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Figure 1. Qualitative Facial Attribute Editing. Our method enables precise, localized facial edits whilst maintaining low computational
latency. Through explicit identity preservation optimization, we ensure that global facial identity features are retained. Furthermore, our
approach ensures temporal consistency and robust generalization across a wide range of facial video editing tasks.

Abstract
Facial video editing has become increasingly important

for content creators, enabling the manipulation of facial
expressions and attributes. However, existing models en-
counter challenges such as poor editing quality, high com-
putational costs and difficulties in preserving facial identity
across diverse edits. Additionally, these models are often
constrained to editing predefined facial attributes, limiting
their flexibility to diverse editing prompts. To address these
challenges, we propose a novel facial video editing frame-
work that leverages the rich latent space of pre-trained text-
to-image (T2I) diffusion models and fine-tune them specif-
ically for facial video editing tasks. Our approach in-
troduces a targeted fine-tuning scheme that enables high
quality, localized, text-driven edits while ensuring identity
preservation across video frames. Additionally, by using
pre-trained T2I models during inference, our approach sig-
nificantly reduces editing time by 80%, while maintaining

temporal consistency throughout the video sequence. We
evaluate the effectiveness of our approach through extensive
testing across a wide range of challenging scenarios, in-
cluding varying head poses, complex action sequences, and
diverse facial expressions. Our method consistently outper-
forms existing techniques, demonstrating superior perfor-
mance across a broad set of metrics and benchmarks.

1. Introduction

Digital content generation and editing have experienced
remarkable strides since the advent of diffusion models [18,
19, 30, 43]. These generative models have been progres-
sively trained to enhance input image clarity but often lack
precise control over the output. However, recent advance-
ments in conditional diffusion models [10, 32] have ad-
dressed this limitation, opening up exciting avenues for
multi-modal or text-controlled generation [7,11,37,38,40].
These innovative approaches have demonstrated effective-
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ness and improved quality across various tasks, including
image generation [10,15,21], diverse image editing scenar-
ios [4,12,17], and even video editing applications [6,33,36].

Facial video editing differs from conventional video edit-
ing, where changes are often applied to broader scenes. Our
approach focuses on the unique challenges of facial editing,
such as executing precise localized modifications, maintain-
ing temporal consistency across frames, and preserving the
original video’s quality and subject’s identity throughout
the process. These challenges demonstrate why conven-
tional video editing models are not suited for the precision
required in facial video editing. Previous works in GAN-
based [1, 46, 52] and Diffusion based [26] facial video edit-
ing faced similar hurdles. They often produced visible ar-
tifacts and also handled each frame independently, which
significantly increased computation cost and editing time.
Moreover, these techniques require end-to-end training tai-
lored to specific facial videos and editing prompts, limit-
ing their ability to generalize to diverse prompts and unseen
head poses.

To tackle these challenges, we employ pre-trained Text-
to-Image (T2I) diffusion models (Stable Diffusion 2.1
[35]), known for its generalization capabilities and high-
quality image generation capability due to large-scale pre-
training. Also using pretrained T2I models for Text2video
tasks has proven to achieve significant reductions in editing
time and compute latency [14, 49] .

While off-the-shelf (T2I) models provide strong gener-
alization to unseen faces, they often struggle with precision
when adhering to localized prompts and preserving iden-
tity [14, 49] Figure 1. To address this, we use directional-
CLIP loss [13] to fine-tune one branch of our parallel T2I
framework to enable it to make highly localized edits to the
facial video. Additionally, we integrate an identity preserva-
tion loss [9], into one of our fine-tuned T2I branches. This
explicitly guides the editing process during inference, fo-
cusing on maintaining the person’s identity.

The combination of these two independently fine-
tuned diffusers & careful loss setups enables our method
to perform identity preserving localized edits to facial
videos(Fig. 3).

In summary, we make the following contributions:

• We present a novel pipeline for facial video editing
that leverages pre-trained text-to-image (T2I) diffusion
models. This approach enables high quality prompt-
consistent edits, generalizes effectively to challeng-
ing in-the-wild facial videos, and significantly reduces
both computational cost and latency.

• We propose an inference-time guidance strategy that
preserves the original identity throughout the editing
process, ensuring global identity consistency across
frames.

• We develop a fine-tuning strategy that allows for
highly localized edits in facial videos and demon-
strate that this framework significantly surpasses ex-
isting benchmarks for facial video editing in various
quantitative and qualitative aspects.

2. Related Work
2.1. Text to Image Diffusion models

Text-guided diffusion models encode the rich latent fea-
tures of an image coupled with the text guidance through
cross-attention modules [11, 32, 37, 40]. ControlNet [54],
LORA [20] and PNP-diffusion [45] delve into the control-
lability of visual generation by incorporating additional en-
coding layers, facilitating controlled generation under var-
ious conditions such as pose, mask, edge and depth. No-
tably [45] controls image generation by replacing the self-
attention features of selective layers of the T2I network with
another network that effectively preserves global features of
the image and [54] provides guidance through zero convo-
lutions. We take inspiration from these methods to facilitate
additional identity guidance to our editing method.

2.2. Text guided video editing

Unlike advancements in image manipulation, progress
in video manipulation methods has been slower, with a key
challenge being the need to streamline editing processes for
practical use, while ensuring temporal consistency across
frames. Previous efforts [25, 33, 36] have tried to address
these challenges but often at the expense of computational
cost and impractical editing times.

To address this, recent advances [5,14,49] demonstrated
using pre-trained T2I diffusion models results in faster
video editing. In particular Geyer et al. [14] proposed us-
ing a T2I model with keyframe editing instead of editing
every frame. Changes in these keyframes are propagated to
other frames via interframe correspondences, significantly
reducing editing time. Yao et al. [49] leveraged a pretrained
(T2I) diffusion model and fine-tunes it with a small number
of iterations using latent code initialization and temporal at-
tention, significantly reducing video editing time.

2.3. Facial Video Editing

Facial video editing presents a unique challenge com-
pared to traditional methods. Here, preserving the origi-
nal person’s identity and natural head movements is cru-
cial, while maintaining temporal coherence throughout the
edited video . Early methods [1–3, 13, 16, 46] leveraged
StyleGAN’s well-structured latent space for facial video
editing. By manipulating specific codes, they could alter
facial features like expressions, gender, and age. How-
ever, they were limited to broader edits and couldn’t address
more localized details like beards, glasses, or accessories.



To better preserve temporal consistency while allowing
for more localized edits to the facial video, Kim et al. [26]
proposed to use DDIM [43] to edit facial videos. This
method first encodes the frames of a facial video into time-
invariant (identity) and time-variant (motion) features using
separate pre-trained encoders, then performs CLIP-guided
editing with the text prompt to the time-invariant features.
Then along with the noisy latents of the facial frames (ob-
tained from the deterministic forward process of DDIM)
and these edited features, they guide the reverse process of
the conditional DDIM. But this involves a lot of individ-
ual preprocessing steps and processes every frame of the
video during inference (Tab. 2). In contrast, our method
tackles these challenges through a video editing framework
that leverages off-the-shelf T2I models. To the best of our
knowledge we are the first to explore using pretrained T2I
models for facial video editing tasks.

3. Preliminary
3.1. Denoising Diffusion Probabilistic Models:

DDPMs [18,43] are generative models based on iterative
Markovian steps: forward noising and reverse denoising.
Given an input image y0, the forward process progressively
adds noise using a Markov chain q over T steps:

q(y1:T | y0) =
T

t=1

q(yt | yt−1) = N (yt |
√
αtyt−1, (1−αt)I)

(1)
where αt controls the added noise level at each step. The
reverse process uses a U-Net ϵ(yt, t) to predict and remove
the noise at each step, progressively denoising yt back to
y0. This process can be guided by additional input signals,
such as text descriptions or reference images, allowing the
model to generate outputs that are more specific and aligned
with the given conditions. By incorporating these inputs,
the generative process becomes highly flexible and can be
tailored to produce desired outputs that match particular re-
quirements or constraints.

We leverage a pre-trained text-conditioned Latent Dif-
fusion Model (LDM), like Stable Diffusion [35] for our
task, which applies the diffusion process to a pre-trained
image autoencoder’s latent space. The U-Net architecture
uses a residual block, a self-attention block to capture long-
range dependencies and a cross-attention block for image
features’s interaction with text embeddings from the condi-
tioning prompt.

3.2. Joint Keyframe Editing:

Traditional video editing techniques necessitate editing
each frame separately and then ensuring temporal coher-
ence, leading to significant computational overhead. To
mitigate this, Geyer et al. [14] exploit the temporal redun-

dancies within the feature space of T2I diffusion models
in natural videos. This approach enables the attainment of
temporal coherence in editing by altering only a selected
subset of keyframes and propagating these modifications
throughout the video.

The keyframe ki generates a feature representation fi,
followed by the calculation of an attention weight aij for
ki, indicating the relevance of information with another
keyframe kj as follows:

aij = softmax(fT
i Wafj) (2)

where Wa is a learned weight matrix. After computing at-
tention weights, each keyframe’s feature is updated by ag-
gregating information from all other keyframes:

f updated
i = fi +



j

aijWcfj (3)

where Wc is another learned weight matrix. Then For each
frame i they proceed to find the nearest neighbors in the
original video’s keyframe feature space. Let γi+ and γi−
denote the indices of the closest future and past keyframes
(respectively) to frame i. Edited keyframes features (Tbase)
are propagated to fi based on its distance to neighboring
keyframes:

f prop
i = w+

i Tbase(γ
+
i ) + w−

i Tbase(γ
−
i ) (4)

where Tbase(γij) refers to the edited feature vector of the
keyframe with index γij (either future or past), and wi+

and wi− are weights determined by the distance between
frame i and its corresponding neighbors. This technique
ensures consistent video editing by integrating style infor-
mation from all keyframes simultaneously, fostering global-
editing coherence.

4. Method
This section details our facial video editing approach,

consisting of two main stages: preprocessing and editing.
In the preprocessing phase, identity features are extracted
from video frames using the pre-trained T2I model ϵ1. For
each frame xi in the input video (with i ranging from 1 to
N frames), a DDIM inversion process is applied with ϵ1
to extract self-attention features xi

l at every network layer
l during denoising, as depicted in Figure 2. In the editing
step, we adopt joint keyframe editing( Sec. 3.2), focusing
text-guided edits on sampled keyframes xk

0 (where k ranges
from 1 to N ) and then propagating these changes to the re-
maining frames using a nearest neighbor search [14] with
network ϵ2.

To ensure identity preservation, we introduce a novel
pipeline where during editing we substitute the self-
attention features of ϵ2 with those precomputed by ϵ1. Ad-
ditionally, we’ve devised a framework to fine-tune ϵ2 for
more precise localized facial edits.



Figure 2. Model Architecture. Left: Pre-trained T2I models ϵ1 and ϵ2 are fine-tuned independently with ArcFace loss and directional
CLIP loss for identity-preservation and prompt-adhering localization, respectively. Right: Video frames are inverted with DDIM and then
processed through ϵ1 to extract self-attention features at each timestep. Text-guided editing is applied to keyframes using ϵ2, guided by
identity features from ϵ1. Edits are propagated to remaining frames using a nearest-neighbor search within the latent space.

4.1. Inference time Identity Preservation

Naively applying Text2Video models [14, 25, 33] for fa-
cial video editing often results in a loss of the original per-
son’s identity. These models are trained for generic video
editing tasks such as changes in global style, scene of an
image and thus when applied for facial videos struggle to
maintain critical facial features.

To tackle this challenge, we introduce a method that in-
corporates additional structure and identity guidance during
the editing process.

We fine-tuned an off-the-shelf T2I model ϵ1 using a large
facial image dataset (CelebA HQ [50]), employing a com-
bined loss function that minimizes both pixel-wise recon-
struction errors and identity differences (using ArcFace [9])
between generated and ground truth images. This approach
aids in face reconstruction during editing while preserving
identity. Mathematically we reduce the following loss:

Lid = ∥ϵ1(x0)−y0∥1+Dcos (farc(ϵ1(x0)), farc(y0)) (5)

where y0 is the ground truth face image and x0 is the noisy
latent obtained by DDIM inversion of y0. The second term
minimizes a cosine-similarity identity Loss using the pre-
trained ArcFace [9] network (farc) where Dcos represents
the cosine distance between the two features.

During inference, we guide the editing process of ϵ2 by
replacing its self-attention features with those from corre-
sponding layers of the identity-preserving ϵ1 network. This
approach effectively incorporates identity information into
the editing process, resulting in robust preservation of facial
identity and head pose in the edited videos, as in Figure 2.

4.2. Directional Editing

T2I diffusion, pre-trained on generic generative tasks
like style transfer and scene editing, are not well-suited for

localized editing and often end up changing global seman-
tics while increasing artifacts. TokenFlow [14], a non-faces
geared (generic) diffusion-based video editor, suffers from
this issue, see Fig. 1. To address this limitation, we fine-
tune a pre-trained T2I model (SD 2.1 [35]) using a direc-
tional CLIP loss [13] on the large-scale face image dataset:
CelebA-HQ [50]. We minimize the loss defined by:

Ldir(ygen,ptar) = λ1∥fI(ygen)− fI(y0)∥2
+ λ2 [1− ((fI(ygen)− fI(yref )) ·

(fT (ptar)− fT (pref )))] (6)

where Ldir(ygen,ptar) is the directional CLIP loss for im-
age ygen and target prompt ptar. fI/T (·) denotes the CLIP
Image/Text encoder mapping images and text into the same
latent space. yref is original image. pref is the reference
text embedding. λ1 and λ2 are scalar hyper-parameters.

The directional CLIP loss [13] effectively guides the
editing process by minimizing the directional change be-
tween the original facial image representation and the text
prompt’s influence in model’s latent space. This loss allows
for more localized edits compared to traditional clip losses.

We call this fine-tuned T2I model as ϵ2 Figure 2. Dur-
ing fine-tuning, we focused on 2 edit categories: (1) facial
features like age, gender and expressions and (2) facial at-
tributes like hair color, spectacles, mustaches, or beards.

5. Experiments
5.1. Implementation Details

We use Stable Diffusion 2.1 [35] as our pre-trained Text-
to-Image model (ϵ1) for fine-tuning both our branches. We
fine-tune ϵ1 using the CelebAHQ dataset [27] comprising
of 512×512 10,000 images. ϵ2 was finetuned on the same



Figure 3. Strong Prompt-Adhering Multiple Editing. Left: Beyond local edits, our method manipulates facial expressions and age.
Right: Our facial video editing method handles simultaneous edits to local facial features.

dataset using captions generated by BLIP-2 [28] as refer-
ence prompts. These were paired with extensive set of edit-
ing prompts that covered both facial attributes (e.g., beard,
glasses) and facial features (e.g., gender, age). We ensured
prompt diversity by incorporating a wide range of facial
editing categories present in the large-scale facial attribute
dataset CelebA [29]. The hyperparameters for the diffusion
CLIP loss, λ1 is 0.3 and λ2 is 0.7. For both ϵ1 and ϵ2, we
trained at a resolution of 512x512, batch size of 16 with a
learning rate of 10−5 for 30,000 iterations using 2 NVIDIA
A100’s. Inference can be performed on a single one.

5.2. Baselines and Dataset

We conducted both quantitative and qualitative exper-
iments, comparing our method against established Facial
Video Editing benchmarks:

1. DVA: Kim et al.’s [26] diffusion-based method for fa-
cial video editing that enables editing a set of prede-
fined facial features (e.g., expressions, age) and local
facial attributes (e.g., beard, accessories).

2. StitchGAN (STIT) [46]: This method exclusively ed-
its predefined global facial features (e.g., age, gender,
expressions) but struggles with localization.

3. Latent Transformer for Facial Video Editing
(LTFE) [52]: A StyleGAN-based [24] facial video
editing method limited to a narrow set of attributes.

Other recent advancements in facial video editing lever-
aging StyleGAN inversion have been reported, but exper-
imental comparisons with these models were not feasible
due to the lack of publicly available implementations or pre-
trained models [23, 51, 53]. Consequently, we focused on
widely recognized benchmarks that remain competitive.

Evaluation Dataset For our experiments, we selected
a subset of 50 original videos from the CelebV-HQ
dataset [8]. From these, we created an evaluation dataset
consisting of 25 edited videos of each of the baselines and
our method. Each video had a duration of 4 seconds (10
fps) and a frame resolution of 512x512.

5.3. Identity Preservation Metric

To quantitatively assess identity preservation in edited
videos, we use three face recognition models: CosFace [48],
VGGFace [34], and FaceNet [41]. These models generate
high-dimensional embeddings that capture facial features,
enabling identity evaluation.

For each video, we compute embeddings by averaging
frame-wise embeddings for the original and edited frames.
Identity preservation is assessed using retrieval metrics: 1)
Recall at Rank 1 (R@1) [47], 2) Mean Reciprocal Rank
(MRR) [31], and 3) Cosine Similarity. Using the CelebV-
HQ database [8] (35,000 videos), we rank the embedding
of the original video among the database embeddings based
on its similarity to the edited video embedding.



Figure 4. Editing Faces in the Wild. We successfully overcome a previous hurdle of out-of-domain adaptation for facial video editing
methods.

Recall at Rank 1 (R@1): Measures the proportion of
queries where the original embedding is ranked first based
on average Euclidean distance of the frames:

R@1 =
Number of correct top-1 queries

Total queries

Mean Reciprocal Rank (MRR): Quantifies retrieval per-
formance by averaging reciprocal ranks of ground-truth em-
beddings, prioritizing higher ranks:

MRR =
1

N

N

i=1

1

ranki

where ranki is the position of the ground-truth embedding
for the i-th query.
Cosine Similarity: Evaluates similarity between embed-
dings of original (x0) and edited frames (x) to assess iden-
tity preservation:

dcosine(x0, x) = 1− x0 · x
∥x0∥∥x∥

Lower values of dcosine indicate better identity preservation.

Model VGGFace [9] CosFace [48] FaceNet [48]

Cosine ↓ R@1 ↑ MRR ↑ Cosine ↓ R@1 ↑ MRR ↑ Cosine ↓ R@1 ↑ MRR ↑
DVA [26] 0.361 0.76 0.794 0.318 0.76 0.794 0.256 0.76 0.794
STIT [46] 0.447 0.70 0.748 0.471 0.70 0.748 0.273 0.72 0.773
LTFE [52] 0.506 0.64 0.662 0.531 0.64 0.673 0.488 0.66 0.683

Ours (w/o ID guidance) 0.762 0.32 0.352 0.722 0.34 0.396 0.706 0.34 0.396
Ours (with ID guidance) 0.221 0.96 0.97 0.206 0.96 0.97 0.185 0.96 0.97

Table 1. Quantitative Comparison of Identity Preservation. We
evaluate identity preservation using Cosine Distance, R@1, and
MRR metrics averaged across videos in our evaluation dataset, us-
ing embeddings from VGGFace, CosFace, and FaceNet.

5.4. Frames vs. Inference Time.

Existing facial video editing benchmarks require end-to-
end training for each facial video prior to inference, result-
ing in high computational costs and significant time con-
sumption. In contrast, our method leverages our pre-trained
T2I models to directly perform edits, eliminating the need
for additional per-video training. Also by focusing on edit-
ing only keyframes, our approach reduces inference time by
approximately 80% compared to state-of-the-art methods,
offering a robust & practical solution for facial editing.

For instance, editing a 30-second, 10 fps facial video
(300 frames) takes just ∼6 minutes on a single NVIDIA
A100 GPU, demonstrating significant gains over the near-
est baselines: STIT [46] (32 minutes) and DVA [26] (28
minutes). Tab. 2 shows a quantitative comparison.

Video Duration Ours Kim [26] Tzaban [46] Yao [52]

30 sec 6 mins 28 mins 32 mins 35 mins
60 sec 15 mins 45 mins 60 mins 68 mins
90 sec 32 mins 90 mins 110 mins 132 mins
120 sec 98 mins 180 mins 194 mins 206 mins

Table 2. Inference Speed Comparison on 10 fps videos, aver-
aged across video clips from the evaluation dataset and reported in
minutes using a single NVIDIA A100

5.5. Temporal Consistency Evaluation

Our method incorporates Geyer et al.’s [14] algorithm,
which enforces temporal consistency by aligning and prop-
agating latent tokens across frames within the latent space
of pre-trained T2I diffusion models.

In contrast to existing benchmark approaches that rely on
per-frame encoders and process each frame independently,



Figure 5. Ablation: fine-tuning ϵ1 and ϵ2 with Arc-Face and directional-Clip Loss for identity preservation and performing localized edits
in facial videos.

our method inherently enforces frame-to-frame coherence
at the latent representation level. This helps in reducing per-
ceptual flickering and improving temporal stability Tab. 3.

To quantitatively assess temporal consistency, we utilize
the pre-trained RAFT model [44] to compute optical flow
ot between consecutive frames It and It+1. Using the com-
puted optical flow, we forward-warp frame It to frame It+1

with the bilinear inverse warping operator [22], denoted as
W . This process ensures precise alignment between con-
secutive frames, enabling an accurate evaluation of tempo-
ral coherence.

The temporal loss, calculated as the average ℓ1 distance
between the warped frame W(It, ot) and the actual frame
It+1 across all video frames, is defined as:

Ltemp =
1

T

T

t=1

∥W(It, ot)− It+1∥1, (7)

where T is the total number of frames in the video.
A lower temporal loss indicates superior temporal consis-
tency, with smoother transitions and fewer artifacts. Table 3
presents the temporal loss values, comparing our approach
against state-of-the-art methods, demonstrating the effec-
tiveness of our method in maintaining temporal coherence
across frames.

Method Temporal Consistency ↓ MOS Score ↑

DVA [26] 0.256 4.7
STIT [46] 0.273 5.6
LTFE [52] 0.463 3.4

Ours 0.238 7.7

Table 3. Quantitative Fidelity Comparison. The table com-
pares identity preservation, RAFT-based temporal consistency,
and Mean Opinion Score (MOS) for different methods. Evalua-
tions are conducted on 20 ten-second videos at 512× 512 resolu-
tion, highlighting the superior temporal consistency and perceived
quality of our approach compared to existing methods.

5.6. Ablation Study

We conducted an ablation study to assess the contribu-
tions of key components in our model: the effect of identity
guidance from the fine-tuned model ϵ1, optimized with Lid,
and the impact of fine-tuning ϵ2 with Ldir to achieve tempo-
rally consistent and localized facial edits.

First, we retained the identity guidance from ϵ1 and
edited facial videos with ϵ2 before it was fine-tuned with the
directional CLIP loss Ldir. As shown in Column 3 of Fig. 5,
the results demonstrated that while the T2I model struggled
with highly localized edits, validating the challenge of us-
ing pre-trained T2I models for precise facial modifications.



Figure 6. More Identity Preserving Localized Editing in the Wild. Left: Hair color change and accessory addition are performed from
a randomly scraped online music video. Right: Facial hair and facial expressions of a consenting volunteer are edited using our method.

This emphasizes the necessity of Ldir for enabling effective,
localized edits in our framework.

Despite the limitations in performing precise edits, the
model successfully preserved identity, attributed to the
guidance provided by ϵ1.

Next, we removed the identity guidance from ϵ1, which
was fine-tuned with Lid, and tested the model using only
ϵ2, fine-tuned with Ldir. The results, as seen in Column 3
of Fig. 5, showed a substantial failure to preserve the orig-
inal identity, which was corroborated by identity preser-
vation metrics such as CosFace, VGGFace, and FaceNet.
These metrics recorded significantly suboptimal values in
this configuration (Tab. 1).

This ablation study highlights the critical importance of
fine-tuning both ϵ1 and ϵ2 with Lid and Ldir, respectively, to
achieve accurate, identity-preserving localized edits.

5.7. Mean Opinion Score Study

We conducted a mean opinion score (MOS) study with
50 participants to qualitatively evaluate the realism and be-
lievability of our facial video edits, using a 1 to 10 rat-
ing scale (Tab. 3). A double-blind setup, with anonymized
methods and randomized video order, ensured unbiased and
robust assessment of our approach’s perceived fidelity.

5.8. Multiple Prompt-Localized Editing.

Existing methods are constrained to performing one edit
at a time on facial videos, necessitating successive pro-
cessing for multiple edits and significantly increasing infer-
ence time. In contrast, our approach leverages the robust
latent space of pre-trained SDE models. By embedding
text-guided editing directly into the cross-attention layers
of the fine-tuned U-Net [39] ϵ2, we enable simultaneous
application of multiple edits without added computational
overhead. For instance, our method can process complex

prompts such as “[Add bangs, sunglasses, and a French
beard to the face]” in a single step Fig. 3.

5.9. Generalization: Editing Faces in the Wild.

Prior facial video editing works, trained end-to-end on
curated datasets, tends to struggle when applied to in-the-
wild facial videos( Fig. 1 and Fig. 4 the results produced
by DVA [26] and STIT [46] ). Our approach, however, har-
nesses the robustness of pre-trained SDE models trained on
extensive data (e.g., LAION 2B dataset [42]), enabling ef-
fective editing of wild facial videos while preserving tem-
poral consistency, even amidst challenging head poses and
varied viewing angles as shown in Fig. 1 and Fig. 4 .

6. Conclusion

To address challenges such as high editing time, iden-
tity preservation, and achieving diverse edits in facial video
editing, we proposed a novel pipeline that leverages pre-
trained text-to-image (T2I) diffusion models, fine-tuned to
maintain global identity while enabling directional edits.

Furthermore, although stable diffusion is effective, it
may introduce slight shifts in image texture, lighting,and
background. These shifts were observed in some of our re-
sults and should be considered in future work. Also further
exploration for enhanced flexibility in editing facial videos
through various guidance attributes, as well as a focus on
both micro and macro expressions, presents promising ad-
vancements for creative applications.
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