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Abstract

We consider the problem of validating whether a neural posterior estimate q(θ | x)
is an accurate approximation to the true, unknown true posterior p(θ | x). Existing
methods for evaluating the quality of an NPE estimate are largely derived from
classifier-based tests or divergence measures, but these suffer from several practical
drawbacks. As an alternative, we introduce the Conditional Localization Test
(CoLT), a principled method designed to detect discrepancies between p(θ | x)
and q(θ | x) across the full range of conditioning inputs. Rather than relying on
exhaustive comparisons or density estimation at every x, CoLT learns a localization
function that adaptively selects points θl(x) where the neural posterior q deviates
most strongly from the true posterior p for that x. This approach is particularly
advantageous in typical simulation-based inference settings, where only a single
draw θ ∼ p(θ | x) from the true posterior is observed for each conditioning input,
but where the neural posterior q(θ | x) can be sampled an arbitrary number of times.
Our theoretical results establish necessary and sufficient conditions for assessing
distributional equality across all x, offering both rigorous guarantees and practical
scalability. Empirically, we demonstrate that CoLT not only performs better than
existing methods at comparing p and q, but also pinpoints regions of significant
divergence, providing actionable insights for model refinement. These properties
position CoLT as a state-of-the-art solution for validating neural posterior estimates.

1 Introduction

This paper proposes a new method for determining whether two conditional distributions p(θ | x)
and q(θ | x) are equal, or at least close, across all conditioning inputs. One of the most important
applications of this idea arises in validating conditional generative models for neural posterior
estimation, or NPE, which is a rapidly growing area of simulation-based inference. Here θ represents
the parameter of a scientific model with prior p(θ), while x ∼ p(x | θ) represents data assumed to
have arisen from that model. In NPE, we simulate data pairs (θ, x) drawn from the joint distribution
(x, θ) ∼ p(x, θ) ≡ p(θ)p(x | θ). A conditional generative model—such as a variational autoencoder
[1], normalizing flow [2], diffusion model [3, 4, 5, 6], or flow-matching estimator [7]—is then trained
on these (x, θ) pairs to approximate p(θ | x) with a learned distribution q(θ | x). The problem of
neural posterior validation is to assess whether the learned q is a good approximation to the true p.

This setting poses challenges not present in simpler problem of testing for equality of unconditional
distributions, with no x. For one thing, we must verify that q(θ | x) approximates p(θ | x) not merely
for a single given x, but consistently for all x, without having to explicitly consider all possible x
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points. Moreover, most practical problems present a severe asymmetry in the available number of
samples from p and q. In NPE, for example, we observe just a single "real" sample θ ∼ p(θ | x) for
each x, yet we can generate an arbitrary number of "synthetic" samples θ̃ ∼ q(θ | x) by repeatedly
querying our NPE model. Any successful method for assessing distributional equivalence of p and q
must account for this imbalance.

Existing methods. Several methods have been proposed to assess the accuracy of a neural posterior
estimate. But each has shortcomings. One popular method called Simulation-Based Calibration
(SBC) [8] uses a simple rank-based statistic for each margin of q(θ | x), but this provides only a
necessary (not sufficient) condition for posterior validity. Moreover, since rank statistics are computed
separately for each margin, the statistical power of SBC suffers badly from multiple-testing issues in
high-dimensional settings. TARP [9] provides a condition that is both necessary and sufficient for the
neural posterior estimate to be valid. However, TARP’s practical effectiveness depends heavily on
the choice of a (non-trainable) probability distribution to generate "reference" points that are needed
to perform the diagnostic, and the method can perform poorly under a suboptimal choice of this
distribution. Finally, the classifer two-sample test, or C2ST [10], involves training a classifier to
distinguish whether a given θ sample originates from the true posterior or the estimated one. It then
uses the classifier output to construct an asymptotically normal test statistic under the null hypothesis
that p = q. But as many others have observed, the C2ST hinges on the classifier’s ability to effectively
learn a global decision boundary over X and Θ simultaneously. In practice, the classifier may struggle
to do so, due to insufficient training data, limited model capacity, or the inherent complexity of the
task. Moreover, to perform well, the C2ST usually needs a class-balanced sample, which entails
multiple draws of θ from the true posterior at a given x. This is often impractical, as in many settings
we only have access to a single θ ∼ p(θ | x) at a given x.

Our contributions. Our paper addresses these shortcomings with a principled and efficient ap-
proach, called the Conditional Localization Test (CoLT), for detecting discrepancies between p and q.
CoLT is based on the principle of measure theoretic distinguishability: intuitively, if two conditional
densities p(θ | x) and q(θ | x) are unequal, they must exhibit a nonzero difference in mass over
some specific ball of positive radius. The basic idea of CoLT is to find that ball—that is, to train a
localization function θl : X → Θ that adaptively selects the point θl(x) where, for a given x, p and
q are maximally different in the mass they assign to a neighborhood of θl(x). Intuitively, a neural
network that learns a smooth mapping θl(x) should be well suited for this task: if two conditioning
inputs x and x̃ are close, we might reasonably expect that any differences between p and q would
manifest similarly (i.e. in nearby regions of θ space) for both x and x̃. This smoothness allows
the network to generalize local differences across nearby regions in x space, making the search for
discrepancies both efficient and robust.

Of course, the principle of measure-theoretic distinguishability is well established, and so one
might fairly ask: why has it not been widely exploited in machine learning as a tool for comparing
conditional distributions? This is likely for two reasons, one geometric and one computational, both
of which CoLT successfully addresses.

First, directly comparing mass over high-dimensional Euclidean balls can be ineffective for testing, as
the Euclidean metric may not align with the geometry of how p and q are most readily distinguishable.
To address this, we use a trainable embedding function ϕ that maps points from the parameter space
Θ into a latent Euclidean space, where distances can better reflect the concentration of probability
mass. We then assess mass equivalence over Euclidean balls in this latent space, i.e. over balls
Bϕ(θ,R) =

{
θ′ ∈ Θ : ∥ϕ(θ′) − ϕ(θ)∥2 ≤ R

}
. We show how the necessary machinery from real

analysis can be rigorously adapted to this setting, with modest requirements on ϕ.

Second, even when assessing equivalence over non-Euclidean metric balls, naively training a local-
ization function θl(x) would seem to require repeatedly sampling θ from both p and q at some x,
comparing their local (Monte Carlo) integrals over all possible balls. This is intractable for all but the
smallest problems. Luckily, we show that training θl can be done far more efficiently. The essential
idea involves using a single observed draw from p(θ | x) to anchor our comparison of whether the
conditional mass of q(θ | x) aligns with p(θ | x), in expectation over x. This single draw, combined
with the localization function θl, can be used to carefully construct a one-dimensional ball probability
rank statistic that is uniformly distributed if and only if p and q agree on all local neighborhoods
around θl(x). We rigorously construct this rank statistic, and we show how it leads to a practical
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(a) True posterior. (b) α = 1.5 (c) α = 4 (d) Power curve across α

Figure 1: Results on the toy tree-shaped example. As α increases (larger perturbation), the distribution
becomes blurrier and deviates from the true manifold shown in Panel A. CoLT with a learned metric
embedding maintains strong statistical power even for modest perturbations (Panel B), whereas the
C2ST, SBC, and TARP all perform poorly even for much larger ones like α = 4 (Panels C/D).
optimization algorithm for θl(x). Moreover, the rank statistic naturally induces a valid integral
probability metric (IPM), offering a continuous measure of the distance between the two distributions.
This is especially valuable in NPE settings: by moving beyond binary assessment, CoLT allows
user of NPE methods to quantify improvements across training runs, benchmark multiple posterior
approximators, or make targeted improvements to model architecture based on where specifically the
neural posterior q is performing poorly.

Finally, our empirical results demonstrate that CoLT consistently outperforms current state-of-the-art
methods across a wide range of benchmark problems. The evidence shows that CoLT is able to
consistently identify subtle discrepancies that classifier-based approaches routinely miss, providing
strong empirical support for our theoretical analysis.

A toy example. To provide an initial demonstration of CoLT’s effectiveness, we begin with a toy
example. Panel A of Figure 1 shows p(θ | x) as living on a structured manifold, with branches A
(bottom left) and B (top right) representing distinct regions of probability mass, as introduced in [11].
We sample a conditioning input as x ∼ N (0, 1), with the true conditional distribution defined as:

p(θ | x) ∼
{

Branch A if x ≥ 0,
Branch B if x < 0.

Our goal here is to assess whether a method can reliably detect even small perturbations of p. This
example, while simple, effectively targets a common failure mode of generative models: producing
samples that lie near, but not exactly on, the true manifold of the posterior.

To benchmark CoLT’s performance, we constructed "perturbed" posterior samples θ̃ ∼ q(θ | x) by
adding a small amount of isotropic Gaussian noise to "correct" samples: that is, θ̃ = θ + e, where θ
is a draw from p(θ | x) and each component of e has standard deviation 0.01 · α. We then varied α,
which controls the degree of mismatch between p and q, and we tested the power of CoLT versus
TARP, SBC, and the C2ST for each α. The nominal Type-I error rate was set to 0.05 for all methods.
To ensure a fair comparison, we trained the C2ST classifier and CoLT localization function with
similar model capacities (number of layers and size of each layer); see Appendix C for details.

When α = 1.5 (Panel B), the samples from q fall very slightly off the correct manifold. CoLT can
reliably detect this difference (power = 0.877), while C2ST failed entirely (power = 0.000). At a
larger value of α = 4.0 (Panel C), CoLT achieves perfect power (1.000), whereas C2ST only reaches
power of 0.065. Panel D shows that, while performing a bit better than C2ST, neither TARP nor SBC
are competitive with CoLT at any α. These results highlight our method’s performance advantage
even in scenarios where the posterior lives on a structured manifold, and the discrepancy between p
and q is reasonably small. We also emphasize that CoLT doesn’t merely detect the difference; as our
theory shows, it can also quantify the difference via an integral probability metric.

2 Theoretical Results

In this section, we present our main theoretical results; all proofs are given in the Appendix. Through-
out, we denote the Lebesgue measure by m(·) and use dθ to represent Lebesgue integration. We also
use the shorthand notation q(θ | x) = p(θ | x), or simply p = q, to denote that q(θ | x) = p(θ | x)
for almost every (θ, x) ∈ Θ × X . Throughout, we assume that p and q are absolutely continuous
with respect to Lebesgue measure for all x.
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2.1 The conditional localization principle

CoLT relies on what we might call the localization principle: to check whether p and q are different,
search for the point θl, and the local neighborhood around θl, where the mass discrepancy between p
and q is as large as possible. If the largest such discrepancy is 0, the two distributions are equal.

Taken at face value, however, the localization principle seems deeply impractical. First, if we wish
to conclude that p(θ | x) = q(θ | x) for all x, it seems that we would need to apply the principle
pointwise over a grid of x-values. Second, for each x, we would need to search for the point θl that
maximizes the discrepancy in local mass between p and q, if one exists for that x. Finally, we would
need to draw many samples from both p(θ | x) and q(θ | x) to obtain reliable Monte Carlo integrals.
The sheer number of evaluations needed—across many x-values, many candidate θl-locations per x,
and many Monte Carlo samples per (θl, x) pair—renders this naïve approach not just intractable, but
nestedly intractable.

Luckily, we can do much better than the naïve approach. In fact, our subsequent results can be
thought of as peeling back these layers of intractability one at a time.

We begin with a key definition. Specifically, we consider balls of the form Bϕ(θ,R) =
{
θ′ ∈ Θ :

∥ϕ(θ′)− ϕ(θ)∥2 ≤ R
}

, where ϕ is an embedding function. By defining neighborhoods through dϕ,
we can shape our regions of comparison to better reflect meaningful differences in probability mass.
The following imposes a mild, but useful, geometric regularity condition on the metric ϕ.
Definition 1 (Doubling Condition). Let Θ be a set equipped with a map ϕ and let m be a measure
on Θ. For each θ ∈ Θ ⊆ RD and R > 0, define the ϕ-ball

Bϕ(θ,R) =
{
θ′ ∈ Θ : ∥ϕ(θ′)− ϕ(θ)∥2 ≤ R

}
.

We say that ϕ satisfies the doubling condition with respect to m if there exists a constant C > 0 such
that for all θ ∈ Θ and all R > 0,

m
(
Bϕ(θ, 2R)

)
≤ Cm

(
Bϕ(θ,R)

)
. (1)

Intuitively, this condition ensures that the metric balls Bϕ do not distort the underlying geometry of
RD too severely, for instance by creating regions of infinite density or measure.

A straightforward sufficient condition for this is that the embedding ϕ be bi-Lipschitz of any order,
which guarantees the above global doubling condition. However, a strict bi-Lipschitz map is not
necessary. As a more flexible and practical alternative, we can define ϕ(θ) = kξ(θ, ·) as a deep-
kernel embedding [12], which uses any Lipschitz encoder ξ : RD → Rm to extract features. The
corresponding kernel-based distance, given by ∥ϕ(θ′)−ϕ(θ)∥2 =

√
kξ(θ, θ) + kξ(θ′, θ′)− kξ(θ, θ′),

yeilds a local doubling condition, defined in Appendix A. This weaker, local condition is sufficient
for our following localization result to hold. We provide a detailed proof and discussion for both the
bi-Lipschitz and deep-kernel cases in Appendix A.

With this definition in place, we can state our first result about the equality of conditional distributions.
This result replaces the stringent requirement of verifying an equality-of-mass condition for each
x with a weaker condition that involves averaging over x. We formalize this idea in terms of a
localization function θl(x) : X → Θ, which identifies the most informative localization point based
on x. Intuitively, θl(x) serves as a witness to any potential discrepancy between p(θ | x) and q(θ | x).
Theorem 1 (Conditional localization). Let p(θ | x) and q(θ | x) be defined as before, and define the
difference function dx(θ) = p(θ | x) − q(θ | x). Let dϕ : Θ×Θ→ R+ be the distance function, in
induced by the embedding map ϕ, satisfying the doubling condition with respect to Lebesgue measure.
Let Bϕ(θl(x), R) denote the ϕ-ball of radius R centered at θl(x). Assume further that p(x) > 0 is a
density on X which is strictly positive almost everywhere.

If, for every measurable function θl : X → Θ and every R > 0, we have∫
X
p(x)

[∫
Bϕ(θl(x),R)

dx(θ) dθ
]
dx = 0,

then dx(θ) = 0 for almost every (x, θ) in X ×Θ.

A full proof is provided in Appendix B. The sketch is as follows: The theorem’s assumption—that the
average discrepancy over all x is zero—is challenging because positive and negative discrepancies
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could cancel. However, a crucial feature of the theorem is that the center of the metric ball, θl(x), is
allowed to depend on x via a localization map. The proof uses a measurable selection argument to
construct this adversarial localization function θl(x) that, for each x, intentionally centers the ball
Bϕ in the region of maximum discrepancy. Applying the theorem’s hypothesis to this "worst-case"
selector forces this maximum discrepancy to be zero for almost every x, which implies the discrepancy
is zero for all balls. From this, the Lebesgue Differentiation Theorem [13]—which applies due to
the doubling condition—allows us to conclude that if the average difference over all shrinking balls
is zero, the pointwise difference p(θ|x)− q(θ|x) must itself be zero almost everywhere. Moreover,
p = q implies that the supremum of∫

X
p(x)

[∫
Bϕ(θl(x),R)

(
p(θ | x)− q(θ | x)

)
dθ

]
dx

over all measurable choices of θl(·) and all R > 0, must be 0. This gives us a natural target for
optimization over the choice of the localization function θl(x).

2.2 The ball probability rank statistic: a practical condition for mass equivalence

Theorem 1 eliminates the need for an exhaustive search over x. But its direct application still appears
to require many draws from both p(θ | x) and q(θ | x) to verify the equality of mass over metric
balls. Testing this condition via Monte Carlo would typically involve repeatedly sampling θ from
both distributions at the same x and comparing their local integrals. This remains computationally
demanding even in principle. Moreover, in the typical setup where this methodology might be
applied, the situation is asymmetric: p(x) and p(θ | x) correspond to a real unknown distribution that
generated the training data, meaning that for any observed x, we often have access to only a single
corresponding draw from p(θ | x). By contrast, q(θ | x) represents a (conditional) generative model
that we can query arbitrarily many times for a given x. A practical formulation must leverage this
structure by treating the single "true" θ draw as an anchor and evaluating whether the conditional
mass of q aligns with p in expectation over x.

Our next result establishes precisely this adaptation, ensuring that the comparison suggested by
Theorem 1 can be done feasibly. The basic idea is as follows: we can draw a random sample
(θ∗, x) ∼ p(θ, x), compute the localization point θl(x), and let the radius be implicitly determined
as R(θ∗) = dϕ(θl(x), θ∗). As the number of samples gets large, this turns out to be equivalent to
checking all radii in Theorem 1. We now formalize this equivalence below, temporarily dropping the
dependence on the conditioning input x to lighten the notation.

Theorem 2. Let p and q be defined as above. Fix a reference point θl ∈ Θ, and define the metric ball

Br = {θ ∈ Θ : dϕ(θl, θ) ≤ r}.

For any θ∗ ∈ Θ, define the ball probability rank under q as

Uq(θ∗) = Pθ∼q

(
dϕ(θl, θ) ≤ dϕ(θl, θ

∗)
)
.

Then, the condition that p and q assign the same probability to all balls centered at θl, i.e.,

p(Br) = q(Br) for all radii 0 ≤ r ≤ sup
θ′∈Θ

d(θ′, θl),

is equivalent to the statement that, when θ∗ ∼ p, the random variable Uq(θ∗) is uniformly distributed
on [0, 1]. That is, checking whether, for all choices of θl, Uq(θ∗) ∼ Unif(0, 1) under θ∗ ∼ p is both
necessary and sufficient for p = q.

Intuitively, if p and q differ, then there must exist some point θl and some radius R for which the
two distributions assign different mass to the ball B(θl, R). This mismatch causes the distribution of
Uq(θ∗) to deviate from uniformity when θ∗ ∼ p. Conversely, if Uq(θ∗) ∼ Unif(0, 1) under θ∗ ∼ p
for every choice of θl, then p and q must agree on the mass of all such balls, and hence be identical.
Thus taken together, Theorems 1 and 2 collapse a daunting, high-dimensional equality-of-mass
requirement into a one-dimensional uniformity condition that can serve as the basis for a tractable
optimization problem.
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2.3 From local-mass uniformity to an IPM

Theorem 2 shows comparing the ball–probability rank statistic Uq,x to a uniform distribution gives
us a test for whether p = q. The next result shows that, once we optimize over every allowable
localization map θl, every embedding ϕ, and every ball radius, the same uniformity test yields an
integral probability metric (IPM) that we call the averaged conditionally localized distance (ACLD).
Concretely, let

B =
{

1Bϕ(θl(x), R)(θ) : θl : X →Θ, ϕ : Θ→Rm, R > 0
}
,

the class of indicator functions of metric balls whose centers depend on x. The corresponding IPM is

ACLD(p, q) = sup
f∈B

∣∣∣Ex∼p(x)

[
Eθ∼p(θ|x)f(θ)− Eθ∼q(θ|x)f(θ)

]∣∣∣.
Our next theorem connects this distance to the ball probability rank statistic from Theorem 2.
Theorem 3 (Ball–probability IPM). Let p(θ | x) and q(θ | x) be absolutely continuous conditional
densities on a common parameter space Θ for x ∈ X , and suppose p(x) > 0 a.e. on X . For
x-dependent) center θl(x) ∈ Θ and for the metric dϕ(θ, θ′) = ∥ϕ(θ) − ϕ(θ′)∥2 induced by an
embedding ϕ : Θ→ Rm satisfying the doubling condition, define

Uq,x(θ∗) = Pθ∼q(θ|x)

{
dϕ

(
θl(x), θ

)
≤ dϕ

(
θl(x), θ∗)}.

Now let d̃(p, q) be the worst-case Kolmogorov distance of Uq,x(θ∗), averaged over x, from the
Uniform distribution:

d̃(p, q) = sup
θl,ϕ,α∈[0,1]

∣∣∣Ex∼p(x)

[
Pθ∗∼p(θ|x)

{
Uq,x(θ∗) ≤ α

}
− α

]∣∣∣.
Then

d̃(p, q) = ACLD(p, q).

The theorem establishes that the largest possible deviation from uniformity that one can provoke in
Uq,x, by freely choosing the localization function, embedding, and ball radius, is numerically identical
to an IPM built from indicator balls. Hence training the localization network θl(x) to maximise the
distance between Uq,x and U(0, 1) is equivalent to computing ACLD(p, q). If the optimizer fails to
increase this distance beyond sampling noise, we have empirical evidence that q(θ | x) has passed
the full mass-equivalence test implied by Theorem 1. Conversely, if Uq,x is not uniformly distributed,
then its empirical KS distance to U(0, 1) gives us both a p-value based on the classical KS test, and
estimates a distance between p and q.

3 The CoLT Algorithm

The key insight from Theorem 2 is that searching for an embedding ϕ and localization function θl(x)
that maximally distort the ball probability rank statistic Uq,x away from uniformity is equivalent to
detecting regions where q fails to match p. This forms the basis of our optimization procedure. We
represent both the metric embedding ϕ and the localization function as neural networks, θl(x;ψ)
with learnable parameters ψ. Our strategy is roughly as follows:

• Generate a rank statistic: Draw a minibatch of "anchor" points (θ∗
i , xi)B

i=1 from p(θ, x),
the true joint distribution. By construction, each (θ∗

i | xi) has conditional distribution
p(θ | xi). For each anchor point i, sample M synthetic draws {θ̃ij}M

j=1 from q(θ | xi), and
compute the empirical ball probability rank statistic:

Ûi(ψ, ϕ) = 1
M

M∑
j=1

1
[
dϕ

(
θl(xi;ψ), θ̃ij

)
≤ dϕ

(
θl(xi;ψ), θ∗

i

)]
.

• Measure non-uniformity: As a loss, we use a negative divergence from a uniform distribu-
tion, L(ψ, ϕ) = −D(Ûi(ψ, ϕ),Uniform). We discuss the choice of divergence below.
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• Optimize: Gradient descent is applied to the loss function. If p = q, optimization will stall,
as no choice of (ϕ, θl(x;ψ)) will yield substantial deviation from uniformity. Otherwise,
the optimizer finds a localization map that exposes the failure of q.

This approach is detailed in Algorithm 1 (training phase) and Algorithm 2 (testing phase). We first
apply Algorithm 1 to train the embedding network ϕ and localization network θl, aiming to maximize
the discrepancy between the empirical Ûi values and the uniform distribution. Then with the trained
networks and a test set of {(θi, xi)}, we compute a test statistic and corresponding p-value using the
one-sample Kolmogorov-Smirnov (KS) test in Algorithm 2.

Algorithm 1 Conditional Localization Test (CoLT): Training Phase

1: procedure COLT({(θi, xi)}N
i=1 ∼ p(θ | x)p(x), sampling distribution q(θ | x))

2: Generate K samples {θij} ∼ q(θ | xi) for i ∈ [N ], j ∈ [K]
3: Define dϕ(θ, θ′) = ∥ϕ(θ)− ϕ(θ′)∥2
4: Initialize ϕ, θl(x, ψ) as neural networks
5: while not converged do
6: for i = 1, . . . , N do
7: θl ← θl(xi;ψ)
8: Ui = 1

K

∑K
j=1 1{dϕ(θij , θl) < dϕ(θi, θl)}

9: end for
10: L(ψ, ϕ) = −D(Ui,Uniform) //Maximize divergence
11: Perform gradient update on ψ, ϕ
12: end while
13: Return θl, ϕ
14: end procedure

Algorithm 2 Conditional Localization Test (CoLT): Testing Phase

1: procedure COLT({(θi, xi)}N
i=1 ∼ p(θ | x)p(x), sampling distribution q(θ | x), θl, ϕ)

2: Generate K samples {θij} ∼ q(θ | xi) for i ∈ [N ], j ∈ [K]
3: Define dϕ(θ, θ′) = ∥ϕ(θ)− ϕ(θ′)∥2
4: for i = 1, . . . , N do
5: θl ← θl(xi)
6: Ui = 1

K

∑K
j=1 1{dϕ(θij , θl) < dϕ(θi, θl)}

7: end for
8: t, p← KS test({U1, . . . , UN},Uniform) //test statistic & p-value
9: Return t, p

10: end procedure

We make three remarks about this algorithm. First, because Ui involves an indicator function,
gradients cannot propagate directly; we therefore use the Straight-Through Estimator (STE) trick [14]
to enable gradient-based optimization. Second, we represent the distance embedding network ϕ as
a neural network due to its flexibility and capacity to approximate a wide range of transformations.
Moreover, neural networks are typically Lipschitz-continuous under mild conditions [15], which
ensures that the doubling condition (Definition 1) is satisfied; see Appendix A. Alternatively, a fixed,
non-trainable form of ϕ can be specified, and our theoretical guarantees will still hold, but power may
be reduced. For example, setting ϕ as the identity reduces d(·, ·) to the ℓ2 distance.

Third, in Algorithm 1, various divergence measures can be used to quantify the discrepancy be-
tween the empirical distribution of rank statistics Ui and the uniform distribution. While the Kol-
mogorov–Smirnov (KS) distance is a natural choice motivated directly by our theory, it is not ideal
for gradient-based optimization, which would need to propagate gradients through sorting and max
operations. To address this, we instead use Sinkhorn divergence [16], an entropy-regularized version
of Wasserstein distance that retains geometric sensitivity while offering a smooth objective. Em-
pirically, we find that Sinkhorn divergence leads to stable optimization and good performance. We
emphasize that Sinkhorn divergence is used only during the training phase to learn the localization
and embedding maps. At test time, we use the KS statistic, as suggested by our theory, to compute
p-values based on the empirical rank distribution.
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(a) Bivariate normal (b) Perturbed normal (c) Latent normal (d) Perturbed latent normal

Figure 2: (A) Bivariate Gaussian with correlation 0.9. (B) Example perturbation of (A) to yield
heavier tails. (C) Latent Gaussian with transformation. (D) Example perturbation of (C) with heavier
tails in the latent space. In our benchmarks, CoLT and similar methods are tasked with distinguishing
the ground-truth distributions (A and C) from perturbed variations (B and D, respectively). These are
both large perturbations (large α) and should be easy to detect; smaller α yields subtler perturbations.
Details of the perturbation schemes are provided in Appendix C.2.

4 Experiments

Benchmark tasks. To evaluate CoLT against established NPT methods, we use a suite of benchmark
tasks introduced by [17]2 (details in Appendix C.2). Each benchmark defines a reference posterior
p(θ | x), then introduces a family of perturbed alternatives q(θ | x;α), where the scalar parameter
α ≥ 0 controls the severity of deviation. As α increases, so does the discrepancy between p and q,
allowing us to generate smooth performance curves that quantify the sensitivity of each NPT method.

We evaluate CoLT on two such benchmark families. The first is based on multivariate Gaussian
posteriors with data-dependent mean and covariance. Specifically, we sample x ∼ N (1m, Im) and
define

p(θ | x) = N (µx,Σx), µx = W1x, Σx = |W⊤
2 x| · Σ,

where W1 ∈ Rs×m and W2 ∈ Rs×1 are fixed matrices constructed from i.i.d. Gaussians, and Σ
is a Toeplitz matrix with entries Σij = ρ|i−j|, using ρ = 0.9. The alternative q(θ | x;α) is then
constructed by applying structured perturbations either to µx or Σx, as detailed in Appendix C.2.
This setup allows us to simulate NPE errors such as mean shifts, covariance inflation, or distortions
of multimodal structure. See Figure 2, Panels A-B.

The second family of benchmarks introduces geometric complexity by drawing latent Gaussian
samples according to the same recipe as above, and then applying a nonlinear transformation,
θ := f(θ̃) ≡ A h(Bθ̃), where θ̃ ∼ N (µx,Σx) , h is a coordinate-wise sine nonlinearity, and
A ∈ Rd×d, B ∈ Rd×s are fixed matrices. This creates a posterior distribution p(θ | x) concentrated
on a smooth, curved manifold of intrinsic dimension s in Rd. To generate q, perturbations are applied
in the latent Gaussian space (i.e. before transformation). See Figure 2, Panels C-D.

Baselines and settings. For our method, we evaluate two variants: CoLT Full, where both the
embedding network ϕ and the localization network θl are jointly optimized; and CoLT ID, where ϕ
is the identity and only the localization network θl is trained. We assess both Type I error (at α = 0)
and statistical power (for α > 0) across all methods. Both versions of CoLT are compared against
three established approaches: C2ST [10], SBC [8], and TARP [9]. To enable fair and meaningful
comparisons, we adapt each baseline to produce a p-value, as follows. For C2ST, we sample one
θ from q(θ | x) for each x to create balanced training and test datasets, using the asymptotically
normal test statistic described in [10]. For SBC, we conduct the KS test between the rank statistics
and the uniform distribution for each dimension independently, followed by Bonferroni correction to
control for multiple testing. For TARP, we select random reference points and the TARP test statistic
to perform a KS test against the uniform distribution.

In both benchmark families, we vary the input, parameter, and latent dimensions (m, s, d) and report
power as a function of α. We sample 100 pairs {(θi, xi)} from the true joint distribution p(θ | x)p(x),
along with 500 samples from q(θ | x) for each corresponding x during training. After training, we
evaluate a method’s power by sampling 200 additional batches with the same sampling budget. For

2https://github.com/TianyuCodings/NPTBench
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(a) Selected power curves on the perturbed Gaussian benchmark family.
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(b) Selected power curves on the manifold benchmark family.

Figure 3: Statistical power curves (high is better) for four perturbation types under both benchmark
families: (a) Gaussian posterior with data-dependent mean and covariance, and (b) its nonlinear
transformation onto a curved manifold. Each panel refers to a specific perturbation type, with the
horizontal axis (α) describing the severity of the perturbation. Selected settings for (s, d,m) are
shown here, with results on a wider variety of settings shown in the Appendix C.2.

all methods, we set a nominal Type-I error rate of 5%. We repeat experiments with three random
seeds and report averages. Further implementation details and design choices are in the Appendix C.

Results. Figure 3 summarizes the performance of the various testing methods across both bench-
mark families and four specific perturbation types: covariance scaling, anisotropic covariance
distortion, heavy-tailed deviations via t-distributions, and the introduction of additional modes. In the
simpler Gaussian benchmark (top row), both variants of CoLT (Full and ID) match or exceed the
performance of C2ST while consistently outperforming SBC and TARP. CoLT ID—which measures
mass over fixed Euclidean balls—performs well in cases like covariance scaling and additional modes,
where the geometry of the discrepancy aligns well with the ambient space. C2ST also performs
reasonably in these non-curved settings, particularly for tail adjustment and additional modes.

In contrast, the manifold benchmark (bottom row) reveals a clear advantage for CoLT Full, which
learns a flexible embedding function to localize discrepancies. As with the toy example in Figure
1, this learned geometry appears essential in detecting errors, especially under tail adjustments and
anisotropic distortions. CoLT ID, which lacks this geometric adaptability, performs notably worse
than CoLT Full in these settings, although it still generally meets or exceeds the performance of other
methods. These results highlight an important inductive bias: while fixed Euclidean balls suffice
for flat posteriors, learned embeddings are crucial for detecting structured mismatch on curved or
low-dimensional manifolds. Taken together, the results confirm that CoLT is competitive across a
range of settings and is especially effective when for posteriors with complex geometry.

Additional experiments appear in Appendix C.3, which demonstrates our method’s applica-
tion to diffusion-based generative posteriors, and in Appendix D, which includes expanded re-
sults across more perturbation types and dimensional configurations. We provide the code at
https://github.com/TianyuCodings/CoLT.

Discussion and limitations. Our theoretical and empirical results establish CoLT as a principled
and practical approach for detecting local discrepancies between conditional distributions, with state-
of-the-art performance compared to existing methods. But CoLT does have limitations. The method
relies on learning both a localization function θl(x) and an embedding ϕ(θ), introducing inductive
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bias through architectural and optimization choices. If either component is underparameterized or
poorly trained, CoLT may fail to detect real discrepancies. Its sensitivity also depends on the quality
of the rank statistic, which can degrade with limited samples. And while CoLT yields a continuous
IPM-style metric, interpreting this scalar, especially in high dimensions, can be challenging, as the
underlying IPM function class is non-standard and implicitly defined by the learned components.

The benchmarking framework also has its limitations. Although designed to reflect realistic failure
modes in NPE, the benchmarks are inherently synthetic and simplified. Perturbations are applied in
controlled, parametric ways that may not capture the full complexity of real-world approximation
errors. Moreover, the true posterior is always known, enabling rigorous evaluation but diverging from
practical settings where ground truth is inaccessible. Despite these caveats, the suite provides a clear,
extensible testbed, probing a number of common failure modes of NPE methods.
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A Notes on ϕ

Bi-Lipschitz condition : The key requirement on ϕ is that it satisfies the doubling condition with
respect to Lebesgue measure. One sufficient condition for this to hold is that ϕ be a bi-Lipschitz
function, where there exist constants C1, C2 such that, for all θ1, θ2,

C1∥θ1 − θ2∥2 ≤ ∥ϕ(θ1)− ϕ(θ2)∥2 ≤ C2∥θ1 − θ2∥2

If this condition holds, then the doubling condition holds with doubling constant C =
(

C2
C1

)D

> 0.
To see this, observe that for such a ϕ, the metric balls satisfy

BEucl(θl, C1R) ⊆ B(θl, R) ⊆ BEucl(θl, C2R).

Then we have

m
(
BEucl(θl, C1R)

)
= CD

1 m
(
BEucl(θl, R)

)
and m

(
BEucl(θl, C2R)

)
= CD

2 m
(
BEucl(θl, R)

)
.

Hence, from
BEucl(θ, C1R) ⊆ Bϕ(θ,R) ⊆ BEucl(θ, C2R),

it follows that

CD
1 m

(
BEucl(θ,R)

)
≤ m

(
Bϕ(θ,R)

)
≤ CD

2 m
(
BEucl(θ,R)

)
,

which shows that m
(
Bϕ(θ,R)

)
scales like RD up to a constant factor.

Deep kernel-based distances : We also propose using the following the deep kernel-based distance
[12]:

dϕ(θ, θ′) = ∥ϕ(θ)− ϕ(θ′)∥2 =
√
kξ(θ, θ) + kξ(θ′, θ′)− 2kξ(θ, θ′) (2)

where the infinite dimensional embedding ϕ(θ) = kξ(θ, ·) ∈ Hk is defined through the following
deep kernel:

kξ(θ, θ′) = [(1− ϵ) k1(ξ(θ), ξ(θ′)) + ϵ] k2(θ, θ′)

for ϵ ∈ (0, 1), RBF Gaussian kernels k1(·, ·) and k2(·, ·) given by ki(x, y) = exp
(

∥x−y∥2

2σ2
i

)
,

and any Lipschitz embedding function ξ : RD → Rm. The kernel kξ(·, ·) is known to be a
characteristic kernel [12], and hence defines a valid distance metric. The following lemma shows that
the kernel-based distance defined in (2) satisfies a local-doubling condition, i.e., for any fixed radius
M > 0, there exists a constant CM > 0 such that for all θ ∈ Θ and all radii r ∈ (0,M ], we have
m(Bϕ(θ,2r))
m(Bϕ(θ,r)) ≤ CM .

Lemma 1. Let ξ : RD → Rm be a Lipschitz continuous function with constant L2. The distance
metric dϕ defined in (2) satisfies the following:

1. (Global Upper Bound) There exists a constant C1 > 0 such that for all θ, θ′ ∈ RD,

dϕ(θ, θ′) ≤ C2 ∥θ − θ′∥ .

2. (Local Lower Bound) For any M > 0, there exists a constant CM > 0 such that for all
θ, θ′ ∈ RD with ∥θ − θ′∥ ≤M ,

dϕ(θ, θ′) ≥ C1,M ∥θ − θ′∥ .

Hence, dϕ is locally doubling as defined above.

We defer the proof to Appendix B.5. The result of above lemma is critical as satisfying the local-
doubling condition makes (Θ, dϕ,m) a Vitali measure space [13, Theorem 3.4.3], which suffices for
the Lebesgue Differentiation Theorem to hold and makes our Theorem 1 applicable.
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B Proofs

B.1 A preliminary lemma

To prove Theorem 1 we first need the following lemma, which adapts standard measure-theoretic
results to the case of a non-Euclidean metric based on an embedding function that satisfies the
doubling condition in Definition 1.
Lemma 2. Let p(θ | x) and q(θ | x) be defined as above, and let ϕ be an embedding function that
induces a metric dϕ on Θ, defined as

dϕ(θ1, θ2) = ∥ϕ(θ1)− ϕ(θ2)∥2.

Further, assume that ϕ satisfies the doubling condition (1) with respect to Lebesgue measure.

Suppose that for almost every θl ∈ Θ, we have∫
B(θl,R)

p(θ | x) dθ =
∫

B(θl,R)
q(θ | x) dθ

for all metric balls B(θl, R), defined as

B(θl, R) = {θ ∈ Θ : dϕ(θ, θl) ≤ R} .

Then p(θ | x) = q(θ | x) almost everywhere (θ).

Proof. Define the difference function

dx(θ) = p(θ | x)− q(θ | x).

The goal is to show that dx(θ) = 0 almost everywhere in Θ using the given integral condition.

Because ϕ is assumed to satisfy the doubling condition with respect to Lebesgue measure, we have
for some C > 0 that

m(Bϕ(θ, 2R)) ≤ Cm(Bϕ(θ,R))
Now since dx(θ) is locally integrable (as it is a difference of probability densities), we apply the
Lebesgue Differentiation Theorem for doubling measures [18], which implies:

lim
R→0

1
m(Bϕ(θ,R))

∫
Bϕ(θ,R)

dx(θ′) dθ′ = dx(θ) for a.e. θ.

However, by assumption, we know that for all θ and all sufficiently small R,∫
Bϕ(θ,R)

dx(θ′) dθ′ = 0.

Since m(B(θ,R)) > 0, dividing by the Lebesgue measure of the ball and taking the limit yields:

dx(θ) = 0 for almost every θ.

Since dx(θ) = 0 a.e., it follows that p(θ | x) = q(θ | x) almost everywhere in Θ.

B.2 Proof of Theorem 1

Let B(θ,R) be a dϕ-ball with radius R. Assume the doubling property: ∃ C ≥ 1 such that

m
(
B(θ, 2R)

)
≤ Cm

(
B(θ,R)

)
∀ θ ∈ Θ, R > 0,

and that ball boundaries have m-measure zero.

Let X be an open subset of Rk with Borel measure µ. Suppose

• p : X → (0,∞) is a continuous probability density;
• (x, θ) 7→ p(θ | x) and (x, θ) 7→ q(θ | x) are continuous in x and belong to L1

loc(Θ) for
every x;
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• for every measurable function θl : X → Θ and every R > 0,∫
X
p(x)

[∫
B(θl(x),R)

(
p(θ | x)− q(θ | x)

)
dθ
]
dx = 0.

Then we show that p(θ | x) = q(θ | x) for µ⊗m-a.e. (x, θ).

Proof. The proof proceeds in two main steps. First, we fix R > 0 and use a measurable selection
argument to show that the inner integral is zero for almost every x. Second, we apply the Lebesgue
Differentiation Theorem to show that the integrand itself must be zero almost everywhere.

Step 1: Show ball integrals are zero for a.e. x. Let dx(θ) = p(θ | x) − q(θ | x). For a fixed
R > 0, define the ball integral

FR(x, θ) :=
∫

B(θ,R)
dx(θ′) dθ′.

The function FR(x, θ) is a Carathéodory function: that is, it is measurable in x for each fixed θ (by
Fubini’s theorem, as dx is continuous in x) and continuous in θ for each fixed x (by the Dominated
Convergence Theorem, as dx ∈ L1

loc and m(∂B(θ,R)) = 0).

Define the pointwise suprema:

S+
R (x) := sup

θ∈Θ
FR(x, θ),

S−
R (x) := sup

θ∈Θ

(
−FR(x, θ)

)
,

GR(x) := sup
θ∈Θ
|FR(x, θ)| = max{S+

R (x), S−
R (x)}.

Since Θ ⊂ RD is separable, let D = {ϑk}k≥1 be a fixed countable dense subset. Because θ 7→
FR(x, θ) is continuous and D is dense, the suprema over Θ are equal to the suprema over D.
Specifically, let S̃+

R (x) := supk≥1 FR(x, ϑk) and S̃−
R (x) := supk≥1(−FR(x, ϑk)). These are

measurable functions, since they are countable suprema of measurable functions, and we have
S+

R (x) = S̃+
R (x) and S−

R (x) = S̃−
R (x) for all x.

Now, we construct measurable ε-maximizing selectors. Fix n ∈ N. Define:

k+
n (x) := min

{
k ≥ 1 : FR

(
x, ϑk

)
≥ S̃+

R (x)− 1
n

}
,

k−
n (x) := min

{
k ≥ 1 : −FR

(
x, ϑk

)
≥ S̃−

R (x)− 1
n

}
.

These minima are well-defined and finite. By the definition of the supremum, for any ε = 1/n > 0,
the set of indices k satisfying the condition is guaranteed to be non-empty. By the well-ordering
principle, a non-empty subset of N has a minimum. The maps x 7→ k±

n (x) are measurable, as the
sets {x : k+

n (x) = k} are formed by measurable comparisons. Thus, the selectors θ+
R,n(x) := ϑk+

n (x)
and θ−

R,n(x) := ϑk−
n (x) are well defined and measurable.

By construction, these selectors satisfy:

FR

(
x, θ+

R,n(x)
)
≥ S̃+

R (x)− 1
n and − FR

(
x, θ−

R,n(x)
)
≥ S̃−

R (x)− 1
n for all x.

Applying the theorem’s hypothesis with θl = θ+
R,n gives:

0 =
∫

X
p(x)FR

(
x, θ+

R,n(x)
)
dx ≥

∫
X
p(x)

(
S̃+

R (x)− 1
n

)
dx =⇒

∫
X
p(x)S̃+

R (x) dx ≤ 1
n

∫
X
p(x) dx.

Similarly, applying the hypothesis with θl = θ−
R,n gives:

0 =
∫

X
p(x)FR

(
x, θ−

R,n(x)
)
dx ≤

∫
X
p(x)

(
−S̃−

R (x) + 1
n

)
dx =⇒

∫
X
p(x)S̃−

R (x) dx ≤ 1
n

∫
X
p(x) dx.
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Since GR(x) ≤ S+
R (x) + S−

R (x) = S̃+
R (x) + S̃−

R (x), we have∫
X
p(x)GR(x) dx ≤

∫
X
p(x)S̃+

R (x) dx+
∫

X
p(x)S̃−

R (x) dx ≤ 2
n

∫
X
p(x) dx = 2

n
.

This must hold for all n, and so we must have
∫

X p(x)GR(x) dx = 0. Since p(x) > 0 and
GR(x) ≥ 0, we must therefore have GR(x) = 0 for p-a.e. x. This means that for p-a.e. x, we have
FR(x, θ) = 0 for all θ ∈ Θ.

Step 2: Apply the Lebesgue Differentiation Theorem. From Step 1, we know there is a set
X0 ⊂ X with p(X0) = 1 such that for any x ∈ X0,

∫
B(θ,R) dx(θ′) dθ′ = 0 for all R > 0 and all

θ ∈ Θ.

The Lebesgue Differentiation Theorem for doubling spaces states that for any function f ∈
L1

loc(Θ,m),

f(θ) = lim
R→0

1
m(B(θ,R))

∫
B(θ,R)

f(θ′) dθ′ for m-a.e. θ.

For any fixed x ∈ X0, the function θ 7→ dx(θ) is in L1
loc(Θ) by hypothesis. Applying the theorem

gives:

dx(θ) = lim
R→0

1
m(B(θ,R))

∫
B(θ,R)

dx(θ′) dθ′ = lim
R→0

0
m(B(θ,R)) = 0

for m-a.e. θ ∈ Θ.

Since this holds for every x ∈ X0 where µ(X \X0) = 0 (as p is a density for µ), we have dx(θ) = 0
for µ⊗m-a.e. (x, θ). This means p(θ | x) = q(θ | x) for µ⊗m-a.e. (x, θ).

Remarks. We conclude with two remarks.

1. Necessity of quantifying over all measurable selectors. The assumption that the inner
integral vanishes for every measurable selector θl : X → Θ is crucial. If the condition held
only for constant maps θl(x) ≡ θ0, it would assert only that the x-average of the localized
integrals vanishes: ∫

p(x)
[∫

B(θ0,R)
dx(θ) dθ

]
dx = 0.

This would allow for cancellations across x and would not imply that the inner integral
vanishes pointwise in x. The logic of the proof requires the freedom to vary the center of
the ball adaptively with x to prevent these cancellations.

2. Continuity in x can be relaxed. The theorem and proof remain valid if the maps x 7→
p(θ | x) and x 7→ q(θ | x) are merely measurable rather than continuous, provided that the
resulting function FR(x, θ) =

∫
B(θ,R) dx(θ′) dθ′ is a Carathéodory function (measurable in

x, continuous in θ). This condition holds under weaker assumptions than continuity, such as
joint measurability of (x, θ) 7→ dx(θ). The continuity-in-x assumption is a straightforward
condition that guarantees this property, which is all that is needed for the measurable
selection argument to succeed. Moreover, the measurability of the set N = {(x, θ) : x ∈
X0, θ ∈ Θc

x}, where Θc
x is the set of non-Lebesgue points for the function dx(θ) = d(x, θ),

follows from the joint measurability of dx(θ).

B.3 Proof of Theorem 2

We first need the following lemma.

Lemma 3. Let (Θ, dϕ) be a metric space, and let θl ∈ Θ be fixed. Define the function

R(θ) = dϕ(θl, θ), θ ∈ Θ.
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Now let q be a probability measure on Θ. For any θ∗ ∈ Θ, define the ball probability rank of θ⋆

under q as
Uq(θ∗) = Pθ∼q

(
R(θ) ≤ R(θ∗)

)
= Pθ∼q

(
dϕ(θl, θ) ≤ dϕ(θl, θ

∗)
)
.

Then, if we also have that θ∗ ∼ q, then the random variable Uq(θ∗) is distributed as Uniform(0, 1),
i.e.,

Pθ∗∼q

(
Uq(θ∗) ≤ u

)
= u, ∀u ∈ [0, 1].

Proof. Define FR as the cumulative distribution function (CDF) of the random variable Rq(θ) =
d(θl, θ), where θ ∼ q, i.e.,

FR(r) = Pθ∼q

(
R(θ) ≤ r

)
.

By definition of U(θ∗), we have

Uq(θ∗) = Pθ∼q

(
R(θ) ≤ R(θ∗)

)
= FR(R(θ∗)).

But by assumption, we have θ⋆ ∼ q. Accordingly, R(θ∗) is itself a random variable drawn from
the distribution whose CDF is FR, it follows from the probability integral transform that for any
localization point θl,

Pθ⋆∼q (U(θ⋆) ≤ u) = u . (3)
Thus, Uq(θ∗) ∼ Uniform(0, 1), completing the proof.

The key observation from Lemma 3 is that the probability mass assigned by p to the ball of this
radius, centered at θl, follows a uniform distribution when θ∗ ∼ p. Thus, if equation (3) (which states
that U(θ∗) ∼ Uniform(0, 1)) holds for all possible choices of θl, then the conditional distributions
p(θ | x) and q(θ | x) must be identical. Intuitively, this is because the process of drawing θ∗ and
measuring probability mass within its corresponding ball implicitly tests equality of mass across all
possible radii in a structured way. If the distributions p and q were different, there would exist some
localization point θl where the resulting uniformity condition fails, revealing a discrepancy in their
induced probability measures.

With this lemma in place, we can now prove Theorem 2.

Proof. (⇒) Suppose that p(Br) = q(Br) for all r ≥ 0. Consider the cumulative distribution function
(CDF) of the distance variable R(θ∗) = d(θl, θ

∗), when θ∗ ∼ p:

Fp(r) = Pθ∗∼p

(
R(θ∗) ≤ r

)
= p(Br).

Similarly, under θ∗ ∼ q, the corresponding CDF is
Fq(r) = Pθ∗∼q

(
R(θ∗) ≤ r

)
= q(Br).

By assumption, these two CDFs are identical, i.e., Fp(r) = Fq(r) for all r. Now, by the definition of
Uq(θ∗),

Uq(θ∗) = Pθ∼q

(
R(θ) ≤ R(θ∗)

)
= Fq(R(θ∗)).

Since Fq = Fp, we obtain
Uq(θ∗) = Fp(R(θ∗)).

From Lemma 3, we know that Fp(R(θ∗)) ∼ Uniform(0, 1) when θ∗ ∼ p, which implies that
Uq(θ∗) ∼ Uniform(0, 1) under θ∗ ∼ p. Thus, the distributions of Uq(θ∗) under p and q must be
identical.

(⇐) Now suppose that Uq(θ∗) ∼ Up(θ∗). Then, for any u ∈ [0, 1],
Pθ∗∼p

(
Uq(θ∗) ≤ u

)
= Pθ∗∼q

(
Uq(θ∗) ≤ u

)
.

Rewriting in terms of the CDFs, this implies
Pθ∗∼p

(
Fq(R(θ∗)) ≤ u

)
= Pθ∗∼q

(
Fq(R(θ∗)) ≤ u

)
.

By the probability integral transform, since Fq(R(θ∗)) ∼ Uniform(0, 1) under both p and q, it
follows that Fq(R(θ∗)) = Fp(R(θ∗)) in distribution. This means that Fp = Fq , implying

p(Br) = q(Br), ∀r.
Thus, the probability assigned to each metric ball is identical under p and q.
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B.4 Proof of Theorem 3

From Lemma 3, we have that Uq(θ∗ | x) follows a uniform distribution when θ∗ ∼ q(θ∗ | x), thus
satisfying

P
U∼Unif(0,1)

[U ≤ α] = P
θ∗∼q(θ∗|x)

[Uq(θ∗ | x) ≤ α] .

Next, define the radius Rθl(x)(α) as follows

Rθl(x)(α) := inf
{
r : P

θ∼q(θ|x)
[θ ∈ Bϕ(θl(x), r)] = α

}
.

Since q(θ | x) is absolutely continuous with respect to the Lebesgue measure, the mapping α 7→
Rθl(x)(α) is a bijection. Additionally, by definition of Uq(θ∗ | x), it follows that

{θ∗ : Uq(θ∗ | x) ≤ α} = Bϕ(θl(x), Rθl(x)(α)).
Combining these observations, we obtain:

d̃(p, q) = sup
θl(·),ϕ,α

∣∣∣∣Ex∼p(x)

[
P

θ∗∼p(θ∗|x)
[Uq(θ∗ | x) ≤ α]− P

θ∗∼q(θ∗|x)
[Uq(θ∗ | x) ≤ α]

]∣∣∣∣
= sup

θl(·),ϕ,α

∣∣∣∣Ex∼p(x)

[
P

θ∗∼p(θ∗|x)

[
Bϕ(θl(x), Rθl(x)(α))

]
− P

θ∗∼q(θ∗|x)

[
Bϕ(θl(x), Rθl(x)(α))

]]∣∣∣∣
= sup

θl(·),ϕ,R

∣∣∣∣Ex∼p(x)

[
P

θ∗∼p(θ∗|x)
[Bϕ(θl(x), R)]− P

θ∗∼q(θ∗|x)
[Bϕ(θl(x), R)]

]∣∣∣∣ = ACLD (p, q)

B.5 Proof of Lemma 1

Proof. Let u = ∥θ−θ′∥2

2σ2
2

and v = ∥ϕ(θ)−ϕ(θ′)∥2

2σ2
1

. Since θ, θ′ ∈ RD, u ≥ 0 and v ≥ 0. The squared
distance is given by

d2
ϕ(θ, θ′) = 2

(
1−

[
(1− ϵ)e−v + ϵ

]
e−u

)
.

Proof of the Global Upper Bound We can rewrite the expression for the squared distance as:

d2
ϕ(θ, θ′) = 2− 2(1− ϵ)e−(u+v) − 2ϵe−u = 2(1− e−(u+v))− 2ϵe−u(1− e−v).

For any z ≥ 0, the standard inequality 1− e−z ≤ z holds. Furthermore, since ϵ ∈ (0, 1), e−u > 0,
and 1− e−v ≥ 0, the second term is non-positive. We can therefore bound the expression:

d2
ϕ(θ, θ′) ≤ 2(1− e−(u+v)) ≤ 2(u+ v).

Substituting the definitions of u and v yields:

d2
ϕ(θ, θ′) ≤ 2

(
∥θ − θ′∥2

2σ2
2

+ ∥ϕ(θ)− ϕ(θ′)∥2

2σ2
1

)
= ∥θ − θ

′∥2

σ2
2

+ ∥ϕ(θ)− ϕ(θ′)∥2

σ2
1

.

By the Lipschitz assumption on ϕ, we have ∥ϕ(θ)− ϕ(θ′)∥ ≤ L2 ∥θ − θ′∥, which implies:

d2
ϕ(θ, θ′) ≤ 1

σ2

(
∥θ − θ′∥2 + L2

2 ∥θ − θ′∥2
)

=
(

1
σ2

2
+ L2

σ2
1

)
∥θ − θ′∥2

.

Taking the square root provides the global upper bound with the constant C2 =
√

1
σ2

2
+ L2

σ2
1

.

Proof of the Local Lower Bound We rewrite the term 1− kξ(θ, θ′):

1− kξ(θ, θ′) = 1−
[
(1− ϵ)e−v + ϵ

]
e−u = (1− e−u) + (1− ϵ)e−u(1− e−v).

Since 1 − ϵ > 0, e−u > 0, and 1 − e−v ≥ 0, the second term is non-negative. This allows us to
bound the expression below:

1− kξ(θ, θ′) ≥ 1− e−u.
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This provides a lower bound on the squared distance:

d2
ϕ(θ, θ′) = 2(1− kξ(θ, θ′)) ≥ 2(1− e−u) = 2

(
1− exp

(
−∥θ − θ

′∥2

2σ2
2

))
.

To establish a linear relationship between dϕ(θ, θ′) and ∥θ − θ′∥, we analyze the function g(z) =
1−e−z

z for z > 0. By L’Hôpital’s rule, limz→0+ g(z) = 1. The function g(z) is continuous and strictly
positive on any compact interval [0, Zmax]. By the Extreme Value Theorem, it must attain a minimum
value cmin > 0 on this interval. Therefore, for all z ∈ (0, Zmax], the inequality 1 − e−z ≥ cmin · z
holds.

Let us restrict our domain to a bounded set where ∥θ − θ′∥ ≤ M for some constant M > 0. This

implies that u = ∥θ−θ′∥2

2σ2 ≤ M2

2σ2 = Zmax. On this domain, we can apply the linear inequality derived
above:

d2
ϕ(θ, θ′) ≥ 2(1− e−u) ≥ 2cminu = 2cmin

∥θ − θ′∥2

2σ2
2

= cmin

σ2
2
∥θ − θ′∥2

.

Taking the square root gives the local lower bound dϕ(θ, θ′) ≥ C1,M ∥θ − θ′∥ with the constant
C1,M =

√
cmin

σ2
, which depends on M through cmin.

This yields the local-doubling condition with constant CM =
(

C2
C1,M

)D

, completing the proof.

C Experiments Details

C.1 Toy Example

We construct a synthetic ground-truth data distribution in R2 by defining a Gaussian mixture model
(GMM) whose components are procedurally placed according to a recursive branching process. We
use the code from paper [11] whose generation process can be found in https://github.com/
NVlabs/edm2/blob/main/toy_example.py. To maintain the completeness of our paper,
we include the generation process here.

Gaussian Mixture Representation

The base distribution is modeled as a weighted sum of multivariate Gaussian components:

p(x) =
K∑

k=1
ϕkN (x | µk,Σk + σ2I),

where:

• ϕk ∈ R+ are normalized mixture weights,
• µk ∈ R2 are the component means,
• Σk ∈ R2×2 are the component covariance matrices,
• σ ∈ R+ where we set σ = 1e− 2 for p(θ | x) and (1 + α) · σ for q(θ | x).

Each component is assigned a weight and covariance that decays with tree depth, producing finer-scale
detail at deeper recursion levels.

Recursive Tree-Structured Composition

The mixture components are positioned according to a recursive tree-like structure:

• Two primary classes (A and B) are generated, each initialized at the same root origin and
with distinct initial angles (e.g., π/4 and 5π/4).

• At each recursion level (up to depth 7), a branch is extended in a given direction, and eight
Gaussian components are placed uniformly along the branch.
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Table 1: Six types of perturbations used to assess the sensitivity of CoLT.
p(θ | x) q(θ | x) Explanation

N (µx,Σx)

N ((1 + α)µx,Σx) Mean Shift: Introduces a systematic bias by shifting the mean.

N (µx, (1 + α)Σx) Covariance Scaling: Uniformly inflates the variance.

N (µx,Σx + α∆) Anisotropic Covariance Perturbation: Adds variability along the
minimum-variance eigenvector of Σx: ∆ = vminv⊤

min.

tν(µx,Σx) Tail Adjustment via t-Distribution: Introduces heavier tails, with
degrees of freedom ν = 1/(α+ ϵ), approaching Gaussian as α→ 0.

(1− α)N (µx,Σx) + αN (−µx,Σx) Additional Modes: q introduces spurious multimodality.

(1− α)N (µx,Σx) + αN (−µx,Σx) N (µx,Σx) Mode Collapse: q loses multi-modal structure.

• Each component’s mean is computed by interpolating along the current direction vector, and
the covariance is anisotropically scaled to align with the branch’s orientation.

• Each branch spawns two child branches recursively, with angles perturbed stochastically to
simulate natural variability.

Component Covariance Structure

The covariance of each Gaussian component is constructed as:

Σ =
(
dd⊤ + (I− dd⊤) · thick2) · diag(size)2,

where d is the normalized direction of the branch, thick controls orthogonal spread, and size
scales with recursion depth.

This construction ensures that components are elongated along the branch direction and narrow
orthogonal to it, producing tree-like density patterns.

C.2 Experiments with perturbed Gaussians

We give further details on the experiments in Section 4. For these benchmarks, we construct a
ground-truth conditional distribution by first simulating latent Gaussian variables with x-dependent
means and variances:

θ̃ ∼ N (µx,Σx), µx = W1x, Σx = |W⊤
2 x| · Σ,

where θ̃ ∈ Rs, W1 ∈ Rs×m, and W2 ∈ Rs×1 are fixed weight matrices with standard normal
entries. The matrix Σ ∈ Rs×s is a fixed Toeplitz correlation matrix, with entries Σij = corr|i−j| and
corr = 0.9 to simulate strong structured correlations.

In all cases we sample conditioning inputs x ∼ N (1m, Im).

C.3 Diffusion Training and Sampling Procedure

Diffusion Model To further evaluate our method in the context of generative posterior estimation,
we construct a benchmark based on a diffusion model. We begin by sampling x ∼ Unif[1.5π, 4.5π]
and defining θ = (x cos(x), x sin(x)), which induces a highly nonlinear and non-Gaussian posterior
structure. We then train a diffusion model to approximate this distribution. During evaluation, we
generate samples via reverse diffusion and treat the output after 20 reverse steps as a notional ground-
truth posterior (Figure 4a)—not because it is the true target distribution, but because it represents
the best available approximation produced by the model. Outputs from earlier steps (20− α) serve
as degraded approximations to this endpoint. This yields a generative-model-based, monotonic
perturbation scheme parameterized by α (Figures 4b and 4c).

Beyond simple rejection, our method provides fine-grained quantitative insight: we use the test
statistic t from Algorithm 2 to measure how close each approximate posterior (from fewer reverse
steps) is to the reference posterior (20-step output). This allows us to quantify posterior degradation
as a function of reverse diffusion progress. As shown in Figure 4d, the test statistic increases
monotonically with α, reflecting growing divergence from the true posterior.

As described in Section 4, we sample x ∼ Unif[1.5π, 4.5π] and define θ = (x cos(x), x sin(x)).
This produces a nontrivial two-dimensional manifold for posterior inference.
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(a) Step = 20 (α = 0) (b) Step = 16 (α = 4) (c) Step = 15 (α = 5) (d) Test statistic t

Figure 4: Posterior estimation using a diffusion model. The output at step 20 is treated as the
ground-truth posterior. Reducing the number of reverse steps results in increasingly degraded
approximations. Our method reflects this degradation with a monotonically increasing test statistic,
indicating sensitivity to model quality.

We generate 32,768 samples to train a diffusion model using 50,000 training epochs and a learning
rate of 1× 10−4. The diffusion model is trained and sampled following the implementation provided
in EDM [19].

For posterior approximation, we set the total number of reverse diffusion steps to 20, treating the
output at step 20 as the ground-truth posterior. To construct approximate posteriors at varying levels
of fidelity, we also record intermediate samples from reverse steps 15 through 19. These intermediate
outputs serve as posterior estimates for evaluation against the step-20 reference.

C.4 Sampling and Training Hyperparameters

In this section, we provide detailed configurations for the data generation process and training
setup used throughout our experiments (see Section 4). We evaluate our method across various
combinations of (dim(x),dim(θ)): (3, 3), (10, 10), (50, 10), and (100, 100). We denote N as the
number of sample pairs {(θi, xi)} drawn from the true joint distribution p(θ | x)p(x), and K as the
number of samples drawn from the estimated posterior q(θ | x) for each conditioning value x.

In the CoLT Full setting, we utilize a distance embedding network ϕ with input dimension equal
to dim(θ) and output dimension set to dim(θ). Although alternative output dimensions for ϕ
may potentially improve performance, we fix the output dimension to dim(θ) to avoid additional
hyperparameter tuning and ensure a fair comparison across settings.

All neural networks in our method (including ϕ, θl and C2ST classifier) are implemented as 3-layer
multilayer perceptrons (MLPs) with 256 hidden units per layer.

The table below summarizes the range of perturbation levels α tested for each experiment type, along
with the sampling and training hyperparameters for both CoLT and C2ST.

Perturbation Alphas N K #Eval CoLT Epochs CoLT LR C2ST Epochs C2ST LR

Mean Shift (0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) 100 500 200 25 1e−5 1000 1e−5

Covariance Scaling (0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4) 100 500 200 1000 1e−5 1000 1e−5

Anisotropic Perturbation (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) 100 500 200 1000 1e−5 1000 1e−5

Kurtosis Adjustment via t-Distribution (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) 100 500 200 1000 1e−5 1000 1e−5

Additional Modes (0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4) 100 500 200 1000 5e−5 1000 5e−5

Mode Collapse (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) 100 500 200 1000 1e−5 1000 1e−5

Blind Prior — 100 500 200 1000 1e−3 1000 1e−5

Tree (Toy Example) (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) 1000 100 200 5000 1e−5 5000 1e−5

Diffusion (0, 1, 2, 3, 4, 5) 1000 200 200 1000 1e−5 1000 1e−5

Table 2: Experimental configurations for each type of posterior perturbation. Columns specify the
perturbation type, tested α values, sample counts, evaluation batch size, and training hyperparameters
for CoLT and C2ST methods.

C.5 Curvature Transformation and Calculation

In Section 4, we introduce the concept of curvature in the parameter space. Specifically, we construct
a transformation network to increase the curvature of θ. The network consists of a fully connected
layer (‘torch.nn.Linear‘) with input dimension equal to the dimension of θ, a hidden layer of
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size 128, followed by an element-wise sine activation, and another linear layer mapping from 128 to
the original dimension of θ. The weights of the linear layers are initialized using PyTorch’s default
random initialization.

To compute the curvature, we apply the principal curve algorithm from Hastie and Stuetzle [20]. The
resulting principal curves are shown in Figures 2a and 2c.

We observe that before applying the curvature-inducing transformation, the principal curve closely
resembles a straight line, with a total absolute curvature of approximately 62, as expected for a highly
correlated Gaussian distribution. After applying the transformation, the resulting parameter space
exhibits significantly increased curvature, with a total absolute curvature of around 400.

This transformation provides an effective mechanism for inducing curvature in θ space, allowing us
to study the performance of methods under non-Euclidean geometries.

D Additional Experimental Results

D.1 Tree Task

We present additional visualizations for the toy tree-structured posterior under various levels of
perturbation α. As α increases, the sampled points become increasingly dispersed and less con-
centrated around the underlying structure. The shaded region indicates the true posterior manifold
corresponding to α = 0.

(a) α = 0 (b) α = 0.5 (c) α = 1.0 (d) α = 1.5 (e) α = 2.0

(f) α = 2.5 (g) α = 3.0 (h) α = 3.5 (i) α = 4.0

Figure 5: Tree samples across varying α values.

The statistical power for different methods, including CoLT Full and CoLT ID, is shown in Figure 6.

Figure 6: Statistical power for tree-structured tasks across all evaluated methods, including CoLT
variants.
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D.2 Perturbation

In this section, we present additional results across varying dimensions of (x, θ) for different tasks,
evaluated under multiple perturbation magnitudes α in the non-curvature setting. The results demon-
strate the robustness of CoLT and baseline methods under a wide range of perturbations.

Specifically, we show:

• Mean shifts: Figure 8

• Covariance scaling: Figure 9

• Anisotropic covariance perturbation: Figure 10

• Kurtosis adjustment via t-distribution: Figure 11

• Additional modes: Figure 12

• Mode collapse: Figure 13

D.3 Blind Prior

In addition to the above perturbation strategies, we also include a Blind Prior setting, where the
estimated posterior ignores the input x entirely: q(θ | x) = p(θ), i.e., the posterior estimate is simply
the prior distribution of θ. This scenario serves as an important pathological case, as it has been shown
to cause both SBC and TARP (with random reference points) to fail—these methods are unable to
detect the distributional discrepancy between q(θ | x) and the true posterior p(θ | x). By contrast, we
demonstrate that our proposed method remains sensitive and effective even in this setting.

Blind Prior In Table 3, we present results under the Blind Prior setting, where the estimated
posterior ignores the conditioning input and is set as q(θ | x) = p(θ). This case is particularly
challenging, as both TARP and SBC fail to detect the resulting distributional discrepancy.

In contrast, our proposed methods—CoLT ID and CoLT Full—successfully detect this violation
across all dimensional settings. Notably, while C2ST is effective in low dimensions, its power
deteriorates significantly as the dimensionality increases. Our methods maintain high power even
in high-dimensional regimes, demonstrating their robustness and effectiveness in detecting subtle
posterior mismatches.

Method x = 3, θ = 3 x = 10, θ = 10 x = 50, θ = 10 x = 100, θ = 100

CoLT ID 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
CoLT Full 0.975 ± 0.014 0.778 ± 0.222 0.693 ± 0.307 0.452 ± 0.260
C2ST 1.000 ± 0.000 1.000 ± 0.000 0.847 ± 0.038 0.122 ± 0.007
SBC 0.052 ± 0.004 0.028 ± 0.007 0.048 ± 0.007 0.040 ± 0.015
TARP 0.053 ± 0.004 0.047 ± 0.012 0.035 ± 0.009 0.068 ± 0.004

Table 3: Statistical power (mean ± stderr) under the Blind Prior setting for each method, evaluated
across increasing dimensions. Only CoLT variants consistently maintain high power as dimensionality
increases.

In addition to reporting the statistical power of each method in Table 3, we provide their corresponding
Type I error rates in Table 4. Since the p-value threshold is set to 0.05, all methods successfully control
the Type I error within the expected range, indicating that none falsely reject the null hypothesis
under the correctly specified posterior.

Method x = 3, θ = 3 x = 10, θ = 10 x = 50, θ = 10 x = 100, θ = 100

C2ST 0.0767 ± 0.0044 0.0433 ± 0.0067 0.0200 ± 0.0050 0.0233 ± 0.0073
CoLT Full 0.0400 ± 0.0076 0.0400 ± 0.0029 0.0517 ± 0.0109 0.0467 ± 0.0093
CoLT ID 0.0567 ± 0.0093 0.0550 ± 0.0076 0.0467 ± 0.0044 0.0433 ± 0.0017
SBC 0.0400 ± 0.0104 0.0350 ± 0.0000 0.0350 ± 0.0000 0.0350 ± 0.0087
TARP 0.0367 ± 0.0093 0.0383 ± 0.0017 0.0517 ± 0.0109 0.0433 ± 0.0017

Table 4: Type I error (mean ± stderr) under the Blind Prior setting for each method, evaluated across
increasing dimensions.
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D.4 Diffusion Sampling Results

In this section, we provide additional visualizations related to the diffusion-based posterior approxi-
mation. Figure 7 illustrates the underlying data manifold used to train the diffusion model, as well
as the sampling results from reverse steps 15 through 20. These samples allow us to visualize the
quality of intermediate outputs as the reverse process progresses.

We also include a power and Type I error curve that quantifies how the performance of our method
changes with respect to the number of reverse steps. As expected, the statistical power increases as
the number of reverse steps approaches 20, while Type I error remains well-controlled.

(a) Training Data (b) Step 20 (c) Step 19 (d) Step 18

(e) Step 17 (f) Step 16 (g) Step 15 (h) Power and Type I Error

Figure 7: Visualization of the diffusion-based posterior sampling process. (a) shows the data manifold
used for training. (b)–(g) show sampled distributions at various reverse diffusion steps (15 to 20),
where step 20 is treated as the ground truth. (h) plots the statistical power and Type I error as a
function of the step gap from the final posterior.

E Ablation Studies

In this section, we present additional ablation experiments to validate the design choices and examine
the robustness of our proposed method. These studies explore the impact of different architectural and
algorithmic components, providing a more comprehensive understanding of the method’s performance
across the design space.

Model Capacity. As long as the localization and embedding networks possess sufficient represen-
tational capacity, we expect them to achieve comparable performance. As detailed in Section C, we
employ 3-layer MLPs with 256 hidden units and observe consistent results across datasets of varying
dimensionality and distributional complexity. This indicates that, given adequate model capacity,
performance remains stable and robust.

Figure 8: Mean Shift
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Figure 9: Covariance Scaling

Figure 10: Anisotropic Covariance Perturbation

Figure 11: Kurtosis Adjustment via t-Distribution

Figure 12: Additional Modes

Figure 13: Mode Collapse
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To further assess the effect of network depth, we conducted an ablation study under mean-shift
perturbations with α = 0.2 and α = 0.3. The results, presented in Table 5, show that reducing the
number of layers slightly weakens statistical power, while deeper networks yield marginal gains.
Nevertheless, the overall performance remains within a similar range, suggesting diminishing returns
beyond moderate depth. Although a full architecture search is beyond our current scope, we expect
further improvements with more refined architectural design.

Hidden Layer = 2 Hidden Layer = 3 Hidden Layer = 4

α = 0.2 (CoLT-Full) 0.61 0.63 0.91
α = 0.3 (CoLT-Full) 0.88 0.89 1.00

Table 5: Effect of MLP depth on the CoLT-Full performance under mean-shift perturbation with
different α. Increasing the number of hidden layers provides slight improvements, while maintaining
overall consistency.

Divergence Functions. We conduct additional experiments using various divergence objectives and
find that training remains stable across all variants, with the loss consistently decreasing over time.
For instance, as shown in Table 6, in the kurtosis adjustment task under t-distribution perturbations
with α = 0.2 and α = 0.3, the Sinkhorn divergence achieves the best performance. We attribute this
to its smoother loss landscape, which facilitates optimization [16].

Sinkhorn MMD Wasserstein KS

α = 0.2 0.13 0.08 0.09 0.10
α = 0.3 0.27 0.14 0.20 0.18

Table 6: Statistical power under different divergence objectives for the kurtosis adjustment task with
t-distribution perturbations. The Sinkhorn divergence consistently outperforms others, likely due to
its smoother and more optimization-friendly loss landscape.
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