Under review as a conference paper at ICLR 2026

LILMS AS SCALABLE, GENERAL-PURPOSE SIMULA-
TORS FOR EVOLVING DIGITAL AGENT TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Digital agents require diverse, large-scale Ul trajectories to generalize across real-
world tasks, yet collecting such data is prohibitively expensive in both human
annotation, infra and engineering perspectives. To this end, we introduce UI-
SIMULATOR, a scalable paradigm that generates structured Ul states and transitions
to synthesize training trajectories at scale. Our paradigm integrates a digital world
simulator for diverse Ul states, a guided rollout process for coherent exploration,
and a trajectory wrapper that produces high-quality and diverse trajectories for agent
training. We further propose UI-SIMULATOR-GROW, a targeted scaling strategy
that enables more rapid and data-efficient scaling by prioritizing high-impact tasks
and synthesizes informative trajectory variants. Experiments on WebArena and
AndroidWorld show that UT-SIMULATOR rivals or surpasses open-source agents
trained on real Uls with significantly better robustness, despite using weaker
teacher models. Moreover, UI-SIMULATOR-GROW matches the performance
of Llama-3-70B-Instruct using only Llama-3-8B-Instruct as the
base model, highlighting the potential of targeted synthesis scaling paradigm to
continuously and efficiently enhance the digital agents.

LLM Pre-Training Corpus (» UI-Simulator: LLMs as Scalable Simulators For Digital Agent Training
A
Wiki LLM World Simulator Guided Rollout Process Trajectory Wrapper
A
5 Action: Click [1412] Control ~ Control Add Control in
W& A 0\ ToGesk First Steps to A_AAA
, Sample Diverse, ~ =
Structural Code Procedural Knowledge Ul Frontend Code ‘ Valid Traj. ction ction
: - E Remain the Last Wrap |
Ne— gf"fmlt‘":ﬂ‘%' Overall User Task Instruction
i 1 ial wol A A
[©) LLMs internally learns to simulate Ul digital world! World Model Simulate Random Astions Gonditionsd Step Thoughts

& Ul-simulator (& VI-Simulator

(UI-Simulator Performance Highlight

-
Netay S¥nara . - /
‘ Traj. From Real-World Env. Trej #

lator’s fi

7/8B-size open-source
superior performance

Better performance when
using simulated envs

Stronger when scaling

Given UI-Sii
states, can we

in g ing diverse Ul
ize data to 2 Ul-simulator-Grow
LLM agent improvement? LI B i »/ UI-Si -Grow Y

D
I . * :
. . " & VI-Simulator
/" UI-Simulator-Grow Performance Highlight ‘ » & UI-simulator (More Traj.) t—’e ’

Traj. #
Competitive performance
with 70B-size models

Better performance while

Improve more rapidly than
with higher data efficiency

standard scaling

Figure 1: Overview and performance highlights of UI-SIMULATOR and UI-SIMULATOR-GROW.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as the backbone of digital agents that follow user
instructions and interact with diverse User Interface (UI) environments to accomplish complex tasks,
such as daily web and mobile navigation (Deng et al., 2023; Koh et al., 2024; Zhou et al., 2024)
and computer use tasks (Xie et al., 2024). A persistent bottleneck in training LLMs to become
strong digital agents is the scarcity of large-scale, high-quality UI environment training trajectories.
Collecting such data demands extensive human effort: for instance, Xie et al. (2024) report that

Under review as a conference paper at ICLR 2026

designing 360+ realistic computer-use tasks, which usually involve long, complex sequences of Ul
actions, requires more than 1,800 human hours. This cost severely limits the scalability of agent
development and has sparked interest (Ou et al., 2024; Murty et al., 2024; Sun et al., 2024; Pahuja
et al., 2025) in automatic synthesis of training trajectories.

When applying the automatic trajectory synthesis, what factors could significantly impact performance
of the trained agent policies across different Uls? Motivated by Cobbe et al. (2020) and Kimi-
K2 (Kimi et al., 2025), we argue that environment diversity would be a chief component, as exposing
an agent to a wide variety of Ul environments would increase its robustness and generalizability to
unfamiliar tasks at test time. However, from infra and engineering aspects, deploying parallel real UL
environments faces severe bottlenecks due to high resource demands, network instability, and the
lack of native distributed support (Lai et al., 2025).

We notice that world models which model the environment states and their transitions (Munro, 1987,
Ha & Schmidhuber, 2018) may offer a promising solution. If the world models enable the generation
of diverse synthetic Ul states, it will allow digital agents to immerse themselves in more diverse
Ul scenarios, enable richer rollouts and achieve stronger generalization to unseen apps and layouts.
How can such digital world models be constructed? We argue that digital world models can be built
on LLMs, as pre-training on front-end code and procedural knowledge makes them well-suited to
synthesize realistic Ul states and transitions triggered by user actions.

In this paper, we introduce UI-SIMULATOR, a scalable UI trajectory synthesis paradigm for training
digital agents powered by an LLM-based digital world simulator. Given summaries of prior Ul states
and a next action, our digital world simulator generates future Ul states in a hierarchical format
without any additional fine-tuning. Each Ul state encodes textual content, spatial coordinates, and
dynamic attributes (e.g., focus status), organized into an accessibility tree structure that captures
hierarchical relationships among regions and elements. To collect high-quality trajectories with UI-
SIMULATOR, we run a step-wise guided rollout process where a teacher agent explores Uls generated
by the world simulator under step-wise task control that prevents incoherent actions and promotes
diverse, context-grounded behavior conditioned on prior actions and current state. Finally, a trajectory
wrapper turns the rollouts into available training trajectories with user instructions, ground-truth UI
actions, and step-wise reasoning.

Beyond simply blindly scaling up trajectory sizes with UI-SIMULATOR scaling, we explore how
to strategically and efficiently synthesize data to accelerate LLM agent improvement. We introduce
UI-SIMULATOR-GROW, a targeted scaling paradigm that achieves faster gains using fewer but more
contributive trajectories. At each iteration, UI-SIMULATOR-GROW selects target tasks that offer
the greater learning potential based on teacher-forcing loss signals from dynamically constructed
validation sets, and synthesizes diverse trajectory variants to guide the next training iteration.

We evaluate UI-SIMULATOR on two widely used benchmarks, WebArena (Zhou et al., 2024) and
AndroidWorld (Rawles et al., 2024), which cover web and mobile UI domains. UI-SIMULATOR
achieves very competitive performance among open-source agents of comparable model size. No-
tably, UI-SIMULATOR is solely used to synthesize training resources with a weaker teacher model,
GPT-40-mini, whereas prior methods rely on the more powerful GPT—-4o0 teacher model. We
also find that UI-SIMULATOR yields greater robustness than other baselines when evaluated on
perturbed UI environments, and higher adaptability given a limited amount of experience on test
environment. Moreover, UI-SIMULATOR even outperforms the variants trained directly on real
downstream environments using the same trajectory synthesis pipeline. Further, our targeted scal-
ing paradigm UI-SIMULATOR-GROW using only L1ama-3-8B-Instruct base model matches
Llama-3-70B-Instruct, and drives steeper performance gains on WebArena using only 66%
of the original training trajectories, demonstrating significantly improved data efficiency.

2 RELATED WORKS

World Models. Extensive prior work has explored learning dynamics models and using them to
train decision-making policies (Werbos, 1987; Munro, 1987; Ha & Schmidhuber, 2018). Recently,
the structural consistency of videos across tasks, environments, and embodiments has fueled progress
in large-scale video pretraining for world models (Hafner et al., 2020; OpenAl, 2024; Parker-Holder
et al., 2024). LLMs have also emerged as potential world models due to their rich encoding of

Under review as a conference paper at ICLR 2026

physical and textual knowledge from massive corpora. Hao et al. (2023); Gu et al. (2024); Chae
et al. (2025) explore the use of LLMs as both reasoning agents and inference-time world models
that proactively identify optimal actions. In our paper, we emphasize more scalable, high-quality
Ul trajectory synthesis and investigates the broader potential of digital world simulation for agent
training. While prior work such as Fang et al. (2025); Gao et al. (2025) also utilizes LL.Ms as world
models for agent training, our approach emphasizes greater efficiency of building digital simulators.
Instead of training a dedicated world model, which can be costly due to the need for large-scale data,
we directly leverage the LLM’s prior knowledge, requiring little to no experience from downstream
task environments. Moreover, our method supports a broader domain scope, extending beyond web
interfaces to include mobile Uls. More importantly, we also introduce a targeted scaling paradigm
that efficiently synthesizes the most contributive trajectories at each iterations, enabling faster agent
improvement with significantly fewer resources.

Synthetic Data for Digital Agent Training. To overcome the bottleneck of limited high-quality
human-annotated UI trajectories, recent efforts focus on scalable synthesis of training data for digital
agents. Synatra (Ou et al., 2024) and AgentTrek (Xu et al., 2025) address this challenge by converting
indirect human-readable knowledge (e.g., web tutorials and manuals) into direct task demonstrations,
enabling large-scale supervision without manual annotation. NNetNav (Murty et al., 2024), OS-
Genesis (Sun et al., 2024), InSTA (Trabucco et al., 2025), and Explorer (Pahuja et al., 2025) adopt
unsupervised approaches that autonomously explore real-world websites and retroactively annotate
action sequences with suitable instructions. Different from these methods, which rely solely on prior
experience in real digital environments, UI-SIMULATOR leverages an LLM-based digital world model
to simulate diverse, plausible, and previously unseen UI states which enable broader generalization
and more robust agent training.

3 DIGITAL WORLD MODELS IN UI-SIMULATOR

In this section, we introduce how to build a digital world simulator fueled by LLMs in UI-SIMULATOR
trajectory synthesis paradigm. The simulator construction process can be applied to a variety of
digital and even non-digital agent tasks.

3.1 FORMULATION

We consider the task of simulating UI environment dynamics with LLMs to support agent training.
LLMs can serve as the foundation of these simulators. Most digital UI environments, including web,
mobile, and computer, can be represented as structured textual accessibility trees. Pre-training on
front-end code and procedural knowledge makes LLLMs suitable as a backbone model to synthesize
reasonable Ul states and state transitions triggered by user actions.

Let s; denote the full UI environment state at timestep ¢, o; be the corresponding observation visible
to the agent, and a; be the corresponding action taken by the agent. Each element e C s; is associated
with a bounding box bbox(e) = (2%, Toax> Yain» Yoax)» FEPresenting its position on the page. The
environment dynamics are governed by a transition function s, 11 = T (s, a;), where T is either
the LLM used for digital world simulator My or rule-based transition function. The agent then
receives a new observation o;,.1, computed by extracting the visible Ul elements from s;; based on

the positions (see §A).

3.2 (RETRIEVAL-FREE) SIMULATION

To bridge the gap between our digital world simulation and real-world Ul transition, we design
a hybrid approach that considers rule-based and model-based transitions. Concretely, for most
UI actions, our framework empowers the LLM M\ to generate realistic and diverse next-state
transitions, serving as the core engine behind the simulator’s ability to produce valid and imaginative
UI states. The transition follows a multi-step pipeline that guides the world simulator to anticipate
outcomes, infer coherent and diverse next states, and render them into a structured format.

Predict an Overview of the Next State. The first step in modeling the effect of an action is to
generate a high-level overview of the next state, conditioned on the current state and the selected

Under review as a conference paper at ICLR 2026

LLM World Simulator

() Retrieval-Free Simulator () Retrieval-Augmented Simulator

) Few Pri
Action: Click [1412] Action: Click [1412] Exepv;rier:\c:;re

Generate Creative Next State Generate Creative Retrieve The Most Relevant

Next State Ul for Next State Synthesis

Predict Next State Predict Next State With Limited Amount of
Without Any References Prior Experience in Test Env.

Figure 2: Overall process of how the retrieval-free/-augmented simulators predict the next UI state.

action. For example, if the current state is a shopping website and the current action is typing the
term sneakers into the search box and presses enter, the predicted overview of the next state would
be, “a search results page for the keyword sneakers”.

Generate Rich Draft in Natural Language. Based on the predicted overview, the LLM generates
diverse and semantically rich content in natural language to populate the simulated webpage. The
output of this step is intentionally unstructured and unconstrained by a fixed format, which encourages
expressiveness and richness. The generated draft includes detailed descriptions of each element’s
attributes, such as the element’s tag and content description, but without position information. For
instance, a draft for a Reddit thread page might contain structural sections such as a heading section
and a navigation section, as well as informative sections including the thread title, interaction area
(e.g., upvote and comment buttons), and the main body of the post. This organization helps produce
realistic and contextually rich simulated UI states in the next step.

Convert Unstructured Draft into Structured Format. We treat the LLM as a style transfer model
that converts the unstructured natural language draft into a well-defined structured format, which
can be directly used as training states in agent trajectories. During this process, coordinates are also
automatically assigned to each UI element to complete the specification of s, 1.

Note that some actions do not result in a completely new page but rather alter the view of the current
state, e.g., a scroll action reveals content initially off-screen. To simulate deterministic actions
with relatively fixed outcomes, we adopt rule-based transitions. See Appendix C for details.

3.3 RETRIEVAL-AUGMENTED SIMULATION

A common and realistic way to evaluate agent capability is by assessing how quickly it can adapt
to a new test environment after limited experiences. Beyond the setting where no prior knowledge
about the test environment is available, we also consider scenarios where a small amount of the
test environment experience is known. For this scenario, we also introduce retrieval-augmented
simulation, which conditions UI generation on limited experience from the test target environment.
Compared to relying solely on the LLM world simulator’s internal knowledge, this approach allows
the world simulator to generate Ul environments that not only resemble the target domains but also
support a diverse range of tasks grounded in those environments. See Appendix D for more details.

4 SCALABLE SYNTHETIC TRAINING TRAJECTORY COLLECTION IN
SIMULATED WORLD

In this section, we detail how LLMs are used to autonomously and continuously explore the digital
world simulated by the LLM-based world model, generating high-quality training trajectories through
guided rollouts and a final trajectory wrapper.

4.1 OVERVIEW AND FORMULATION

We formulate our data collection process in two stages. The first stage is an instruction-free rollout
process, where a teacher agent interacts with the LLM-based digital world simulator to generate
synthetic trajectories without conditions on any predefined user instruction GG. This goal-free setup

Under review as a conference paper at ICLR 2026

allows more flexible and executable trajectory synthesis unconstrained by specific task types. At
each timestep ¢, given the current environment state s;, observation o, and prior action history H; =
[ag, a1, ..., a;—1], the teacher agent Mrescher Samples the next action as a; ~ Mreacher(0t, Ht). The
environment then transitions to the next state sy via the world simulator LLM M prediction
and deterministic static rules. The teacher continues the rollout until it determines that a semantically
coherent task has been completed. In the end, we retrospectively derive a user task instruction G
that summarizes the intent underlying the completed trajectory. Each collected trajectory is then
represented as 7 = [o0g, ag, 01, a1, . .., 0T, ar], where T is the trajectory length.

Scaling the collection methods across multiple environments and teacher rollouts yields a large,
diverse training dataset for downstream UI agent policy learning. However, this procedure still
leaves two critical questions: 1) How can we ensure both diversity and validity of the trajectories
generated without explicit user instructions? 2) How can we generate plausible and goal-consistent
user instructions G that accurately reflect the completed trajectories? To this end, we propose a
step-wise guided rollout process and a final trajectory wrapper to address these challenges.

4.2 STEP-WISE GUIDED ROLLOUT PROCESS

We notice that without proper guidance for each rollout step, LLMs often exhibit biased behavior,
leading to homogeneous tasks and trajectories. To mitigate the bias and increase the diversity and
quality of our training set, we introduce a step-wise guided rollout process which proposes task
controls to encourage exploration towards diverse yet reasonable directions. The pipeline involves
the following steps (See more details in Appendix L):

Step-Wise Task Control Proposal. At first we prompt the teacher agents to envision common daily
tasks users might perform based on the initial state, regarded as first-step task control. Specifically,
given an initial state sg, we prompt the M re,cner to propose a high-level task description, referred to
as the mentioned fask control, co = Meacher(S0). For example, if s¢ is the home page of a shopping
website, some examples of cq are “Search for a certain product” or “Navigate to my account page”.
When the actions related to first-step control were finished, the second-step control is updated based on
the current observation, and this process continues iteratively. In general, suppose the trajectory just
reaches its ¢-th step, under the i-th control. We define a boolean function Done(c¢;) € {True, False}
that indicates whether the current control ¢; has been completed, which is judged by Meacher- The
control update rule is given by:

c; = ./\/lTeacher(st,), if Done(c;—1) = True.

For example, after the Done function verified that the first-step control “Navigate to my account
page” on the shopping website is completed, the proposed next-step control on the new My Account
page in the shopping domain, could be generated as “Check out my order history”, “Modify my
addpress information”, etc. This iterative goal proposal enables complex tasks to be compiled based
on semantically meaningful sub-goals.

Thought & Action Generation. Under the current step’s task control ¢; and prior rollout history
H;, the teacher agent M eycner 1S also prompted to produce its internal reasoning thought r;, along
with an action a; and the corresponding step summary h; in a CoT manner. Each thought provides
a justification or plan for why the action is appropriate, and is recorded in the rollout history along
with the step summary and action, r¢, as, ht ~ Mreacher(0t, ¢is Ht), Hep1 = Hy U [r4; ag; he, where
; indicates concatenation. To avoid endless rollouts, we allow M eacher to autonomously decide when
to terminate the trajectory. That is, the agent will generate a STOP action if it considers the task as
completed, based on the current state and task control.

4.3 TRAJECTORY WRAPPER

The trajectory wrapper is designed to transform raw rollout trajectories into high-quality instances by
inferring valid user instructions and reconstructing a coherent, step-by-step reasoning process. Since
the rollout process is initially not guided by an explicit user instruction, in our trajectory wrapping
process, we first use a task summarizer to condense the agent’s actions into a concise description of
what was accomplished and then further convert it as the final user instruction for the entire trajectory,
denoting as GG. To align the trajectory’s reasoning with this synthesized instruction, we then ask the

Under review as a conference paper at ICLR 2026

teacher agent Meycpe, to rewrite and refine their thoughts, ensuring they are well-conditioned on the
newly generated instruction and reflect the agent’s internal decision-making.

Besides, reasoning ability is often a critical component in agent tasks, e.g., tasks like “Tell me the
most recent canceled order in the order history.” To support this capability, we allow M eacper t0
insert intermediate reasoning thoughts when it deems such reasoning necessary or beneficial for
conducting information query or analysis in the current Ul state. In the end, we filter out low-quality
trajectories based on the criteria: 1) actions must target valid elements and lead to meaningful state
changes; and 2) the action mentioned in each step’s reasoning should match the action actually taken.

5 UI-SIMULATOR-GROW: UI-SIMULATOR-POWERED TARGETED SCALING

In §4, we introduced UI-SIMULATOR for synthesizing diverse training trajectories. Rather than
blindly increasing trajectory volume, we also explore how to strategically and efficiently scale to ac-
celerate agent improvement. We propose UI-SIMULATOR-GROW, a UI-SIMULATOR-empowered
targeted scaling paradigm that achieves faster gains with fewer synthesized trajectories.

UI-SIMULATOR-GROW iteratively identifies which tasks, if synthesized at the current stage, would
most effectively enhance agent performance, and generates diverse trajectories for those tasks and
their variants in preparation for the next training phase. In the first iteration, UI-SIMULATOR-
GROW collects an initial batch of trajectories following the procedure in §4 as UI-SIMULATOR. In
subsequent iterations, it automatically selects target tasks based on dynamically updated validation
signals, synthesizes relevant trajectories, and applies continual learning to ensure steady performance
gains. We introduce this in detail as follows.

Target Task Selection. Target tasks for the next training iteration must satisfy the criteria: The
tasks must be neither trivial for the current agent to solve, nor beyond the agent’s present capabilities.
Tasks the agent is already good at will offer limited learning signal, while tasks that are too hard
may not lead to meaningful progress. We identify such target tasks by measuring the teacher-forcing
loss of a teacher agent Me,cner ON the current validation set. Specifically, for each step, we treat
the teacher’s prediction as ground truth, compute the cross-entropy loss against the student agent’s
prediction, and average the loss over all steps for the tasks. Tasks are then ranked by loss, and those
within the 25%—-75% percentile range are selected as targets to filter excessively easy or hard tasks.
See more cases in Appendix G.

As the agent improves after each iteration, the validation set is also updated to reflect the agent’s
evolving capabilities. In the first iteration, it is an independent batch of tasks synthesized in the
same way as the initial training set. For later iterations, we consider two construction strategies —
Strategy 1: The validation set is composed entirely of a split from the newly synthesized data for
the upcoming iteration; Strategy 2: The validation set includes 50% of trajectory variants from the
previous iteration’s target tasks and 50% from new tasks. Both strategies aim to promote continual
improvement and prevent future iteration evaluation from overfitting to earlier iterations.

Synthesizing Diverse Target Task Trajectory Variants. After identifying target tasks that can
effectively challenge the agent, we synthesize additional trajectories focused on those tasks. One
strategy we adopted is lightweight task rewriting, where the task instruction is slightly modified
without changing its core structure or logic. The corresponding environment states, thoughts, and
actions are adjusted accordingly, while preserving the overall reasoning flow. For example, a selected
task like “search running shoes” might be rewritten as “search slippers”. Since the task logic remains
consistent, the Ul states and actions (e.g., entering a query, clicking a result) are similarly structured.
We prompt the LLLM to maintain the task’s action types and flow, modifying only content-specific
elements in the Ul states such as product names. This ensures meaningful variation while preserving
alignment with the agent’s learning objectives.

Continual Learning. As UI-SIMULATOR-GROW continuously incorporates new synthesized
training trajectories through iterations, a key challenge is adapting the agent policies without forgetting.
We address this with continual learning (Biesialska et al., 2020), focusing on replay methods, a widely
used technique that revisits selected tasks from prior training stages.

Under review as a conference paper at ICLR 2026

Table 1: Overall success rate (SR) on the WebArena and AndroidWorld test sets. << indicates
methods with substantially less exposure to the real downstream test environments.

Models Teacher Agents Train Under Real Env.? WebArena SR (%) AndroidWorld SR (%)
Base Open-Source LLMs and Proprietary LLMs
Llama-3-8B-Instruct X 2.34
X
X
X
X
X
Qwen-2.5-7B-Instruct X 3.94 0.0
Qwen-2-VL-7B X - 5.0
X
X
X
Digital Agent Training Data Synthesis Baselines
AgentFlan N/A v 4.68
NNetNav Llama-3.1-70B v 4.80
Synatra GPT-4-turbo v 6.28
OS-Genesis GPT-40 v 6.16 9.1
GUIMid (Post-Train) N/A v 6.20 9.0
UI-SIMULATOR-Series Variants
UI-SIMULATOR-F GPT-40-mini X 6.28 8.6
UI-SIMULATOR-R GPT-40-mini V(<) 6.40 12.9
UI-SIMULATOR-GROW-R GPT-40-mini V(K<) 7.14 13.4

Following Dynosaur (Yin et al., 2023), we adopt a replay strategy that selects the most represen-
tative tasks from the previous iteration. Given NN tasks from the prior iteration, we use Sentence
Transformer (Reimers & Gurevych, 2019) based on RoBERTa-large (Liu et al., 2019) to encode task
instructions into a matrix I, € RN where d is the embedding dimension. We then compute cosine
similarities: S, = cos_sim(1,, I,,) € RN*V. Tasks with the top row sums in S,,, are representative
and selected for replay.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Evaluation Benchmarks. We evaluate the LLM agents trained with UI-SIMULATOR on two
benchmarks across web and mobile domains: WebArena, which contains 8§12 complex yet realistic
web navigation tasks; and AndroidWorld, which consists of 116 challenging daily mobile usage
tasks. We report the success rate (SR) across all tasks. The temperature for model inference is set
to 0.6; preliminary experiments suggest that varying the temperature does not significantly affect
performance. Note that for a fair comparison, we reproduce and evaluate those methods under the
original WebArena evaluation settings', instead of BrowserGym or any lite versions.

Digital World Simulation, Trajectory Collection and Agent Training. We use GPT-40-mini
for both state simulation and guided rollout. For WebArena, we train our digital agents and base-
line agents using Llama—3-8B-Instruct as the base model. For AndroidWorld, we choose
to use Qwen-2.5-7B-Instruct due to its extended context length support beyond 8192 to-
kens, a common requirement in AndroidWorld which exceeds the maximum context length of
Llama-3-8B-Instruct. More details are discussed in Appendix E and I.

6.2 OVERALL PERFORMANCE

Results are presented in Table 1. We denote the UI-SIMULATOR variants without and with retrieval-
augmented simulation as UI-SIMULATOR-F and UI-SIMULATOR-R, respectively.

UI-SIMULATOR-F. We observe that even without exposure to real-world test environments, training
solely on LLM-simulated environments can significantly enhance its base model’s performance. This
is particularly evident on AndroidWorld, where the success rate increases from 0% to 9%. UI-
SIMULATOR-F even outperforms OS-Genesis on WebArena, which is trained using trajectories

'The same as https://github.com/web-arena-x/webarena.

https://github.com/web-arena-x/webarena

Under review as a conference paper at ICLR 2026

synthesized directly from the WebArena test environments. These show that LLMs possess sufficient
knowledge to generate reliable and coherent digital environment simulations, offering a promising
alternative when real test environments involve high latency or are difficult to access.

UI-SIMULATOR-R vs. Larger & Proprietary Models. We observe that UI-SIMULATOR-R
performs on par with Gemini-Pro on WebArena, as well as GPT-40 on AndroidWorld, despite
being built on a much smaller 8B-scale LLM. This highlights the strong generalization capability of
UI-SIMULATOR, even with limited exposure to the target environment.

UI-SIMULATOR vs. Open-Source Agent Traj. Synthesis Baselines. UI-SIMULATOR-R sur-
passes OS-Genesis, which relies on the stronger GPT-40 teacher to generate training trajectories
within test environments, while even UI-SIMULATOR-F achieves superior performance on Android-
World despite being trained only with trajectories from the weaker GPT-40-mini. These results
highlight the potential of UT-SIMULATOR when paired with stronger teacher agents. Moreover, unlike
NNetNav and OS-Genesis, which generate synthetic training data through extensive unsupervised
interaction with the test environments, UI-SIMULATOR-R restricts the environment exposure to a
much smaller scope. Despite this, it still outperforms NNetNav and OS-Genesis by 2.2% and 0.9%
on WebArena, and surpasses OS-Genesis by 3.8% on AndroidWorld, demonstrating the effectiveness
of our simulation-driven approach in enabling rapid adaptation to test environments.

7 ANALYSIS

In this section, focusing on WebArena, we conduct a comprehensive analysis to evaluate the advan-
tages and potential of the UI-SIMULATOR framework. We present a series of training experiments
alongside qualitative studies to examine each core component of UI-SIMULATOR and illustrate how
UI-SIMULATOR-GROW helps effective scaling. More human evaluation on synthesized training
trajectory quality is discussed in Appendix F and J.

7.1 ABLATION STUDY

Agent Robustness Brought From UI-SIMULATOR. Thanks to the flexibility of UI-SIMULATOR
in generating diverse UI layouts, agents trained on its synthesized trajectories gain robustness to
varied Ul states. To test this, we perturb WebArena and AndroidWorld UI states by randomly
shuffling layout structures while preserving UI content, ensuring validity and identical solutions. For
a meaningful comparison with other strong baselines, we focus on comparison with the baseline
OS-Genesis, whose performance is closest to ours on both datasets. We notice that UI-SIMULATOR-
F, which synthesizes UI states without referencing downstream environments, suffers the smallest
performance change.

Simulated Digital Environment vs. Real Test Environment. What happens if we collect similar
number of training trajectories directly on the real test environments? Surprisingly, UI-SIMULATOR
can even outperform this strong baseline. We identify one key reason for this performance gap:
the real test environments may not be able to consistently provide useful state transitions or cover
diverse interaction scenarios. For example, if the search query keywords do not match any entries in a
shopping website, the environment may return Search not found, and such search tasks are likely to be
excluded; For tasks involving account pages, if the user is not logged in beforehand, those trajectories
cannot be collected due to access restrictions. In contrast, both tasks can be easily synthesized in the
digital world model without any such constraints. This highlights the potential of UI-SIMULATOR to
go beyond the limitations of real environments by generating trajectories that are infeasible to obtain.

UI-SIMULATOR-R vs. OS-Genesis Sharing the Same Amount of Prior Experience on Test
Environment. Both UI-SIMULATOR-R and OS-Genesis have access to the test environment;
however, OS-Genesis benefits from significantly more experience on the test environments. To assess
them under equal conditions, we control for the amount of test environment experience and compare
their performance. On both WebArena and AndroidWorld, we even find that UI-SIMULATOR-R
achieves around 4 and 2.5 times the performance of OS-Genesis, respectively, highlighting its ability
to generate highly adaptive digital agents even with limited exposure to the real environment.

Under review as a conference paper at ICLR 2026

Rollout and Simulatjon Pr.ocess Design. We ab- Models WA (%) AW (%)
late our rpllou't and s1mulatlpn de.s1gn, both key to ULSIMULATOR-F 628 36
synthesizing high-quality trajectories, and report de- Perturbed Env. 5.54 8.7
tails in Appendix Table 6 (see Appendix F). Remov- Synthesize in Real Env. 4.31 4.7
ing step-wise task controls lowers performance by UI-SIMULATOR-R 6.40 12,9
4.7% and significantly reduces trajectory diversity. Synthesize in Real Env. 4.1 47
Besides, replacing multi-step with single-step simula- OS-Genesis 6.16 9.1
Perturbed Env. 4.43 8.7

tion incurs a further 2.4% drop. Multi-step simulation
encourages the world model to think step-by-step and
output rich content by first sketching out what the ef-
fect of the current action and the potential draft for the) aci e trajectories from real test environment

next state, resulting in trajectories with higher qual- ., 4 \tilization of the same amount of expe-

ity. These results show that fine-grained, step-wise iance. WA and AW are WebArena and An-
control and multi-step simulation are both essential j,5idWorld in short.

for generating high-quality trajectories.

Same # of Experience 1.48 52

Table 2: Ablation study on robustness, syn-

7.2 UI-SIMULATOR-GROW VS. STANDARD UI-SIMULATOR SCALING

We Compare the UI—SIMULATOR—GROW Wlth o WebArena Performance AndroidWorld Performance
the standard UI-SIMULATOR scaling to exam- T apdard U Smulator Scaling
ine which paradigm more effectively acceler-

ates agent performance. For standard scal-
ing, we use the full UI-SIMULATOR-R training /

set split it into three equal parts, and emulate

a 3-iteration scaling process by progressively T = T =
adding one more split at each iteration. For UT- Scaling Rate Scaling Rate
SIMULATOR-GROW, the first iteration uses the) .

same initial split as in standard scaling. Subse- Figure 3: The effect of standard scaling and UI-
quent iterations of UI-SIMULATOR-GROW rely SIMULATOR-GROW targeted scaling.

primarily on synthesized variants of target tasks

selected from the last iteration, supplemented by portions of the remaining splits for constructing dy-
namic validation sets, instead of blindly adding more new generic trajectories as standard scaling does.
Note that the process guarantees that UI-SIMULATOR-GROW draws only from UI-SIMULATOR-R
and its generated variants, without introducing any external data beyond its scope for fair comparison.

—=— Standard Ul-Simulator Scaling
Ul-Simulator-Grow

~
e e
N

o
-
@

WebArena SR (%)
S

n
AndroidwWorld SR (%)

R
=

.
o

As shown in Figure 3, UI-SIMULATOR-GROW yields a steeper performance improvement than
standard scaling. Notably, by the third iteration, it matches the performance of Qwen-1.5-72B-
Instruct and surpasses Llama-3-70B-Instruct. Moreover, UI-SIMULATOR-GROW uses only 66% of
the original UI-SIMULATOR-R trajectories, demonstrating more efficient data utilization compared
to indiscriminate trajectory generation. Beyond overall success rates, we examine how performance
improves under UI-SIMULATOR-GROW. In Appendix H, we further show that UI-SIMULATOR-
GROW consistently avoids performance degradation across web task categories, and in some cases
enables success on task types where standard scaling always fails. We attribute these gains to the
combination of dynamic validation set construction and targeted task variant synthesis, which guide
the agent toward underperforming task types and reinforce its capabilities in a focused manner.

8 CONCLUSIONS

We introduced UI-SIMULATOR, a scalable trajectory synthesis paradigm that uses LLM-based digital
world simulators to synthesize diverse Ul trajectories at scale through multi-step simulation, guided
rollouts, and final trajectory wrapping. We further propose UI-SIMULATOR-GROW, a targeted
scaling paradigm that prioritizes high-impact tasks for more data-efficient continuous improvement.
Experiments on WebArena and AndroidWorld show that UI-SIMULATOR rivals or surpasses real-
environment training despite using weaker teacher agents, while UI-SIMULATOR-GROW achieves
more rapid improvement trend than standard UI-SIMULATOR scaling with only 66% training data
and even matches 70B-scale models. Ablation study further highlight the promise of simulation-
driven trajectory synthesis as a more adaptive and robust approach for advancing digital agents.
Beyond extending to other UI domains such as desktop, our future work envisions applying the world
simulator and targeted scaling method to any environment representable in text.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY AND LLM USAGE STATEMENT

We will release the source code and training data publicly upon publication. LLMs were only used
for editorial polishing of the manuscript and did not contribute to research ideation.

REFERENCES

Magdalena Biesialska, Katarzyna Biesialska, and Marta R. Costa-jussa. Continual lifelong learning
in natural language processing: A survey. In Proceedings of the 28th International Conference on
Computational Linguistics, pp. 6523—6541, Barcelona, Spain (Online), December 2020. Interna-
tional Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.574. URL
https://aclanthology.org/2020.coling-main.574.

Hyungjoo Chae, Namyoung Kim, Kai Tzu-iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim,
Sunghwan Kim, Dongha Lee, and Jinyoung Yeo. Web agents with world models: Learning and
leveraging environment dynamics in web navigation. In ICLR, 2025.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.

2048-2056. PMLR, 2020.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091-28114, 2023.

Tianqing Fang, Hongming Zhang, Zhisong Zhang, Kaixin Ma, Wenhao Yu, Haitao Mi, and Dong Yu.
Webevolver: Enhancing web agent self-improvement with coevolving world model. arXiv preprint
arXiv:2504.21024, 2025.

Yifei Gao, Junhong Ye, Jiaqi Wang, and Jitao Sang. Websynthesis: World-model-guided mcts for
efficient webui-trajectory synthesis. arXiv preprint arXiv:2507.04370, 2025.

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari
Srivastava, Yanan Xie, Peng Qi, et al. Is your 1lm secretly a world model of the internet? model-
based planning for web agents. arXiv preprint arXiv:2411.06559, 2024.

David Ha and Jiirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In ICLR, 2020.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 8154-8173, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.507. URL https://aclanthology.org/2023.
emnlp-main.507/.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu,
Shivam Sahni, Haowen Ning, and Yanning Chen. Liger kernel: Efficient triton kernels for llm
training. arXiv preprint arXiv:2410.10989, 2025.

Kimi, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen,
Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong, Angang Du,
Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao, Hongcheng
Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang Guo, Hao
Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu, Zhenxing
Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin, Yongsheng
Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao Li, Yiwei
Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin Liu, Chenyu
Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu, Tianwei Liu,
Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe Lu, Lijun

10

https://aclanthology.org/2020.coling-main.574
https://aclanthology.org/2023.emnlp-main.507/
https://aclanthology.org/2023.emnlp-main.507/

Under review as a conference paper at ICLR 2026

Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo Miao,
Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi, Feifan
Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng Teng,
Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang, Jinhong
Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang, Yuzhi
Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu, Xingzhe
Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing Xu,
L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie Yan,
Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang Yuan,
Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun
Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang,
Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou,
Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence, 2025. URL
https://arxiv.org/abs/2507.20534.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating multimodal
agents on realistic visual web tasks. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 881-905, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.50. URL https://aclanthology.org/2024.
acl-long.50/.

Hanyu Lai, Xiao Liu, Yanxiao Zhao, Han Xu, Hanchen Zhang, Bohao Jing, Yanyu Ren, Shuntian
Yao, Yuxiao Dong, and Jie Tang. Computerrl: Scaling end-to-end online reinforcement learning
for computer use agents. arXiv preprint arXiv:2508.14040, 2025.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqgi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Paul Munro. A dual back-propagation scheme for scalar reward learning. In Ninth Annual Conference
of the Cognitive Science Society, pp. 165-176. Hillsdale, NJ. Cognitive Science Society Lawrence
Erlbaum, 1987.

Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D Manning. Nnetnav: Unsuper-
vised learning of browser agents through environment interaction in the wild. arXiv preprint
arXiv:2410.02907, 2024.

OpenAl. Sora system card. 2024. URL https://openai.com/index/
sora—-system—-card/.

Tianyue Ou, Frank F Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
and Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multi-
modal web agents. arXiv preprint arXiv:2502.11357, 2025.

Jack Parker-Holder, Philip Ball, Jake Bruce, Vibhavari Dasagi, Kristian Holsheimer, Chris-
tos Kaplanis, Alexandre Moufarek, Guy Scully, Jeremy Shar, Jimmy Shi, Stephen Spencer,
Jessica Yung, Michael Dennis, Sultan Kenjeyev, Shangbang Long, Vlad Mnih, Harris
Chan, Maxime Gazeau, Bonnie Li, Fabio Pardo, Luyu Wang, Lei Zhang, Frederic Besse,
Tim Harley, Anna Mitenkova, Jane Wang, Jeff Clune, Demis Hassabis, Raia Hadsell,
Adrian Bolton, Satinder Singh, and Tim Rocktdschel. Genie 2: A large-scale foun-
dation world model. 2024. URL https://deepmind.google/discover/blog/
genie-2-a-large-scale-foundation-world-model/.

11

https://arxiv.org/abs/2507.20534
https://aclanthology.org/2024.acl-long.50/
https://aclanthology.org/2024.acl-long.50/
https://openai.com/index/sora-system-card/
https://openai.com/index/sora-system-card/
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/

Under review as a conference paper at ICLR 2026

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.
10084.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024.

Brandon Trabucco, Gunnar Sigurdsson, Robinson Piramuthu, and Ruslan Salakhutdinov. Towards
internet-scale training for agents. arXiv preprint arXiv:2502.06776, 2025.

Paul] Werbos. Learning how the world works: Specifications for predictive networks in robots and
brains. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, NY,
1987.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. In ICLR,
2025.

Da Yin, Xiao Liu, Fan Yin, Ming Zhong, Hritik Bansal, Jiawei Han, and Kai-Wei Chang. Dynosaur:
A dynamic growth paradigm for instruction-tuning data curation. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 4031-4047, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.245. URL https://aclanthology.org/
2023.emnlp-main.245/.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. In International Conference on Learning Representations (ICLR), 2024.

12

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://aclanthology.org/2023.emnlp-main.245/
https://aclanthology.org/2023.emnlp-main.245/

Under review as a conference paper at ICLR 2026

APPENDIX

A OBTAINING OBSERVATION 0; FROM UI STATE s;

As defined in §3.1, the observation oy is obtained by extracting the Ul elements visible within the
current state s;. Let the viewport at timestep ¢ be

Vt - [Z’O,JJ]] X [y07y1]'
The observation at step ¢ is then calculated by,
o; = {e € s; | bbox(e) N V; # 0},

i.e., capturing the set of elements whose bounding boxes intersect with the viewport region.

B ACTION SPACES IN UI SIMULATOR

As shown in Table 3 and 4, we summarize the supported action spaces for WebArena and Android-
World, which span the common UI interactions (e.g., click, type, scroll).

Table 3: Action space of WebArena environment.

Action Description

click [id] Click the element with the given ID.
type [id] [content] [0]1] Type content into the text box with the specified ID; press
Enter if the last argument is 1.

hover [id] Hover over the element with the given ID (often to trigger popups
or dropdowns).

press [key_comb] Press a keyboard combination (e.g., ct r1+c).

scroll [direction] Scroll the page in the specified direction: up, down, left, or
right.

go_forward Go forward to the next page (only after a prior go_back).

go_back Go back to the previous page.

new_tab Open a new empty browser tab.

tab_focus [index] Switch focus to the tab at the given index.

close_tab Close the current tab.

goto [url] Navigate to the specified URL.

Table 4: Action space of AndroidWorld environment.

Action Description

click [id] Tap the element with the given ID on the current screen.

open_app [app_name] Launch the app with the specified name.

input_text [id] [content] Enter content into the text box identified by id using the key-
board.

keyborad_enter Press the Enter key.

scroll [direction] Scroll the screen in the specified direction: up, down, left, or
right.

navigate_back Go back to the previous screen.

navigate_home Return to the app’s home screen.

wait Remain idle for a short duration.

C DETAILS OF RULE-BASED TRANSITION

As discussed in §3.2, certain actions in the action space (e.g., Type, Scroll) involve deterministic
state transitions. To better simulate this, we incorporate rule-based transitions that enhance realism in
the simulation. The details of these rule-based transitions are introduced below.

13

Under review as a conference paper at ICLR 2026

Type Action. This is the most straightforward case. The simulator updates the target element by
appending the typed content into its content_description attribute.

Scroll Action. The simulator will keep on the same state after taking a Scroll action, i.e.,
St+1 = 8¢ The simulator maintains a scroll offset (Zoffset, Yoffset) € R?, which determines the
visible region of the UI along with the window dimensions (Wyin, Awin). Here we take (Wyin, Awin) =
(2400, 1080).

Initially, the scroll offset is set to (Zoffset, Yoftset) = (0,0). When a Scrol1l action is performed, the
scroll offset is updated as follows:

(xoffsetv yoffset) — (l'offset + A(E, Yoffset + Ay),

where (Ax, Ay) are the fixed scroll displacements in horizontal and vertical directions, respectively.
For instance, scroll [down] corresponds to (Az, Ay) = (0, 1080)

The observation at timestep ¢, denoted o, consists of all UI elements whose bounding boxes intersect
with the current visible viewport:

Vt == [xoffseta Toffset + wwin] X [yoffset; Yoffset + hwin]7
o = {e € sy | bbox(e) N V; # 0} .

After the scroll offset is updated, the observation o0, ; is recomputed based on the new viewport
Vi11, and the state itself remains unchanged.

New_tab, Navigate_back, Navigate_forward Actions. We model web browsing as a
traverse process on the tree structure. To support this, the simulator maintains an explicit browsing
stack to track session history. These actions deterministically alter the current tab state based on prior
states stored in the stack.

D RETRIEVAL-AUGMENTED SIMULATION

As discussed in §3.3, we also study how quickly the simulator can adapt to a new test environment
given only limited prior experience. Retrieval-augmented simulation addresses this by conditioning
UI generation on a small set of real examples from the target environment, producing future states
that resemble the target domain, coherent with the previous rollout steps, and support a diverse range
of grounded tasks.

Formally, we first construct an offline retrieval corpus of N state transitions from the test environment,

denoted as, D = { (5?), Ht(z), 6%217 EEZ), 51(;31) } -, where 5%7') and 6%21 are the observations before
and after an action in the downstream test environment; é,(f) and Egl are their corresponding UI

states; and Ht(i) denotes the action history up to timestep .

During UI-SIMULATOR paradigm, when simulating the next Ul state after a given action, we query
this offline retrieval corpus with the current observation—action history pair (o;, H¢). A retriever
then returns the most relevant observation o, and corresponding state Sy from the corpus D. The
transition can be modelled as s;11 = Mprm(st, at,), where My is prompted with both the
current interaction context and the retrieved state s, grounding the simulation in prior experience
while still allowing the creation of novel, coherent UI states. The key distinction from retrieval-free
simulation is the incorporation of the retrieved state s into the simulation process.

In practice, we employ a hybrid retrieval pipeline over D to retrieve the transition that is most
semantically similar to the current trajectory simulation. The retrieval process proceeds in three
stages: First, a coarse filtering step is performed using BM25 ranking, where the action history
serves as the query, to retrieve the transitions with very similar action histories. Next, we use current
action histories as the query again to further narrow down the more relevant transitions from the
transitions stored in D by utilizing GPT—-4o0 as the semantic retriever, which captures deeper semantic

14

Under review as a conference paper at ICLR 2026

similarities with the current action history queries. Finally, we construct a composite retrieval key
that incorporates both the current state and action history, and apply BM25 again to select the most
relevant transition. Despite the small size of D, this hybrid strategy still improves the consistency and
realism of the generated Ul states.

E KEY STATISTICS AND HYPERPARAMETERS OF STEP-WISE ROLLOUT
PROCESS

Table 5: Step numbers of the collected trajectories and step-wise task control numbers across domains.
Shopping Gitlab Map Reddit Shopping Admin Android

Step # 800 1500 1500 1300 1500 6500
Step-wise task control # per proposal 5 8 3 6 8 5

As we mentioned in §4, we introduce a step-wise guided rollout process to encourage exploration
towards diverse yet reasonable directions for Ul trajectory synthesis. Table 5 summarizes key statistics
and hyperparameters of the rollout process. The first row reports the number of final synthesized
trajectory steps for each domain, while the second row shows the number of task controls for rollout
guidance when the teacher agent is going to propose such task controls. Variation in task control
numbers reflects the complexity of website content: for instance, map websites are relatively simple,
supporting only a few core functions such as search or navigation, whereas domains like Gitlab,
Reddit, and shopping admin pages contain many more elements and support various functionalities,
requiring more extensive task control.

In the web environment, we collect 2K trajectories with an average length of 3.3 steps. In the Android
mobile environment, we collect 1.3K trajectories averaging 5 steps each. The collected states are
adjusted to fit the domain and format as defined in WebArena and AndroidWorld benchmarks. For
retrieval-augmented simulation, the collection process leverages a limited amount of experiences
from the two environments. For the size of the offline retrieval corpus D, we have 1647 transition
experience for WebArena, and 683 for AndroidWorld (approximately only 25% and 10% of OS-
Genesis experiences on test environments).

The estimated cost per web trajectory is $0.02 for retrieval-free simulation and $0.05 for retrieval-
augmented simulation, and the estimated cost doubles for each AndroidWorld training trajectory.

F ADDITIONAL ABLATION STUDY ON TRAJECTORY COLLECTION PROCESS

Table 6: Ablation study performance about rollout process design on WebArena (WA) and Android-
World (AW) with success rate as our metric.

Models WA (%) AW (%)

UI-SIMULATOR-R 6.40 12.9
w/o Step-Wise Task Control 1.72 52
w/o Multi-Step Simulation 4.06 9.1

In this section, we discuss more ablation study on the step-wise guided rollout process design to
justify the effectiveness of our design.

Step-Wise Task Control. In this experiment, we remove all step-wise task controls to collect a
new set of training trajectories, aiming to assess whether the guided rollout process contributes to
generating higher-quality data. From Table 6, we observe a performance drop of around 4.7% and
7.7% on WebArena and AndroidWorld following the removal of task controls. Upon closer inspection
of the newly collected trajectories, we find that trajectory diversity suffers significantly. Without user
instructions as conditioning signals, the teacher agent tends to repeatedly sample the same one or two
elements due to inherent model biases. This further highlights the importance and effectiveness of
fine-grained, step-wise control in our trajectory collection process.

15

Under review as a conference paper at ICLR 2026

Multi-Step Simulation. In this experiment, we replace multi-step simulation with single-step
simulation to examine whether the simplified approach can still yield satisfactory simulations and
benefit downstream tasks. As shown in Table 6, this modification results in a performance drop of
approximately 2.4% and 3.8% on WebArena and AndroidWorld. Single-step simulation, though
cost-saving, would always generate common, biased content, thereby harming the diversity and
content richness of the collected training set. In contrast, we encourage the world model to output
rich, diverse content by splitting the simulation into multiple steps, resulting in trajectories with
higher quality.

G ANALYSIS ON TARGETED TASK SELECTION IN UI-SIMULATOR-GROW

b
s’
~ &
& &
R S
) &gf‘ 43‘\
¢
NS & & S5
> Q® e ISP & &
& & RGN NS k3
& & & 2 ¥ o SIS &
& S S > D o & & QS F o
& X 9 v & & L X SO @ N
& & N o &9 © @ N g
£ & > s & S LA SIS N S
& & s ¢ F o £ F S & @
S & & S 3 ;s &L O S > S
RN & 4) O N & X SRS @ &
S 8 N S &S & LS £ ;O)
& & & & & & L P FF LSS N
& L 5 PO & & &é\" & $L& EFL e N
@ N > NS S FF @ © o & X &
N & @ S > @ > & T & & LN &
K @‘{b o é\i\‘ \O'Q é@o ,}°\ <& 9;‘;2\13‘@ \d\\)@@&é@o Iy aé\q @Q&b\ \»"é 2 N os’é
SR FL & & & e O o FE SF s & &
N QS° & e§ OS’{\, 0&0 QS’\ 6\{\\ &"\:‘*g@@a Q@é\&ob@q é\t’{\g’ & 0\9 (@éé\"? & &é
N Q@ 2
S ST F & 7SS SIS SESS S
R S S) o 2 & > LT @ S N
£ F8 S8 & &8 & EF G PSS
& o &t TS & o« N < Y&F & & T8
0.17 0.19 0.26 0.27 0.30 \031 0.33 0.37 0.41 0.43 0.51 0.52 0.53 0.59 0.71
Y

Teacher-forcing loss

Selected target tasks .
on dynamic val set

for traj. synthesis in the
next iteration

Figure 4: Illustration of overall target task selection process.

In this section, we describe how target tasks are selected for synthesizing new training trajectories
in the next iteration of the UI-SIMULATOR-GROW paradigm. Figure 4 illustrates the task selection
process between the first and second UI-SIMULATOR-GROW iterations for WebArena. We begin by
ranking all tasks in the current validation set by their teacher-forcing loss, from smallest to largest.
Tasks below the 25th percentile are considered too easy or already well learned (e.g., zooming on a
map or searching for a location) and are excluded from further synthesis. Conversely, tasks above the
75th percentile are often overly challenging or ambiguous, and are likewise excluded. The remaining
middle range of tasks is chosen as the target set for the next training iteration.

H QUALITATIVE ANALYSIS ON SUCCESSFUL TASKS THROUGH
UI-SIMULATOR-GROW SCALING

Beyond overall success rates, we closely examine how performance improves under UI-SIMULATOR-
GROW. As shown in Figure 5, a consistent upward trend appears across most major WebArena
task categories. Notably, for code repository operations, the final iterations of UI-SIMULATOR-
GROW demonstrate the ability to solve tasks that neither standard UI-SIMULATOR scaling nor
earlier iterations could handle. This highlights the paradigm’s potential to enable agents to tackle
increasingly diverse and complex tasks.

I TRAINING AND EVALUATION DETAILS

For digital UI state simulation, the LLM-based world simulator are run with a decoding temperature
of 0.5. During the trajectory synthesis process, teacher agents also generate next action with the
decoding temperature of (.5.

16

Under review as a conference paper at ICLR 2026

Successful Task # Through Ul-Simulator-Grow Scaling

Search / Info Query Account Post / Comment / Reply / Email Repo Subscribe
25
20
15
10
5
» N » » n » » » » » »n » » n »
N AR & ¢ @ & ¢ @ NSNS\
o8 N s+ ~+ o N o+ o+ o8t NG 2+ ot N o+ s+

Figure 5: Successful task numbers across the 5 main task categories through the three iterations of
the UI-SIMULATOR-GROW scaling.

Table 7: Human evaluation dimensions with definitions and illustrative examples.

Dimensions

Definitions

Examples

Realism of Task

Whether the task resembles some-
thing a real user would encounter in
everyday app usage.

i

“Search for a product and add it to the cart
is realistic; “click random buttons” is not.

Whether the UI states and their tran-

A “checkout” button inside a map applica-

State Reasonability sitions are reasonable given the app’s .. "
- tion is unreasonable.
typical structure and context.
Whether each action logically corre- S i
Action Validity sponds to the goal, the current state, Clicking “submit” should occur only after

and the intended next state.

all required entries are filled.

Logical Consistency
(Thoughts)

Whether explanatory comments or
inferred logic are coherent and free
of contradictions.

“User clicks search to find item” followed by
“user wants to delete profile” is inconsistent.

Task Completion

Whether the trajectory ends with the
task’s goal fully achieved.

If the goal is “send a message,” the message
should be sent in the final step.

Trajectory
Consistency

Whether actions and transitions
form a coherent flow, with no contra-
dictions or unexpected diversions.

The trajectory should not jump between un-
related tasks or contexts.

Irrelevant Steps

Number of steps unrelated to the
goal; a high count indicates ineffi-
ciency or redundancy.

Clicking “About Us” is irrelevant to “creat-
ing an account.”

Topic Abstraction

Whether the task is generalized and
meaningful, not just low-level UI
manipulation.

“Complete login” is abstracted; “click input,
type name, click button” is not.

We train Llama—-3-8B-Instruct and Qwen-2.5-7B-Instruct for WebArena and Android-
World, respectively, using a batch size of 48, learning rate 1 x 107>, and 2 epochs. Training is
performed on 4 A6000 GPUs (48GB each) with Liger-Kernel (Hsu et al., 2025) to improve throughput
and reduce memory usage.

During inference on the downstream benchmarks, we set the generation temperature to 0.6 and the
maximum output length to 1024 tokens.

J HUMAN EVALUATION OF TRAINING TRAJECTORIES SYNTHESIZED BY
UI-SIMULATOR

Beyond quantitative metrics which already demonstrate the effectiveness of training trajectories
synthesized by UI-SIMULATOR, we further conduct a qualitative human evaluation of the training
trajectories across 8 dimensions (Table 7). For each dimension, scores are computed as the proportion
of trajectories that satisfy the corresponding evaluation criterion.

We recruited three annotators, each holding a master’s degree or higher in computer science. Each
annotator evaluated 40 trajectories from both UI-SIMULATOR-F and UI-SIMULATOR-R. We built a

17

Under review as a conference paper at ICLR 2026

Trajectory Human Evaluation

Select Class Trajectory Index (0-149)
RAG-based web simulation v 0 +
Trajectory Viewer Evaluation Form
Class: RAG-based web simulation | Trajectory #0 Is the task realistic?
O Yes

Instruction: Identify the guide that helps users get started with GitLab. N
o
Select Step

u Isthe state reasonable?

° O Yes
° 3 OnNo
Step 1/4: Do actions make sense?
Action History O Yes
No
None
Do thoughts make sense (logic)?
O Yes
N No
Current State: -
Is the task completed?
[320] link 'Dashboard" O Yes
[394] button hasPopup: menu expanded: False No
[1507] textbox 'Search GitLab' required: False
[1468] generic 'Use the shortcut key <kbd>/</kbd> to start a search’ Is the trajectory consistent?

[401] link 'Create new.. O ves
[403] link 'Issues'

[1100] generic '13 assigned issues'
[404] link 'Merge requests'

No

Number of irrelevant (waste) steps

Thoughts: Let's think step-by-step. The current webpage is the GitLab Dashboard, which contains a clickable 'Help' 0 *
link (id 407). To identify the guide that helps users get started with GitLab, | will click on the 'Help' link to access the
Is the topic abstracted?
documentation. In summary, the next action | will perform is click [407].
O Yes
Actions: click [407] No

Step Summarization: Click on the 'Help' link to access the help documentation. Submit Evaluation

Figure 6: The front-end web interface for trajectory human evaluation.

Table 8: Average human evaluation scores across dimensions (Web).

Dimensions UI-SIMULATOR-R UI-SIMULATOR-F
Realism of Task 0914 0.942
State Reasonability 0.952 0.875
Action Validity 0.867 0.767
Logical Consistency (Thoughts) 0.867 0.733
Task Completion 0.938 0.908
Trajectory Consistency 0.971 0.917
Irrelevant Steps 0.214 0.533
Topic Abstraction 0.990 1.000

front-end website for annotating, as shown in Figure 6. To assess reliability, we measured agreement
on 30 overlapping trajectories, yielding pairwise scores of 0.876, 0.890, and 0.976, which indicate
strong consistency.

Table 8 and 9 present the average human evaluation scores across all dimensions. We observe that
satisfaction rates for each dimension consistently reach, and in many cases exceed 90%. It suggests
that even without additional fine-tuning, LLMs are already capable of serving as effective digital
world simulators for scaling high-quality training trajectory synthesis.

K UI SIMULATION ISSUE ANALYSIS

While the digital world simulator significantly enhances agent training, it may still exhibit minor
discrepancies in capturing certain real-world UI state transitions. Figure 7 and 8 demonstrate two
cases where UI-SIMULATOR-F and UI-SIMULATOR-R may not simulate well.

Figure 7 shows a transition where UI-SIMULATOR-F mistakenly fuses irrelevant context into the
next step simulation. The new webpage should be a list of all available forums in realistic Reddit
after clicking the Forums link. However, UI-SIMULATOR-F makes an error by taking the context of

18

Under review as a conference paper at ICLR 2026

Table 9: Average human evaluation scores across dimensions (Android).

Dimensions UI-SIMULATOR-R UI-SIMULATOR-F
Realism of Task 0.884 0.888
State Reasonability 0.873 0.888
Action Validity 0.856 0.806
Logical Consistency (Thoughts) 0.884 0.847
Task Completion 0.862 0.929
Trajectory Consistency 0.939 0.959
Irrelevant Steps 1.09 0.794
Topic Abstraction 1.0 0.994

current forum, \ f\deeplearning, into account. As a result, the new webpage shows a bunch of
information related to deep learning.

Transition in Figure 8 shows that UI-SIMULATOR-R sometimes ignores the current context and refers
too much to the retrieved reference state. The search results of Byte Blaze should be relevant
to the keyword. However, in this case UI-SIMULATOR-R just simulates the search results from the
reference state and ignores what the user is currently searching.

RootWebArea 'Should I continue with RootWebArea 'Deep Learning Forums'
this?' focused: True. link ‘Home'
image link 'About Us'
link 'Forums' link 'Contact'
link 'Submit’ link 'Sign Up'
button 'MarvelsGrantMan136' link 'Login'
hasPopup: menu expanded: False searchbox 'Search forums..."'
main button 'Search'
link '/f/deeplearning’ generic 'Browse Discussion
article Threads'

StaticText 'Should I link 'What are the best

continue with this?' frameworks for deep learning?’

link *Should I continue StaticText '18 replies'
with this?’' StaticText 'Last active: 1

StaticText 'Submitted by ' hour ago'

link 'Eric-Cardozo' link 'Understanding
expanded: False Convolutional Neural Networks'

StaticText 't3_127uysh’ StaticText '27 replies’

StaticText 'March 31, 2023 StaticText 'Last active: 4
at 2:44:26 PM EDT' hours ago'

StaticText ' in ' link 'Latest trends in AI

link 'deeplearning' research’

StaticText 'm a physics StaticText '9 replies’
student, and I started StaticText 'Last active: 3
learning .. days ago’

StaticText 'Here is the
code: '

link
'https://%1thub.com/ericcardoz
o/FastorM

Figure 7: A case of failed simulation where UI-SIMULATOR-F generates the new page based on
irrelevant context.

L SYSTEM PROMPTS

In this section, we present the key system prompts used in our work.

Tables 10-16 provide the prompts for the guided rollout process, Tables 17-20 detail those used during
simulation, and Table 21 illustrates how we generate targeted tasks for UI-SIMULATOR-GROW.

The prompts used for simulating Android and web UI environment states are largely aligned. Ta-
ble 22 presents the system prompt for thought and action generation in Android trajectory collection,
whose instructions closely mirror those used for the web setting. All states are formatted accord-
ing to the AndroidWorld specification, represented as lists of UI elements with attributes such as
content_descriptionand class_name.

19

Under review as a conference paper at ICLR 2026

link 'Dashboard’
button hasPopup: menu expanded:
False

textbox 'Search GitLab' required:

False
generic 'Use the shortcut key
<kbd>/</kbd> to start a search’
link 'Create new...'
link 'Issues’

generic '13 assigned issues'
link 'Merge requests’

generic '8 merge requests’
link 'To-Do List'

RootWebArea 'Search results for "Byte
Blaze" - GitLab' focused: True
link 'Projects 7'
link 'Milestones 4'
link 'Users 15'
link ‘o'
heading 'Open Source Diversity /
opensourcediversity.org’
link 'Open Source Diversity /
opensourcediversity.org’
generic 'Public - The project
can be accessed without any
authentication.’

generic 'Todos count' Type [1507][Byte Blaze] image

StaticText '5'
link 'Help'
link 'Byte Blaze'
img 'Byte Blaze'
main
StaticText 'Projects’
link ‘New project’
link 'Yours 14'
link 'Starred 3'
link 'Explore’
link ‘Topics®
searchbox 'Filter by name'

generic 'blossom’
StaticText '®

StaticText ' Code of '
link
‘https://opensourcediversity.org’
link '28'
image
link '@’
heading 'Checkstyle /
checkstyle'
link 'Checkstyle /
checkstyle'

button 'Name' generic 'Public
link 'All" image

Figure 8: A case of failed simulation where UI-SIMULATOR-R overly depends on the reference state
to generate the new page.

You are a Web task creation Al. Assume that you have an al 1y tree of this website, generate some
common tasks user perform on this web.

To be successful, it is very important to follow the following rules:

1. Suppose that you’ve already logged in the website, and you don’t want to sign out.

2. Note that we don’t want the task control to focusing too much on the elements that the state
contains. You should consider the functionalities behind the elements, and think of functionalities
that people use.

3. The number of the tasks should be no more than {Number of Task Controls} , so just keep the
most common ones. Besides, ideally the tasks are atomic independent, i.e. we don’t want a certain
task to be a subtask of another task, and the task shouldn’t contain two subtasks like “do A and
then do B”.

Example:
Initial state:
{Initial State}

Tasks:
1. Search for a place.
2. Find directions between two places.

Table 10: System prompt for First-Step Task Control Proposal. {Initial State} is the Initial State
for in-context example. {Number of Task Controls} limits the number of candidate task controls

20

Under review as a conference paper at ICLR 2026

You are asked to modify a web task. You will be given a description of website and original task
that correspond to the website.

To be successful, it is very important to follow the following rules:

##Find the name of website and figure out what kind of website is given.

##Generate unique, diverse entity names and add to original task to make the task more specific.
For example, a specific entity name for shopping website is a product name, a specific entity name
for map website is a specific place name.

##Generate 15 examples. You should try to think of what kinds of terms are commonly searched.
##The search term should NOT be too complex, JUST the name. For example, we don’t want “the
Eiffel Tower in Paris”, but just “Effiel Tower”.

Examples:
Website Description: {Website Description }
Original task: Search for a certain product.

##Thought: I’ll try to search for a certain product. The candidiates should be diverse. People
often search foods, clothes, fruits, electric devices, toys, detergents, trip utilities on the shopping
website.

##Tasks:
¢ Foods

1. Search for OREO milk cookies.

2. Search for Crisco Oil 48 Oz.

3. Search for L’Oréal Paris Revitalift Anti-Aging Cream.
4. ..

¢ Fruits

1. Search for Driscoll’s Strawberries.
2. ..

{Example #2}
{Example #3}

Table 11: System prompt for Diverse Entity Specification. {Website Description} is a short
description of the current website for in-context example.

21

Under review as a conference paper at ICLR 2026

You are a Web task creation Al. Assume you are browsing on a website with some or no guidance.
Based on the task control, the current webpage, and the browsing history, your task is to analyze
the current webpage and browsing history, and continue browsing according to the task control
and previous steps by giving the action on the current webpage.

Here are some requirements for output:
* You need to incorporate the following details in the Thought:

— the task control (if no task control is given, just skip it),
— what you learned from previous steps,

— what the current webpage is like (it is best to use some elements within the webpage
as evidence),

— and which action to take next (either guided or not).
* The Action should strictly follow the action format provided in the action space.

* You also need to generate a single sentence abstract to summarize what this action
does.

Note that Thought, Action and Task should not exceed one line. The summary should NOT
mention the content of task control (e.g. ‘Create a new project or issue’ shouldn’t appear in the
Task in the following example), just focus on what the action does.

Available actions: {Input Action List}

Example Input:

Task Control: {Input Task Control}
Current state: {Input Current State}
Previous steps: {Input Previous Steps}

Example Output:

Thought: Let’s think step by step. The task control is ‘Create a new project or
issue.’. From the previous steps, I clicked the ‘New Project’ button to step into the
project creation page. The current webpage contains elements like “Enter your project
name here” textbox with id 10 and “visibility_level” selection with id 12, which means
currently I’m at the project creation page, and it has many information entries to fill in.
To continue creating the project, I shall fill in the required information. I can first type a
name for the new project, and the corresponding input box id is 10. *Web platform’ is a
good name. I can set the third parameter to 1 to press enter to submit.

Action: type [10] [Web platform] [1]

Task: Type “Web platform” as the name for new project, and press enter to submit it.

Table 12: System prompt for Thought & Action Generation. {Input Action List} is available action
space. {Input Task Control}, {Input Current State}, and {Input Previous Steps} are Current Step
Task Control, State, and Step History for in-context example.

22

Under review as a conference paper at ICLR 2026

You are asked to generate web task controls for the next step that are unrelated to visual adjustments.
You will be provided:

¢ Elements that are commonly used in current website.
¢ Original task control

* Previous steps you have taken.

You need to follow the following rules:
1. AVOID task controls related to visual manipulation.

2. You have completed the Original task control in previous steps. You should make use of
the given elements to propose reasonable new task controls to extend current trajectory.

3. Pay attention to “Newly appeared elements”, elements that appear in the new state
compared to the last step. You should propose as many task controls based on the
interactions with newly appearing elements as possible.

4. The new task controls SHOULD be consistent with previous steps and can form a single
complete task rather than multiple independent tasks. E.g., we don’t want to search for
one place and then explore related or nearby places.

5. The task controls should be diverse. We don’t want task controls doing the same thing
but on different entities. For example, we don’t want to have both view the detail of A
and then view the detail of B in the response.

6. Only give no more than task controls, just make sure you are proposing the most
common ones.

7. You should strictly follow the output format in the example.

8. Note that you cannot interact with a StaticText or generic. Interacting with it wouldn’t
cause any effect. So it is best not propose task controls related to them. Also we want
the tasks can be done on the computers.

Example:

Original task control:

Search for ‘PHILIPS H6509 Wireless Headphones, Over-Ear Bluetooth Headphones with Noise
Canceling Pro’

Previous steps:

[“Search ‘PHILIPS H6509 Wireless Headphones, Over-Ear Bluetooth
Headphones with Noise Canceling Pro’ "]

##Thoughts:

Let’s think step by step. The original task control is to search ‘PHILIPS H6509 Wireless Head-
phones, Over-Ear Bluetooth Headphones with Noise Canceling Pro’, and I have completed the
original task control. The current webpage shows the search results related to the 6S Wireless
Noise Canceling Hi-Fi Headphones.

I need to take the next step that is consistent with the first step searching. The newly appeared
elements include the detail links of the product I want, together with functionalities like “Add to
Cart”, “Add to Wish List”, “Add Your Review”, “Add to Compare”, etc.

I can check the most relevant search result for its details. I can also choose to interact with the
product via functionalities like adding it to the cart, wishlist, etc.

##Task Controls:

1. View more details about ‘PHILIPS H6509 Wireless Headphones, Over-Ear Bluetooth
Headphones with Noise Canceling Pro’

2. Add ‘PHILIPS H6509 Wireless Headphones, Over-Ear Bluetooth Headphones with
Noise Canceling Pro’ to cart

Table 13: System prompt for Step-Wise Task Control Proposal in later steps.

23

Under review as a conference paper at ICLR 2026

You are a Web task creation Al. Assume you have step history, and try to summarize a high-level
intent.

The step history is in the format of “action: step summary”.

You should pay special attention to the content within action (e.g. the content that is typed in), and
the summarized task should reflect such content.

Here are some requirements for summarization:
¢ The high-level intent should faithfully follow the action sequence.
¢ The high-level intent should be succinct and consistent with each single step.

 Ignore unnecessary contexts and intermediate steps. The Task should only include the
high-level goal of the trajectory.

Example:

Input:
Previous steps:

click[7809]: Access the help section for GitLab.
click[482]: View the ‘Contact Support’ page to get help with GitLab issues.

type[361] [Bug: cannot edit account detail] [1]: Enter a subject
for your support request.

type[5882] [Account Issue] [1]: Enter “Account Issue” in the subject field
for the support request.

click[3605]: Select the type of support needed as “Technical Support”.

Thought:
From steps history, the first two steps open ‘Contact Support’ for GitLab. The following
two steps enter “account issue” for further detail. Last step select “Technical Support” as

support type.

Output:

Task: Submit a Technical support request to GitLab regarding account issue.

{Example #2}

Table 14: System prompt for Task Summarization in trajectory wrapping process.

24

Under review as a conference paper at ICLR 2026

You are a web behavior analyst. Assume you have collected a series of thoughts on actions taken
during navigation on the web. The thoughts are not really purposeful, or not focusing on the given
goal.

Your task is to rewrite each thought to make them fit the given task goal.

You should follow the rules when rephrasing thoughts:

1. The rewritten thought should consider what the current page is about and mention the
goal, analyze what should be done now to complete the goal, and explain why this action
is appropriate in the current step.

2. You should strictly keep the entity, the analysis on the webpage and previous steps,
and the action in the original thought unchanged — just adapt the wording to make it
reasonable for the goal. Ignore task control-related sentences in the original thoughts,
and focus only on how to complete the given goal.

3. Please guarantee that each action appears in its corresponding rewritten thought.

Example:

Original thoughts:

¢ Thought 1: According to the task control, I need to view account information. The
current webpage displays my account details, including “Contact Information”, “Default
Billing Address”, and “Default Shipping Address”. The “Account Information” text is
prominently featured, and there is an “Edit” button linked to my account information.
To proceed, I will click on the “Account Information” link to view the complete details
of my account. In summary, the next action I will perform is click [3706].

* Thought 2: Moving forward as per the task control “Access the ‘Payment Methods”
section to add a new credit card for future purchases.” From the previous step, I accessed
“Account Information”. Currently, there are several buttons in the account management
section, including one labeled “Payment Methods” (id 1523), which I need to click to
reach the section for adding a new credit card. In summary, the next action I will perform
is click [1523].

* Thought 3: ...

Goal: Add a new credit card with the number “4111111111111111” and expiration date “12/25”
to the account information.
Actions: click [3706],click [1523],..

Rewritten thoughts:

* Thought 1: Let’s think step-by-step. The current webpage displays my account details,
including “Contact Information”, “Default Billing Address”, and “Default Shipping
Address”. The “Account Information” text is prominently featured, and there is an “Edit”
button linked to my account information. This is the first step. In order to add a new
credit card with the number “4111111111111111” and expiration date “12/25” to the
account information, I will click on the “Account Information” link to view the complete
details of my account. In summary, the next action I will perform is click [3706].

¢ Thought 2: Let’s think step-by-step. From the previous step, I accessed “Account
Information”. Currently, there are several buttons in the account management section,
including one labeled “Payment Methods” (id 1523), which I need to click to reach the
section for adding a new credit card. In summary, the next action I will perform is click
[1523].

* Thought 3: ...

Table 15: System prompt for Thought Rewriting in in trajectory wrapping process.

25

Under review as a conference paper at ICLR 2026

You are a teacher who is writing quiz to test your students on the reading and understanding of
webpage.
The webpage should be either:

* demonstrating detailed information for one object, or

* containing information for multiple objects, and some of them are different and compa-
rable. First, analyze the webpage.

If you think the webpage is demonstrating detailed information for one object, put “Yes” in
“Answer”. Otherwise put “No”.

Second, you need to find relevant information that is useful for making quiz from the current
webpage, such as specific numbers, ranking, entity names. If you think the webpage is wrapping
information for multiple objects in a table, the questions you ask should be concentrating on the
comparison of the information, or features that are in common.

Note: You need to specify the full name of entity in each question. Don’t use terms like “this page”,
“this item”. Don’t ask questions about layout, e.g., buttons, textbox, or details that most people
don’t care, e.g. the contributor, the url of the site, etc. Don’t always use interrogative sentences
like “what” or “which.” Instead, try using declarative sentences like “tell me ...” or “show me”

Examples:
Webpage:
[1] RootWebArea ‘Carnegie Mellon University | OpenStreetMap’ focused: True
[14] heading ‘OpenStreetMap logo OpenStreetMap’
...(omit for brevity)
[627] StaticText ‘University ’
[630] link ‘Carnegie Mellon University, Pittsburgh, Allegheny County, 15213, United States’
[624] link ‘More results’
...(omit for brevity)

Thought: Let’s think step by step. The current webpage is a search result of ‘Carnegie Mellon
University’ on OpenStreetMap website. The searched result only contain detailed information
about CMU, which means it is not applicable to compare with other thing. Thus the Answer
should be “Yes”, and I shall ask questions that are about details of CMU. There are details like the
address of CMU, the zip code. I’d like to ask questions about the details.

Answer: Yes

Questions:

* Show me the address of Carnegie Mellon University.
* What is the zip code of CMU?
{Example #2}

Table 16: System prompt for Reasoning Task Generation in in trajectory wrapping process.

26

Under review as a conference paper at ICLR 2026

Given the current Ul representation, the current action, the web browsing history, and the potentially
relevant element:

First, think about what current window is like, and try to interpret the action.

Second, describe what the new window will be like after executing the action in a sentence. It is
best to specify the roles of terms used in the description.

Third, extract key information that should be kept in mind, like price of bought product, user
profile, etc. Feel free to put “None” here if you think the action won’t cause any long-range
influence.

Lastly, answer whether such action would lead to a totally new webpage.

Note: You’ve always logged in to the website. You don’t need to consider the logging process
when generating the new window. The intent should be detailed enough to describe what a whole
webpage looks like.

Example:

Thought: Let’s think step by step. Currently I’m at search results page of Google. The Google
search results are general. The ‘click’ action is targeted on a hyperlink to ‘Alan’s podcast channel‘.
Since we have set up the age verification and pass the age limit, this action redirects the user to its
homepage.

New window: The new window is Alan’s live podcast home page.

Key Info: None

Answer: Yes

{Example #2}

{Example #3}

{Example #4 }

Table 17: System prompt for Next State Overview Prediction.

27

Under review as a conference paper at ICLR 2026

Imagine you are a website designer. Given some previous information, the interpretation of action
on last step, and description of a new website, first extract what the new website (and the domain)
is, then answer the question: What sections should the webpage have, and list all of them and their
functionalities, and compose elements that appear in each section in detail.

You should ONLY generate informative elements that are relevant with the description. Informative
elements refer only to the main elements that contain specific, instantiated information of the
webpage. For example, a paragraph with texts introducing the term “California”, the link to
Youtube, etc.

Pay attention to the input, which contain information that must be included in current page. Also
remember you are creating content within a certain domain. Elements like “Copyright: Alhambra
Palace” will never appear in a Google map webpage.

For a bunch of similar, important elements to generate (e.g. search results on a search results page),
the number of such element should be at least 6.

You should generate content based on the domain, and information that reasonably appear in the
domain. E.g., we should have prices information in a shopping website. Sometimes you can have
section like “Other related terms”, but that should never be the main content.

Note that if you think an element can be interacted with, specify that it should be a link element.
E.g., you don’t have to add another element “View details” or “Website” for a search item, because
when clicking on the search term, we might jump to the detail of the item. Just merge their
functionalities and tag the element as a link.

Example:
Previous Info: {Previous Key Info}

Description:
The new window displays the discussion thread page on Reddit. The title of the post is “What do
you think of the new European Cup champion”. User could read and interact with the thread.

Thought:

Thread interaction section
A “Comment” button for users to engage directly with the post
A “Share” button for users to share the discussion thread
An “Upvote” button and a “Downvote” button for users to express their opinions on the post

Title section

Title of the post: What do you think of the new European Cup champion Spain?

Body section
Post content: “Spain has triumphed in the ...”
Link of Post number: #10003902
Upvote: 569

A comment section where users can share their thoughts, including:
Comment: “I think Spain played incredibly well! Their teamwork was on another level!”
Link of commenter: Alice; upvote: 5; downvote: 0; 12h ago; upvote/downvote button
Comment: ...

Table 18: System prompt for Generating Rich Draft in Natural Language. {Previous Key Info}
contains some key information recorded in previous steps to boost the coherence of the content.

28

Under review as a conference paper at ICLR 2026

Given the following reference action sequences and the current action sequence, your task is to
find the ones from the reference sequences that are doing almost the same thing as current action
sequence. If there’s no sequence in reference that does the same thing as current action sequence,
then you should pay more attention to the ending steps, and choose ones that are doing the same
thing in the latest steps. If the functionality of the current action history is not quite clear, just
finding ones that exactly match the latest steps.

Note: You need to consider the meaning behind actions like “click”, “type”. E.g., click button
‘Search’ means doing the search on the typed term. We DONT want the output sequences to have
the future steps of the current action history. You should find sequences that just stopping at the
same point as the current actions. You should strictly follow the output format.

Example:

1. type textbox ‘Search’ 2. click button ‘Search’ 3. click link ‘Dell G7 Laptop’ 4. click ‘Add
to cart’

1. type textbox ‘Search’ 2. ...

Current action sequence:

1. type textbox ‘Search’ 2. click button ‘Search’ 3. click link ‘OREO milk cookies’ 4. click
‘Add to cart’

##Thoughts:

Let’s think step by step. The current action sequence does searching at first, then clicks ‘OREO
milk cookies’ to view its details, and adds it to the cart. I should output action sequences that are
doing the same thing at the ending steps.

##Output:

1. type textbox ‘Search’ 2. click button ‘Search’ 3. click link ‘Dell G7 Laptop’ 4. click ‘Add
to cart’

1. type textbox ‘Search’ press enter 2. ...

{Example #2}

Table 19: System prompt for model-based Semantic Retriever based on action history.

29

Under review as a conference paper at ICLR 2026

Given the following description of a GUI and the refernce GUI, create the content of a new state
by taking elements and rewriting some important contents within the reference state.

Note that the description of content might be short, but you should provide corresponding essential
information in the reference GUI. So you should pay attention to each element in the reference
GUL

If you think the reference GUI doesn’t match the descrition, then you should generate a lot of new
contents that match the description, but within the same structure.

If you think the reference GUI matches the descrition, you could copy most of the content from the
reference state, and only modify a few important contents if needed. Do not try to add additional
details or information in this case.

* You are only allowed to modify information related to some named entities. You are not
allowed to add/remove the functionality elements in the reference state if you think it
matches the description. If no named entities are in the reference state, you can make no
change.

Example input:
Reference state: {Reference State}
Description of new state:
The new website is a product page on Onestopshop ...

Example output:
{New Content}

Table 20: System prompt for Retrieval-Augmented Draft Generation . {Reference State} refers to
the state retrieved for generation. {New Content} contains a list of realistic elements inherited from
the reference state and newly composed content in the current context

30

Under review as a conference paper at ICLR 2026

You are a Web task creation Al. Given the ally tree of a website, generate a common task user
perform on this web, and new browsing history adapted from the given browsing history. The
reference task and browsing history is based on another webpage that has the similar functionalities
but with different object. So you should propose task based on content from currently given entities
and content.

To be successful, it is very important to follow the following rules:

1. Suppose that you’ve already logged in the website, and you don’t want to sign out.

2. The new task should strictly have the same task type as the reference. Don’t change the task
type

3. Don’t change the procedure in the browsing history. Just change the entity names of objects
(products, items), not functionalities.

If the reference browsing history is “None”, then put “None” in the new browsing history. Don’t
imagine steps that are doing different things from reference browsing history.

Example:

Current webpage: {Input State}

Reference task: Add ‘Dell G7 Gaming Laptop - 256GB’ to the cart.
Reference browsing history:

1. Search for “Dell G7 Gaming Laptop”

2. Click ‘Dell G7 Gaming Laptop - 256GB’ to view its details.

Task: Add ‘Milkman Bonus Bundle - 10 Packets Low-Fat Milk + 2 Packets Chocolate Milk with
18g Protein’ to the cart.

New browsing history:

1. Search for “Milkman Bonus Bundle”

2. Click ‘Milkman Bonus Bundle - 10 Packets Low-Fat Milk + 2 Packets Chocolate Milk with 18g
Protein’ to view its details.

Table 21: System prompt for Targeted Task Variant Synthesis. {Input State} contains details of a
product (‘Milkman Bonus Bundle’ in this case)

31

Under review as a conference paper at ICLR 2026

Assume you are a Android mobile phone. Based on the task control, the current UI page, and
the action history, your task is to analyze the current page and history, and continue browsing
according to the task control and previous steps by giving the action on the current page.

Here are some requirements for output:
* You need to incorporate the following details in the Thought:
— the task control,

— what you learned from previous steps,

— what the current page is like (it is best to use some elements within the page as
evidence),

— and which action to take next.
* The Action should strictly follow the action format provided in the action space.

* You also need to generate a single sentence abstract to summarize what this action
does.

Note that Thought, Action and Task should not exceed one line. The summary should NOT
mention the content of task control (e.g. ‘Create a new project or issue’ shouldn’t appear in the
Task in the following example), just focus on what the action does.

Available actions: {Input Action List}

Example Input:

Task Control: {Input Task Control}
Current state:

Element O: UlElement(text=None, content_description=Create ~ contact,
class_name=android.view. View, bbox=None, bbox_pixels=BoundingBox(x_min=0,
x_max=1080, y_min=0, y_max=2400), hint_text=None, is_checked=False,
is_checkable=False, is_clickable=False, is_editable=False, is_enabled=True,
is_focused=False, is_focusable=False, is_long_clickable=False, is_scrollable=False,
is_selected=False, is_visible=True, package_name=com.google.android.contacts, re-
source_name=com.google.android.contacts:id/background_container, tooltip=None, re-

source_id=None, metadata=None))
Element 1: UIElement(text=None, content_description=None, class_name-=...)
Element 2: UlElement(text=First Name, content_description=James, class_name=...)
Element 3: UlElement(text=Last Name, content_description=Brown, class_name=...)
Element 4: UIElement(text=Phone Number, content_description=None, class_name=...)
Element 5: UlElement(text=Email Address, content_description=None, class_name-=...)
Element 6: UlElement(text=Save, content_description=None, class_name=...)
Element 7: UlElement(text=Cancel, content_description=None, class_name=...)

Previous steps: {Input Previous Steps}

Example Output:

Thought: Let’s think step by step. The guide is *Create a new contact for "James
Brown". From previous steps, I opened the *Contacts’ app, started the creation process
and typed the first and last name. The current page shows that I've successfully typed the
First and last name, and I also need to fill in details like phone number, email address.
Since the guide doesn’t provide the phone number, I should give a realistic phone number
here, like "718-099-5256". To continue creating the contact, I shall type "718-099-5256"

to the Phone number.
Action: input_text [4][718-099-5256]

Task: Type "718-099-5256" as the phone number.

Table 22: System prompt for Thought & Action Generation for AndroidWorld trajectory collection.
{Input Action List} is the action space. {Input Task Control}, {Input Current State}, and {Input
Previous Steps} are Current Step Task Control, State, and Step History for in-context example.

32

	Introduction
	Related Works
	Digital World Models in UI-Simulator
	Formulation
	(Retrieval-Free) Simulation
	Retrieval-Augmented Simulation

	Scalable Synthetic Training Trajectory Collection in Simulated World
	Overview and Formulation
	Step-Wise Guided Rollout Process
	Trajectory Wrapper

	UI-Simulator-Grow: UI-Simulator-Powered Targeted Scaling
	Experiments
	Experimental Setup
	Overall Performance

	Analysis
	Ablation Study
	UI-Simulator-Grow vs. Standard UI-Simulator Scaling

	Conclusions
	Obtaining Observation ot From UI State st
	Action Spaces in UI Simulator
	Details of Rule-Based Transition
	Retrieval-Augmented Simulation
	Key Statistics and Hyperparameters of Step-Wise Rollout Process
	Additional Ablation Study on Trajectory Collection Process
	Analysis on Targeted Task Selection in UI-Simulator-Grow Paradigm
	Qualitative Analysis on Successful Tasks Through UI-Simulator-Grow Scaling
	Training and Evaluation Details
	Human Evaluation of Training Trajectories Synthesized by UI-Simulator
	UI Simulation Issue Analysis
	System Prompts

