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ABSTRACT

Annotating the functions of proteins (e.g., enzymes) is a fundamental challenge,
due to their diverse functionalities and rapidly increased number of protein se-
quences in databases. Traditional approaches have limited capability and suffer
from false positive predictions. Recent machine learning (ML) methods reach
satisfactory prediction accuracy but still fail to generalize, especially for less-
studied proteins and those with previously uncharacterized functions. To ad-
dress these pain points, we propose a novel ML algorithm, PEEP, to predict
enzyme functionality, which integrates biology priors of protein functionality to
regularize the model learning. To be specific, at the input level, PEEP fuses the
corresponding molecule into protein embeddings to gain their reaction informa-
tion; at the model level, a tailored self-attention is leveraged to capture impor-
tance residues which we found are aligned with the active site in protein pocket
structure; at the objective level, we embed functionality label hierarchy into met-
ric learning objectives by imposing larger distance margin between proteins that
have less functionality in common. PEEP is extensively validated on three public
benchmarks, achieving up to 4.6%, 3.1%, 3.7% improvements on F-1 scores com-
pared to existing methods. Moreover, it demonstrates impressive generalization to
unseen protein sequences with unseen functionalities.1

1 INTRODUCTION

Identifying the function of enzymes is a major barrier for the development of biocatalyst for indus-
trial or pharmaceutical applications. High throughput sequencing techniques have enabled millions
of sequences of uncharacterized proteins to be added to protein databases everyday (Uni, 2023).
Although UniProtKB–a central hub for the collection of functional data on proteins–has grown to
over 250M sequences, only around 570K (∼ 0.3%) sequences have been manually annotated Swiss-
Prot (Boutet et al., 2007), with computational methods that bridge the sequence-annotation gap. Un-
fortunately, the critical assessment of protein function annotation (CAFA) study found that ∼40%
of the computational annotations are incorrect (Radivojac et al., 2013). Additionally, nearly a third
of known bacterial proteins lack a characterized homolog to infer function from and their function
remains unknown (Price et al., 2018). Thus, designing novel computational tools that can accu-
rately annotate enzymatic function and generalize to novel substrates and new-to-nature reactions is
critical for the development of protein-based biotechnologies.

In past few years, significant advancements in machine learning (ML) have revolutionized various
biological research domains, such as protein structure (e.g., Jumper et al., 2021; Baek et al., 2021;
Watson et al., 2023) and stability (e.g., Diaz et al., 2023; Chen et al., 2022; Umerenkov et al., 2022),
single-cell RNA-sequencing (Weinberger et al., 2023), population genetics (Schrider & Kern, 2018),
drug discovery (Zhang et al., 2023), and many others. As for enzyme function prediction, several ML
frameworks have been recently presented that formulate the task as a classification problem (e.g.,
Ryu et al., 2019; Sanderson et al., 2023; Dalkiran et al., 2018). Here, the community has leveraged
the enzyme commission (EC) number of annotated enzymes, which is a classification ontology for
the chemical reactions catalyzed by enzymes (Webb et al., 1992), to build classical ML pipelines.

1Codes are included in the supplement.
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However, these frameworks have limited application and generalization due to the limited number
of established EC numbers in their training sets compared to the actual reaction space of enzymes
and/or the imbalance of annotated sequences between available EC numbers, respectively.

A recent study by Yu et al. (2023) proposed the CLEAN (contrastive learning-enabled enzyme an-
notation) framework: a retrieval-based framework that uses a contrastive lose for metric learning.
CLEAN uses the pairwise distance between a query sequence and each EC cluster (the average em-
bedding of all sequences with the same EC number) to retrieve the EC number(s). This approach
significantly outperformed classification deep learning frameworks, such as ProteInfer (Sanderson
et al., 2023), DeepEC (Ryu et al., 2019), and DEEPre (Li et al., 2018), on two independent test
sets. Furthermore, CLEAN’s performance was most impressive on EC numbers with less than ten
representative sequences, highlighting the effectiveness of contrastive learning compared to multi-
label classification for enzyme function prediction. However, the CLEAN framework employs the
triplet loss to distinguish proteins between enzymes at the substrate class level (4th EC number).
This design decision fails to leverage the hierarchical nature of enzyme function. Furthermore, the
framework is not designed to generalize to proteins with novel functionality or substrate scope,
which, by definition, will lack an EC number. Another crucial drawback in existing approaches
(e.g., CLEAN) is the neglect of biological priors such as knowledge about related chemical reactions
or protein properties. Directly plugging machine learning algorithms can work but is limited in
generalization (e.g., Yu et al., 2023; Sanderson et al., 2023; Ryu et al., 2019).

To address the aforementioned limitations, we proposed a metric learning framework, i.e., PEEP,
that incorporates biological priors in order to learn richer representations, shorten training time, and
improve generalization beyond established EC numbers. In detail, PEEP considers biological priors
in multiple facets: at the input level, we fuse the SMILES representation of a protein’s cognate
ligands as an alternative route for providing substrate-scope information; at the model level, we add
a transformer layer to facilitate learning functional residues associated with an enzyme function,
such as residues that participate in catalysis or ligand binding; at the objective level, we propose a
metric learning objective that captures the hierarchical nature of EC numbers to appropriately weight
dissimilarity at each EC level. Our contributions are summarized below:

• (Algorithm) We propose a novel metric learning based framework, PEEP, to identify enzyme with
desired function.

• (Algorithm) Our PEEP incorporates biology-aware designs to regularize the learning of protein
functionality: (1) integrating the cognate ligands’ embeddings as a complementary source of fea-
tures; (2) inserting an attentive module in order to capture key residues for protein functionality;
(3) introducing an EC-aware training objective to enhance the metric learning capability and cap-
ture the hierarchical characteristics of EC annotations.

• (Data-Engineering) We filter publicly available training sets by taking into account sequence sim-
ilarity (10% and 30% thresholds) in order to mitigate over-fitting to overly represented regions of
sequence space.

• (Experiments) On two public benchmarks, we empirically demonstrate that our framework sur-
passes all existing methods by clear margins and reaches state-of-the-art performance, especially
when sequence clustering is considered. Specifically, on Price and New, when controlling se-
quence similarity in the training set (30% threshold), we outperform the most competitive baseline
by 4.6% and 1.1% in terms of the F-1 score, respectively.

• (Extra Applications) Furthermore, PEEP enables a series of applications spontaneously, such as
protein-ligand binding prediction and active site prediction.

2 RELATED WORKS

Enzyme Function Prediction. The protein community has been utilizing computational tools to
infer protein functions for a long time and has developed various methods based on sequence simi-
larity (e.g., Altschul et al., 1990; Desai et al., 2011; Altschul et al., 1997), protein homology (Krogh’f
& Brown, 1994; Steinegger et al., 2019), protein structures (Zhang et al., 2017) and sequence mo-
tif (Bairoch, 1991). ML-based algorithms have been proposed as strong competitors to tackle this
challenge. Existing deep learning frameworks works mostly use the multi-label classification frame-
work, such as Proteinfer (Sanderson et al., 2023), DeepEC (Ryu et al., 2019), and DEEPre (Li et al.,
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Figure 1: The overview of our proposed PEEP framework. (Left) PEEP aims to predict the enzyme
functionality, by annotating its functionality. Enzyme functions usually are defined by the associated
chemical reactions. (Right) (a) PEEP is a metric learning based approach. (b) It learns enzyme
embeddings with respect to their EC label hierarchy. (c) A tailored attention mechanism is leveraged
to capture important residues, e.g., these ones at the active site. (d) Associated molecule knowledge
is fused into protein embeddings through a customized neural network.

2018), which suffers from imbalance training datasets often observed in biology. Recently, new
paradigms have been introduced to tackle this challenge. Xu & Wang (2022) redefines the protein
function prediction problem as a machine translation problem that aims at translating the descrip-
tion of a function to the amino acid sequence with the goal of identifying novel gene ontologies
(GO terms), and has been extended (Xu et al., 2023) to a multilingual translation framework that
can enable diverse applications including protein function prediction. Additionally, Yu et al. (2023)
proposes a metric learning framework to maximize the distance of protein embeddings between dif-
ferent functions, and minimize those between the same functions, achieving state-of-the-art (SoTA)
performance. However, they only adopt a simple triplet loss to contrast the samples without consid-
ering the hierarchical nature of EC numbers and do not incorporate any biological priors to improve
generalization functions lacking an established EC number.

Protein Representation Learning. Prior research endeavors have sought to learn the representa-
tion of proteins by exploiting diverse protein modalities. Early sequence-based methods define rules
to extract physiochemical or statistical features from protein sequences (e.g., Klein et al., 1985;
1986; Feng & Zhang, 2000; Wang et al., 2017). Later on, machine learning methods that utilize
word2vec, doc2vec (e.g., Asgari & Mofrad, 2015; Kimothi et al., 2016; Ng, 2017) or recurrent neu-
ral networks (Mazzaferro, 2017; Alley et al., 2019) are proposed. The development of transformers
subsequently increases the model capacity, and protein language models are becoming increasingly
popular (e.g., Elnaggar et al., 2020; Rao et al., 2019; Rives et al., 2021; Lin et al., 2022). Fur-
thermore, Multiple-sequence alignment (MSA) models (e.g., Rao et al., 2021; Biswas et al., 2021;
Meier et al., 2021) learn to represent a protein in its evolutionary context. Structure-based models
aim to encode spatial information in protein structures into their representation by using 3D convo-
lutional neural networks (CNN) (e.g., Derevyanko et al., 2018; Shroff et al., 2020; Lu et al., 2022;
d’Oelsnitz et al., 2023), graph neural networks (GNN) (e.g., Gligorijević et al., 2021; Hermosilla
& Ropinski, 2022; Zhang et al., 2022), or transformers (e.g., Diaz et al., 2023; Rives et al., 2021;
Lin et al., 2022). While these methods achieve superior performance on some tasks, for most tasks
the sequence-based models still dominate the performance thanks to the availability of the massive
amounts of protein sequences (Xu et al., 2022). Therefore, this paper uses the sequence embeddings
of ESM2 (Lin et al., 2022) for proteins and uses the Momuntum Contrast (MoCo) technique (He
et al., 2020) as a backbone to further improve the representations at the fine-tuning phase.

3 METHODOLOGY

Overview of PEEP. PEEP is a metric learning framework designed to learn an embedding space
where the distances between protein sequences reflect the similarity between their functionalities.
For a protein sequence x with n amino acids and its functional annotation y in the training set,
we sample another sequence x′ who shares the same functional annotation y. Subsequently, we
compute the representations of these proteins using the protein sequence encoder E , denoted as h
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and h′. More details on the structure of E and the methods to obtain h and h′ are deferred to
Section 3.2 and 3.3.

The base pipeline of PEEP adopts a similar design to MoCo (He et al., 2020). It passes protein
embeddings h and h′ from the pre-trained encoder E through two multi-layer perceptrons (MLPs),
denoted as M and M′, producing two final latent representations z = M(h) and z′ = M′(h′). At
the training phase, PEEP maintains a queue of the Q most recent z′, maximizing the cosine simi-
larity between z and z′ and meanwhile minimizing the similarity between z and the representations
stored in the queue. The training objective for optimizing M and M′ in PEEP defined as:

L(z,z′) = − log
exp(s(z,z′)/τ)

exp(s(z,z′)/τ) +
∑K

i=1 exp(s(z,z
′
q,i)/τ)

, (1)

where s(·, ·) denotes the cosine similarity function and z′
q,i signifies the i-th entry in the queue of

stored representations which are derived based on M′. The M′ is implemented as a momentum-
based moving average of M, a strategy proposed to ensure consistency (He et al., 2020).

At the inference stage, for an unknown protein sequence xu, PEEP first extracts its latent repre-
sentation using the aforementioned pipeline, denoted as zu. Next, for every functional annotation
presented in the training dataset, PEEP gathers all protein sequences associated with it and computes
their average latent embedding, which is then designated as the function’s representation. Finally,
to predict the functionality of xu, PEEP calculates the distance between zu and each function’s
representation and ranks the functional annotations accordingly. If a protein has multiple function
annotations, the max separation algorithm (Yu et al., 2023) will be utilized (refer to Appendix A1)
to decide which set of annotations should be selected for the prediction. Detailed designs of PEEP
at the objective, model, and input levels are depicted below, respectively.

3.1 INTEGRATING ENZYME LABEL HIERARCHY INTO METRIC LEARNING

In this section, we describe our biology-ware innovations at the objective level of PEEP. Protein
functional annotations, such as EC number or GO terms, have hierarchical structures. Specifically,
the EC number associates a protein sequence with a chemical reaction and lies in four-digit hier-
archical classes. From left to right, the digits correspond to the reaction class, subclass, and sub-
subclass, and a serial number that is substrate-specific. As an illustration, considering the functional
annotation of tripeptide aminopeptidase (i.e., “EC 3.4.11.4”), its components indicate the following:

⋆ EC 3: the hydrolase class, which uses water to break a covalent bond;

⋆ EC 3.4: the subclass of hydrolases that cleaves peptide bonds;

⋆ EC 3.4.11: the sub-subclass that cleaves the N-terminus of a polypeptide;

⋆ EC 3.4.11.4: the substrate is a tripeptide.

Intuitively, the representation distance between two different proteins is expected to decrease as
their function annotations diverge only at the latter digits, owing to their high similarity in chemical
reactions. For instance, in contrast to proteins with EC 3.4.11.4, those with EC 3.4.11.1 (i.e., leucyl
aminopeptidase) merely exhibit differences in their substrates, while proteins with EC 3.4.21. -
are serine endopeptidases that have a relatively lower similarity. This hierarchical difference can
be advantageous for learning biologically meaningful distances among different proteins. It is a
potential benefit that current methods neglect. In our case (Figure 1b), PEEP uses an additional
ontology-aware objective to penalize cosine similarity between different proteins, aiming to acquire
knowledge of this label hierarchy. The detailed calculation is described as follows.

For two protein sequences xi and xj accompanied by their functional annotations yi and yj , we
compute their representations denoted as zi and zj and derive their similarity score as s(zi, zj).
Subsequently, a function diff is introduced to quantify the dissimilarity between their functional
annotations yi and yj along with the label hierarchy. The minimization objective is then induced
as Li,j = max{diff(yi, yj) · s(zi, zj) − 1, 0}, excepting that our goal is decreasing the cosine
similarity when the difference is large. In Section 4.3, we provide the comparison with using the
reciprocal version of Li,j (i.e., L′

i,j = max{1 − 1/(diff(yi, yj) · s(zi, zj)), 0}). If we consider
a batch of sequences B, PEEP juxtaposes each sequence with every other in a pairwise fashion and
accumulate the corresponding objective values as L = 1

|B|2
∑

1≤i,j≤|B| Li,j .
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3.2 CAPTURING CRUCIAL RESIDUES FROM ACTIVE SITES VIA TAILORED SELF-ATTENTION

In this section, we describe our biology-ware innovations at the model level of PEEP. Let us re-
call the CLEAN framework (Yu et al., 2023) that treats all amino acids to be equally important and
computes the straightforward average of representations from each amino acid to establish the repre-
sentation of a whole protein sequence. However, all amino acids (or residues) play distinctive roles
in determining a protein’s functionality, and the ones that lie in the active site (a region that interacts
with specific molecules) contribute significantly (Dassi et al., 2021). Therefore, an ideal solution
should emphasize its attention on these crucial residues. To meet the goal, we deploy a self-attention
mechanism (Figure 1, c) to model the residue importance within protein sequences.

Figure 2: The visualization of
a protein sequence with its ac-
tive sites highlighted and the
learned attention scores at each
amino acid. It evidences that
our attention is capable of cap-
turing the underlying structural
property of enzymes.

To be specific, our protein sequence encoder E comprises two main
components: a pre-trained protein feature extractor denoted as f(·)
such as ESM (Rives et al., 2021; Lin et al., 2022), and two projection
weights, W1 and W2, employed within the attention mechanism. We
input x into f(·) and then multiply it with W1 and W2, respectively,
with the formulas q = f(x)W1 and k = f(x)W2. It then ad-
heres to standard procedures for deriving the probability score matrix
by taking the product of q and k, and performing normalization and
softmax. The resulting matrix is P = softmax(qk⊤/

√
d), with

d denoting the output dimension of f(·).
Another biological characteristic of enzymes is that active sites are
sparse. Thus, we introduce a method variant Psparse that only keeps
the top K largest entries in each row as non-zero to encourage spar-
sity. Finally, P (or Psparse) is multiplied by f(x) and we further aver-
age over all amino acids to obtain the representation hs for a whole
protein sequence. Appendix A1 offers a comprehensive exposition
of different attention designs. Visualizations as shown in Figure 2
demonstrate a strong correlation between residues at the active sites
and are emphasized by our attention, suggesting the effectiveness of our proposal.

3.3 FUSING MOLECULE INFORMATION INTO ENZYME REPRESENTATIONS

In this section, we present our biology-ware innovations at the input level of PEEP. It fuses the infor-
mation of a protein’s cognate ligands with its sequence representation hs, to inject substrate-scope
knowledge, as presented in Figure 1 (d). Given an enzyme, PEEP traverses all the associated func-
tion labels, retrieving the most intricate substrate and the corresponding resulting product involved
in the reaction. This information is sourced from publicly accessible datasets2. Subsequently, we
employ another pre-trained feature extractor (Chithrananda et al., 2020) to extract their respective
representations (a.k.a. SMILES embeddings), denoted as hl,1, . . . ,hl,nl

.

At each training step, PEEP randomly samples one from the ligands’ SMILE embedding and inte-
grates it with the protein’s sequence representation. Our results in Section 4.3 indicate that it is an
effective sampling strategy to pick ligands. The detailed fusion methods can be either (①) learning
a coefficient for weighted averaging or (②) passing through a trainable MLP.

① h = p⊙hl,i+(1−p)⊙hs, where 1 ≤ i ≤ nl is a random index and p is the learnable coefficient,

② h = Mf ([hi;hs]), where Mf is a trainable MLP.

Moreover, to augment the learning process, PEEP uses an auxiliary classifier to distinguish between
“positive” and “negative” fused representations hs. They are obtained by integrating associated and
non-associated pairs of protein sequences and ligands, respectively.

In the inference phase, two modes are established for the handling of previously unencountered pro-
teins. The first mode gathers all sequences linked to each functional annotation within the training
dataset, along with their corresponding ligands. For a given annotation, PEEP combines the rep-
resentations of each sequence with those of the corresponding individual ligands, computing the
average of all conceivable pairings to form the representation of the chosen functional annotation.

2https://www.rhea-db.org/help/search-ec-number
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If it needs to handle the protein with an unknown functionality, PEEP will compute the distance be-
tween its representation and that of each function. In the second mode, we simplify the process by
treating all ligand representations as zero vectors when computing the representations of functional
annotations and the given protein sequence. This approach provides a straightforward solution for
handling unobserved protein sequences. The comparison of these two modes is in Appendix A3.2.

4 EXPERIMENTS

4.1 IMPLEMENTATION CONFIGURATIONS

Datasets. The protein sequences in our training set are sampled from Swiss-Prot (Boutet et al.,
2007). It is a subset of the comprehensive UniProt dataset, which is meticulously reviewed by
humans. This ensures that our model learns from human-curated annotations. Adopting the data
filtering methodology from Yu et al. (2023), we obtain a training set with around 220K samples.
Subsequently, we cluster and subsample the data using MMSeqs2 using various sequence identity
cutoffs at 10% and 30%, which helps us to remove the homologs. We evaluate PEEP of EC anno-
tation performance on three established benchmarks. The established datasets are (1) Price-149
(or Price), which was assembled by Sanderson et al. (2023) as a challenging dataset since the
sequences inside this dataset have been incorrectly or inconsistently labeled in renowned databases
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG); (2) New-392 (or New), which
consists of 392 enzymes sequences distributed across 177 distinct EC numbers. (3) CATH (Sillitoe
et al., 2021), which classifies protein sequences into multiple (structural) domains with functional
labels available. We collect proteins from the superfamily of 3.40.710.10 and use them to assess
the models. The statistics of these benchmarks and the details of data sampling are summarized in
Table A7 and Section A2.5. The results are available in Section A3.

Network Architecture. We leverage both ESM-1b (Rives et al., 2021) and ESM-2 (Lin et al., 2022)
as the pre-trained protein feature extractor f to obtain the sequence representations of proteins. The
architectural details of other components in PEEP, including the MLP and the attention module’s
weight shapes, are available in Appendix A2.2.

Extracting the Ligands Embeddings. We obtain the SMILES notations of protein’s cognate lig-
ands from the Rhea dataset (Bansal et al., 2022), which is an expert-curated database of chemical and
transport reactions of characterized enzymes. To extract the representations of SMILES notations,
we use ChemBERTa (Chithrananda et al., 2020), a language model pretrained on a chemical dataset
called PubChem (Kim et al., 2019). In our experiments, we explore two variants of the extracted
embeddings of SMILES notations: (1) using the averaged representation without the special tokens
and (2) using only the representation of the [CLS] token as the representation. In Section 4.3,
comparisons of both variants show that exploiting [CLS] tokens leads to better performance.

Baselines. We follow Sanderson et al. (2023) to implement an alignment-based baseline. Specif-
ically, we utilized BLASTp to discern proteins in the training set that bear high similarity to an
unknown test protein. The functions of these identified proteins are then assigned as the pre-
dicted functional annotation for the test protein. Moreover, several baseline algorithms are in-
volved into comparisons: (1) classification methods: DeepEC (Ryu et al., 2019), DEEPre (Li et al.,
2018), ECPred (Dalkiran et al., 2018), ProteInfer (Sanderson et al., 2023); (2) retrieval methods:
CLEAN (Yu et al., 2023) and (3) a translation-based method, known as Bio-Translator (Xu et al.,
2023), which is noteworthy for its zero-shot capability for multiple applications. More details of
utilizing Bio-Translator to perform multi-label classification is presented in Section A2.

4.2 PEEP ENABLES SUPERIOR ENZYME FUNCTIONALITY PREDICTION

Comparison between PEEP and Existing SoTAs. Firstly, we conduct experiments using the train-
ing set with a sequence identity of 10%, and report the performance of PEEP in Table 1 with other
baselines, i.e., ProteInfer and CLEAN. Following Yu et al. (2023), we compare the performance
of PEEP in terms of the recall, precision, and the F-1 score with the baseline methods. It can be
clearly seen from the table that our method reaches the highest performance among all methods.
Compared with the most competitive baseline CLEAN, our method achieves an improvement of
{3 ∼ 3.8%, 2.6 ∼ 7.8%, 3.1 ∼ 3.7%} in terms of the {recall, precision, F-1} scores on Price and
New using the ESM-2 35M as the pre-trained feature extractor. A similar improvement is observed
when switching to the larger ESM-1b 650M, where PEEP outperforms CLEAN consistently on the
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Table 1: Quantitative comparison of PEEP with the state-of-the-art EC number prediction tools with
training sets at different levels of identity cut-off.

Training Sets Method Price New

Rec. Prec. F-1 Rec. Prec. F-1

10%

ProteInfer 0.046 0.095 0.059 0.111 0.178 0.115
Bio-Translator 0.795 0.025 0.049 0.773 0.018 0.035

CLEAN (ESM-1b 650M) 0.230 0.299 0.235 0.314 0.335 0.312
CLEAN (ESM-2 35M) 0.187 0.261 0.204 0.241 0.326 0.256
PEEP (ESM-1b 650M) 0.232 0.315 0.241 0.308 0.382 0.325
PEEP (ESM-2 35M) 0.217 0.339 0.241 0.279 0.352 0.287

30%

ProteInfer 0.086 0.197 0.105 0.129 0.210 0.140
CLEAN (ESM-1b 650M) 0.257 0.336 0.267 0.412 0.388 0.362

CLEAN (ESM-2 35M) 0.217 0.308 0.235 0.338 0.360 0.316
PEEP (ESM-1b 650M) 0.237 0.391 0.269 0.376 0.432 0.374
PEEP (ESM-2 35M) 0.260 0.393 0.281 0.320 0.401 0.327

100%

BLASTp 0.375 0.508 0.385 - - -
DeepEC 0.072 0.118 0.085 0.217 0.298 0.230
ECPred 0.020 0.020 0.020 0.095 0.118 0.100

ProteInfer 0.138 0.243 0.166 0.284 0.409 0.309
CLEAN (ESM-2 35M) 0.430 0.541 0.456 0.441 0.563 0.459
PEEP (ESM-2 35M) 0.412 0.572 0.458 0.426 0.652 0.474

precision and F-1 score by 1.6 ∼ 4.7% and 0.6 ∼ 1.3%, respectively. Then, we continue to conduct
experiments on the training set with 30% sequence identity, where it demonstrates that our frame-
work preserves its advantage against all baseline methods. Specifically, PEEP surpasses CLEAN
by 4.1 ∼ 8.5% and 0.2 ∼ 4.6% in terms of the precision and the F-1 scores respectively, while
maintaining the same level of recall scores. This indicates the effectiveness of our algorithm under
a slightly data-richer setting. Finally, we provide the recall, precision, and F-1 score of PEEP ex-
perimented with the full data (i.e., training set with 100% sequence identity). The table shows that
our method achieves the highest performance among all the methods. This series of experiments
verifies the superior generalization ability of PEEP .
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Figure 3: UMAP of protein representations associated
with different EC numbers and the unseen functionality.

PEEP Can Generalize to Unseen Pro-
tein with Unseen Functionalities. In
previous sections we assess PEEP’s per-
formance on assigning unseen proteins to
seen functionalities. Subsequently, we
assess its performance on proteins linked
to functions that have not been encoun-
tered during training. It is essential to
emphasize that these proteins also remain
unseen during training. Our objective is
to explore whether the representations of
these unfamiliar proteins can create dis-
tinct clusters compared to proteins with
different functionalities. In particular, we
train PEEP on the training dataset with
10% sequence identity and extract protein representations associated with an EC number of 2.4.1.17,
representing previously unseen functionalities within the training dataset. We extract and visualize
the protein representations with UMAP in Figure 3, from which we can observe that (1) the proteins
from unseen functionalities exhibit close clustering despite their diverse protein sequences (see Ap-
pendix A2.4), suggesting that PEEP demonstrates an awareness of functional homogeneity; (2) the
distances between protein representations from the unseen functionality and those with EC numbers
starting with “2.4.1” (or having EC 2.4.1.-) tend to be shorter than distances to other protein, suggest-
ing functional similarity with proteins associated with EC 2.4.1.-. These observations demonstrate
that the utilization of ”PEEP” can effectively address previously unencountered functionalities.
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Figure 5: Visualization of the structure of the
selected protein with the PDB ID of 5CAW.
The highlighted residues marked in orange color
indicate those assigned with greater attention
scores by PEEP. The blue ball is the ligand.

4.3 EXTRA INVESTIGATIONS AND ABLATION STUDY

In this section, we demonstrate the versatility of PEEP by spontaneously solving additional tasks,
such as active site detection and predicting protein-ligand binding (refer to Appendix A3.1). We
investigate various design alternatives in ablation studies. More analyses are in Appendix A3.2.

PEEP for Zero-shot Active Site Detection. The attention score matrix P (or Psparse), quantifies
the importance of residues and has the potential to identify active sites, albeit through unsupervised
means. We conduct experiments to quantitatively evaluate the correlation between attention scores
and potential active sites. Due to the inconsistent availability of the precise active site locations,
we employ a computational tool called PocketMiner (Meller et al., 2023) as a proxy for estimating
the likelihood of a specific residue’s presence in crucial regions across all proteins within the New
dataset. For PEEP, we average Psparse in a column-wise manner as the estimated importance of
residues. The Spearman correlation between the prediction of PocketMiner and PEEP is approx-
imately 0.21, indicating a medium strength level of correlation. Moreover, we select the residues
with the highest scores in each row of the attention score matrix, following the methodology out-
lined by Teukam et al. (2023), for the purpose of evaluating the attention score matrix’s quality.
Figure 4 shows that the residues assigned with higher attention scores have a more right-skewed dis-
tribution of predicted probability scores compared to those with lower attention scores, indicating
an agreement between PEEP and PocketMiner.

Finally, we initiate the validation process for a single protein (UniProt ID: E0VIU9, PDB ID: 5CAW)
with molecules information publicly available. Figure 5 displays the positions of ligands and the
crucial residues indicated by attention scores obtained from PEEP. It is evident that the chosen
residues are notably situated around the small molecule indicated by the blue sphere, aligning with
the protein structure, thus highlighting PEEP’s capability to approximately identify active sites.

Ablation Studies on Techniques. Ablation studies are conducted on multiple techniques, encom-
passing the integration of ligand embeddings, attentive modules, and the EC-aware training objec-
tive, in order to assess their efficacy. Table 2 presents the performance for all combinations of tech-
niques. Each introduced technique demonstrably enhances performance, underscoring the efficacy
of integrating biological priors within our framework.

Different Attention Designs. Table 3 presents precision, recall, and F-1 scores obtained from two
distinct probability score matrices: P and Psparse. Additionally, we compare these results to those of
the baseline model, referred to as “No Attention.” The table clearly demonstrates that using Psparse
yields superior performance. This observation aligns with the notion that active sites exhibit sparsity.

Different Molecule Information Fusion. In Table 4 we present the precision, recall, and F-1
scores with different methods to fuse the molecule representations. We compare against several
variants: ① Random Fusion, which randomly selects a cognate ligand to fuse with the protein repre-
sentation; ② Negative Fusion, which combines the representation of a ligand that does not bind with
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Table 2: Quantitative comparison of PEEPwith different techniques enabled. The columns of “Att.”,
“EC-aware Obj.”, “SMILES Emb.” indicate the usage of attentive modules, EC-aware training ob-
jective and the integration of ligand embeddings, respectively.

Techniques Price New
Att. EC-aware Obj. SMILES Emb. Rec. Prec. F-1 Rec. Prec. F-1

✗ ✗ ✗ 0.186 0.271 0.202 0.255 0.304 0.265
✓ ✗ ✗ 0.185 0.289 0.212 0.279 0.315 0.275
✓ ✓ ✗ 0.191 0.302 0.216 0.292 0.338 0.290
✓ ✗ ✓ 0.211 0.319 0.240 0.266 0.393 0.291
✓ ✓ ✓ 0.217 0.339 0.241 0.279 0.352 0.287

Table 3: Ablation studies on the Price
dataset for different designs of attentive mod-
ules in our proposed PEEP.

Attention Rec. Prec. F-1

No Attention 0.186 0.271 0.202
P 0.187 0.285 0.209

Psparse 0.185 0.289 0.212

Table 4: Ablation studies on the Price dataset for
techniques to extract and fuse the ligands’ embed-
dings into those of proteins.

Design Rec. Prec. F-1

No Fusion 0.186 0.271 0.202
Vanilla 0.171 0.266 0.190

Random Fusion 0.191 0.325 0.225
Negative Fusion 0.165 0.372 0.208

Random & Negative Fusion 0.211 0.319 0.240

Table 5: Ablation studies for different fusion designs
in our proposed PEEP on the Price dataset.

Design Rec. Prec. F-1

Weighted Average Average 0.204 0.303 0.226
MLP Average 0.197 0.389 0.230

Weighted Average [CLS] 0.211 0.319 0.240
MLP [CLS] 0.165 0.355 0.210

Table 6: Performance comparison of dif-
ferent variants of EC-aware regularization
loss on the Price dataset.

Variants Rec. Prec. F-1

No Reg 0.186 0.271 0.202
Multiplication 0.191 0.302 0.216

Reciprocal 0.193 0.299 0.214

the given protein and uses a classifier for distinction; ③ Random & Negative Fusion, which employs
both the aforementioned techniques; ④ Vanilla, which fuses the representations of all the cognate
ligands with the protein representation. The experimental results demonstrate the effectiveness of
the introduced techniques, as each one substantially improves the prediction scores.

Subsequently, we explore different approaches to extract and fuse the representations of ligands and
present the results in Table 5. We compare two approaches for obtaining ligand representations:
① the [CLS] token representation extracted by ChemBERTa and ② Average representation, which
averages all residues. Moreover, we compare two methods for fusion: (1) Weighted Average, which
learns coefficients for weighted averaging, and (2) MLP, designed specifically for fusion. The re-
sults indicate that both fusion methods successfully combine ligand representations; nevertheless,
learning coefficients to fuse the [CLS] token representation results in superior performance.

Different Regularization Designs. We compare different variants of EC-aware regularization: ①
the “multiplication” version expressed as Li,j = max{diff(yi, yj) · s(zi, zj) − 1, 0}; ② the “re-
ciprocal” version, as detailed in Section 3.1, expressed as L′

i,j = max{1 − 1/(diff(yi, yj) ·
s(zi, zj)), 0}. The performance evaluated on the Price benchmark is shown in Table 6, where it
shows that the two variants yield comparable performance.

5 CONCLUSION

Predicting enzyme functionality is a primary barrier in biomanufacturing. This paper proposes a
novel metric learning framework, i.e., PEEP . We conduct pioneering efforts to incorporate biology
priors like integrating cognate ligands’ embeddings, attentive learning of active sites, and consider-
ing functionality label hierarchy. Extensive results on multiple public benchmarks show the superi-
ority of PEEP . Future works will focus on the wet lab validation of identifying protein generalists.
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A1 MORE TECHNIQUE DETAILS

A1.1 ATTENTION DESIGNS.

As aforementioned, we set up two variants of the calculated probability score matrix, namely, P and
Psparse. After obtaining these matrices, we calculate the sequence representations blow:

h = (
1

n
1⊤)Pf(x) or h = (

1

n
1⊤)Psparsef(x),

where n indicates the length of the sequence and 1 is 1-vector with the length of n.

A2 MORE IMPLEMENTATION DETAILS

A2.1 DATASET STATISTICS

In Table A7 and Table A8 we summarize the statistics of the training sets with different sequence
identity and the statistics of the testing sets, respectively.

Table A7: The statistics of training datasets with different levels of sequence identity.
Sequence Identity EC number Number of Proteins

10%

1.-.-.- 1151
2.-.-.- 3290
3.-.-.- 2516
4.-.-.- 603
5.-.-.- 353
6.-.-.- 259
7.-.-.- 187

30%

1.-.-.- 1521
2.-.-.- 4109
3.-.-.- 3069
4.-.-.- 760
5.-.-.- 461
6.-.-.- 415
7.-.-.- 213

100% (Full)

1.-.-.- 30370
2.-.-.- 88717
3.-.-.- 46075
4.-.-.- 25477
5.-.-.- 15477
6.-.-.- 26574
7.-.-.- 8335

A2.2 HYPER-PARAMETERS

Two different sets of hyperparameters are used for different pretrained feature extractors. For ESM-
2 35M which has an output dimension of 480, we set the output dimension of W1 and W2 (i.e., d)
to be 64. For ESM-1b 650M, we set the output dimension of the attentive modules to be 256. The
MLPs (i.e., M and M′) have three linear layers with the shapes of (df , 256), (256, 256), (256, 128),
respectively, where df represents the output dimension of the pretrained feature extractors. When
training the networks, we use the AdamW optimizer (Loshchilov & Hutter, 2017) to optimize the
parameters for 1000 epochs with a learning rate of 5× 10−4 and a cosine learning rate scheduler.
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Table A8: Statistics of testing datasets: Price, New and CATH.
Dataset EC numbers Number of Proteins

Price

1.-.-.- 59
2.-.-.- 29
3.-.-.- 21
4.-.-.- 26
5.-.-.- 9
6.-.-.- 8

New

1.-.-.- 103
2.-.-.- 120
3.-.-.- 95
4.-.-.- 165
5.-.-.- 8
6.-.-.- 8
7.-.-.- 4

CATH

2.4.1.129 17
3.4.16.4 35
3.5.1.2 54
3.5.2.6 9

A2.3 IMPLEMENTATION OF BASELINE METHODS

BioTranslator (Xu et al., 2023) is a zero-shot classifier that operates on protein sequences and utilizes
natural language, such as biological descriptions of proteins, as inputs. To determine the likelihood
that a specific protein function corresponds to an EC number, we feed the text “EC X.X.X.X” along
with the protein sequence into our model and extract the resulting probability. Subsequently, we
employ a conventional multi-label classification approach using a threshold of 0.5 to compute the
performance metrics.

A2.4 UNSEEN FUNCTIONALITY

We obtain 6 protein (Accession: Q20086, Q22181, P34317, Q21706, Q8GWB7, Q22295) with an
unseen EC number 2.4.1.17 during training. These sequences exhibit dissimilarity in multiple facets
including : (1) the lengths are different, where the shortest sequence has 507 residues and the longest
sequence has 537 residues; (2) the genes are different: Q20086 has a gene annotation of “ugt-58”
while the Q22181 has “ugt-47”.

A2.5 CATH SUB-SAMPLING

To derive a subset of protein sequences from the massive CATH dataset, we narrow our attention
to the superfamily 3.40.710.10 (DD-peptidase/beta-lactamase superfamily), comprising 2194 do-
mains. Next, we select the initial 100 functional families (FunFams) and retrieve the proteins be-
longing to these families. Subsequently, we eliminate duplicate sequences and ultimately acquire a
set of 99 samples, each containing distinct sequences that do not overlap with those in the train set.

A3 MORE EXPERIMENTAL RESULTS

A3.1 PEEP FOR PROTEIN-LIGAND BINDING PREDICTION.

The classifier we have installed in PEEP can be used to distinguish between the “negative” (i.e.,
the fused representation of a protein and a mismatched ligand) and the “positive” representation
(i.e., the fused representation of a protein and a matched ligand). We conduct experiments on the
Price dataset. The trained classifier in PEEP significantly out-performs the baseline that randomly
determines the protein-ligand binding relationship.

A15



Under review as a conference paper at ICLR 2024

Table A9: Prediction performance of whether the given ligands are the cognate ligands of the given
protein. The experiments are carried out on Price.

Methods Recall Precision F-1

Random 0.467 0.034 0.061

PEEP 0.780 0.184 0.270

A3.2 ADDITIONAL ANALYSIS

Fuse vectors of zeros as ligand embeddings during inference. We compare two different strate-
gies for representation fusion at inference: ① Fuse Zero Vectors, where we input zero vectors as
ligand embeddings to calculate the representation of functional annotation and that of protein se-
quences with unknown functionality; and ② Fuse Every, we merge the protein representations from
the training set with their corresponding ligand representations to compute the representation of
functionalities. Furthermore, during the computation of the distance between the input protein rep-
resentation and a representation of functionality, we integrate it with the representations of ligands
associated with that functionality.

Table A10 demonstrates that the ”Fuse Every” mode integrates ligand embeddings during infer-
ence. However, utilizing a zero-filled vector as the ligand embedding yields even more superior
results in annotating previously unobserved proteins. This plausibility stems from the fact that lig-
and representations primarily serve as supplementary information, rendering them less informative
in comparison to sequence data. Additionally, the utilization of certain ligands in multiple reactions
may introduce confusion to the model. Nonetheless, incorporating ligand representations remains
advantageous for the training process manifested by the improved performance compared to base-
lines.

Table A10: Ablation studies for different fusion strategies for inference in our proposed PEEP on
the Price dataset.

Strategy Rec. Prec. F-1

Fuse Zero Vectors 0.211 0.319 0.240

Fuse Every 0.171 0.251 0.196

Evaluating PEEP across Different Benchmarks. We persist in our assessment of PEEP on the
sampled subset of CATH. We first train PEEP on the training set with 10% sequence identity, and
then utilize the trained model to generate annotations for the proteins in the subset. PEEP attains a
{recall, precision, F-1} score of {0.139, 0.062, 0.086}, surpassing CLEAN which achieves a {recall,
precision, F-1} score of {0.070, 0.040, 0.049}.

The number of ligands associated with EC numbers. We display a histogram depicting the dis-
tribution of ligands associated with various EC numbers in Figure A6.

Numerical results on active sites detection. We have established another evaluation protocol to
judge the performance of active sites detection, using the accuracy and the precision at residue
levels. Our method achieves an average accuracy of 48% and an average precision of 73% on
the New-392 dataset. We have also evaluated ProteInfer (Sanderson et al., 2023), using the class
activation mapping (CAM) technique to identify functional localisation, on New-392, which shows
an average accuracy of 49% and an average precision of 54%. Note that both methods are trained on
the same split of data (10% threshold), and the comparisons are conducted on test samples that are
in the training set, a prerequisite required by ProteInfer. Our results exhibits much higher precision
while having the same level of accuracy.
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Figure A6: The histogram of number of ligands associated with EC numbers.
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