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ABSTRACT

The rise in renewable energy is creating new dynamics in the energy grid that
promise to create a cleaner and more participative energy grid, where technology
plays a crucial part in creating the required flexibility to achieve the vision of the
next-generation grid. This work presents FRESCO, a framework that aims to ease
the implementation of energy markets using a hierarchical control architecture of
reinforcement learning agents trained using federated learning. The core concept
we are proving is that having greedy agents subject to changing conditions from
a higher level agent creates a cooperative setup that will allow for fulfilling all the
individual objectives. This paper presents a general overview of the framework,
the current progress, and some insights we obtained from the recent results.

1 INTRODUCTION

Climate change has emerged as one of our planet’s most pressing challenges. It is causing var-
ious environmental, economic, and social impacts, including rising sea levels, more frequent ex-
treme weather events, and threats to global food security IPCC (2018). Promoting renewable energy
sources helps reduce greenhouse gas emissions from the energy sector. It often involves using mi-
crogrids and small-scale power systems that can operate independently or in conjunction with the
main grid. Hierarchical control systems ensure microgrids’ efficient and effective operation by coor-
dinating the various components and managing the energy flow Yang et al. (2020). There are privacy
concerns associated with microgrids, such as collecting and using data about energy consumption,
and addressing these issues proactively is essential to ensure the benefits while protecting the privacy
of individuals and communities Tyav et al. (2022). In this work, we present a hierarchical control
framework composed of reinforcement learning (RL) agents, including federated learning (FL), to
enable scaling without risking the information from participants. The ultimate goal is to reduce the
collective carbon footprint of a group of microgrids. We called this framework FRESCO.

2 METHODS

FRESCO comprises three components: 1) An OpenAI Gym environment that represents different
microgrid setups, 2) a hierarchical structure of RL agents that control the microgrid at different
scales, and 3) a training stage using FL. We modeled this framework to represent the real case
scenario in which agents tend to pursue individual objectives, namely, are greedy; however, agents
in the same label end up following a common goal dictated by a higher layer agent. Figure 1 presents
a general view of our research scenario.

Our environment generates synthetic data for any microgrid scenario from a configuration detailed
in the appendix. We searched for the appropriate RL methodology for each layer’s objective. Layer
1 agents will seek to reduce their energy bill by managing a storage system at home. In Layer 2,
the agents define trading prices in a microgrid, aiming to reduce the carbon footprint by promot-
ing energy exchange within neighboring houses. Finally, layer 3 will encourage energy exchange
between microgrids by setting those prices and ensuring that the distribution system’s physical con-
straints are respected. We propose a metric that evaluates two scenarios: one without batteries and
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Figure 1: Three-layer architecture of our hierarchical microgrid control

CVXPY A2C - No FL FRESCO

Train reward -0.915 -0.735 -0.81
Train price score -0.103 -0.097 -0.10
Train emission score -0.223 -0.1522 -0.18
Test price score -0.0889 -0.083 -0.099
Test emission score -0.19 -0.19 -0.28

Table 1: Average performance of households. Lower is better for all except reward.

one with FRESCO. It assesses the system’s overall performance measuring the contribution of each
household individually, and aggregates the results at the microgrid and distributor levels.

Pdelta = Pbase − PFRESCO, (1)
Cdelta = Cbase − CFRESCO. (2)

3 EXPERIMENTS AND RESULTS

We completed the training for Layer 1 agents using our version of the Advantage Actor-Critic algo-
rithm (A2C), which considers causality and microgrid attributes. These agents’ actions are defined
in the [−1, 1] range, where −1 means fully discharging the battery, and 1 means fully charging it.
We trained the agents to be greedy in their objective of reducing bill price at the same time that they
can adapt to external stimuli, like changes in the energy price or local energy availability coming
from neighboring houses. The training set consists of 6 houses, the validation set of 6 other houses,
and the testing set of 10 new houses. Every 200 episodes, the neural network parameters for both
the actors and critics are synchronized using the FedAVG approach introduced by McMahan et al.
(2016). The baseline to compare the performance of FRESCO is the values obtained when solving
the same case with a linear solver. We utilized CVXPY, a linear solver, to establish the theoretically
best possible result for the given scenarios. The results in table 1 demonstrate better results than the
standard RL approach. In the appendix, Figures 3 and 2 show more detail about the training process.

4 CONCLUSION

FRESCO framework uses federated reinforcement learning (FRL) to promote communication and
cooperation among smart grids, which tend to be decentralized and must keep users’ personal in-
formation private. The framework proposed in this paper considers external grid CO2 impact and
prices, temperature, different distributed energy resources, and the diverse attributes of households.
The approach enables stakeholders to trade energy optimally and in an automated manner without
sharing consumer energy data. Results show that FRL can quickly adapt to grid changes and im-
prove optimal policy convergence with a small hit in general training speed. Our approach applies
to multiple interconnected microgrids and benefits all stakeholders by lowering energy bills, reduc-
ing electricity transmission rates, decreasing CO2 impact, and increasing participation in the energy
market.
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A APPENDIX

COMPARISON RL VS. FL

Figures 2 and 3 show the training and evaluation score function through the epochs. Each color
stripe represents a microgrid configuration, six in total. The agents go through them twice to test
their adaptation capability.

Figure 2: Reinforcement learning A2C run

Figure 3: Federated Learning Run
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DATASET GENERATION

We propose to build a data generator that synthetically creates time series data for solar panel gen-
eration, residential load, energy price, and energy emissions. Our data generator has several advan-
tages over using real or existing datasets. First, it reduces the dependency on finding or collecting
ideal datasets that match our problem setup and objectives. Secondly, we can control the level of
stochasticity and variability in the data, which enables us to test different scenarios and assumptions.
Finally, it opens the door to using optimizers as the reference point for evaluating the performance
of RL algorithms since we can generate data with known optimal solutions. We considered min-max
scaling for each type of data we generated by restricting all the variable values to the range [0, 1].
For all the cases, the number of generated data points is defined by the maximum number of time
steps T , defined before. A brief description of the generated is presented next.

PV GENERATION

The data from solar panel generation belongs to the Layer 1 of our scenario, as it is a DER belonging
to the households. It is modeled by creating a base from a rectified sin function tunned to reach its
peak after 12 steps, simulating the peak of solar energy on a clear sky day. It is scaled using the
parameter Epv,max

i,j ∈ [0, 1] and receives perturbation from a noise component modeled as a normal
distribution Npv(µpv, σpv), where we defined by default µpv = 0 and σpv = 0.1, but it can be
changed as needed.

RESIDENTIAL LOAD

Also belonging to Layer 1, we defined three types of profiles for this kind of data: family, teenagers,
and home business. Depending on the type, we established arbitrary 24-hour base profiles represent-
ing each case’s expected consumption. The load is parametrized by Eload,max

i,j ∈ [0, 1] that defines
the peak consumption. We assume a permanent constant consumption proportional to the peak
load denoted as Eload,c

i,j with a default value of 0.2 (20% of the peak load is constantly consumed).
We add a noise component to the constant consumption, modeled again as a normal distribution
Nload(µload, σload), with µload = 0 and σload = 0.01 by default.

ENERGY PRICE AND EMISSIONS

This kind of data belongs to Layer 3, being external inputs influenced by the availability of genera-
tors, market regulations, policy changes, unexpected events, etc. We assume that the grid can always
supply any demand, so the relevant aspects to consider are how the prices change and the impact of
energy sources. In our setup, we defined that the grid has nuclear and gas generation at its disposal.
Then, to compute the price of energy and its climate impact, we used the following parameters:
nuclear energy rate (rnuclear

t ), nuclear energy emission factor (cnuclear
t ), gas energy rate (rgas

t ) and gas
energy emission facto (cgas

t ). Following the real behavior of these two generation technologies, we
assume that nuclear maintains constant power during the day, defined as Enuclear,ratio and that the gas
generation has a planned generation profile that can also be inputted as a parameter.
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