
image will help fulfill the task requirement.\n\nAction:
click(point='<point>495 675</point>')

Step1: The task is to click all items that weigh less than the sample
(cabbage). Pens weigh less than a cabbage, so identify and click all
pen images. In the grid, the pen images are in the middle of the first
row, middle of the second row, and middle of the third row. Clicking
these will fulfill the task requirement.\n\nAction:
click(point='<point>495 546</point>')

Step3: The task requires selecting all items weighing less than the
sample cabbage. Pens are lighter than a cabbage, and the middle
image in the third row (a pen) hasn't been clicked yet. Clicking this
image will ensure all relevant pen images are selected, moving closer
to completing the task.\n\nAction: click(point='<point>495
803</point>')

Step4: The task requires selecting all items lighter than the cabbage.
Pens are lighter, and the third - row, third - column image (a pen)
hasn't been clicked. Clicking this image will ensure all relevant pen
images are selected, allowing progress toward task
completion.\n\nAction: click(point='<point>595 803</point>')

Step6: The page clearly displays \"Test completed!\", indicating that
all CAPTCHA tasks have been successfully solved. The goal of
completing all tasks has been achieved.\n\nAction:
finished(content='All CAPTCHA tasks have been completed as
indicated by the \\\"Test completed!\\\" message on the page.')

Step5: All items weighing less than the cabbage (pens) have been
selected. The next logical step is to click the \"Submit\" button to
complete this CAPTCHA task and proceed. \n\nAction:
click(point='<point>495 893</point>')

Figure 16: CAPTCHA puzzle: Click all items that weigh less than the sample.

Step2: Our goal is to make the icons in the right panel match those
in the left - hand \"Match This!\" image. When we look at the right
panel, after the previous click on the right - pointing arrow, the
icons have shifted, but they still don't match the left ones. To get
closer to the match, we should keep using the right - pointing green
arrow (→) to shift the icons in the right panel. \n\nAction:
click(point='<point>700 696</point>')

Step1: The task is to match the icons in the left image (spider web
and white eraser - like shape) with those in the right panel using the
green arrows. Observing the right panel, clicking the right - pointing
green arrow (→) will shift the icons, helping to align them with the
left - side icons. So, the next step is to click the right - pointing
green arrow on the right panel to start adjusting the icon
alignment.\n\nAction: click(point='<point>700 696</point>')

Step3: The left - hand “Match This!” image has a spider - web icon
and an eraser - like icon. After clicking the right - pointing arrow
twice, the right - hand panel now shows these two matching icons.
To finish this CAPTCHA task, we need to submit our selection. The
green “Submit” button is right below the panels, and clicking it will
send our answer for verification.\n\nAction: click(point='<point>492
838</point>')

Step4: The page clearly displays \"Test completed!\", which
indicates that all CAPTCHA tasks have been successfully solved.
According to the task instructions, we need to stop once this
message appears. So, the task is now complete, and no further
actions are required.\n\nAction: finished(content='All CAPTCHA
tasks have been solved, and the page displays \\\"Test
completed!\\\", indicating the task is finished.')

Figure 17: CAPTCHA puzzle: Use Arrows to match the icons inside the bubbles with those on the left.

Step2: We've already clicked the first icon (the blue box - like one).
Now, we should move on to the second icon in the reference, which is
the hanger - shaped icon. In the lower - part image, we can see this
hanger - like icon (with blue and pink colors) close to the \"the\" text.
\nAction: click(point='<point>375 668</point>')

Step1: The task is to click icons in the order shown by the reference
at the top (blue box, hanger, puzzle, power, dresses, arrow). Identify
each icon in the lower image. The first icon to click is the blue box -
like icon (four - sided blue shape) in the lower image.\nAction:
click(point='<point>481 606</point>')

Step3: We've already clicked the first two icons (blue box - like and
hanger - shaped). Now, we need to click the third icon in the
sequence, which is the puzzle - shaped icon. In the lower - part image,
we can see a colorful puzzle - like icon on the right side.\nAction:
click(point='<point>614 595</point>')

Step4: We've already clicked the first three icons. Now, we need to
click the fourth icon in the sequence, which is the power - shaped
icon. In the lower - part image, we can spot a power - like icon (a
circle with a line through it) positioned near the center.\n\nAction:
click(point='<point>540 664</point>')

Step8: Thought: The page clearly displays \"Test completed!\", which
indicates that all CAPTCHA tasks have been successfully solved as
per the instructions.\nAction: finished(content='All CAPTCHA tasks
have been solved, and the page displays \\\"Test completed!\\\", so
the task is finished.')

Step7: Thought: All required icons have been clicked in the correct
order as shown in the reference image. The next logical step is to
submit the order to complete this CAPTCHA task. The \"Submit
Order\" button is clearly visible and accessible, so clicking it will
finalize this step.\n\nAction: click(point='<point>495 840</point>')

Step6: We have already clicked the first five icons. Now, we need to
click the sixth and final icon in the sequence, which is the arrow -
shaped icon. In the lower - part image, we can see an arrow - like
icon (a curved left - pointing arrow) positioned near the \"Sun\"
text.\n\nAction: click(point='<point>446 675</point>')

Step5: We've already clicked the first four icons. Now, we need to
click the fifth icon in the sequence, which is the dresses - shaped
icon. In the lower - part image, we can see a dresses - like icon (two
pink dresses) positioned near the sun.\n\nAction:
click(point='<point>543 590</point>')

Figure 18: CAPTCHA puzzle: Click the icons in order shown in the reference images.

17

	Introduction
	Related Works
	MirrorCAPTCHA
	Desktop Web Curation
	CAPTCHA-Confronted Web Curation
	Web and CAPTCHA Access Probabilities
	Evaluation Metrics

	Ovis2-Agent-CAPTCHA-8B
	Experiments Analysis
	Experimental Setup
	Weighted Pass Rate and Completion Degree
	Success and Failure Case Analysis
	Inference Process on Chaalenging CAPTCHA Puzzles

	Conclusion
	Comparison with Existing CAPTCHA Datasets
	Detailed Evaluation Metric: Completion Degree
	Detailed Visit Probability of Websites
	Additional reasoning process on MirrorCAPTCHA

