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ABSTRACT

Understanding the statistical properties of deep neural networks (DNNs) at initial-
ization is crucial for elucidating both their trainability and the intrinsic architec-
tural biases they encode prior to data exposure. Mean-field (MF) analyses have
demonstrated that the parameter distribution in randomly initialized networks dic-
tates whether gradients vanish or explode. Recent work has shown that untrained
DNNs exhibit an initial-guessing bias (IGB), in which large regions of the input
space are assigned to a single class. In this work, we provide a theoretical proof
linking IGB to MF analyses, establishing that a network’s predisposition toward
specific classes is intrinsically tied to the conditions for efficient learning. This
connection leads to a counterintuitive conclusion: the initialization that optimizes
trainability is systematically biased rather than neutral. We validate our theory
through experiments across multiple architectures and datasets.

1 INTRODUCTION

In recent years, deep neural networks have achieved remarkable empirical success across diverse
domains (Jumper et al., [2021; |Brown et al., 2020; |Ramesh et al., |2021). However, understanding
their properties theoretically, especially regarding their trainability, remains challenging. A cen-
tral difficulty consists in explaining how the choice of hyper-parameters — such as weights and
biases variances — governs the network’s ability to propagate signals and gradients through depth.
Improper initialization typically leads to gradient-related issues: vanishing gradients, causing per-
sistent initial conditions and learning stagnation; or exploding gradients, causing instability in the
early stages of training.

A mean-field (MF) theory of wide networks has provided a systematic framework to analyze how
these initial parameters shape trainability (Schoenholz et al., 2016} |Gilboa et al., |2019; |Chen et al.,
2018; Angel Poc-Loépez & Aguilera, 2024; |Yang et al.,|2019;|Yang & Schoenholz,2017; Xiao et al.,
2018; |Lee et al., 2018} |Hayou et al., 2019} Jacot et al., 2022; [Poole et al.,|2016). Depending on the
initialization state, a network exhibits either an ordered phase, where gradients vanish, or a chaotic
phase, where gradients explode. The optimal boundary — the so-called ’edge of chaos” (EOC) —
is characterized by an infinite depth scale in both the forward and backward pass, making the net-
work effectively trainable. This highlights the initial state’s crucial role in determining a network’s
subsequent learning dynamics.

Concurrently, fairness has emerged as a central concern (Buolamwini & Gebrul, [2018; Weidinger
et al.| [2021), driven by the realization that neural networks risk automating discriminatory biases
(Noble, 2018} |[Eubanks), 2018} [Broussard, 2018). Recent insights show that architectural choices
significantly impact the behviour of neural networks even before training begins, yielding qualita-
tively different initial predictive states (Francazi et al.l 2024). Specifically, depending on factors
such as network architecture and the initialization of weights, an untrained network may exhibit a
prejudice toward certain classes — referred to as initial guessing bias (IGB) — or it may remain
neutral, assigning equal frequency to all classes. The impact these initial predictive states have on
learnability, however, remains unclear. This begs the question: since IGB is related to initialization,
how does it connect to MF theories of initialization?

In this work, we bridge this gap between MF-based trainability insights and IGB-based predictive
state characterizations. Specifically, our contributions are:
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* We elucidate the link between predictive initial behaviours (IGB states) and trainability
conditions (MF phases), thus connecting learnability and fairness from initialization on-
ward.

* We show that trainability in wide architectures coincides with a state of transient deep
prejudice at initialization, challenging the intuitive assumption (Francazi et al.,[2024) that
the optimal trainability state must be unbiased.

* We verify empirically our conclusions on a wealth of architectures trained on binary and
multi-classification tasks, showing that at the EOC models exhibit strong bias, which is
absorbed during the initial phase of the learning dynamics.

* We generalize the IGB framework to accommodate non-zero bias terms and multi-node ac-
tivation functions (such as maxpool layers), further expanding its applicability, and correct
existing MF phase diagram inaccuracies (e.g., for ReLU).

Our results clarify how initialization hyperparameters and architectural choices jointly determine

initial predictive behaviours and shape subsequent training dynamics, establishing a clear theoretical
connection between initialization, trainability, and fairness considerations.

2 BACKGROUND

2.1 SETUP

We consider a generic neural network architecture A composed by L layers (depth) of width IV,

forl = 1,...,L. We define y( )( ) the pre-activation (signal) of each layer [ and each neuron
i=1,... ,Nl, and WO the set of all network’s weights at layer [. The architecture A processes
sequentially the pre-activations according to the recursive rule:

y(l) _ f(¢(l) ( (- 1)) W(l)) (1)

where ¢ (-) : RN — RN is the I-th layer generic non-linear activation function and F is a
linear function. We consider the problem of processing Np samples belonging to a dataset D =

{&(a)}q=1,... N, through A, and we denote with y( )( ) the pre-activation computed with the a-

th data sample as input. Thus, in the input layer we have by definition that y2 ( ) = &i(a) and
Ny denotes the input dimension. We consider the large-width limit taken before that of the dataset
samples and depth. Formally, our results are valid when the limiting order is: for any function f, we
take limyz, oo thD—wc hmminl(Nl)ﬁoo f.

For the sake of simplicity, we will specialize the discussion to multi-layer perceptrons (MLPs),
which still play an important role in modern machine learning as they are the building blocks of
most complex architectures. For instance, Transformers (Vaswani et al., [2017)) are composed by
several stacked MLPs and attention layers. For MLPs, Eq. () reads W(® = {W® b1} and F
is the affine transformation: }"(x; W(l), b(l)) =wWx 4 b®, where W (D) is the weight matrix
and b(") the bias vector.

2.2 ORDER/CHAOS PHASE TRANSITION: INITIALIZATION CONDITIONS FOR TRAINABILITY

One kind of average When the datapoints are fixed, the pre-activations of the MLP are just func-
tions of one source of randomness, coming from the joint set of all weights and biases, shortly
denoted with V. One usually considers the random ensemble corresponding to initializing weights
and biases i.i.d. with Gaussian distributions (Schoenholz et al., 2016} |Poole et al., 2016;[Hayou et al.,
2019), i.e. Wl(l]) ~ N (0,02, /N;) and ) ~ N (0,07,,) for every neurons i,j = 1,..., N; and
for every layer I = 1, ..., L. The scaling of the weight variance by the square root of the network’s
width is necessary in order maintain the signal O(1) as it transverses the network.

In this setup, only one kind of average naturally arises: the average over W at fixed dataset D, which
is denoted with an overbar, Z = Eyy, (x| D). For fixed inputs, when performing the limit of infinite
width before that of depth, the pre-activations become i.i.d. Gaussian variables with mean ;Y = 0

and signal variance 05(” = qgg with q(l)ézj =y, )( )y (l)( ) (Lee et al.;,[2018). The infinite-width
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limit is commonly referred to as mean-field regime, since correlations among neurons vanish and
the pre-activation distributions are fully characterized by the signal variance. The pre-activation
distributions defined in MF theory permit the study of the propagation of the signal through the
network; however, they do not yield any insight into interactions among distinct data samples. To

such end, one has to define a correlation coefficient between inputs as cgg = qc(fb) /A/ qSlQ qé?, where

y}l)(a)ygl)(b) = q((zlb) di;, and ng) is the signal covariance between inputs a and b. The reader is
referred to App. [C| where we report the recursive relations for the signal variance (Eq. (7)) and
covariance (Eq. ), first derived by [Poole et al.| (2016).

Phase transition in bounded activation functions The authors of |Schoenholz et al.| (2016) ex-

tensively analyzed bounded activation functions, such as Tanh. By defining x; = 8cglb+ 1 / acfjg le=1,
X1 = 1 separates an ordered phase (x; < 1) where the correlation coefficient converges to one, i.e.

c = lim;_, cgb) = 1, and a chaotic phase (y; > 1) where the correlation coefficient converges

to a lower value. Additionally, the value of x; determines the transition from vanishing gradients
(x7 < 1), to exploding gradients (x; > 1). These two phases have well-known consequences for
training: vanishing gradients hinder learning by causing a long persistence of the initial conditions,
while exploding gradients lead to instability in the training dynamics (Bengio et al.| [1994; [Pascanu
et al.,2013). At the transition point, both the gradients are stable and the depth-scale of signal prop-
agation diverges exponentially. This is the optimal setting for training, as it allows all layers in the
network to be trained from the start.

Phase diagram The MF theory constructs a phase diagram by looking at the convergence be-
haviour of the correlation coefficient, in terms of the weight and bias variances at initialization —
that is, the (07, 02) plane. o7 and o2 are referred to as control parameters, whereas the quanti-
ties identifying different phases are termed order parameters. Consequently, for bounded activation
functions, the correlation coefficient constitutes an order parameter, as its asymptotic value alone

suffices to distinguish between phases.

Unbounded activation functions In this case, the signal variance is not guaranteed to converge,
and one has to account for unbounded signals when defining the order/chaos phase transition. For
example, it is possible for the correlation coefficient to converge always to one in the whole phase
diagram, as we will later demonstrate for ReLU; hence, ¢ does not always serve as an effective order

parameter for discriminating between phases. In particular, in App. [C| we prove that the quantity

X1 = qubﬂ) / 8qélb) |c=1 can discriminate the ordered from the chaotic phase and it is equal to x;

in the domain of convergence of the variance. Thus, for unbounded activation functions, x; = 1
separates the region in the phase diagram with exploding gradients from the one where gradients
vanish, acting as a discriminative order parameter. Following Hayou et al.| (2019), it is therefore
appropriate to define the edge of chaos (EOC) as the set of points in the phase diagram where 1) the
signal variance converges and 2) x; = Xx; = 1. Additionally, Hayou et al.|(2019) provided a simple
algorithm (Algorithm 1 of the main paper) to compute the EOC for a generic single-node activation
function. This way, it is also possible to analyze unbounded activation functions in regions of the
phase diagram characterized by convergent signals.

2.3 INITIAL GUESSING BIAS: PREDICTIVE BEHAVIOUR AT INITIALIZATION

Two kinds of averages For randomly initialized deep neural networks processing inputs drawn
from a dataset distribution, two distinct sources of randomness naturally arise: randomness from
network W and randomness from D. The MF approaches typically fix the input and average over
the ensemble of random weights to analyze signal propagation. In contrast, recent studies (Francazi
et al.} 2024; [2025)) introduced an alternative approach — the IGB framework — where, for a fixed
initialization, the entire input distribution is propagated through the network. Coherently with
these works, here we suppose each data component to be i.i.d. according to a standard Gaussian
distribution, i.e. {;(a) ~ N(0,1), Ya € D. Interestingly, when averages over the dataset are
performed first, the pre-activation distributions change, being not centred around zero (Francazi

et all 2024): 3 (a) ~ N (Mg”, 05(,)), with p ~ A (o, Uim)'
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Neutrality vs prejudice Within the IGB framework, a predictive bias arises as a consequence of
a systematic drift in signal activations. In the presence of IGB, the pre-activation signals at each
node are still Gaussian distributed in the infinite-width limit, with variance 05(” , but each node ¢

is centred around a different point, ,uz(-l), which is generally different from zero. The centers only

vary with initialization, and are Gaussian-distributed too, with zero mean and variance O'Zm. Now
the signals related to different nodes in the same layer are distributed differently. This causes a
misalignment between the decision boundary — initially positioned near the origin — and the data
distribution (Francazi et al.| [2024). Consequently, most input points are assigned to a single class,
defining a predictive state which we term as prejudice. Conversely, when the drift is negligible
and activations remain symmetrically distributed around zero, predictions remain balanced across
classes; we call it neutral state. Prejudice can manifest at different levels, depending on the strength
of the classification bias. The extent of activation drift and corresponding predictive bias can be
quantified by the activation drift ratio v(").

Definition 2.1 (Activation Drift Ratio). We define the activation drift ratio at layer [ as:
’)’(l) = Ui(z)/Uj(z) ) 2

where Ji(l) is the variance across random initializations of node activation centers (averaged

over the dataset), and J§< ,y 1s the variance of activations due to input data variability (at fixed
initialization).

If the variances around the node centers are much larger than the variances of the centers them-
selves, the signals of different nodes become indistinguishable. Thus, large (diverging) values of
+®) indicate significant drift (strong prejudice), whereas small (vanishing) values reflect minimal
drift (neutrality).

Classification fractions In classification tasks, predictive bias can be quantified by measuring the
fraction of inputs, G, classified into each class c at initialization. For illustrative clarity, we consider
the binary setting, where the predictive imbalance is fully captured by the fraction of inputs assigned
to one reference class. Here, we derive an implicit formula to compute the distribution over WV of the
fraction of points classified as a reference class in the infinite-width regime, where all pre-activations
are normally distributed:

(L)
Go=P (ygm > yéL) | 5(W)) =@ ( ’725> ’ (3)

where @ () is the Gaussian cumulative function, and ¢ is a standard Gaussian variable. The proof is
straightforward upon utilizing the IGB pre-activation distributions (see App. D).

The value of v() permits to distinguish between three phases and connects them to the preju-
dice/neutrality framework provided before. When (%) < 1, the distribution of G converges, in
the distribution sense, to a Dirac-delta centred in 0.5, whereas for W(L) > 1 its distribution con-
verges to a mixture of two Dirac-deltas centred in 0 and 1, respectively. Remarkably, for v(%) = 1
(Fig. |1] - middle), G is uniformly distributed in (0, 1); this critical threshold delineates a phase
where the fraction of points classified to a reference class exhibits a Gaussian-like shape centred in
0.5 (Fig. [I]- left), from one where the distribution deviates markedly from Gaussian behaviour and
it is bi-modal (Fig. — right). Consequently, neutrality emerges for (&) < 1, whereas for v(£) > 1
the network exhibits prejudice. Moreover, prejudice can compound with depth — we call this deep
prejudice — when v = lim;_, 7%) = oo, resulting in a network manifesting strongly-biased
predictions.

The IGB framework offers a rigorous theoretical characterization specifically in settings involving
random, unstructured data identically distributed across classes. This demonstrates how predictive
imbalances at initialization can emerge purely from architectural choices, independently of any in-
trinsic data structure. Moreover, it provides quantitative tools to distinguish unbiased (neutrality)
from biased (prejudice) initial states.
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Figure 1: Example of pre-activation distributions for neutrality (left) and moderate prejudice (right)
computed by sampling Gaussian variables with synthetic data. The inset plots show the distribution
of the dataset elements classified into the reference class GGy. In the neutral phase, G is centred
around 0.5, while with moderate prejudice, G concentrates at the extremes. At the transition be-
tween these two phases, G is uniformly distributed (middle).

3 CONNECTING CLASSIFICATION BIAS TO THE ORDERED PHASE

In this section, we establish a direct link between the IGB framework and the standard MF theory.
The phase diagram in MF is typically expressed in terms of the initialization parameters (07, 02),
whereas the original formulation of IGB was limited to the case o7 = 0. To bridge this gap and lay
the groundwork for a unified understanding, we extend the IGB framework to include non-zero bias
variances (App. [D). This extension allows us to reinterpret the MF phase diagram in terms of the
IGB phases, revealing the connection between initial predictive behaviour and trainability. Here, we

show that all the quantities of interest in MF have an equivalent counterpart in the IGB framework.

Theorem 3.1 (Equivalence between MF and IGB, informal). Consider a generic architecture

A (Eq. (1) in the mean-field regime. Let us suppose that q,(l%) = 1,Va € D and qt(l%) =
0,Ya,b € D,a # b. Then in the infinite data limit, Va € D and ¥l > 0, the total variance in
the IGB approach is equal to the signal variance in the MF approach:

g5 = Taw + oo - “)

Moreover, Ya,b € D with a # b, the centers variance in the IGB approach is equal to the
input covariance in the MF approach:

1
Q,(lb) = Ui(z) ; &)
and the correlation coefficient is related to v through

oY
ab = A0

(6)

We report the proof of this theorem in App. [E] The key result of Thm. [3.] establishes a corre-
spondence between the MF formulation and IGB, enabling signal propagation in wide networks to
be described interchangeably using either framework. Intriguingly, this result makes no further as-
sumption than the MF regime, and it remains valid for every architecture defined by Eq. (I)). In MF
theory, q((llg and q((zlb) are generally functions of the dataset D, and therefore become random variables
upon imposing a distribution over D, as done in the IGB approach. Remarkably, these two quantities
concentrate around their mean in the infinite-width and then -data limit, allowing their treatment as
deterministic variables (equivalently through 05(0 and JZ(”). On the one hand, this formal con-
nection between MF and IGB frameworks enables a unified view, where predictive behaviour at
initialization and trainability conditions are jointly entangled, enriching the classical MF picture, as
will be discussed in Secs. [l and[5} On the other, it extends the IGB framework from [Francazi et al.
(2024) to settings not previously analyzed (e.g., identifying prejudice and neutrality phases for Tanh
activations directly from the MF phase diagram (Schoenholz et al., 2016)).
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Figure 2: Convergence behaviour the correlation coefficient of ReLU and Tanh for a single MLP
with width equal to 10 000 and depth 100. ¢ = 0.1 and o2 varies uniformly from the ordered
phase (blue) to the chaotic phase (red). The transition point is 02 = 2.0 for ReLU and close to it for
Tanh. Scatter points indicate the asymptotic values. The inset plots show the convergence rate for
the correlation coefficient to ity asymptotic value c, always exponential for Tanh and power law for
ReLU in the chaotic phase. Solid lines are computed using the IGB approach, while shaded areas
represent the 90 % central confidence interval computed using the MF approach.

In Fig. 2} we test the validity of Thm. by plotting the correlation coefficient in function of the
depth for ReLU and Tanh MLPs with 07 = 0.1 and o2, uniformly varying from the ordered to
the chaotic phase analyzed in MF theory. We observe a good agreement between the curves ob-
tained with the IGB approach (solid lines - computed via Eq. (6)) and the 90 % central confidence
interval computed using the MF approach (shaded areas). The distribution of MF is very narrow
around the IGB-computed values, corroborating the treatment of the signal variance and covariance
as deterministic variables. As network’s width increases, the MF distributions of qé@ and qglb) be-
come progressively more concentrated (see App. [E). For ReLU, we observe that the correlation
coefficient always converges to one, but the convergence rate is exponential in the ordered phase
(072” < 2) and follows a power-law in the chaotic phase (afu > 2). For Tanh, the correlation coeffi-
cient converges to one in the ordered phase and to a lower value in the chaotic phase; in this case,
we always observe an exponential convergence behaviour.

4 BEST TRAINABILITY CONDITIONS

In Sec. 3] we proved the connection between IGB and MF frameworks. We will now see how
this association allows us to connect predictive behaviour at initialization with dynamic behaviour,
specifically in terms of the network’s trainability conditions, rooted in gradient stability.

Gradients at initialization have extensively been analyzed in the MF literature, so the reader is re-
ferred to, for example, |Schoenholz et al.| (2016) or Hayou et al.| (2019) for an extensive discussion.
For our purposes, it is sufficient to note that y; = 8q((1lb+1) / aqug |c—1 is a key quantity separating the
ordered phase, where gradients vanish, from the chaotic phase, where gradients explode (App. [G).
When the signal variance is non-divergent, x; = x; measures the stability of the fixed point ¢ = 1,
where its dynamic counterpart cfllg is connected to () through Eq. (6). In both the ordered phase
and at the EOC, the state ¢ = 1 is a stable fixed point. Consequently, in both cases, we observe an
asymptotic v = o0, indicating a state of deep prejudice at initialization.

However, the dynamical behaviour differs significantly between ordered and chaotic phases. In the
ordered phase, gradients vanish exponentially, resulting in a state of persistency of the initial condi-
tions characterized by ¢ = 1 and x; < 1 (see Tab.[I). At the EOC (x; = 1), by contrast, gradients
remain stable, enabling trainability and facilitating the gradual absorption of the initial bias, result-
ing in a condition of transiency of deep prejudice. Conversely, the chaotic phase — in which training



Under review as a conference paper at ICLR 2026

ReLU Tanh

Neutrality Prejudice

Chaotic-deep prejudice

0+ T T T 1 T T T T 1
0.00 0.05 0.10 0.15 0.20  0.00 0.05 0.10 0.15 0.20
2
0y

Figure 3: Extensive phase diagrams of infinitely wide MLPs, where we can observe some phases
described in Tab. [T} The EOC is indicated with a continuous red line and it becomes a single point
for ReLU (unbounded). In general, red lines indicate the transition between vanishing/exploding
gradients.

Table 1: Phase descriptions with IGB and MF order parameters.

IGB MF Phase
X1 <1
V= c=1 X1 =1 Transient-deep prejudice (EOC)
X1 > 1 Chaotic-deep prejudice
l<y<oo 05<e<l x;>1 (chaotic) Prejudice
v<1 c<0.5 X1 > 1 (chaotic) Neutrality

is precluded by gradient instability (y; > 1) — is generally characterized either by prejudice (i.e.,
1 > ¢ > 0.5), or neutrality (i.e., ¢ < 0.5).

In (Francazi et al}[2024), one of the main open questions concerned the distinction in dynamical be-
haviour between neutral and prejudiced phases. The present results not only clarify this distinction
by linking it to gradient stability properties, but also reveal a finer structure within the prejudiced
phase, identifying conditions that govern the persistence of predictive bias. Moreover, these findings
lead to the following conclusion (see proof in App. [E), which counters the suggestion of
(2024), that neutral initializations lead to the fastest dynamics.

Proposition 4.1. From a trainability perspective, the optimal initial condition is not one of
neutrality, but rather a state of transient deep prejudice.

We validate this proposition by performing training experiments of different architectures across
multiple datasets (see Sec. [6).

5 DETAILED PHASE DIAGRAMS

Due to the equivalence between IGB and MF, all MF results remain valid in the IGB framework.
Therefore, for a comprehensive analysis of generic single-node activation functions, we refer to the
work of [Hayou et al (2019). Beyond that, in App. [ we extend the MF/IGB theory to multi-node
activation functions, broadening the range of applicability of these theories to e.g. max- and
average-pool layers.

Here, as an example, we compare the differences between two widely utilized activation functions:
Tanh (bounded) and ReLLU (unbounded). This analysis enables the construction of a comprehensive
phase diagram for these two illustrative cases, thereby broadening the range of phases examined in
the preceding sections. A summary of these phases is reported in Tab. [I]
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Bounded activation functions In this case, the signal variance is also bounded and the value of
X fully delineates the ordered and the chaotic phases. As analyzed in|Schoenholz et al.|(2016)), the
chaotic phase of Tanh — characterized by gradient explosion and training instability — induces a
shift of the correlation ﬁxed point to ¢ < 1, which is shown in Fig. | (right plot). Remarkably, the
EOC exists for every o7 € RT with non-trivial shape (Hayou et al.,2019) (right plot of Fig.

Unbounded activation functions This case has been extensively analyzed by |[Hayou et al.
(2019). However, prior work has overlooked that, for ReLU networks, the correlation coefficient
¢V converges to ¢ = 1 across the entire phase diagram (see Fig. [2|- left plot), revealing a persistent
deep prejudice at initialization. In App. [H] we derive explicit recursive relations for the IGB metrics
in ReLU networks, demonstrating that lim;_, ¢ = 1, while v(l) diverges. Nevertheless, the two
MEF phases remain distinct, as in the bounded activation case: in the ordered phase, gradients vanish;
in the chaotic phase, gradients explode. Crucially, these two phases differ in their depth-scaling
behaviour: in the ordered phase, the total signal variance converges and v(!) diverges exponentially
with depth, whereas in the chaotic phase, the signal variance diverges and vV follows a power-law
divergence (Lemma [H.T). Hence, per51stent deep prejudlce may arise via two distinct mechanisms.
In the first, the total signal variance (o S0 T o? ) remains bounded while o2 ,m tends toward zero;

we denote this phase ordered-deep prejudzce owing to its link with Vanlshlng gradients. In the
second mechanism, at least one of ay( 1y Or a#( ,y diverges, causing network outputs to blow up and

gradients to explode. We refer to this as chaotic—deep prejudice. Two independent order parameters
are required to distinguish between these regimes.

The behaviour of the signal in the chaotic phase of unbounded activation functions has direct conse-
quences for training with cross entropy loss. Indeed, large separation of output distributions makes
the softmax to concentrate entirely to a single class (which depends on the weights initialization),
therefore causing a strong per-class dependence of gradients vanishing/exploding (see App. [G).
Therefore, depending on the MLP architecture design and the initialization hyper-parameters
(such as weight and bias variances), different behaviours can emerge at initialization. Specifically,
a network can become untrainable either by entering a persistent-deep prejudice phase (either
characterized by vanishing or exploding gradients) or a purely chaotic phase, in which the signal
variance is finite and gradients explode. The nature of the chaotic phase itself depends critically
on the activation function. For bounded activations, the chaotic phase can give rise to either a
prejudiced phase (0.5 < ¢ < 1) or a neutral phase (¢ < 0.5), depending on the initialization
parameters. In contrast, for ReLU, the chaotic phase leads exclusively to chaotic-deep prejudice,
where biased initial predictions are coupled with dynamical instability due to gradient explosion.
Therefore, successful training requires finely tuning the initialization to precisely sit at the transition
between these phases — the transient-deeep prejudice phase (equivalent to EOC) — where
gradients are stable and both persistence and instability are avoided.

6 TRAINING DYNAMICS

In order to experimentally verify Prop. we train several vanilla architectures (MLP, residual
MLP, Vision Transformer) on binary (binarized Fashion MNIST, binarized CIFAR10) and multi-
class classification tasks (CIFAR10) across the phases described in Tab. [T} Extensive details on the
training and the models employed are reported in App.|B| In order to evaluate the evolution of bias
and overall performance during training, we report the global accuracies, and the maximum classi-
fication frequency at each training step. For a Tanh MLP, we can observe the dynamical behaviour
described in this work (Fig. 4| - top). Indeed, the EOC corresponds to the maximally biased state,
but this bias is rapidly absorbed at the beginning of the dynamics. As expected, the unbiased state
(neutrality) performs poorly and it cannot retrieve high accuracy.

As an example of more complex architecture, we study empirically a vanilla Vision Trans-
former (Dosovitskiy et al.l 2020), where we remove all batch- and layer-norm and skip connections,
which may destroy the distinction between phases (indeed, it is easy to show that e.g. a residual
MLP has only a critical phase of optimal learning (Yang & Schoenholz| 2017)). Our simplified
Vision Transformer posseses only convolutional, linear and attention layers, and it shows the same
transition behaviour of the gradients as the MLP (Fig. 24).

Finally, we validate our assumption by fine-tuning on CIFAR100 a large Vision Transformer (with-
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Figure 4: Accuracies and max classification frequency for a Tanh MLPs trained on binarized fash-
ion MNIST, and the large Vision Transformer fine-tuned on CIFAR100. The EOC corresponds to
both the initial state with the fastest learning dynamics and maximally biased state. The green line
corresponds to 1/n., where n, is the number of classes.

out modifications) pre-trained on ImageNet (Deng et al., [2009) (Fig. ] - bottom). By multiplying
all linear and convolutional layers’ weights by a factor o2, we trigger the phase behaviour which
we observe in vanilla models. The optimal training state, corresponding to the original non-scaled
model, exhibits weak IGB (i.e. maximum classification frequency is significantly greater than 1/n.,
where n,. is the number of classes). However, slightly reducing all weights by a factor of 02, = 0.5
triggers a strong IGB phase, while a larger scaling factor (02, = 1.5) reduces IGB, yet hindering the
training dynamics. In both cases, the dynamical instabilities encountered either due to vanishing or
exploding gradients cannot be absorbed in the early phase of learning.

7 CONCLUSIONS AND OUTLOOK

In this work, we established an equivalence between two apparently different frameworks for ana-
lyzing wide networks at initializaton: mean field theory (MF) and initial guessing bias (IGB). We
showed that the fundamental quantities in the two approaches can be mapped onto one another.
This connection offered us the possibility to reinterpret the order/chaos phase transition in light of
classification bias; the ordered phase is characterized by persistent-deep prejudice, while the chaotic
phase is either characterized by persistent-deep prejudice, prejudice or neutrality. Furthermore, our
categorization of the edge of chaos (EOC) as a state with deep prejudice reveals that the best train-
able model necessarily exhibits bias, which, however, rapidly disappears in the learning dynamics.
Our findings have important implications for understanding the role of architectural choices and
hyper-parameter choices in shaping the onset behaviour of deep networks. They suggest that even
before training begins, design decisions can inject systematic biases that impact signal propagation,
gradient stability, and ultimately trainability. Overall, our work provides a new lens to understand
how dataset randomness at initialization, coupled with architectural design, shapes the phase dia-
gram of large MLPs at initialization. We hope this connection between MF and IGB inspires further
exploration of the subtle interplay between structure, randomness, and learning dynamics in modern
neural networks, as well as of the conditions for reabsorption of initialization biases.

Although experiments in realistic settings are consistent with our theory, a limitation of our work is
that to be confined to the infinite-width regime, where the dataset size is brought to infinite after-
wards. In this naturally over-parametrized regime, neural networks do not perform feature learning,
even though they are capable of generalization (benign overfitting) (Lee et al.l |2018; Zhang et al.,
2021)). The extension of our results to the proportional regime, where both the the dataset size and
the number of parameters are scaled proportionally to infinite, which is capable of feature learning,
remains an interesting, yet unexplored avenue of exploration.
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A EXTENSIVE NOTATION

px (¢'): Given a random variable X, py (z’) denotes the probability density function
(p.df) evaluated at X = z’. Formally, py (z') = L Fy (m)’ - For variables with

T=x
multiple sources of randomness, if some of these sources are either fixed or marginalized,

we will specify the active sources of randomness as subscripts.
erf (+): Error function. erf (-) = % Iy et dt

Fy (z): Given a rv. X, we denote its cumulative distribution function (c.d.f) as Fy (),
ie., Fy (r) = P(X < z). Considering the nv. X (D, W), which is a function of two
independent sets of random variables D and VV, when one of these sources of randomness
is fixed, we explicitly indicate the active source in the notation. For example, F)((D) (z) =
P(X <z |W).

N (x; p,0%): Given a Gaussian rv. X, we indicate with ' (; 1, 0?) the p.d.f. computed

— s (@—w)?
— ; . 2) — _ 202

at X =z, ie N (z;p,0%) =py (z) = QW

dp: the Dirac-delta function.

0y the Heaviside-theta function.

® (z) = £ (1 + erf(x)): Gaussian cumulative function.

Dy = % e~%"/2 denotes the standard Gaussian measure.

A: generic neural network archiecture.

L: number of layers.

N;: number of node of layer .

Np: network’s input dimension.

&(a)) € RNo: g-th data sample.

Np: number of dataset samples.

D: dataset, i.e. collection of Np data samples, i.e. {{(a)}a=1,.. Np-
(x): average of x w.r.t. the input dataset, i.e. (z) = Ep (z|W).

T: average of x w.r.t. the weights W, i.e. T = Eyy (z|D).

Vary (-): Indicate the variance of the argument. Since we have 7v.s with multiple sources
of randomness where necessary we will specify in the subscript the source of randomness

used to compute the expectation. For example Varp (-) = (- — (-))%.

Covy (+,-): similar to Var () but for the covariance among different variables.

w. weight matrix at layer [, i.e. matrix of elements Wl(lj) connecting neuron j at layer [
with neuron ¢ at layer [ + 1.

b(®): bias vector at layer [, i.e. vector of elements bgl), corresponding to neuron 7.

variance of the weights. Each weight WZ(ZJ)
2

w*

2.
w-

variance o

o is i.i.d. as a Normal with zero mean and

ag : variance of the biases. Each bias bl(-l) isi.i.d. as a Normal with zero mean and variance
o}

W: shorthand notation for the set of all network weights and biases, i.e. for the MLP:
(W), bOY_y 1.

Nj;: number of nodes in the [-th layer; Ny = d indicates the dimension of the input data
(number of input layer nodes) while Nz, the number of classes (number of output layer
nodes).

G : fraction of dataset elements classified as belonging to class c. The argument M indi-
cates the total number of output nodes for the variable definition, i.e. the number of classes
considered. For binary problems we omit this argument (G) as there is only one non-trivial
possibility, i.e. M = 2.
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* n.: number of classes.
. yz@ (a): pre-activation of neuron 7 at layer [, computed by propagating the a-th data sample.

« q() = 6,;jy£l)(a)y§l) (b): the covariance of the pre-activation signals at the [-th hidden
layer nodes, corresponding to inputs a and b, computed before applying the activation
function.

* q((lltz = Z-jygl) (a)yy) (a): the variance of the pre-activation signals at the I-th hidden layer

nodes, corresponding to inputs a, computed before applying the activation function.

O]
1) _ q, X . . . . .
* ¢y = ——2—: correlation coefficient between the pre-activation signals at layer [ corre-
o ,0
daa dpy

sponding to inputs a and b, computed before applying the activation function.

°* X, = 863; 2 / 862@ c=1: derivative of the correlation coefficient at layer [ + 1 w.r.t. layer
[, at the fixed point ¢ = 1. This value determines the gradient vanishing/explosion for
bounded activation functions.

* X1 = (’)q((llbﬂ) / q((l? |c=1: derivative of the covariance among two inputs at layer [ + 1 w.r.t.
layer [, at the fixed point ¢ = 1. This value determines the gradient vanishing/explosion for
unbounded activation functions.

®

. Uim = Varp (yZ ): signal (pre-activation) variance w.r.t. to the dataset at layer [. In the

Supplementary Material, we show that this quantity does not depend on neuron 3.

. ai(l) = Varyy <<yfl)>> signal (pre-activation) variance of the signal centers, i.e. the

signal averaged w.r.t. dataset.

o 40 = O’i( b/ ai( ,: the ratio between the signal variance w.r.t. the dataset and the variance
of the signal centers w.r.t. the weights ensemble.

O 886) (a): derivative of the loss w.r.t. the pre-activation.
Y;

. qélg = 51@ (a)5§l) (b): correlation between the gradient computed with inputs a and b.
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B TRAINING EXPERIMENTS

In this section, we provide detailed information on the training experiments we performed, reported
in Tab. We employ the following datasets: binarized Fashion MNIST (BFMNIST), binarized
CIFARI10 (BCIFAR), CIFAR10, CIFAR100. We binarized Fashion MNIST and CIFAR10 by clas-
sifying odd versus even classes.

Architecture Depth  Width  Act. Function Ir Dataset
MLP 100 1000 Tanh, ReU 10~7 BFMNIST
MLP 100 1000 Tanh,ReLU  10~°  CIFARI10
Residual MLP 100 1000 Tanh, ReLU  10~7 BFMNIST
Vanilla VIT 100 300 ReLU 10~ CIFARI0
Vanilla VIT 100 300 ReLU 1075  CIFARI0
Large VIT (~ 300 M params.) 97 ~ 5000 GeLU 10~3 CIFAR100

Table 2: Details on the training experiments performed in this work. The learning rates for each
rows (Ir) refer to different datasets.

We train all the models employing the Adam optimizer (Kingma & Bal, [2017) without any regular-
ization. The training and test batch sizes are both set to 100. The learning rate is chosen according
to the model and dataset, as reported in Tab. In the next subsections, we report the global ac-
curacy, the accuracy of the most favoured and the most unfavoured classes during training, and the
maximum classification frequency, all computed at each training step. In particular, we observe the
phase behaviour claimed in Prop. phases that are the fastest to train correspond to a maximally
biased state, with deep prejudice.

B.1 MLP

We train a vanilla MLP (Eq. (TI)) with ReLU and Tanh activation functions on binarized Fashion
MNIST and CIFAR10. On BFMNIST, we can reach high accuracies (Fig. [5] Fig. [6), while the
vanilla MLP reaches at most around 50% test accuracy when trained on CIFARI10 (Fig. [/| and
Fig. [B). We argue that this is due to the simplicity of the architecture, and training would require
more adjustments to perform well even for more complex datasets. However, we can still observe
the phase distinctions in the early phase of learning, with the EOC being the fastest to absorb the
bias. Clearly, in the chaotic phases (chaotic-deep prejudice, prejudice and neutrality), learning is
slowest where the initial ignorance of the class (i.e. neutrality in class assignment) hinders training.
The ordered-deep prejudice phase seems to reach eventually the same performance as the EOC,
but with a sudden performance jump. We argue that this is a combined effect of the optimizer
employed and the convexity of the loss landscape, typical of over-parametrized models. In particular,
when gradients are vanishing (as it happens in the ordered-deep prejudice phase), momentum-based
optimizers like Adam can quickly navigate almost-flat loss landscapes, eventually reaching a (sub)-
optimal plateau.
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Figure 5: Global, favoured and unfavoured class train and test accuracies for a ReLU MLP trained

on binarized fashion MNIST.
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Figure 6: Global, favoured and unfavoured class train and test accuracies for a Tanh MLP trained on

binarized fashion MNIST.
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Figure 7: Global, favoured and unfavoured class train and test accuracies for a ReLU MLP trained

on CIFARI10.
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Figure 8: Global, favoured and unfavoured class train and test accuracies for a Tanh MLP trained on
CIFAR10.

B.2 RESIDUAL MLP

We employ a residual MLP studied in the MF regime by |[Yang & Schoenholz| (2017), where the
residual branch is rescaled by the total network’s length in order to avoid trivial signal explosion.
In particular, [Yang & Schoenholz] (2017) showed that residual MLP are always critical, i.e. there is
no order/chaos phase transition; the correlation coefficient always converges to one at initialization
and gradients are always stable (see Fig. 23). In this work, we corroborated this result by training
Residual Tanh and ReLU MLPs on binarized Fashion MNIST (Fig. 0] and [I0] respectively). Since
these models are always critical, the experiments show deep prejudice at beginning of learning,
which is absorbed at the same time in all the models, producing high classification accuracies.
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Figure 9: Global, favoured and unfavoured class train and test accuracies for a ReLU Residual MLP
trained on binarized Fashion MNIST.
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Figure 10: Global, favoured and unfavoured class train and test accuracies for a Tanh Residual MLP
trained on binarized Fashion MNIST.

B.3 VANILLA VISION TRANSFORMER

We employ a vanilla Vision Transformer (VIT) (Dosovitskiy et al. for classification trained
on binarized CIFAR10 (Fig. [TT) and CIFAR10 (Fig. . We eliminate all batch- and layer-norm
layers, since they are not included in our theory and could potentially destroy the phase distinctions.
We preserve only linear and convolutional layers, which we initialize with the prescription of this
work. In particular, this assumption is justified since the MF theory of convolutional layer is identical
to that of MLP 2018). We initialize the attention matrices as the linear layer, with the
gain depending on the activation function placed before the activation. This way, we show that
gradients manifest the same transition behaviour observed in vanilla models, where an exact theory

is available (see for instance Fig. [24).

Ordered Deep Prejudice (02 = 1.4)  —— Edge Of Chaos (62 = 2.0)  —— Chaotic Deep Prejudice (02, = 2.6)
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Figure 11: Global, favoured and unfavoured class train and test accuracies for a ReLU Vision Trans-
former trained on binarized CIFAR10.
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Figure 12: Global, favoured and unfavoured class train and test accuracies for a ReLU Vision Trans-
former trained on CIFAR10.

B.4 LARGE VISION TRANSFORMER

Finally, we validate our assumption by fine-tuning a large model, without any architectural modifi-
cation. We download a pre-train large Vision Transformer (vit_large_patch16_384) from the library
Timm 2019). This model was pre-trained on ImagenNet-21k, and consists of about 300
million parameters. We fine tune this model on CIFAR100. We multiply the weights of all linear
and convolutional layers by a factor o2, with the goal of triggering the order/chaos phase transi-
tion studied in this paper. This way, the pre-trained model behaves like an untrained model when
it ”sees” a statistically different dataset. Indeed, we show that gradients behave like at the phase
boundary between order and chaos (Fig. 23). We report the training dynamics in Fig. [[3] where we
observe that the original unscaled state (at EOC - red line) manifests the fastest learning dynamics.
In particular, it begins with moderate prejudice and it is the only state significantly improving the
classification accuracy of the most unfavoured class. Instead, the state rescaled with afv = 1.5,
ideally in the chaotic phase, begins with a lower amount of prejudice, but it cannot recover. Finally,
the state rescaled by 02, = 0.5 shows strong initialization prejudice, typical of the ordered phase,

but smaller gradients (Fig. [23)), which hinder training.

—— Edge Of Chaos (¢2 = 1.0)  —— Chaotic Deep Prejudice (¢2 = 1.5)

Ordered Deep Prejudice (02 = 0.5)
Test

Training

Unfav
o

o
=)
L

T
10%

Max Freq
18

T T T T T T
100 10t 10? 10% 10° 10t 10

Number of training of steps

Figure 13: Global, favoured and unfavoured class train and test accuracies for a large pre-trained
Vision Transformer fine-tuned on CIFAR100.
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C MEAN FIELD RESULTS

In this section, we report some results of previous MF theory, starting from wide MLPs (Poole et al.,
2016} Schoenholz et al., [2016; [Hayou et al., 2019).
We report the derivation of the following recursive equations for the signal variance and covariance

qéiZ:aw/Dw( =Y top @)
il =% [DyDy o (u0) 6 (D) + o} ®)

where Dy = F e~¥*/2 denotes the standard Gaussian measure, and

u® = \Joy ©)

w = qé?(cfﬁ% 1—(c£f£)2y'>- (10)

To prove them, let us consider the signal propagation through a MLP, which reads
ZW,%( D) +o, ()

where for the first layer we have

d
1 1 1
yM(a) =Y wlei(a) + 0l (12)
j=1
where &;(a) is the j-th component of the a-th data instance. We consider the ensemble of MLPs
over weights and biases (V) initialized according to the following scheme:

2
Py (@) = N(xo ;gﬁ) Vi,j=1,...,Ni, (13)
Py (z) =N (2;0,070) Vi=1,...,N. (14)
The signal variance is defined as
N
il =5 > @)’ (15)
i=1

O]

In the limit of large width (N — o0), the distributions of the pre-activations y,’ converge to i.i.d.

zero mean Gaussians, since weights and biases are all independent across neurons and layers, and
ygl) is a weighted sum of a large number of uncorrelated random variables. This treatment is valid
as long as we do not impose any distribution on the input dataset D, but consider only averages over
W. By applying Eq. (TI) to Eq. (I3) and using the definition of the weights and biases distribution

(Eqs. and[T4), we easily get

qaii:awNZaﬁ(” ”a) +o?. (16)

Since the empirical distribution across the layer [ — 1 is a zero mean Gaussian with variance given

by q(l ), in the large-width limit, we can substitute the empirical distribution with an integral
over a Gaussian variable. In this regime, the distribution of signals across neurons of a single MLP
converges to the distribution of signals of a single neuron across the random ensemble; this is known
as self-averaging assumption from statistical physics of disordered systems (which is formally true
in the large-width limit). This Gaussian variable can be re-parametrized and finally we get an integral
over a standard Gaussian variable y as

QaI(ZZUuJ/Dyd) (= 1) +Ub' (17)
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The covariance among inputs is defined as

N
w_1 YN0
o = v 20 @ 0). (18)

The joint empirical distribution of yl( )

(

@

and y,;’ converges at large NN to a 2-dimensional Gaussian

) . Similarly as for the signal variance, we can find a recursive equation for qfllb) as

g\ = o? /Dy Dy ¢( (= 1))¢(u’(l_1)) +o}. (19)

Let us denote with ¢ the limiting variance in its domain of convergence (Hayou et al.| 2019). We
can show (Schoenholz et al.,[2016)) that:

with covariance g,

aC(H‘l) ) 9
1=~y =ou /Dy ¢ (Vay)~ (20)
Cab c=1
and
aqt(zlaJrl) 2 "
= YO = X1 T 0y /quS (vay) ¢" (vay) - 20
daa

In previous MF works, it was not clear the role played by X, because it is usually derived by assum-
ing the variance to converge faster than the correlation coefficient (Poole et al., 2016; |Schoenholz
et al.,|2016). Here, we prove that when the variance is not assumed to be constant, the result slightly
changes, suggesting that for some activation functions, the asymptotic correlation coefficient is not
able to discriminate between phases. First, we prove the following Lemma.

Lemma C.1. [fthe variance does not converge, we can compute

x = Z+1)/ yaﬁ(\/ y) , (22)

where qug = ¢, Ya € D.

(+1)
Proof. Let us compute 68 o . For generic activation functions, q((llg may diverge with depth and

thus it cannot be safely kept constant as done in the MF literature for bounded activation functions

(Schoenholz et al., [2016). Moreover, due to our main result (reported as Thm. [EI)), for large N,

q((f(z = ngb , Ya,b € D,VI; thus, we can write q,(m = ¢, Va € D. From Eq. (8) we can directly

calculate:

30(1;1) 0'2 / ’ C(l) ’
o — —v_ [ DyDy ¢(u)¢ (W q“){y—“by},
ped gD () ¢ () Y (23)
ab

where u®), 4/(!) have been defined in Eqs. (@) and[10]

Next, we proceed using the following key identity known as Stein’s lemma (Stein} |1956):

[Py Ewy= [Py P, 24)

which holds for any function F'(y), where y is a standard Gaussian variable (zero mean and unit
standard variance).

Using this key identity and the definition of u(Y) and «’(") in Egs. (9) and (T0), we get (omitting their
l-dependency for simplicity)

[Puo 0w as'(u')y:\/qT) Joupd ¢ e W)+ comerw] . @9

[Puy 6w — V1= ED2/a0 [Py g oo w) 26)
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Therefore, by combining Eqgs. 25) and (26) with Eq. (23)), we get

acl(llerl) q(l) ) ;o L
2c0 = 7w / Dy Dy ¢' (u) ¢’ (u') . 27)

At the critical point ¢ = 1, the former expression further simplifies to

e+ ¢

W _ (1)
X1 = = X1 s (28)
. 9c® 1 gD 1
where (1)
- 0 2
)= e =52 / Dy ¢ (u)" . (29)
aqab c=1
O

Specifically, for ReLU activations we can prove the following Lemma.

Lemma C.2. For ReLU, it holds that

2

o _ b

Proof. For ReLU we get [ Dy [¢' (uV)]?> = 1 as long as the variance ¢ is finite, and ¢('*1) =

2
Zwq + o2, which implies that

2
0 _ 9%
xit=1- gD =1, S

and the fixed point ¢ = 1 is never repelling. Only for bounded activation function, the variance ¢*)
always converges, therefore x; = 02 [Dy [¢' (u)]* and the definition agrees with MF theory.
Hence

. 1 if o2 =0o0ro% >2Vo?,
fim Xgl) - {< 1 e]lcseb. t ' (32)

l—o0

By using the IGB framework, in App. [H| we show that this implies that for ReLU the correlation
coefficient (resptc. v(!)) converges exponentially (respct. diverges) in the order phase, while the
chaotic phase (and the line o2 = 0) is all critical and the correlation coefficient converges sub-
exponentially. O

In App. |H| we find explicit recursion relations for quantities of interest for ReLU by using the IGB
approach, corroborating the divergence behaviour of v() in different phases.
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D IGB EXTENSION TO EXPLICIT INITIALIZATION BIASES

The standard MF approach takes into account only one source of randomness, coming from the
network ensemble, whereas the input is fixed. Here, we extend the analysis to the case where the
dataset D is randomly distributed. For simplicity, we suppose that each datapoint follows a standard
Gaussian distribution, i.e. &j(a) ~ N (0,1). For random datasets, it is meaningful to define an
averaging operator over fixed weights and biases.

Definition D.1 (Averages over the dataset). The average over data D at fixed weights and
biases W is denoted with (x) = Ep (x|W).

Ref. [Francazi et al| (2024) derived the pre-activation distributions of a MLP processing a random
dataset in case of zero explicit initialization biases (Thm D.2, Appendix). Here, we generalize it to
accomplish non-zero initialization biases.

Theorem D.2 (IGB pre-activation distributions). When averages over the dataset are taken
@

i

first, in the limit of infinite width and then data, the pre-activation y
Gaussian distributed as:

D ! .
P;@z? ($)=N(w;u§-)»aiu>) , Vi=1,...,N, (33)

are independently

where O’Z(}l) is the node variance. {,ugl)}i:l,w N are independent random variables which de-

pend on VW only and are distributed according to zero mean Gaussian distribution:
w .
P (@) = N (230,0%0)) \¥i=1,...,N, (34)

where O’Z(Z) is the variance of the centers of the node signals.

Proof. The result in Thm [D.2]extends directly from prior work that considered the same setting but
with zero bias terms. In particular, Ref. |[Francazi et al.| (2024) proved that under the assumption of
i.i.d. Gaussian data, fixed weights and large layer, the pre-activations

N

) =Y wile (y](-lfl)> (35)

j=1

are i.i.d. normally distributed with mean ,ugl)
over the weights, ugl)

and variance af/(l). When considering the variability
is also normally distributed with mean zero and variance UZ“)' Moreover,

o2, is self-averaging with respect to the weights, i.e. 2, = o2, . To extend this to the settin
y(® ging P g y® o g

with non-zero bias terms, observe that the bias enters as an additive random variable that is itself
Gaussian and independent of the weighted sum in Eq.[35] Therefore, the resulting pre-activations
remain Gaussian, as the sum of independent Gaussian variables is Gaussian. O

The key difference compared to the MF approach is that, in the IGB approach, the pre-activation
distributions are not centred around zero. Moreover, the variability of the dataset can be captured
solely by the variance of the nodes 05, whereas the ensemble variability is fully characterized by the

variance of the centers o7

24



Under review as a conference paper at ICLR 2026

Lemma D.3 (IGB recursion formulas, informal). For a general MLP (Eq. (??)), the signal
variance and the centers variance satisfy the following recursive equations:

O'j(Hl) = 012“ Varp ((b <y(l))) , (36)
2
nary =05 (0 (y©))" + oy, (37)
with initial values 05(0) =1 Uu(‘” = 0. Moreover, Varp ((;S (y(l))) is self-averaging with

respect to W, that is Varp (QS (y(l))) = Varp (QS (y(l))) .

Proof. We now want to prove the recursive relations for O'zm and ai(,), i.e. Eq. (36) and Eq. (37),

respectively. By defining ¢§l) = ¢ (yfl)), we compute the covariance (with respect to the input
data) of the generic layer as:

N N
( ) (l A Oy O] @ /O (1) @) /(N 1)
CovD<y +1 +1)k;1Wi’ij’p<¢é k>+§W1, < >b +ZW < k>bi +
N N N
+wwy__}:‘%%m§2<¢p><ﬁp>_§:M42<¢p>w)_§:mgg<£p>w0_(%%2
k,p=1 k=1 k=1

- 3 Wi cows (d2.60)

k,p=1

(38)

Ref. |[Francazi et al.| (2024) proved that in the large width limit Varp (yi(l)) is self-averaging (as
distribution of the weights) and does not depend on ¢, i.e.

lim Varp ( ()) — Varp (y(l)> : (39)

N—o00

and that COVX( o I(f)) = &y Varp (¢(). Self-averaging implies also that

limpy 00 ZkN,p:1 W(I)WZ(Q = 02, which together with Eq. (38) yields Eq. (36).

Now let us consider the calculation for ai(l). From Eq. (??) we easily see that <y£l+1)> =0 and

(Y = (i W (60) + bE”) : (fj Wi (60) + bE”) - (40)
k=1

j=1
- { > Wl (o) (a) + (bﬁ”ﬂ - (4D
k=1
— 02 (¢W)* 407, (42)
which is Eq. (37). O
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Lemma D.4 (Fraction of Inputs Classified to Reference Class). Given a fixed initialization
W, the fraction of inputs classified into reference class 0 is given by:

(L)
Go=P (ygL) > 5" | 5(W)) =@ ( 725> ; (43)

where ygL), yéL) are the two output node pre-activations at layer L, ® is the Gaussian cumu-

lative function, and § is a standard Gaussian variable.

Proof. From Lemma , ygL) - yéL) follows a Normal distribution with mean u(lL) — M(QL) and

variance 205( 1y- Moreover, ,ugL) - uéL) follows a Normal distribution centred around zero and with
variance 202 ;. Therefore
n
(L) (L) MgL) - MéL)
P (y"” > 4" [ 60w ))=1—<I>( ; ) (44)
Ty(r)
Yy

where @ is the Gaussian cumulative function. By reparametrization ug ) _ ,ugL) ﬂaumé,

where § is a standard Gaussian variable. By definition ®(z) = 1[1+ erf(z)], where erf is the error

function. Since erf(—x) = — erf(x) and %) =

2
L( L we finally get
S

y

1 NO) (D)
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E THE EQUIVALENCE BETWEEN MF AND IGB IN THE LARGE-WIDTH LIMIT

Theorem E.1. Consider a generic architecture A (Eq. (1)) in the mean-field regime. Let us

suppose to fix the initial conditions of IGB and MF to be equal, i.e. qu) = 1,Va € D and

q((l?)) = 0,Va,b € D, with a # b. Then in the infinite width and then data limit, and for every
layer 1 > 0, the total variance in the IGB approach is equal to the signal variance in the MF
approach:

¢ =o’w + 02w ,VaeD. (46)

Moreover, the centers variance in the IGB approach is equal to the input covariance in the MF
approach:

ng) /A” Va,beD,a#b. @7
Finally, the correlation coefficient is related to v as:
@
W Y
Cab = Ty o0 VG0 EDaFb. 48)

Proof. We begin by relating the IGB parameters o> MO and 02(,) to the signal covariance q(lb) and

variance qt(uf From Eq. (33), the pre-activation for neuron ¢ at layer [ and data point a can be written

as
W (a) = p + Ty e (a), (49)

where egl) (a) are i.i.d. standard Gaussian variables for each neuron and data point. This parametriza-
tion ensures
l 1
(s = u, (50)

<e§”> —0, (51)

Since e( )( ) is i.i.d. for each neuron, its expectation over the ensemble, egl) (a), can be consistently
estlmated in the wide layers limit, by an average over neurons within the layer, i.e.,

N
D) = lim ]lvzew(a). (52)

As a consequence of the central limit theorem, the random variable r = Zl 1 5 ) is distributed
according to the density p, (z) = N (z;0,1/N) for large N, therefore self-averaging to zero in the

infinite-width limit. With the help of a little Algebra we can write

1
q(gb) = i(l) + O’za)s(a’b) ; 53)
s = J#m + 073(1)3(‘17@) )
where we define
| X
s®(a,b) = Zel) eV (54)

It is easy to prove that for every dataset element a, b: ‘q((llb) ’ <4/ q,(lla) qg)) ; therefore c( ) , meaningfully
defines the correlation coefficient between inputs.

Lemma E.2. ‘cglg‘ <1, foreverya,beD.

27



Under review as a conference paper at ICLR 2026

Proof. We want to prove that ’c((llg‘ < 1, which is true if and only if (q((jb))2 < q,(lla) q((llb) which is

equivalent to

20i(1)a§<l>s(l)(a, b) + 03(1) (s“(a,b))* < Uia)a;(z) [S(l)(% a) +s (b, b)]+ (55)
+ 03(,)5(”(&, a)sV (b,b) .

From the Cauchy-Schwarz inequality s*)(a, a)sV (b, b) > [s(") (a, b)]2. Moreover, with a little Al-
gebra we get

N
1 1 ! 2
s (a,a) +sD(b,b) — 250 (a,b) = 5 [ (@) — P ®)])* >0, (56)
i,j=1
which together with the previous Cauchy-Schwarz inequality implies Ineq. (53). [

Now, we are interested in the distributions of q((llb) and qé@ with respect to the dataset. el(.l) (a) and

egl) (b) should be thought as two independent random samples from el(.l). Consequently, egl) (a)egl) (b)
should be thought as the product of two independent standard Gaussian variables, whose mean is
zero and variance is one. From a computational point of view, this product is obtained by inde-
pendently varying the inputs a and b. Accordingly, egl)(a)egl)(a) is the square of a standard Gaus-
sian, which follows a chi-squared distribution with one degree of freedom. Its mean is one and
its variance is two. Therefore, we can fully characterized the variance and covariance in MF as
random variables in function of a Gaussian distributed dataset. For large N, when a # b we have

Pet) (ap) (z) = N (;0,1/N), while for a = b, Pet) (a,0) (x) ~ N (z;1,2/N).

It follows that in the infinite-width limit, the signal variance and covariance are self-averaging with
respect to the dataset, i.e q((llb) = <q((1lb)> and qé@ = <Q((Ll(2> O

We plot the absolute percentage error for the ReLU of (), qéQ, and q((llb) as the network sizes in-

creases in Figs. [T4] [[3] and[I6] respectively. Moreover, we report the absolute percentage error of
q((f(z, and q((llb) for Tanh activation (Figs. Fig. respectively).

Proposition E.3. From a trainability perspective, the optimal initial condition (stable gradi-
ents) is not one of neutrality, but rather a state of transient deep prejudice.

Proof. Thm. establishes the equivalence between MF and IGB in the infinte-width limit. In MF,
optimal training conditions are to be found at the edge of chaos (EOC). In the IGB framework, the
EOC corresponds to the deep prejudice state, since the asymptotic value of the correlation coefficient
is one. Moreover, this prejudiced state is transient since at the EOC, gradients are stable and so the
network can absorb the bias rapidly [Hayou et al.[(2019). [
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Figure 14: Absolute percentage error of the experimental versus theoretical values of () obtained
for ReLU with different values of o2, close to the critical point o2, = 2.0. The width of the network
varies from 1000 to 10000. We observe a reduction of the relative error as the network size increases,
corroborating the theoretical curves shown in Fig. |7_7|
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Figure 15: MF 90% confidence interval of the signal variance gqqin percentage of the median for
ReLU activation. We compute it for a single MLP with increasing width inputted with 100 random
data samples. We observe that the percentage deviation from the median decreases as the network
width increases, corroborating the results of Thm. @
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Figure 16: MF 90% confidence interval of the signal covariance q((llb) in percentage of the median for

ReLU activation. We compute it for a single MLP with increasing width inputted with 100 random
data samples. We observe that the percentage deviation from the median decreases as the network
width increases, corroborating the results of Thm. @
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Figure 17: MF 90% confidence interval of the signal variance q((llg in percentage of the median for

Tanh activation. We compute it for a single MLP with increasing width inputted with 100 random
data samples. We observe that the percentage deviation from the median decreases as the network
width increases, corroborating the results of Thm. @
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Figure 18: MF 90% confidence interval of the signal covariance ¢, in percentage of the median for
Tanh activation. We compute it for a single MLP with increasing width inputted with 100 random
data samples. We observe that the percentage deviation from the median decreases as the network
width increases, corroborating the results of Thm. @
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F MF/IGB EXTENSION TO MULTI-NODE ACTIVATION FUNCTIONS: THE
EFFECT OF POOLING LAYERS

Within the MF literature, common architectural components such as batch normalization|Yang et al.
(2019) and dropout|Schoenholz et al.| (2016) have been extensively studied. In this work, however,
we investigate the impact of multi-node pooling layers on the phase diagrams — a topic that has
received comparatively little attention.

To this end, we leverage the IGB framework, which naturally extends to the general case of
multi-node activation functions. We start by deriving recursive equations for a generic activation
function ¢ : R™ — R", involving n nodes. Once these general recursive relations are established,
the theoretical results from (Hayou et al., 2019) remain applicable. In particular, we can directly
employ Algorithm 1 from (Hayou et al.l 2019) to compute the EOC.

Lemma F.1. Let f : R® — R" a generic activation function of n nodes. Then the MF
recursive equations read:

q((ll(1+1 - 0 /HDyz +Ub ) (57)
¢ =o? /HDyiDy; f)f) +ai (58)
i=1
where
9y (59)

= qu(sgyﬂ/l fjgy) (60)

Proof. For a generic function multi variable function f : R” — R” we have

(F(y)?) :/HduiN(ui;O,ai)/dyiN(yi;ui,ai)f(y)Q =

n uf - (y,i—ui)z

d i T 202 202
£ fly)? =

e n y

:/ dy, /H _
i=1 ,/27('0’13 i=1 1/27‘(0’2 (61)

n (=02 y,; /0>
dyi 72—2 /H %JC(Y)Q _

\/ﬁ
:/i[[j%eiﬂy)?:/i]jl% (Vay)?

where in the second equality we swapped the integrals over y, and p,, in the third we completed
the square exponent, in the fourth we performed the integration over p;, and in the last we re-
parametrized the Gaussian integrals. Moreover

'In this proof, we omit the I-dependency for better readability.
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’= /HduiN(uisowﬁ)/deiN(yz-;ui,af,)f(w/deiN(yé;ui,aﬁ) fly') =
=1 =1 i=1
/ dy, __dy, /H dy,  -weopion?_ad

\/2mol /271'0'2 27r02
yi +y,i ~2 ) / 2
dyz dyz 205 + 203 (2v+1) (yitys) f(y)f(y/) _

V27+ / 14/2m02 1/27r02
y,;('erl)*’vy;

3q VT +£2
Iy _dy K v y]f(y)f(y’)=

d d Y; v;
=/H ﬁy?ﬁ; ‘2q‘qu<@)f<cab@+mg’):

- / 10w, Dy F(Vay) F(yilewy + /1 — iy

i=1

(62)

where in the second equality we applied the definition of Gaussian measure, in the third we com-

pleted the square and integrated over (i, in the fourth we completed the squares on y;, y; and change
the integration variables to

y=y, (63)
iy v+1 Y /

_ _ 64

V290 + AV oS o 4

Finally, we renamed the dummy integration variables and appreciate standard Gaussian integrals

o _ and Y200+ _ \/1 W)z

The result follows from the definition of v, ¢ Cap = T + m ST
conclude by recalling Lemma [D.3] D

Lemma F.2. Let f : R™ — R™ a generic activation function of n nodes. Then:
O] 2 O]
q / _ 4
= T Dy; ‘Vf( g y) =
8cD |y gD H q
5'(] (14+1)
o= =% +op, /HDy F(yaOy |Af(y/aOy (66)

where ||||* is the L2 norm and A = 37

(I+1)
1 8ca
Xg) = :

~(1
T, (69)

ie1 05 2 is the Laplacian operator.

Proof. The proof is similar of that of Lemma where for a generic multi-node function f :
R™ — R"™, Stein’s Lemma reads

/HD%‘ fy) v = /HD% %Gf(y) - (67)
i=1 i=1
O

We now prove some Lemmas regarding a generic single node activation function ¢ () followed by
2-dimensional max- and average- pool layers. This analysis will allow us to draw the phase diagram
for ReLU and Tanh enriched with these pooling layers.
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F.1 MaxPooL

Lemma F.3. Let f : R? — R? q 2-node activation function that can be written as the com-
position of MaxPool : R? — R? with a single-node activation function ¢ : R — R. Then ¢
satisfies the following conditions

1. All conditions of Proposition 2 of the main paper of Hayou et al.|(2019)
2. ¢ (x) is either odd or even
3. ¢’ (x) is either odd or even

Then f = MaxPool o ¢ exhibit the same EOC of ¢ ().

To prove this Lemma, we need to compute the following operator, which is defined for any multi-
node activation function.

Definition F.4 (V' operator). Let f : R” — R". Then we define the following operator V,
acting on f, for any x € R as

Vin@ = o [ []Puf(vay) . (69)

Note the the V' operator can be used to compute the recursive equation of the variance for a multi-

node activation function as qélg =02 V[f? ( qé@) + of.

Lemma E.5 (V operator for 2-d MaxPool). Let ¢ () : R — R a generic single-node activation
function. Then the V operator of f = MaxPool o ¢ can be computed as:

VIflz) = o3 / Dyé (vay) @ (y) , (69)

where ®(z) = % [1 + erf(z)] is the Gaussian cumulative function.

Proof. From Def.[F4] we have
VIf)a) = o2 [ DDy Max(6 (Vi) 6 (Vo)) =
=0y, /Dyﬂ?yz |:9H (1 —v2)0 (Voyy) +0m (2 — 1) ¢ (Vays) | = (70)
—20% [Duo(Van) [ D=2 [Dyo(vEn) o)

where in the third equations we exploited the symmetry between y, and y,, and in the fourth we
used the definition of Gaussian cumulative function. Finally, we renamed the dummy integration
variable.

We can now prove Lemma [F.3]

Proof. From condition 1, we can use algorithm Algorithm 1 of [Hayou et al.| (2019) to compute
the EOC. Then f(x) exhibits the same EOC of ¢ (z) if and only if V[f?](z) = V[¢?](z) and
V[f?(z) = V]¢'*](x), Vo € R. The V operator is defined in Def. It is immediate to verify
that condition 1 implies V[f?](z) = V'[¢?](x) and condition 2 implies V[f?](z) = V[¢"?](z). O

We now compute the EOC for ReLU and Tanh enriched with MaxPool layers. In particular, Tanh
+ MaxPool satisfies the hypothesis of Lemma [F:3] so it exhibits the same EOC as Tanh. For ReLU,
we first prove the following Lemma.
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Lemma F.6. Let = ReLU and f = MaxPool o ReLU, we have

3m+ 2
aaﬁ,( e ) (71)
The signal variance satisfies the following recursion
gsa ) = aql) + of . (72)
Moreover we can compute
2 2 2
w 3o op N o
daa Gaa
Therefore across the entire phase diagram we have
Jim =1, (74)

and the convergence rate is exponential.

Proof. In this case
~(l 3
Xg) =0y, /D?hDyz ox (Y1, Y2) = 1‘73; ) (75

where ¢ x (y;,Ys) is the characteristic function of the set X = X7 U X5, where X; = {y;,y, €
‘Vf ( q(”y>
us now compute the second term of Eq. @D; for a standard ReLU, this term is zero, since the second

derivative of ReLU is (a) non-zero (distribution) only for y = 0, where ReLU is zero. Instead, for
ReLU+MaxPool we have:

Ui/Dyﬂ?yz f( q(“y)Af( q® >=

=20, /Dyﬂ?yz MaX( qWyy, q(”yz) O (y1)0m (42)0p (\/ 4V (11 —w2)) = (76)
*° dy 2 1
— 2 2 _J -y - 2
Uw/o ont YT 7%
where dp is the Dirac-delta and 6 is the Heaviside-theta function. Therefore
3 1 3m+2
2 2

= -+ — ] = . 77
“ 0”<4+27r> U“’( A ) a7

It is immediate to verify that this is also the value of the V operator, by using Lemma[F5] Therefore
the signal variance satisfies Eq. (80), which, when combined with Eq. (63)) yields

R?|y, > 0}. Indeed, itis easy to verify that X is the set of points where

‘ = 1. Let

2 2 2
W _ 30y o 37 o
Xi = 1o <1 q((lla+1)>_37r+2<1 qglzz+1)><17VZ>0’ (78)
with 5 igﬂ ~ 0.82. The convergence rate is thus always exponential (see also the experimental
curves in Fig. [20). O

Lemma F.7 (Phase diagram of ReLU+MaxPool). The phase diagram of ReLU+MaxPool is

w

qualitatively similar to that of ReLU. In particular, the EOC collapses to the singleton ((72 =

4
342

~ 1.10,07 = O), while in general gradients vanish for o2 below this threshold and

explode above it, independently of af.
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Proof. Since the correlation coefficient converges exponentially fast across the whole phase dia-

gram, the signal covariance is rapidly equal to the signal variance and the value of o = 02, (3’4::2)

dictates where gradients explode or vanish (see Fig. ??). Across this line, the variance converges
only for o7 = 0 and so the EOC collapses to this point. O

F.2 AVERAGE POOLING

For Tanh, we can directly use Algorithm 1 of ref [Hayou et al.| (2019). For ReLU, we have the
following Lemma.

Lemma FE.8. Let ¢ = ReLU and f = AveragePool o ReLU, we have

azai(ﬂzl—;l) . (79)

The signal variance satisfies the following recursion

g = aqW 4 o2 . (80)

Moreover we can compute

2 2 2
O _ %y % _ %
=223 q(m)) ~0.0(1 q(m)) <1,W>0. 81)

aa

Therefore across the entire phase diagram we have
lim c(b) =1, (82)

and the convergence rate is exponential.

Proof. We compute

2 2
D — 52 [ py D N0 = Jw 83
X1 Uw/ Y12Y2 ‘Vf(qy 1 (83)
since
2
HVf( q(”y) =1 (84)

in the set X = {y,,y, € R?|y; > 0,y, > 0}, which has measure 1, and 0 otherwise. Moreover

aﬁ,/Dley2 f<\/ﬁy)Af( qa)y) _
2
=72 [ Duous o (Vabn ) + o (Vatdn )| [on (V) + a0 (Ve )| = 59
2 2
0-774) /Dylpr (rb ( Qaay1> 5D< qga?yz) = 47“’

Therefore
1
a = 012” (H> , (86)
47

which can be directly obtained by using Eq. (37). Similarly to what done for ReLU+MaxPool, we

get
2
o _ T 9
X _T+1(1 qé2+1))<1,v1>0, (87)

and therefore we also have that the correlation coefficient converges exponentially to one across the
entire phase diagram. O
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Finally, we compute the phase diagram for this activation function.

Lemma F.9 (Phase diagram of ReLU+AveragePool). The phase diagram of
ReLU+AveragePool is qualitatively similar to that of ReLU. In particular, the EOC col-

lapses to the singleton | 02, = :—J_rl ~ 3.03, af = 0), while in general gradients vanish for

o2 below this threshold and explode above it, independently of 02.

Proof. The proof is similar to that of Lemma [F7] O

F.3 PHASE DIAGRAMS

In Fig. [I9] we report the phase diagram of ReLU and Tanh applied before these pooling layers.
In general, the presence of pooling layers has the effect of shifting the EOC. MaxPool generally
shifts the phase diagram toward lower ag} values; this is intuitive, since U?U globally scales the
recursive equations and MaxPool preserves only the larger signal. Tanh with MaxPool show the
same phase diagram as without MaxPool; this holds more generally for symmetric single-node
activation functions (Lemma [F3). Conversely, for Average Pool the effect is the opposite and the

phase diagram is shifted toward larger values of o2,

ReLU+MaxPool \ Tanh+MaxPool

Chaotic-deep prejudice

2 4m

3m+2
/

ReLU+AveragePool Tanh+AveragePool

Ml Neutrality Prejudice
Chaotic-deep prejudice

0 T T T 1 0 T T T 1
0.00 0.05 0.10 0.15 0.20  0.00 0.05 0.10 0.15 0.20
2
Ty

Figure 19: Extensive phase diagrams for ReLU and Tanh enriched with some 2-dimensional pooling
layers. These phase diagrams are qualitative equivalent to those without pooling layers, but in
general we observe a shift of the EOC and the neutrality/prejudice transition line.

In Fig. 20| we study the behaviour of the correlation coefficient across the phase transition. In par-
ticular, we report the convergence with depth for an MLP with ReLU and Tanh activation functions
enriched with 2-dimensional average and max pool layers. We can observe the same qualitative
behaviour manifested by plain ReLU and Tanh (Fig. , but with shifted values of o2,.
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ReLU+MaxPool o2 Tanh+MaxPool od
1.000 ~ 1.0 )
35
14
0.995 081 3.0
() 12 o6 >
C 0.990
ab 20
= 1.0 04
0.985 1 S —10
:Ud
08 027 1o
>
0.980
102 0.0 1 100 10
T T 0.6 T T T T T T 15
80 100 0 20 10 60 80 100
layer [
ReLU+AveragePool o Tanh+AveragePool o
1.000 = =] 1.0 2 '
0.998 34 B
0.8 1
0.996 50
3.2
0.994 15
C(l) 0.6 1
ab .99 1 4.0
3.0
0.990 041
0.988 1 2.8 5
0.2 4 35
0.986
0.984 102 26 604 102
20 10 60 80 100 0 20 10 60 80 100
layer [

Figure 20: Convergence behaviour the correlation coefficient of ReLU and Tanh with 2-dimensional
Max and Average pooling layers for a single MLP with width equal to 10 000 and depth 100.
of = 0.1 and o2, varies uniformly from the ordered phase (blue) to the chaotic phase (red). The
transition points are 02, ~ 1.10 (ReLU+MaxPool), 02, =~ 3.03 (ReLU+AveragePool), 02 ~ 2.00
(Tanh+MaxPool), and 02, =~ 3.96 (Tanh+AveragePool). Scatter points indicate the asymptotic val-
ues. The inset plots show the convergence rate for the correlation coefficient to its asymptotic value
c. Solid lines are computed using the IGB approach, while shaded areas represent the 90 % central
confidence interval computed using the MF approach.
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G GRADIENTS AT INITIALIZATION

Let be L the generic loss we want to optimize. The gradient compute for a data sample a obeys the
following equations:

oL (1) (1-1)
—5(0) = 80 (@)e (1 V()
) (a’) i 7 ’
or N (88)
! l 1 l
60(@) = @) = ¢ (37) (@D s D @w i
dy; j=1
We define the mean square gradients computed with inputs a and b as:

i =0 (@5 v) . (89)

Practically, c}'((llb) is computed by propagating two inputs a and b and computing the empirically cor-

relation, over the layer [, of (51@ (a) and (51@ (d).
By assuming the forward weights to be independent from the backward ones, [Hayou et al.|[(2019)
proved that (see their Supplementary Materials)

)~ Va2 / Dy Dy ¢ (u) ¢ (v) . (90)

Therefore, at the critical point ¢ = 1, from Eq. gradients satisfy the following recursion

(1) _ ~(+1) ~(
q((lb) ~ qt(sz)Xg) . 1)

Gradients are thus stable if 5(51) =1.

In the next sections, we report the initialization gradients of the models empirically studied in this
work on different datasets. We employ the cross entropy as loss function. For a review of the models
and datasets employed we refer to Tab. The value of (j((llg depends on the inputs a and b and
becomes a distribution upon imposing a distribution over the input dataset D, though not Gaussian.
Thus, in the following we report the median of ql(fb) computed over the dataset. Additionally, we
report the same quantity, but computed by restricting the samples to the most favoured and most

unfavoured classes.

G.1 MLP

We report the initialization gradients for a vanilla MLP (Eq. (TI)) for both ReLU and Tanh activa-
tions on binarized Fashion MNIST (BFMNIST - Fig. [21)) and CIFAR10 (Fig. 22). We can observe
the gradient vanishing/exploding behaviour very neatly across the phase transition. The same be-
haviour is present for the most unfavoured class for both datasets and activations. This is expected
since the gradient recursion (Eq. (91)) does not distinguish between classes. Instead, for the most
favoured class of ReLU models, we observe numerically zero gradients of the most favoured class
in the chaotic phase. This is due to the fact that the classification loss is numerically zero in the
chaotic phase, and so it is in every layer due to Eq. [91] It is easy to explain this by analysing what
happens to the cross entropy loss with diverging signals. Indeed, the ReLU chaotic phase is char-
acterized by output signal whose distribution moves further and further from the origin. Therefore,
since computing the probability that the output belongs to a certain class involves computing the
exponential of the output, all the probability mass concentrates to a single class, yielding practically
zero classification loss.
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Figure 21: Initialization gradients computed on a batch of binarized Fashion MNIST for a vanilla
MLP with ReLU and Tanh activation functions. We set o> = 0.1.
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and Tanh activation functions. We set o7 = 0.1.

100

Initialization gradients computed on a batch of CIFAR1O0 for a vanilla MLP with ReLU
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G.2 RESIDUAL MLP

We report the initialization gradients for a Residual MLP (Yang & Schoenholz, [2017)) for both
ReLU and Tanh activations on binarized CIFAR10 (BCIFAR - Fig. [23) For ReLU (Fig. [23] - top)
we observe perfectly constant gradients, while for Tanh ( Fig. [23]- bottom) we observe a small
exponential decay, which however does not hinder training and differentiate across phases (Figs.

and [10).

ReLU RESMLP
Global Favoured class Unfavoured class
\\; &
q('r) 101 \ L
layer [
Tanh RESMLP

Global Favoured class Unfavoured class

~(1)
Gab

layer [

Figure 23: Initialization gradients computed on a batch of binarized CIFAR10 for a vanilla Residual
MLP with ReLU and Tanh activation functions. We set o2 = 0.1.

G.3 VANILLA VISION TRANSFORMER

We compute the initialization gradients of a vanilla Vision Transformer (Dosovitskiy et al., 2020)
with ReLU activation function on binarized CIFAR10 (BCIFAR, Fig. 24]- top) and CIFARI10 (Fig.
[24]- bottom). By removing all batch- and layer-norm layers, we trigger the phase transition observed
for instance in the MLP.
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ReLU VIT

Global Favoured class Unfavoured class 72
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Dby
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layer [

ReLLU VIT

Global Favoured class Unfavoured class o2

)
Qab

L

layer [

\W

Figure 24: Initialization gradients computed on a batch of binarized CIFAR10 (top) and CIFAR10
(bottom) for a vanilla Vision Transformer (VIT) with ReLLU activation function. We set (Tg =0.1.

G.4 LARGE VISION TRANSFORMER

Finally, we compute the gradients on CIFAR100 of a large Vision Tranformer pre-trained on Ima-
genet. The weights are rescaled as explained in Sec. while biases are not modified. We observe
a similar transition behaviour as in vanilla models (Fig. 24} Due to computational limits, we are
able to compute the full gradients only on a batch of size 100 for this model.

Global Favoured class Unfavoured class a2

VV Y.l

layer [

Figure 25: Initialization gradients computed on a batch of CIFAR100 for a large Vision Transformer
(VIT) with GeLU activation function. We do not modify the pre-trained biases.
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H EXAMPLE OF AN EXPLICIT IGB CALCULATIONS FOR THE RELU

In this section, we provide an explicit calculation with the IGB approach. In particular, upon com-
puting the explicit recursive relations for Ji(l) and J/QN) in case of a ReLU MLP, we are able to

prove the following Lemma.

Lemma H.1 (Convergence of c((llg for ReLU). The correlation coefficient for the ReLU always
converge to one;the convergence rate is exponential for o > 0, 02, < 2, where x; < 1, and
quadratic otherwise (x; = 1).

Proof. Let us consider the ReLU activation function. We want to explicitly compute the objects that
appear on the RHS of Eq. (36). The expectation value of ¢ (y) over the dataset (i.e. the distribution
defined in Eq. (33)) is easy to obtain. For better readability, in the next calculations we drop the
layer label, since every quantity, if not explicitly declared, refer to layer [. We thus have for the
linear term:

1 oo _(yﬂL)2 1 oo _(yiu)Q
(¢(y)) = / dymax(0,y)e > = / dyye 3 =
\/5;537 o \/i;gg 0
o2 2 (92)
Z#{erf o +1}+\/7y€ 27
2 202 27
Y
In the same way we can compute the expectation value ¢ (y)2 over data as:
oo y—p? 2 2 5 2
2 1 / ) _ 2 ) p2+o i o2
= d e 204 = Yy erf + 1 + ie 207 .
<¢(y) > Vv Jo Y 2 207 w5,
93)

We can now compute the expectation values over network ensemble (i.e. distributions given by
Eq. (34)) for the quadratic term as

— 2452 ﬁ o2 4 o2 o2
(07) =5 ot | | a7 = BT = B o9
205 m

95)

For the expectation (over weights and biases) of the square linear term, we get:

2

2
T e e R
1/20;‘5 \/@
o2 _2 g2 1 o0 -
+H\/7[erf H +1}e 205 — Z"+7/ dpuzerf " e 2+
2 205 4@ —oo 205

LV 37+1_V(7+ 1 3y41 I(y))
N 2 a(y+1O)V2y+1 v/

2

+1| + 22
27r6

w2
o3

+

(v +1) 2y +1 2
(96)

where the integral function I(y) = [*_dx 2?erf (z)? e=*"/7, defined for every y > 0, is not
trivial. Note that I(-y) is smooth in (0, c0), but it is not defined for v = 0. We can thus analytically
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prolonged it at v = 0 by defining 1(0) = lim_,o I(y) = 0.

By taking the derivative with respect to -y, we easily get I(7) = 2 %h(*y), where we introduce the
auxiliary integral function h(y) = ffooo dz erf (z)? e~%"/7. Moreover, by repeatedly integrating
by parts I(-y), we have

o0 4 o0 2 2
:—f/ dx x erf( ) 7zg(/ dx erf(:c)2efx2/w+7/ de x erf(z)e ™ /1~? ) =
— 00 T™J-
d =7 _ L’Y, > L W”E_V?“ 7 29y [ —a?/y _
= 2h(’y) N dx erf(x)dxe = 2h(’y)+ - _me =
TV o B e SR G S G
=+ =M+ A T e
o7

By putting everything together we can write the following differential equation for h(y):
dh(y) 1 2 1 ~

= —h(y)+-—©—=—— ; 98
i w Dy SV gy ©8)

whose solution is A
h(vy) = g arctan /2y + 1 — /77 , (99)

where the integration constant has be fixed by analytically computing h(1) = ? By derivation we
thus obtain:

I(yv) 2 o ol
m—ﬂ(’yarctan 2V+1+(7+1)\/W> —5 (100)
By defining
_ v, Iy) I 3y+1 2 V2y F1
g(’y):EJrr WW7+17;7arctan 2’y+1+f, (101)
f(n=1+v-90), (102)
we can write also
5 V
()" =590v), (103)
and )
- TN — 0O
Varp (6 (0)) = (6 ()°) — (6 )" = 45771(7). (104)

Therefore we write the recursive relations for Jj( ,y and O’Z( ,y (by restoring the [-dependency):

012002@)

Tyan = ——f(1") (105)
o 02(1) O]
w 9(7 )

afb(m): 2/ 0 +of . (106)

Since f(v) + g(y) = 1+ ’y, by summing together Eq. with Eq. ( we get a recursion
relation for ¢() = o2 s T o? MOE which has been already dlscussed by Hayou et al (2019):

o2q)

(l+1)
9 2

+o?. (107)

In particular, ¢(Y) converges exponentially to zero for 02 < 2and diverges exponentially for o2 > 2,
while for o2 = 2 it is constant when o7 = 0 and diverges linearly when o > 0. For ~y can write:

@ 2
(1+1) _ g('") Ty
T ) gD (o
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Figure 26: Log-log plot of g(z)/z and f(z) defined in Eq. (I0T) and Eq. (I02), respctively. We
observe that they converge to one as x tends toward infinity. Therefore, g/ f is asymptotically linear.

The function (g/f)(y) has positive derivative and asymptotically converges to the identity function
(see Fig. . Therefore, v always diverges with the depth. That is, cfllg always converges to one for
ReLU, contrary to what claimed by e.g. [Schoenholz et al|(2016) and Hayou et al.|(2019).

Let us start analyzing the case o7 = 0. Interestingly, in such case Eq. (T08) does not depend on o2
The convergence rate depends on the sub-leading term and to find it we can expand f and g for large

~v. We get

_ 22 —3/2
gv) =+ S +0(y7), (109)
_ 22 —3/2
f(v)—l—SWﬁJrO(v ) (110)
and thus
g/f)(7)=7+237fﬁ+0(7‘1)- (11

Therefore ~y always diverges quadratically when o7 = 0. When 7 > 0 we have to distinguish the
case base on the value 2. For 02 < 2, ¢¥) converges exponentially fast to zero, therefore (")
diverges exponentially. For 02, > 2, (") diverges, and so the the divergence rate of ") is quadratic

as in the o2 = 0 case. A similar discussion applies for 02, = 2.

To summarize, we obtained:

. 0 if 02 < 2,Vo?
1 2 _ w = 4 VO 112
1o 00 {+oo if o2 > 2o}’ (112)
+o00  if ol =2,0f>0
lim afm ={ +oo ifol >2, Vo (113)
— 00
finite else
. . 2 2
lim +® = +o0 exponer.ltlally ifog <2,07/>0 . (114)
=00 quadratically  else
O
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Figure 27: Theoretical (dashed) and experimental (dots) lines obtained for ReLLU with different val-
ues of o2, close to the critical point 02, = 2.0. The width of the network is 10000. The initial
theoretical values are adjusted to take into account finite datasets effects. We observe good agree-
ment between the theory and the experiments.
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