
GraphEval: A Knowledge-Graph Based LLM Hallucination
Evaluation Framework
Hannah Sansford1,*, Nicholas Richardson2, Hermina Petric Maretic2 and Juba Nait Saada2

1University of Bristol, UK
2Amazon Science

Abstract
Methods to evaluate Large Language Model (LLM) responses and detect inconsistencies, also known as hallucinations, with
respect to the provided knowledge, are becoming increasingly important for LLM applications. Current metrics fall short in
their ability to provide explainable decisions, systematically check all pieces of information in the response, and are often too
computationally expensive to be used in practice. We present GraphEval: a hallucination evaluation framework based on
representing information in Knowledge Graph (KG) structures. Our method identifies the specific triples in the KG that are
prone to hallucinations and hence provides more insight into where in the response a hallucination has occurred, if at all,
than previous methods. Furthermore, using our approach in conjunction with state-of-the-art natural language inference
(NLI) models leads to an improvement in balanced accuracy on various hallucination benchmarks, compared to using the raw
NLI models. Lastly, we explore the use of GraphEval for hallucination correction by leveraging the structure of the KG, a
method we name GraphCorrect, and demonstrate that the majority of hallucinations can indeed be rectified.

Keywords
Large Language Models, Knowledge Graphs, Hallucination Detection, Hallucination Correction

1. Introduction
As the size and power of LLMs have drastically increased
over recent years, so has the number of potential appli-
cations. Arguably, one of the biggest blockers to imple-
menting these models in practice is their tendency to
hallucinate - returning seemingly plausible, but untrue,
responses. Here, we focus on the problem of detecting
hallucinations with respect to the provided context that
the LLM should use as its source of knowledge; detecting
hallucinations that have deviated from the LLM’s original
training data is out of the scope of this work. In appli-
cations where certainty in a response is critical, such as
medical diagnosis, the existence of hallucinations that
arise from a given context is especially limiting. There-
fore, it is of utmost importance to develop successful
methods to detect these hallucinations and, when it is
of interest to address or correct them, provide clarity on
which aspect of the response is likely a hallucination.
The importance of this issue is reflected in the amount
of research being published on the topic - see Ji et al. [1]
for a recent survey of this area.

Performing evaluation on natural language is a challeng-
ing task that researchers have been interested in long

KiL’24: Workshop on Knowledge-infused Learning co-located with
30th ACM KDD Conference, August 26, 2024, Barcelona, Spain
*Work done during an internship with Amazon.
$ hannah.sansford@bristol.ac.uk (H. Sansford); nchls@amazon.es
(N. Richardson); maretich@amazon.co.uk (H. Petric Maretic);
jubans@amazon.co.uk (J. Nait Saada)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

before hallucinations were at the forefront of the prob-
lem. Methods have evolved a great deal from traditional
N-gram based metrics, such as BLEU [2] and ROUGE
[3], to much more intricate LLM-based evaluation met-
rics with user-defined evaluation criteria, such as G-Eval
[4]. More recently, techniques to mitigate the prevalence
of hallucinations in generated outputs leveraging Re-
trieval Augmented Generation (RAG) [5] and reasoning
on knowledge graphs (KGs) [6, 7] have been proposed.
The former suggested the concatenation of relevant con-
textual data into the prompt to ground the LLM response,
while the latter enforced a more robust reasoning process
through providing grounding information in KG struc-
tures [8]. As successful as these approaches have been,
they do not fully circumvent the need to evaluate LLM
outputs.

Inspired by current research harnessing KGs to provide
grounded LLM responses, we propose GraphEval - a hal-
lucination detection framework based on the represen-
tation of information in KG structures. To the best of
our knowledge, we are the first to apply KGs to an LLM-
based hallucination evaluation framework, and in doing
so we provide a higher level of insight into where in
the output a hallucination has occurred than any previ-
ous metrics. Additionally, we demonstrate how using
our method in conjunction with current state-of-the-art
hallucination detection methods improves their classi-
fication accuracy on various benchmarks. Finally, we
consider the problem of hallucination correction and we
introduce GraphCorrect, showcasing how GraphEval can

mailto:hannah.sansford@bristol.ac.uk
mailto:nchls@amazon.es
mailto:maretich@amazon.co.uk
mailto:jubans@amazon.co.uk
https://creativecommons.org/licenses/by/4.0

effectively be extended to rectify a significant proportion
of hallucinations present in LLM outputs.

2. Problem statement
In this work we focus on the closed-domain hallucina-
tion detection problem: the situation where we have a
textual output from an LLM which is generated using
some grounding context included in the prompt. In this
case, the goal is for the LLM to use the provided context
as its only source of knowledge. The open-domain prob-
lem, which is with respect to all factual knowledge in
the world, is not explored here but is briefly discussed in
Section 8.

We consider hallucination detection to be a binary classifi-
cation problem, with 0 corresponding to the LLM output
being factually consistent given the provided context,
and 1 corresponding to the output containing at least
one inconsistency. We can assess hallucination evalua-
tion methods using a benchmarking dataset containing
ground-truth labels (usually human-annotated) to de-
termine whether a given context-output pair contains
factual inconsistencies. Throughout the paper we use
the terms factual, consistent, grounded and faithful in-
terchangeably to mean containing no hallucinations with
respect to the context.

Finally, we explore the problem of hallucination correc-
tion, wherein we do not use any directly labeled dataset.
Instead, we utilize hallucination detection frameworks to
first identify hallucinations to correct, and subsequently
repurposing them to evaluate the corrected outputs. It is
important to note that our exploration of hallucination
correction only serves as an extension to our evaluation
framework and is not the primary focus of this study.

3. Related work
Historically, N-gram based metrics such as BLEU [2]
and ROUGE [3] have been the most widely used metrics
for natural language evaluation. However, these met-
rics have been shown to perform poorly at the task of
factual inconsistency detection [9, 10]. In more recent
years, embedding-based metrics such as BERTScore [11]
have been favoured over N-gram based metrics. These
methods measure the similarity between two pieces of
text by comparing the contextualised embedding from a
transformer model, such as BERT [12].

Both N-gram and embedding-based metrics base their
scores on how similar the text to be evaluated is to some
reference text. This similarity objective often fails to cap-
ture the intricacies of the hallucination detection problem.

Therefore, researchers have begun to develop new meth-
ods that are more acutely tuned to detecting inconsisten-
cies between an LLM output and its grounding context.
Maynez et al. [9] identified the crossover between the
textual entailment score in NLI tasks and consistency pre-
diction. This was a breakthrough at the time, producing
higher correlation with faithfulness than any previous
metrics, and paved the way for further research that cap-
italised on NLI data and models [13, 14, 15].

Very recently, attention has turned to leveraging LLMs
themselves to evaluate the consistency of LLM outputs.
SelfCheckGPT [16] and ChatProtect [17] approach the
problem by considering the self-consistency within sam-
pled outputs. Since they require the generation of a large
number of responses from the LLM, many consider these
methods prohibitively computationally expensive.

Other LLM-based hallucination evaluation methods, such
as G-Eval [4] and GPTScore [18], employ a different LLM
for evaluation than the one used to generate the LLM
response that needs to be evaluated. G-Eval allows user-
defined evaluation criteria and uses automated chain-
of-thought prompting and form-filling to assign scores.
GPTScore treats the task as conditional generation, lever-
aging models like GPT-3 to assign higher probabilities to
high-quality outputs by prepending evaluation instruc-
tions to the LLM prompt. Unlike NLI models trained on
binary classification data, these methods produce scores
that are harder to interpret as probabilities and often
require additional steps for inconsistency classification.

Recent hallucination detection methods, such as
FactScore [19] and SAFE [20], utilize large language
models to break down the response into atomic or in-
dividual facts for evaluation. These approaches have
enabled precise identification of where hallucinations oc-
cur within the LLM response. Each fact is automatically
verified against a comprehensive knowledge source like
Wikipedia or scientific literature in the case of FactScore,
or through the use of a search engine in the case of SAFE.

FactGraph [21] is the only factuality evaluation method
we are aware of that utilises graph-like structures. The
method is focused solely on the detection of inconsisten-
cies in the summarization problem, decomposing both
the summary and the supporting documents into what
they call structured meaning representations (MRs). These
MRs describe the core semantic concepts and relations,
which the authors claim to be more suitable for factuality
evaluation than the raw text.

Figure 1: A visualisation of the GraphEval approach. First, the LLM output is fed into the KG construction prompt to produce
the KG depicted on the right. Next, each individual triple in the KG is fed into an out-of-the-box hallucination detection
method, such as an NLI model, and compared to the provided context for inconsistencies. Finally, any triples that are flagged
as inconsistent are returned to the user, along with the overall hallucination decision.

4. GraphEval: Our evaluation
method

GraphEval is based around the idea of representing infor-
mation in a structured manner through KGs, and aims to
address the lack of explainability of previous hallucina-
tion detection approaches, i.e. which concrete pieces of
information in particular are inconsistent.

Formally, a KG is a collection of triples 𝒦𝒢 =
{(𝑒1, 𝑟, 𝑒2) ⊆ ℰ × ℛ × ℰ}, where ℰ and ℛ denote
the set of entities and relationships, respectively. In the
GraphEval setting, both entities and relationships are
simply pieces of text. We do not make use of common
extensions to this simple setting, such as entity and rela-
tionship types, or attached properties.

Our GraphEval metric consists of a two-stage procedure:

Stage 1 - Construct a KG from the LLM output
to be evaluated.
Stage 2 - Iterate through each of the triples in
the KG, identifying whether they are factually
consistent given the provided context.

The output is considered factually inconsistent if any of
the triples in stage 2 are identified as not grounded in the
context. The inconsistent triple(s) may also be returned
to provide explainability by highlighting where in the
output the hallucination(s) has occurred. We provide

a visualisation of this process in Figure 1 using a real
example from one of the benchmarks described in Section
7.1.

Regarding stage 1, we provide a short review of LLM-
based KG construction methods in Section 5, along with
results from our implementation. For stage 2, we leverage
existing techniques and employ an out-of-the-box NLI
model for this task. A benefit of this approach is that it
gives us the opportunity to make a direct comparison
between the performance of the raw NLI model and the
model supplemented with our KG approach. In essence,
our method is a pre-processing step, the output of which
can be fed into any hallucination detection method; we
choose NLI models as they are computationally cheap
compared to LLM-based models, yet still achieve state-of-
the-art results. By feeding each triple into an NLI model,
along with the grounding context, we obtain a probability
of containing a hallucination for each triple. Finally, we
classify the example as inconsistent if at least one triple
produces a probability greater than 0.5.

Similar approaches to ours have been proposed in re-
cent literature. SummaC [14] also uses NLI-based models
to detect inconsistencies in LLM-generated summaries.
However, it distinguishes itself by segmenting both the
context and the summary into their respective sentences,
and then by passing each context-summary pair into the
NLI model. This approach presents challenges in main-

Benchmark No. of Examples Label Ratio Avg Output len. Avg Context len.
SummEval 1,600 33.2% 63 359

QAGS-C 235 48.1% 49 383

QAGS-X 239 48.5% 18 318

Table 1
Statistics relating to the evaluation benchmarks used. The label ratio is the ratio of factually consistent examples to inconsistent
examples. The average output and context length are the average number of words in each.

taining entity references across sentences; for instance,
"John Doe" may only be referred to as "he" in another
sentence. Similarly, FactScore [19] faces the same limita-
tion. Our method circumvents this issue by organising
entity relationships with a KG.

While FactGraph [21] also makes use of graph structures
in their consistency evaluation process, the method dif-
fers from GraphEval in a few major respects. Firstly,
their approach can only be applied to the summarisation
problem; whereas GraphEval can easily be applied to
various domains such as Summarisation, Question An-
swering, Common Sense Reasoning and many others.
Secondly, FactGraph does not employ LLMs anywhere in
their framework, missing out on recent advances in the
field. Finally, their approach aims to decompose both the
LLM output and the provided context into the underlying
core semantic concepts and relations, before comparing
each of the graph structures. GraphEval, on the other
hand, only represents the LLM output as a KG and aims
to preserve as much of the information contained in the
raw text as possible.

To summarise the advantages of GraphEval over previous
methods:

• We present a systematic way of checking all
pieces of information contained in the LLM out-
put.

• Our method only requires one call to an LLM, in
the KG construction phase, and does not require
the (usually) large context documents to be input,
as in all previous LLM-based metrics. This makes
GraphEval less computationally expensive than
other LLM-based methods.

• Our method returns the specific triples that are
not grounded in the context, providing explain-
ability for the decision and identifying which sec-
tion of the output should not be trusted. We lever-
age this feature for hallucination correction and
propose a new method called GraphCorrect, de-
scribed in Section 6.

5. Construction of KGs using LLMs
Constructing KGs from unstructured textual data in-
volves identifying the set of entities within the text and
the relationships between them, resulting in a structured
representation of the information contained within the
text. The process can be divided into three main stages:

1. Entity detection - the process of identifying and
extracting entities from text.

2. Coreference resolution - the process of finding
of all expressions (also called mentions) in the text
that refer to the same entity.

3. Relation extraction - the process of identifying
semantic relationships between entities.

Previously, researchers addressed each stage individually,
but with the increasing power of LLMs, there’s been a
shift towards end-to-end systems. Kumar et al. [22] sug-
gest employing two LLM components: one for named
entity recognition and another one for both relation clas-
sification and direction. Similarly, Grapher [23] utilizes a
pre-trained LLM for entity extraction and relation predic-
tion. However, these methods require users to provide
possible relations. More recent methods like PiVE [24]
and AutoKG [25] use LLM prompting strategies for KG
construction without additional user input.

The aforementioned methods do not make use of some of
the emergent abilities of LLMs, such as in-context learn-
ing and the chain-of thought prompting strategy. We
decide to leverage these emergent abilities, and take a
simple prompt engineering approach to our KG construc-
tion step. The techniques used can be summarised as the
following:

• Chain-of-thought (CoT) prompting strategy. Pro-
viding intermediate reasoning steps in the prompt
to enable LLMs to solve more complex tasks.

• In-context learning. A method of prompt engi-
neering where one provides several task demon-
strations within the prompt, circumventing the
need for fine-tuning.

The final prompt used in our experiments can be found
in the Appendix. We highlight to the reader that our KG
construction method is not the main contribution of our

work, which is rather the application of KG construction
to the hallucination detection problem. The major benefit
of our KG construction approach is its ease of implemen-
tation with any LLM. Furthermore, it is less computation-
ally intensive than methods like PiVE, which performs
multiple iterations of improvements to the generated KG.
Of course, users may conduct the KG construction stage
of GraphEval using their method of choice; the exper-
iments in this paper exhibit the capability of a simple
prompting strategy.

6. GraphCorrect: Correction of
hallucinations with GraphEval

While the primary focus of this work lies in hallucination
detection, GraphEval’s breakdown of LLM outputs into
triples easily allows for its extension to correct hallucina-
tions within the given context. To achieve this, we first
identify all triples within the KG that are likely to con-
tain hallucinations (i.e. those with a probability greater
than 0.5, if any). We then employ the following two-step
procedure on each identified triple:

Step 1 - Input the given triple along with the
context into an LLM to correct for the potential
hallucinations within the triple. This results in a
newly generated corrected triple.
Step 2 - Input the identified triple, its corrected
counterpart and the initial LLM output. Selec-
tively replace the information from the original
(hallucination-containing) triple with the infor-
mation from the new triple in the initial LLM
output.

We name this LLM hallucination correction method as
GraphCorrect. The final prompts used in our experiments
for both step 1 and step 2 can be found in the Appendix B
and C respectively. This systematic approach to halluci-
nation correction offers several benefits. First, it tackles
each identified hallucination separately, increasing the
chances of all perceived hallucinations being corrected.
Furthermore, it offers the advantage of exclusively alter-
ing the segments of the original text that are suspected
to contain a hallucination, leaving other elements un-
touched and ensuring overall high similarity with the
original text. Finally, breaking down the entire process
into intermediate steps ensures that the original context
and the initial LLM output never undergo simultaneous
processing within an LLM. This guarantees safeguards
against both the addition of extra information and the
loss of information in the LLM output.

7. Experiments

7.1. Benchmarks
We conducted two sets of experiments: one focusing on
hallucination detection to highlight GraphEval’s perfor-
mance and another on hallucination correction to show-
case the advantages of GraphCorrect. For both scenarios,
we utilized the SummEval [26], QAGS-C and QAGS-X
[27] benchmarks - currently the most prevalent bench-
marks in relevant academic literature. All three are con-
cerned with detecting hallucinations in LLM-generated
summaries and are human-annotated for factual con-
sistency with respect to the grounding context. Table
1 contains some statistics pertaining to each of these
datasets.

SummEval The SummEval dataset consists of human
evaluations on 16 summarization model outputs from
100 articles from the CNN/DailyMail dataset [28]. Each
summary is labelled on a Likert scale from 1-5 on 4 cat-
egories: consistency, coherence, fluency and relevance.
We follow the TRUE benchmark [13] in taking the con-
sistency scores and mapping a score of 5 to being fully
consistent, and anything lower to being inconsistent.

QAGS The QAGS-C and QAGS-X datasets are built
from the CNN/DailyMail and the XSum [29] datasets,
respectively. The human annotators examined the sum-
maries one sentence at a time, and determined the factual
consistency of each sentence comparing it to the original
article. Three annotators assessed each sentence and the
majority decision was recorded. Again, we follow the
TRUE benchmark in considering a summary to be factu-
ally consistent if and only if all sentences are considered
consistent.

7.2. NLI models in GraphEval
As mentioned in Section 4, we employ NLI models to
perform the second stage of GraphEval - checking the
consistency of each individual triple with respect to the
context. We conduct experiments using the three most
popular NLI-based hallucination detection models avail-
able on HuggingFace 1.

HHEM Based on the DeBERTaV3 model [30] and ini-
tially trained on NLI data, the hallucination evaluation
model created by Vectara 2 is further fine-tuned on
datasets annotated for consistency. The datasets used

1https://huggingface.co
2https://huggingface.co/vectara/hallucination_evaluation_model

https://huggingface.co
https://huggingface.co/vectara/hallucination_evaluation_model

for fine tuning were: FEVER [31], Vitamin C [32] and
PAWS [33]. This model is considerably smaller than the
following two models, requiring only 738 MB of memory,
and thus has a significantly shorter run-time.

TRUE The TRUE model is based on a T5-XXL model
[34] and is trained similarly to the model described in
the TRUE paper [13]. Instead of the ANLI dataset used
in that paper, this model is trained on the same datasets
as HHEM, plus the following: SNLI [35], MNLI [36] and
Scitail [37]. This model requires 45.5 GB of memory.

TrueTeacher Gekhman et al. [15] leverage the ability
of LLMs to evaluate hallucinations by generating syn-
thetic data through annotating model-generated sum-
maries. They then use this synthetic data to further
fine-tune the model from [13], leading to state-of-the-
art performance on the TRUE benchmark. This model is
the same size as the TRUE model.

7.3. Experimental settings
In all experiments conducted in this study necessitating
the utilization of an LLM, we use Claude 2 3, an LLM
from Anthropic, through the Amazon Bedrock API 4. We
use the default settings for the LLM: temperature = 1,
top_p = 1, top_k = 250. We also refer the reader to the
Appendix for the prompts used in this work.

7.4. Results
7.4.1. Hallucination detection with GraphEval

We present our results of hallucination detection for the
three NLI models, and their GraphEval counterparts, in
Table 2. We report the balanced accuracy as our evalu-
ation metric, which corrects for the class imbalance in
the SummEval benchmark. In the case of using the NLI
model directly, we classify the example as containing a
hallucination if the NLI model returns a probability of
more than 0.5. When combining the NLI model with
GraphEval, we classify the example as containing a hallu-
cination if at least one triple fed to the NLI model returns
a probability of more than 0.5. We see that adding the
GraphEval pre-processing step to each of the NLI mod-
els almost always improves the balanced accuracy score,
sometimes by a considerable amount, such as the results
for the SummEval and QAGS-C benchmarks in Table
2. On average (weighting by the number of samples in
each dataset), adding the GraphEval pre-processing step
improves the balanced accuracy by 6.2 (SE=1.3).

3https://www.anthropic.com/news/claude-2
4https://aws.amazon.com/bedrock/claude/

SummEval QAGS-C QAGS-X
HHEM 66.0 63.5 75.5

HHEM + GraphEval 71.5 72.2 75.2

TRUE 61.3 61.8 72.6

TRUE + GraphEval 72.4 71.7 73.9

TrueTeacher 74.9 75.6 79.0

TrueTeacher + GraphEval 79.2 78.1 79.6

Table 2
Balanced accuracy scores for hallucination detection of NLI
models (HHEM, TRUE, TrueTeacher) and their GraphEval
counterparts on the SummEval, QAGS-C and QAGS-X bench-
marks.

We hypothesise that the negligible difference between
the base NLI model and the model supplemented with
GraphEval for the QAGS-X dataset is due to the average
length of the generated text (only 18 words, compared
with 49 and 63 for QAGS-C and SummEval respectively,
see 1). This highlights an important aspect of where the
most value can be found in our method. When the LLM
output is very short, there are less likely to be multiple
facts that need to be checked for consistency (which
can easily be done without the use of a KG) and the
intricacies of the short sentence might even be lost in
the KG construction phase. On the other hand, when the
LLM output is very long, current methods struggle to
test each individual fact against the context, and this is
when GraphEval thrives.

It should be noted that even when the results for GraphE-
val are comparable to the baseline methods, the benefit
of using GraphEval is the identification of the specific
triple(s) that are inconsistent with the provided context.

7.4.2. Hallucination correction with GraphCorrect

Identifying the particular triple(s) likely to harbor a hallu-
cination enables straightforward correction using Graph-
Correct, as described in Section 6. For each of the evalu-
ation frameworks proposed here (HHEM + GraphEval,
TRUE + GraphEval, and TrueTeacher + GrapEval), we
compared GraphCorrect to a basic prompting strategy
for hallucination correction, serving as a baseline. The
prompt used in this baseline approach, referred to as the
Direct Prompt henceforth, is provided in Appendix D.

For each framework, we initially identify hallucinations,
correct only the LLM outputs suspected of containing hal-
lucinations using either GraphCorrect or Direct Prompt,
and then reapply the evaluation framework to detect hal-
lucinations in the corrected LLM outputs. Note that this
procedure only allows us to measure what we presume to
be corrected hallucinations, given the potential for errors
in the evaluation frameworks utilized here. We report the

https://www.anthropic.com/news/claude-2
https://aws.amazon.com/bedrock/claude/

Detection Dataset
ROUGE-1 ROUGE-2 ROUGE-L

Direct Prompt GraphCorrect Direct Prompt GraphCorrect Direct Prompt GraphCorrect

HHEM + GraphEval

SummEval 0.827 0.915 0.772 0.879 0.796 0.910
QAGS-C 0.800 0.893 0.735 0.841 0.769 0.885
QAGS-X 0.649 0.821 0.495 0.734 0.606 0.815

TRUE + GraphEval

SummEval 0.781 0.880 0.707 0.833 0.746 0.871
QAGS-C 0.840 0.894 0.780 0.848 0.808 0.886
QAGS-X 0.651 0.805 0.505 0.706 0.613 0.795

TrueTeacher + GraphEval

SummEval 0.781 0.884 0.703 0.839 0.737 0.876
QAGS-C 0.809 0.889 0.743 0.837 0.781 0.881
QAGS-X 0.643 0.797 0.486 0.694 0.598 0.784

Table 3
Average ROUGE-1, ROUGE-2 and ROUGE-L scores measuring similarity between original and corrected summaries using
Direct Prompt and GraphCorrect across different datasets and hallucination detection frameworks.

percentage of believed corrected hallucinations in Table
4. A score of 0% suggests no corrected hallucinations
according to the given framework, while a score of 100%
indicates correction of all hallucinations as per the given
framework. GraphCorrect outperforms the prompting
strategy proposed here by significantly correcting for
more hallucinations on all tasks apart from two related
to the QAGS-X dataset. As on the hallucination detection
task, we hypothesise these results are correlated with the
average length of the text, with GraphCorrect bringing
most value in longer texts with a more complex structure
to unravel and correct.

Additionally, as previously stated, GraphCorrect offers
the advantage of only modifying the segments of text
in the LLM outputs susceptible to hallucinations, while
leaving other sections unaltered, thereby maintaining
high overall similarity with the original text. This charac-
teristic is illustrated in Table 3 by assessing the ROUGE-1,
ROUGE-2, and ROUGE-L metrics between the original

Detection & Evaluation Dataset
Method for Correction

Direct Prompt GraphCorrect

HHEM + GraphEval

SummEval 48.6 55.1
QAGS-C 38.5 58.7
QAGS-X 63.2 69.5

TRUE + GraphEval

SummEval 49.6 59.5
QAGS-C 42.7 53.7
QAGS-X 70.8 66.7

TrueTeacher + GraphEval

SummEval 53.1 59.8
QAGS-C 47.1 59.6
QAGS-X 71.1 69.3

Table 4
Percentage of believed corrected hallucinations using a di-
rect prompting strategy and GraphCorrect on the SummEval,
QAGS-C and QAGS-X benchmarks. The hallucinations were
first detected by HHEM + GraphEval, TRUE + GraphEval and
TrueTeacher + GraphEval respectively, and then corrections
were evaluated by the same metric.

summaries and the corrected versions for both GraphCor-
rect and Direct Prompt across all experimental scenarios
examined in this study. GraphCorrect systematically gen-
erates texts that are closer in similarity to the original
LLM outputs compared to its counterpart.

8. Discussion
Our work focuses on detection of hallucinations in closed-
domain tasks, where we are interested only in consis-
tency with respect to the provided context. The GraphE-
val framework could be extended to open-domain halluci-
nation detection by employing agents, as in AutoKG [25],
to first retrieve relevant external sources as the grounding
information to check against.

We expect that in the near future, more research will be
conducted on the construction of KGs from unstructured
text, which will provide improvements to the first stage of
our procedure and ultimately the evaluation performance.
Even as LLMs alone become more powerful, this will
continue to contribute to improvements in GraphEval’s
performance.

We observe that, in the knowledge graph construction
phase of our procedure, it is possible that some informa-
tion loss may occur. However, as shown by the results
in Section 7.4, our method rarely leads to a reduction in
balanced accuracy. Furthermore, when it is comparable
to the baseline methods, we have the added explainability
of identifying the specific triples where the hallucination
has occurred.

We believe our hallucination correction framework
(GraphCorrect) shows promise and an interesting av-
enue for future work. However, the effectiveness of the
approach described in this work should be assessed man-
ually, rather than relying on the convoluted use of hallu-
cination evaluation frameworks (which only yield mea-

surements of believed corrected hallucinations).

9. Conclusion
We introduce GraphEval, a simple and effective pre-
processing step for improving the explainability and per-
formance of LLM hallucination detection metrics. Our
method leverages LLM’s ability to extract information
from unstructured text and construct knowledge graphs,
whose triples can be fed into out-of-the-box hallucination
detection methods.

We demonstrate that GraphEval in conjunction with
state-of-the-art NLI models leads to an average improve-
ment in balanced accuracy of 6.2 (SE=1.3) on three popu-
lar hallucination benchmarks. Furthermore, our method
indicates which triples, in the KG representation of the
LLM output, are inconsistent. To the best of our knowl-
edge, this is the first application of KGs to an LLM-based
hallucination evaluation framework and we believe the
success of GraphEval will only grow as KG construction
methods also improve.

Finally, we examined the issue of hallucination correction
and showed that GraphCorrect can effectively address the
majority of hallucinations found in LLM outputs while
maintaining extremely high similarity with the original
texts.

References
[1] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii,

Y. J. Bang, A. Madotto, P. Fung, Survey of hal-
lucination in natural language generation, ACM
Comput. Surv. 55 (2023). URL: https://doi.org/10.
1145/3571730. doi:10.1145/3571730.

[2] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu, Bleu:
a method for automatic evaluation of machine
translation, in: P. Isabelle, E. Charniak, D. Lin
(Eds.), Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, As-
sociation for Computational Linguistics, Philadel-
phia, Pennsylvania, USA, 2002, pp. 311–318. URL:
https://aclanthology.org/P02-1040. doi:10.3115/
1073083.1073135.

[3] C.-Y. Lin, ROUGE: A package for automatic eval-
uation of summaries, in: Text Summarization
Branches Out, Association for Computational Lin-
guistics, Barcelona, Spain, 2004, pp. 74–81. URL:
https://aclanthology.org/W04-1013.

[4] Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, C. Zhu,
G-eval: NLG evaluation using gpt-4 with bet-
ter human alignment, in: H. Bouamor, J. Pino,
K. Bali (Eds.), Proceedings of the 2023 Conference

on Empirical Methods in Natural Language Pro-
cessing, Association for Computational Linguis-
tics, Singapore, 2023, pp. 2511–2522. URL: https:
//aclanthology.org/2023.emnlp-main.153. doi:10.
18653/v1/2023.emnlp-main.153.

[5] P. Lewis, E. Perez, A. Piktus, F. Petroni,
V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, et al., Retrieval-augmented
generation for knowledge-intensive nlp tasks,
Advances in Neural Information Processing
Systems 33 (2020) 9459–9474.

[6] L. Luo, Y.-F. Li, G. Haffari, S. Pan, Reasoning on
graphs: Faithful and interpretable large language
model reasoning, arXiv preprint arXiv:2310.01061
(2023).

[7] L. Yang, H. Chen, Z. Li, X. Ding, X. Wu, Give us
the facts: Enhancing large language models with
knowledge graphs for fact-aware language model-
ing, IEEE Transactions on Knowledge and Data
Engineering (2024).

[8] G. Agrawal, T. Kumarage, Z. Alghamdi, H. Liu, Can
knowledge graphs reduce hallucinations in llms? :
A survey, 2024. arXiv:2311.07914.

[9] J. Maynez, S. Narayan, B. Bohnet, R. McDonald,
On faithfulness and factuality in abstractive sum-
marization, in: D. Jurafsky, J. Chai, N. Schluter,
J. Tetreault (Eds.), Proceedings of the 58th An-
nual Meeting of the Association for Computa-
tional Linguistics, Association for Computational
Linguistics, Online, 2020, pp. 1906–1919. URL:
https://aclanthology.org/2020.acl-main.173. doi:10.
18653/v1/2020.acl-main.173.

[10] O. Honovich, L. Choshen, R. Aharoni, E. Nee-
man, I. Szpektor, O. Abend, 𝑞2: Evaluating
factual consistency in knowledge-grounded dia-
logues via question generation and question an-
swering, in: M.-F. Moens, X. Huang, L. Spe-
cia, S. W.-t. Yih (Eds.), Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing, Association for Computa-
tional Linguistics, Online and Punta Cana, Do-
minican Republic, 2021, pp. 7856–7870. URL: https:
//aclanthology.org/2021.emnlp-main.619. doi:10.
18653/v1/2021.emnlp-main.619.

[11] T. Zhang*, V. Kishore*, F. Wu*, K. Q. Weinberger,
Y. Artzi, Bertscore: Evaluating text generation with
bert, in: International Conference on Learning
Representations, 2020. URL: https://openreview.net/
forum?id=SkeHuCVFDr.

[12] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT:
Pre-training of deep bidirectional transformers for
language understanding, in: J. Burstein, C. Do-
ran, T. Solorio (Eds.), Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human

https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
http://dx.doi.org/10.1145/3571730
https://aclanthology.org/P02-1040
http://dx.doi.org/10.3115/1073083.1073135
http://dx.doi.org/10.3115/1073083.1073135
https://aclanthology.org/W04-1013
https://aclanthology.org/2023.emnlp-main.153
https://aclanthology.org/2023.emnlp-main.153
http://dx.doi.org/10.18653/v1/2023.emnlp-main.153
http://dx.doi.org/10.18653/v1/2023.emnlp-main.153
http://arxiv.org/abs/2311.07914
https://aclanthology.org/2020.acl-main.173
http://dx.doi.org/10.18653/v1/2020.acl-main.173
http://dx.doi.org/10.18653/v1/2020.acl-main.173
https://aclanthology.org/2021.emnlp-main.619
https://aclanthology.org/2021.emnlp-main.619
http://dx.doi.org/10.18653/v1/2021.emnlp-main.619
http://dx.doi.org/10.18653/v1/2021.emnlp-main.619
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

Language Technologies, Volume 1 (Long and Short
Papers), Association for Computational Linguistics,
Minneapolis, Minnesota, 2019, pp. 4171–4186. URL:
https://aclanthology.org/N19-1423. doi:10.18653/
v1/N19-1423.

[13] O. Honovich, R. Aharoni, J. Herzig, H. Taitelbaum,
D. Kukliansy, V. Cohen, T. Scialom, I. Szpektor,
A. Hassidim, Y. Matias, TRUE: Re-evaluating
factual consistency evaluation, in: S. Feng,
H. Wan, C. Yuan, H. Yu (Eds.), Proceedings of
the Second DialDoc Workshop on Document-
grounded Dialogue and Conversational Question
Answering, Association for Computational Lin-
guistics, Dublin, Ireland, 2022, pp. 161–175. URL:
https://aclanthology.org/2022.dialdoc-1.19. doi:10.
18653/v1/2022.dialdoc-1.19.

[14] P. Laban, T. Schnabel, P. N. Bennett, M. A. Hearst,
SummaC: Re-visiting NLI-based models for incon-
sistency detection in summarization, Transactions
of the Association for Computational Linguistics
10 (2022) 163–177. URL: https://aclanthology.org/
2022.tacl-1.10. doi:10.1162/tacl_a_00453.

[15] Z. Gekhman, J. Herzig, R. Aharoni, C. Elkind,
I. Szpektor, Trueteacher: Learning factual consis-
tency evaluation with large language models, 2023.
arXiv:2305.11171.

[16] P. Manakul, A. Liusie, M. J. Gales, Selfcheckgpt:
Zero-resource black-box hallucination detection for
generative large language models, arXiv preprint
arXiv:2303.08896 (2023).

[17] N. Mündler, J. He, S. Jenko, M. Vechev, Self-
contradictory hallucinations of large language mod-
els: Evaluation, detection and mitigation, in: The
Twelfth International Conference on Learning Rep-
resentations, 2024. URL: https://openreview.net/
forum?id=EmQSOi1X2f.

[18] J. Fu, S.-K. Ng, Z. Jiang, P. Liu, Gptscore: Evaluate
as you desire, 2023. arXiv:2302.04166.

[19] S. Min, K. Krishna, X. Lyu, M. Lewis, W.-t. Yih,
P. W. Koh, M. Iyyer, L. Zettlemoyer, H. Hajishirzi,
Factscore: Fine-grained atomic evaluation of fac-
tual precision in long form text generation, arXiv
preprint arXiv:2305.14251 (2023).

[20] J. Wei, C. Yang, X. Song, Y. Lu, N. Hu, D. Tran,
D. Peng, R. Liu, D. Huang, C. Du, et al., Long-form
factuality in large language models, arXiv preprint
arXiv:2403.18802 (2024).

[21] L. F. R. Ribeiro, M. Liu, I. Gurevych, M. Dreyer,
M. Bansal, Factgraph: Evaluating factuality in sum-
marization with semantic graph representations,
2022. arXiv:2204.06508.

[22] A. Kumar, A. Pandey, R. Gadia, M. Mishra, Build-
ing knowledge graph using pre-trained language
model for learning entity-aware relationships, in:
2020 IEEE International Conference on Computing,

Power and Communication Technologies (GUCON),
2020, pp. 310–315. doi:10.1109/GUCON48875.
2020.9231227.

[23] I. Melnyk, P. Dognin, P. Das, Grapher: Multi-stage
knowledge graph construction using pretrained lan-
guage models, in: NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Appli-
cations, 2021. URL: https://openreview.net/forum?
id=N2CFXG8-pRd.

[24] J. Han, N. Collier, W. Buntine, E. Shareghi, Pive:
Prompting with iterative verification improving
graph-based generative capability of llms, arXiv
preprint arXiv:2305.12392 (2023).

[25] Y. Zhu, X. Wang, J. Chen, S. Qiao, Y. Ou, Y. Yao,
S. Deng, H. Chen, N. Zhang, Llms for knowledge
graph construction and reasoning: Recent capa-
bilities and future opportunities, arXiv preprint
arXiv:2305.13168 (2023).

[26] A. R. Fabbri, W. Kryscinski, B. McCann, R. Socher,
D. R. Radev, Summeval: Re-evaluating sum-
marization evaluation, Transactions of the
Association for Computational Linguistics 9
(2020) 391–409. URL: https://api.semanticscholar.
org/CorpusID:220768873.

[27] A. Wang, K. Cho, M. Lewis, Asking and an-
swering questions to evaluate the factual consis-
tency of summaries, in: D. Jurafsky, J. Chai,
N. Schluter, J. Tetreault (Eds.), Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics, Association for Computa-
tional Linguistics, Online, 2020, pp. 5008–5020. URL:
https://aclanthology.org/2020.acl-main.450. doi:10.
18653/v1/2020.acl-main.450.

[28] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espe-
holt, W. Kay, M. Suleyman, P. Blunsom, Teaching
machines to read and comprehend, Advances in
neural information processing systems 28 (2015).

[29] S. Narayan, S. B. Cohen, M. Lapata, Don’t give
me the details, just the summary! topic-aware
convolutional neural networks for extreme sum-
marization, in: E. Riloff, D. Chiang, J. Hocken-
maier, J. Tsujii (Eds.), Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, Association for Computational Linguis-
tics, Brussels, Belgium, 2018, pp. 1797–1807. URL:
https://aclanthology.org/D18-1206. doi:10.18653/
v1/D18-1206.

[30] P. He, X. Liu, J. Gao, W. Chen, Deberta: Decoding-
enhanced bert with disentangled attention, in: In-
ternational Conference on Learning Representa-
tions, 2021. URL: https://openreview.net/forum?id=
XPZIaotutsD.

[31] J. Thorne, A. Vlachos, O. Cocarascu,
C. Christodoulopoulos, A. Mittal, The FEVER2.0
shared task, in: Proceedings of the Second

https://aclanthology.org/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.dialdoc-1.19
http://dx.doi.org/10.18653/v1/2022.dialdoc-1.19
http://dx.doi.org/10.18653/v1/2022.dialdoc-1.19
https://aclanthology.org/2022.tacl-1.10
https://aclanthology.org/2022.tacl-1.10
http://dx.doi.org/10.1162/tacl_a_00453
http://arxiv.org/abs/2305.11171
https://openreview.net/forum?id=EmQSOi1X2f
https://openreview.net/forum?id=EmQSOi1X2f
http://arxiv.org/abs/2302.04166
http://arxiv.org/abs/2204.06508
http://dx.doi.org/10.1109/GUCON48875.2020.9231227
http://dx.doi.org/10.1109/GUCON48875.2020.9231227
https://openreview.net/forum?id=N2CFXG8-pRd
https://openreview.net/forum?id=N2CFXG8-pRd
https://api.semanticscholar.org/CorpusID:220768873
https://api.semanticscholar.org/CorpusID:220768873
https://aclanthology.org/2020.acl-main.450
http://dx.doi.org/10.18653/v1/2020.acl-main.450
http://dx.doi.org/10.18653/v1/2020.acl-main.450
https://aclanthology.org/D18-1206
http://dx.doi.org/10.18653/v1/D18-1206
http://dx.doi.org/10.18653/v1/D18-1206
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD

Workshop on Fact Extraction and VERification
(FEVER), 2018.

[32] T. Schuster, A. Fisch, R. Barzilay, Get your vita-
min C! robust fact verification with contrastive
evidence, in: Proceedings of the 2021 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Association for Compu-
tational Linguistics, Online, 2021, pp. 624–643.
URL: https://aclanthology.org/2021.naacl-main.52.
doi:10.18653/v1/2021.naacl-main.52.

[33] Y. Zhang, J. Baldridge, L. He, PAWS: Paraphrase
Adversaries from Word Scrambling, in: Proc. of
NAACL, 2019.

[34] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, P. J. Liu, Exploring the
limits of transfer learning with a unified text-to-
text transformer, Journal of Machine Learning Re-
search 21 (2020) 1–67. URL: http://jmlr.org/papers/
v21/20-074.html.

[35] S. R. Bowman, G. Angeli, C. Potts, C. D. Manning,
A large annotated corpus for learning natural lan-
guage inference, in: L. Màrquez, C. Callison-Burch,
J. Su (Eds.), Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Pro-
cessing, Association for Computational Linguistics,
Lisbon, Portugal, 2015, pp. 632–642. URL: https:
//aclanthology.org/D15-1075. doi:10.18653/v1/
D15-1075.

[36] A. Williams, N. Nangia, S. Bowman, A broad-
coverage challenge corpus for sentence understand-
ing through inference, in: M. Walker, H. Ji, A. Stent
(Eds.), Proceedings of the 2018 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), Association for
Computational Linguistics, New Orleans, Louisiana,
2018, pp. 1112–1122. URL: https://aclanthology.org/
N18-1101. doi:10.18653/v1/N18-1101.

[37] T. Khot, A. Sabharwal, P. Clark, SciTail: A textual
entailment dataset from science question answer-
ing, in: AAAI, 2018.

A. KG Construction Prompt
(" system " ,

" " "
You a r e an e x p e r t a t e x t r a c t i n g

i n f o r m a t i o n i n
s t r u c t u r e d f o r m a t s t o b u i l d a

knowledge graph .
S t e p 1 − E n t i t y d e t e c t i o n : I d e n t i f y

a l l e n t i t i e s i n the raw t e x t .
Make s u r e not t o miss any out .
E n t i t i e s shou ld be b a s i c and

s imple , they a r e ak in t o
Wik iped ia nodes .

S t e p 2 − C o r e f e r e n c e r e s o l u t i o n : F ind
a l l e x p r e s s i o n s i n the t e x t t h a t
r e f e r t o the same e n t i t y . Make

s u r e e n t i t i e s a r e not d u p l i c a t e d .
In p a r t i c u l a r do not i n c l u d e

e n t i t i e s t h a t a r e more s p e c i f i c
v e r s i o n s themse lves , e . g . " a
d e t a i l e d view o f j u p i t e r ’ s
a tmosphere " and " j u p i t e r ’ s
a tmosphere " , on ly i n c l u d e the
most s p e c i f i c v e r s i o n o f the
e n t i t y .

S t e p 3 − R e l a t i o n e x t r a c t i o n :
I d e n t i f y s e m a n t i c r e l a t i o n s h i p s
between the e n t i t i e s you have
i d e n t i f i e d .

Format : Return the knowledge graph as
a l i s t o f t r i p l e s , i . e . [" e n t i t y
1 " , " r e l a t i o n 1 −2 " , " e n t i t y 2 "] ,
i n Python code .

" " " ,
) ,
(" human " ,

" Use the g iven format t o e x t r a c t
i n f o r m a t i o n from the
f o l l o w i n g i n p u t : < input > {
i n p u t } < / input > . Sk ip the
preamble and o u t p u t the
r e s u l t as a l i s t w i t h i n <
python > </ python > t a g s . " ,

) ,
(" human " ,

" " " I m p o r t a n t T ips :
1 . Make s u r e a l l i n f o r m a t i o n

i s i n c l u d e d i n the
knowledge graph .

2 . Each t r i p l e must on ly
c o n t a i n t h r e e s t r i n g s !
None o f the s t r i n g s
shou ld be empty .

3 . Do not s p l i t up r e l a t e d
i n f o r m a t i o n i n t o s e p a r a t e

t r i p l e s b e c a u s e t h i s
c o u l d change the meaning .

4 . Make s u r e a l l b r a c k e t s and
q u o t a t i o n marks a r e

matched .
5 . B e f o r e add ing a t r i p l e t o

the knowledge graph ,
check the c o n c a t e n a t e d
t r i p l e makes s e n s e as a
s e n t e n c e . I f not , d i s c a r d

i t .
" " " ,

) ,
(" human " ,

" " " Here a r e some example i n p u t

https://aclanthology.org/2021.naacl-main.52
http://dx.doi.org/10.18653/v1/2021.naacl-main.52
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D15-1075
https://aclanthology.org/D15-1075
http://dx.doi.org/10.18653/v1/D15-1075
http://dx.doi.org/10.18653/v1/D15-1075
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101
http://dx.doi.org/10.18653/v1/N18-1101

and o u t p u t p a i r s .

Example 1 .
I n p u t :
" The Walt Disney Company ,

commonly known as Disney , i s
an American m u l t i n a t i o n a l
mass media and e n t e r t a i n m e n t
co ng l ome ra t e t h a t i s
h e a d q u a r t e r e d a t the Walt
Disney S t u d i o s complex i n
Burbank , C a l i f o r n i a . "

Output :
<python >
[[" The Walt Disney Company " , "

h e a d q u a r t e r e d a t " , " Walt
Disney S t u d i o s complex i n
Burbank , C a l i f o r n i a "] ,

[" The Walt Disney Company " , "
commonly known as " , " Disney
"] ,

[" The Walt Disney Company " , "
i n s t a n c e o f " , " American
m u l t i n a t i o n a l mass media and
e n t e r t a i n m e n t co ng lo mer a t e "]]

</ python >

Example 2 .
I n p u t :
" Amanda J a c k s o n was born i n

S p r i n g f i e l d , Ohio , USA on
June 1 , 1 9 8 5 . She was a
b a s k e t b a l l p l a y e r f o r the U . S
. women ’ s team . "

Output :
<python >
[[" Amanda J a c k s o n " , " born i n " , "

S p r i n g f i e l d , Ohio , USA "] ,
[" Amanda J a c k s o n " , " born on " , "

June 1 , 1 9 8 5 "] ,
[" Amanda J a c k s o n " , " o c c u p a t i o n " ,

" b a s k e t b a l l p l a y e r "] ,
[" Amanda J a c k s o n " , " p l a y e d f o r " ,

"U . S . women ’ s b a s k e t b a l l team
"]] </ python >

Example 3 .
I n p u t :
" Music e x e c u t i v e D ar iu s Van Arman

was born i n P e n n s y l v a n i a . He
a t t e n d e d Gonzaga C o l l e g e

High Sc hoo l and i s a human
be ing . "

Output :
<python >
[[" D ar iu s Van Arman " , "

o c c u p a t i o n " , " Music e x e c u t i v e
"] ,

[" D ar i u s Van Arman " , " born i n " , "
P e n n s y l v a n i a "] ,

[" D ar i u s Van Arman " , " a t t e n d e d " ,
" Gonzaga C o l l e g e High S cho o l
"] , [" Da r i u s Van Arman " , "
i n s t a n c e o f " , " human be ing "]]

</ python >

Example 4 .
I n p u t : " I t a l y had 3 . 6 x t i m e s more

c a s e s o f c o r o n a v i r u s than
China . "

Output :
<python >
[[" I t a l y " , " had 3 . 6 x t i m e s more

c a s e s o f c o r o n a v i r u s than " , "
China "]]

</ python >
" " " ,
) ,

B. Hallucination correction (step 1)
" " "
You a r e an e x p e r t a t e x t r a c t i n g

i n f o r m a t i o n i n s t r u c t u r e d f o r m a t s
from t e x t .

The f o l l o w i n g t r i p l e c o n t a i n s
f a c t u a l l y i n c o r r e c t i n f o r m a t i o n .

C o r r e c t i t based on the p r o v i d e d
c o n t e x t ,

I m p o r t a n t T ips :
1 . A t r i p l e i s d e f i n e d as ["

e n t i t y 1 " , " r e l a t i o n 1 −2" , "
e n t i t y 2 "] .

2 . A t r i p l e must on ly c o n t a i n
t h r e e s t r i n g s ! None o f the
s t r i n g s shou ld be empty .

3 . The c o n c a t e n a t e d t r i p l e must
make s e n s e as a s e n t e n c e .

4 . Only r e t u r n the c o r r e c t e d
t r i p l e , no th ing e l s e .

< t r i p l e > { t r i p l e } < / t r i p l e >
< c o n t e x t > { c o n t e x t } < / c o n t e x t >

Remember , i t i s i m p o r t a n t t h a t you
only r e t u r n the c o r r e c t e d t r i p l e .

" " "

C. Hallucination correction (step
2)
" " "
In the f o l l o w i n g c o n t e x t , r e p l a c e the

i n f o r m a t i o n o f the o l d t r i p l e
with the i n f o r m a t i o n o f the new
one .

Do not make any o t h e r m o d i f i c a t i o n t o
the c o n t e x t .

Only r e t u r n the new c o n t e x t .
< c o n t e x t > { summary } < / c o n t e x t >
< o l d _ t r i p l e > { o l d _ t r i p l e } < / o l d _ t r i p l e >
< n e w _ t r i p l e > { n e w _ t r i p l e } < / n e w _ t r i p l e >
" " "

D. Hallucination correction
without a KG
" " "
The f o l l o w i n g summary c o n t a i n s

f a c t u a l l y i n c o r r e c t i n f o r m a t i o n .
C o r r e c t i t based on the c o n t e x t , but

don ’ t change o t h e r p a r t s o f the
summary .

Only r e t u r n the c o r r e c t e d summary ,
no th ing e l s e .

<summary > { summary } < / summary>
< c o n t e x t > { c o n t e x t } < / c o n t e x t >
Remember , do minimal changes t o the

o r i g i n a l summary , don ’ t make i t
l o n g e r and keep as much o f i t a s
you can e x a c t l y the same .

" " "

	1 Introduction
	2 Problem statement
	3 Related work
	4 GraphEval: Our evaluation method
	5 Construction of KGs using LLMs
	6 GraphCorrect: Correction of hallucinations with GraphEval
	7 Experiments
	7.1 Benchmarks
	7.2 NLI models in GraphEval
	7.3 Experimental settings
	7.4 Results
	7.4.1 Hallucination detection with GraphEval
	7.4.2 Hallucination correction with GraphCorrect

	8 Discussion
	9 Conclusion
	A KG Construction Prompt
	B Hallucination correction (step 1)
	C Hallucination correction (step 2)
	D Hallucination correction without a KG

