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Abstract

Reinforcement Learning with Human Feedback
is an increasingly popular post-training proce-
dure for Large Language Models (LLMs) to
better align outputs with human values and in-
crease output quality. As LLMs continue to be
incorporated and improved for various modes
of natural language communication, one might
expect some sense of human-like audience de-
sign to be induced into LLMs. However, the ef-
fects of RLHF on the considerations that shape
LLM text production is difficult to quantify.
Thus, we propose employing an information-
theoretic lens to investigate the changes in the
"naturalness" of language and presence of audi-
ence design in LLMs trained using fine-tuning
and RLHF methods. On the basis of the Uni-
form Information Density (UID) Hypothesis,
which posits that humans optimize their pro-
duction of language to transfer information uni-
formly across a noisy channel, we analyze and
compare how information is distributed within
model-generated and human-generated text be-
longing to various domains to investigate the
presence and form of audience design in LLMs.
With two primary metrics of information unifor-
mity, surprisal variance and local consistency,
we find that RLHF seems to encourage less vari-
ance in information rates across generations,
while fine-tuning decreases uniformity, shifting
distributions slightly in the direction of human-
generated text. However, models still exhibit
significantly superhuman uniformity across var-
ious domains of text. Our results reveal that
while modern LLM training and fine-tuning
paradigms have made progress in approximat-
ing human-like information distributions, sys-
tematic differences persist.

1 Introduction

An increasing amount of the online text we con-
sume in our daily lives has been either entirely gen-
erated by LLMs or written with LLM-assisted tools.
Since early 2023, there has been a marked increase

in LLM-generated text in active web pages (Spen-
nemann, 2025), scientific writing (Liang et al.,
2024), and Wikipedia articles (Brooks et al., 2024).
Additionally, while humans often fail to distinguish
short LLM-generated dialogues from human ones
(Jones and Bergen, 2025), they are still linguisti-
cally different in many ways (Guo et al., 2024; Giu-
lianelli et al., 2023; Mufioz-Ortiz et al., 2024). The
increasing prevalence of LLM-generated texts and
subtle divergence of such texts from natural human
usage makes the characterization of the differences
between machine outputs and human authored text
increasingly crucial.

One way to approach this is by analyzing the con-
siderations that shape text production. For human
speakers, a prominent hypothesis is the Uniform
Information Density (UID) hypothesis, which pos-
tulates that human producers of language strive
to maintain an even distribution of information
across an utterance in order to facilitate listener
comprehension (Jaeger and Levy, 2006). While
LLMs lack explicit audience design mechanisms,
they learn from human text, and—through more
modern methods such as RLHF—from abstract hu-
man preferences (Kaufmann et al., 2023). These
methods could lead models to implicitly regulate
information rate in ways that approximate UID, or
to deviate from it in systematic ways. Additionally,
while autoregressive LMs are designed to minimize
mean surprisal, their spatial distribution can still
differ significantly.

In this study, we adopt an information-theoretic
perspective to quantify these differences between
modern LLM outputs and human productions in
their considerations for audience design, and how
they have evolved across modern LLM training
methods. Crucially, we do not presuppose that
humans and LLMs generate text in the same way.
Instead, we treat UID as a shared observable space
in which different production mechanisms can be
compared. In particular, we analyze the effect of



alignment techniques such as RLHF on the human
likeness of their productions on the basis of the
Uniform Information Density (UID) Hypothesis.

We therefore ask whether and how alignment
techniques, which are optimized for listener prefer-
ence, encourage LLLM generations to exhibit UID-
like behavior relative to human texts. We find that
RLHEF techniques actually have little effect on the
level of uniformity, but rather reduces the vari-
ance of uniformity in model generations, showing
greater consistency of information flow across texts.
Domain adaptation through supervised fine-tuning,
on the other hand, has mixed effects on variance
between different text domains, but generally de-
creases uniformity, aligning generations closer to
human texts.

We make the following contributions:

1. A corpus of roughly 12,000 generated texts
annotated with token-level surprisal values.!

2. A thorough analysis of different training strate-
gies, including RLHEF, instruction tuning, and
domain adaptation, and their effects on the
information rate of model generations.

2 Background

2.1 Uniform Information Density

The Uniform Information Density (UID) hypothe-
sis holds that humans optimize their production of
language to transfer information uniformly across
a noisy channel (Fenk and Fenk, 1980; Jaeger and
Levy, 2006). UID has been shown to affect choices
in language production across many domains of
language, including phonology (Aylett and Turk,
2004), syntax (Jaeger, 2010), and discourse (Gen-
zel and Charniak, 2002). Cross-linguistic studies
(Clark et al., 2023) have also suggested grammat-
ical rules are optimized for UID, reinforcing its
importance as a foundational property of human
language and cognition.

Prior work examining the UID of LLM outputs
reveals significant differences between base (non-
RLHF) LLMs and human-generated texts. Venka-
traman et al. (2024) demonstrated that text gener-
ated by LLMs is significantly more uniform than
comparable human corpora- to the point that UID-
based features can reliably distinguish between
machine-generated and human texts. This supports
that LLM pretraining induces an implicit control
over information rate, yet also demonstrates that
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this sense results in superhuman uniformity. Mod-
els built with RLHF that train more directly on
human preferences were also not studied.

UID measures have also been implemented
as regularizers for training, resulting in LLMs
producing text with higher entropy, greater
lexical diversity, and a qualitative increase in
"naturalness”, suggesting that consideration of
information flow is important for human-like text
production (Wei et al., 2021).

2.2 RLHF

Reinforcement Learning from Human Feedback
(RLHF) is a strategy for reinforcement learning that
incorporates abstract human preferences through a
reward model trained on human feedback of LLM
outputs (Kaufmann et al., 2023). This method has
been especially successful for improving LLM per-
formance on in-context learning and instruction
following, resulting in the development of more
effective chatbots that are optimized for conversa-
tion rather than straight generation of language
(OpenAl, 2022; OpenAl et al., 2024). Though
RLHF seems to improve safety and performance,
this method can lead to an "alignment tax", wherein
the diversity and natural variability of outputs is
reduced (Askell et al., 2021; Kirk et al., 2024; Go
et al., 2023; Lin et al., 2024). However, this is hard
to measure objectively.

Various studies have made efforts to measure
the improvements in the generations of the lan-
guage model. Ouyang et al. (2022) introduced
InstructGPT, OpenAl’s first model fine-tuned with
RLHEF, trained using direct feedback from human
annotators on LLM outputs, including qualitative
judgements of instructions, toxicity, and bias, and
quantitative improvements on benchmark datasets
measuring truthfulness and toxicity. Other past
methods evaluate effects of RLHF on the reward
models’ performance (Kaufmann et al., 2023) or
on the LLM’s generalisability and output diver-
sity (Kirk et al., 2024). However, these metrics
do not directly measure the human-likeness of the
LLM outputs or explicitly compare the outputs to
human text. Instead, these comparisons remain im-
plicit, assuming that human annotators prefer more
"human-like" productions.

Under the UID hypothesis, humans may engage
in audience design by optimizing for a more uni-
form information rate in consideration of process-
ing constraints on the comprehender (Jaeger, 2010).
Thus, we hypothesize that the addition of RLHF
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fine-tuning to a BASE model increases the unifor-
mity of model outputs. With RLHF fine-tuning, a
model would learn similar facets of audience de-
sign from training on abstract human preferences,
and thus an increase in uniformity in consideration
of the end user. Due to human production con-
straints, an LLM would also be better positioned
than a human producer to optimize its information
rate for a comprehender. In this way, RLHF would
diverge the model from human-like information
rates, making outputs less similar to natural lan-
guage from a UID perspective.

3 Dataset Generation

To investigate information density patterns across
human and LLM-generated text, we create paral-
lel corpora of comparable texts produced by both.
Rather than asking models to imitate human writ-
ing explicitly, we follow a minimal-intervention
approach similar to previous "Turing Test" bench-
marks (Liu et al., 2023; Uchendu et al., 2021). For
each domain, we collect human-generated texts and
then prompt LLMs to generate starting from the
same initial context (typically the first sentence/few
sentences). We perform a minimal amount of
prompt engineering to get LLM generations that are
comparable to the corresponding human-written
text, seeking to reduce generation artifacts while
allowing us to generate from near-identical starting
points without explicitly biasing models towards
human-like information flow patterns.’

3.1 Datasets and Prompting

To rigorously test the information density of model
generations across multiple text domains, we
source human-generated text from four different
datasets. All datasets are in English, or we subsam-
ple the English texts only.*We discuss prompting
strategies and their possible effects on analysis in
more detail in section 7.

CNN/DailyMail. To explore UID in model com-
pletions in the domain of professional writing, we
use the CNN/DailyMail dataset introduced by (Nal-
lapati et al., 2016), which consists of news articles
written by journalists from CNN and the Daily-
Mail. Articles from CNN were written between

2One notable exception was the Llama 2 7b 32k In-
struct model. Examples and explanations are included in
Appendix A.

*While the datasets we use were originally intended for

tasks such as text summarization, sentiment analysis, etc, we
use them here as comparable, human-generated text.

April 2007 and April 2015, while those from the
DailyMail were written between June 2010 and
April 2015. We choose this dataset because the
articles all predate the release of ChatGPT and the
widespread use of LLMs in writing news articles,
limiting data contamination.* For prompting, the
source and first sentence of each article was given
to each model as past context, with no explicit
prompt or instruction template. The model was
then allowed to fill in the rest of the article.

WritingPrompts. To extend our analysis to the
creative writing domain, we use the Writing-
Prompts dataset (Fan et al., 2018), a corpus contain-
ing pairs of prompts and stories written by Reddit
users in the subreddit r/WritingPrompts. Each story
is loosely inspired by its associated prompt. For
our purposes, we ignore the prompts, and feed the
first sentence of each story to the model in a sim-
ilar fashion to the CNN/DailyMail dataset. Since
a writing prompt could spawn multiple different
stories, this completion prompting method encour-
ages more similarity between the model-generated
story and the human-generated story.

DailyDialog. We use the DailyDialog dataset (Li
et al., 2017) to test the uniformity of model gener-
ations in dialog completions, consisting of multi-
turn, human-to-human dialog designed to reflect ev-
eryday communication, and manually transcribed
to limit noise. Each dialogue d consists of a se-
quence of turns d = {t1, ta, ..., t,, } where n repre-
sents the total number of turns in dialogue d.

For each dialogue d, we use a sliding context
window approach, where our minimum context
length is k,;, = 5 to ensure sufficient dialogue
history. For ¢ > kK, turns, we created multiple
prompts by having incremental sliding windows.
For each prompt, we extracted the dialogue up to
turn ¢, where ¢ is an increasing odd number from
kmin to the total number of turns in our dialogue.
Our set P of prompts P = {pi,...,p2} € P can
be represented as:

{{tl, ...,t5}, {tl, ...,t7}, {tl, ceey tg}, pn}

The model is given each dialogue stub, and allowed
to complete the rest of the dialogue (with no ex-
plicit prompting). Finally, all the generations from

*It is possible, and even highly likely, that this data was
used in the training of the models used in these experiments.
However, it is more important in our case to avoid the inclu-
sion of LLM-generated or LLM-assisted text in our human-
generated data to avoid misconceptions about natural human
uniformity.
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all stubs of a dialogue are combined to represent
the model-generated dialogue.

WildChat. Finally, to test the UID of model
outputs in a human-chatbot dialog environment,
we used the WildChat dataset (Zhao et al., 2024),
which consists of full conversations between users
and ChatGPT. While multiple languages exist in
the dataset, only English language prompts were
used. WildChat differs from the others in that there
is no "human-generated text" to compare to. The
motivation for including this dataset is to compare
the UID of model responses in the above domains
to the UID in response to diverse human prompts
that were meant for LLMs.

3.2 Models

We prepare generations from various language
models, categorized into base, instruction tuned,
domain-adapted to specific domains, and chat
(RLHF) models. For our first experiment, we com-
pare base, instruction-tuned, and RLHF models
from the Llama 2 (Touvron et al., 2023) and Mis-
tral (Jiang et al., 2023; Zheng et al., 2024) families
of models.’

BASE models. As a baseline, we generate com-
pletions with the base versions of each model fam-
ily, trained on next-token generation alone. In our
first experiment, these models are used out-of-the-
box, without further fine-tuning.

INSTRUCTION-TUNED models. INSTRUCTION-
TUNED models are LLMs fine-tuned on corpora of
instruction-output pairs. This is done to improve
the LLM’s ability to follow instructions from a user
and to adapt to a variety of tasks in-context. To
preserve comparability, we use instruction-tuned
versions of the same BASE models used above.

RLHF models. To analyze the effect of RLHF
on model UID, we used models fine-tuned using
RLHEF, called chat models (see section 2 for more
on RLHF). We choose the RLHF fine-tuned ver-
sions of the same BASE models as above.

3.3 UID Calculation

For each text, we first calculate token-level sur-
prisal. Surprisal, sometimes called the Shannon
information following (Shannon, 1948), is defined

5The specific models from the Mistral family are Mistral
7b v0.1, Mistral 7b Instruct v0.1, and Mistral Plus 7b. The
models from the Llama family are Llama 2, Llama 2 7b, Llama
2 7b 32k Instruct, and Llama 2 7b Chat.

as the negative log-probability. We measure the sur-
prisal of each token, conditioned on some previous
context window. We estimate conditional proba-
bilities using GPT-2 (Radford et al., 2019) with a
context size of 1024 tokens. Commentary on this
method can be found in section 7, UID Calculation.

I(w;) = —logy(P(wilw<;))

With the surprisal values, we then evaluated the
UID of the generated texts using three classes of
metrics, following Meister et al. (2021) and Venka-
traman et al. (2024):

Mean Surprisal Mean surprisal measures the
average information content in a document :

/Lsurpmsal

WZI w;). (1)

While not itself a measure of UID, it nevertheless
can be analyzed to demonstrate the tendencies of
a generation method in terms of information con-
tent. In this case, |w| is the size of the document,
meaning the number of tokens in the document,
whereas I(w;) is the surprisal of the i** token in
the document.

Pairwise Surprisal Distance/Local Consistency.
Local consistency, defined by Wei et al. (2021),
measures the average change in surprisal between
every pair of tokens w;_; and w; in a document
w, measured by some distance function A(zy, z2)
(see Equation 4):

UID pyir (W) = = Z A(I(wi—1), I(w;)). (2)

A document is considered uniform if it has a lower
average pairwise distance, meaning it has consis-
tently small changes in surprisal going from one
token to the next. This metric aligns with optimiz-
ing for locally smooth information contours.

Surprisal Variance. Surprisal variance measures
the mean distance between the surprisal of each to-
ken w; in a document w and the mean surprisal
of that document figyrprisal (W), according to a dis-
tance function A(x1, x2):

UIDvariance (T,U) = 15 Z A(I(’sz), ,u) (3)



A document is considered uniform if it has low
variance in surprisal, meaning the surprisal values
of all words in the document are close to the mean
surprisal of the document. Surprisal variance fits
optimizing for an overall information rate, rather
than local consistency in information.

Distance Function. We use the Squared Differ-
ence function for A, following (Meister et al.,
2021):

A(l‘l,l‘Q) = (."L‘l — :L‘Q)Q. (4)

4 Experiment 1 - Instruction-tuning and
RLHF

We hypothesize that RLHF confers some influence
of audience design to the model through human
feedback, which would increase the uniformity of
its generations. We test this hypothesis by compar-
ing RLHF and BASE models. Additionally, we ask
whether there are similar effects due to the align-
ment of the model to more chatbot-like through
instruction-tuning, or whether human feedback is
unique. In our first experiment, we test this by com-
paring the uniformity of generations across RLHF,
INSTRUCTION-TUNED, and BASE models.

4.1 Methods

We sample 300 human-generated documents from
each dataset, and extract prompts using the de-
scribed strategies in subsection 3.1. Each prompt
is passed to each model for generation. In total,
300 documents are generated by each model per
dataset, for a total of 1200 documents per model.
Outliers and empty generations are removed from
consideration.® The human sources used to gener-
ate each prompt are saved for all datasets except
for WildChat, totaling 900 human-generated docu-
ments. Then, we calculate mean surprisal, surprisal
variance, and local consistency for each document
using the equations from subsection 3.3.

4.2 Results

4.2.1 Mean Surprisal

Mean surprisal values are shown in Table 1. Mean
surprisal varied greatly between models and hu-
mans. All models produced generations with lower
average mean surprisal than human generations, in-
dicating that models typically generate more stereo-
typical texts than humans.

Model Median Mean Std
Human Texts 4.83 493 0.80

" Llama Base 401 402 094
Llama Instruct 3.77 3.85 1.08
Llama RLHF 3.79 3.93 0.88

" Mistral Base 400 407 0.87
Mistral Instruct 3.72 395 1.07
Mistral RLHF 4.05 4.15 0.74

Table 1: Summary statistics of surprisals of documents
across models. Human texts had the highest mean, while
Llama 2 7b 32k Instruct had the highest variance.

Model Median Mean Std
Human Texts 17.48 18.66 4.79
"LlamaBase ~ 11.87 1344 588
Llama Instruct 12.14 1322 5.19
Llama RLHF 1248 1341 5.17
Mistral Base ~ 12.17 1321 5.46
Mistral Instruct 11.60 12.75 4.98
Mistral RLHF 12.53 13.61 5.07

Table 2: Summary statistics for surprisal variance.
Higher values mean less uniformity.

4.2.2 UID Metrics

Model Class Analysis. Across both model fam-
ilies, RLHF reduces the inter-document standard
deviation of UID scores by roughly 5-20 %, while
leaving median uniformity unchanged or slightly
lower, as shown by Figure 1. Table 2 and Table 3
display the standard deviations of each metric for
each model. Within each family, the RLHF model
had a much lower standard deviation for both met-
rics than its corresponding BASE model. The effect
of instruction tuning was less consistent.

Figure 2 breaks these comparisons down by
dataset, aggregating across model families. Across
all datasets, the human-model relationship seems to
hold true: human texts are, in general, less uniform,
no matter the text domain. Additionally, BASE mod-
els in the dialog dataset are more more uniform than
their instruction-tuned counterparts when looking
at local consistency, but close to equally uniform in
surprisal variance. The same is true of WildChat.

Model Family Analysis. Differences in center
between model families are minimal in both met-
rics, as seen in Figure 1. However, across metrics

®More on outlier removal can be found in Appendix B.



Model Median Mean Std
Human Texts 33.80 35.63 9.03
"LlamaBase  21.64 24.82 12.89
Llama Instruct 22.89 25.12 11.06
Llama RLHF 2422 2678 11.56
" Mistral Base ~ 21.86 24.42 12.60
Mistral Instruct 22.59 2571 13.34
Mistral RLHF 23.82 2598 10.01

Table 3: Summary statistics for local consistency.
Higher values mean less uniformity.

and for all model classes, models of the Llama fam-
ily had a slightly higher variance in uniformity than
Mistral.
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Figure 1: UID metrics for each model family, aggre-
gated across all datasets and compared to human-UID.

4.3 Discussion

The effects of RLHF on information uniformity do
not align with our initial hypothesis that RLHF
would increase uniformity. If anything, RLHF
tends to result in slightly less uniform information
rate compared to the base models. Several expla-
nations are possible: First, UID is in tension with
other desirable properties, such as brevity, which
human annotators might prioritize. Second, UID
in model-generated texts is already consistently
higher than in human texts, so if humans prefer
more human-like texts, then RLHF should decrease
UID. Or, perhaps there is a ceiling above which hu-
mans do not prefer higher UID.

When we consider all the texts generated by a
model, the RLHF models generate texts with more
similar UID scores than the base models, with a
lower standard deviation in UID metrics. This sug-

Local Consistency

e

Surprisal Variance

i *i

CNN/DailyMail

T

WritingPrompts WildChat

Dataset

DailyDialog

Figure 2: UID metrics for each dataset and model class,
aggregated for each model family.

gests that RLHF models regulate productions to
stay within the same general neighborhood of in-
formation rates. Interestingly, this mirrors the low
variance seen in human productions, indicating that
RLHF models may implicitly control for the consis-
tency of information rate patterns in a similar way
to humans. The effect of instruction tuning on in-
formation rate, on the other hand, is more sensitive
to model family, likely due to specific datasets or
strategies in supervised fine-tuning.

The results for specific domains reveal that
INSTRUCTION-TUNED and RLHF models have
more varied information contours than BASE mod-
els in conversational contexts (via the DailyDia-
log dataset), potentially reflecting more natural-
istic turn-taking patterns. While these models
may not fully replicate human information density
patterns, these training methods produce domain-
appropriate information structuring.

S5 Experiment 2: Domain Adaptation and
Audience Design

Our initial analysis reveals that all language models,
regardless of training method, produce text with
significantly higher information uniformity than
human-written text. However, subtle differences
between model classes warrant a deeper investiga-
tion into the role of text generation across different
domains. A potential confound in the above ex-
periments is that the effects we observe could be
due to fine-tuning on the chat domain, rather than
learning to optimize human preferences or perform
in-context learning. To determine the impact of
this potential confound, we examine variants of the



BASE models that have undergone domain-specific
fine-tuning, or domain adaptation.

While our first experiment focused primarily on
comparing BASE models with models, we extended
our analysis to include fine-tuned models as a dis-
tinct category, exploring two competing hypothe-
ses: (i) Any form of domain-specific fine-tuning
(instruction tuning or domain adaptation) impacts
information density patterns in similar ways, and
(ii) RLHF and to a lesser extent instruction tun-
ing induce distinct changes in information rate that
cannot be fully replicated through other fine-tuning
approaches.

5.1 Methods

For Experiment 2, we create several custom fine-
tuned models based on the Llama 2 7B architec-
tures. We fine-tune the Llama 2 7B full model on
each domain before encoding the models into an
8-bit quantization, in the GGUF weights format for
inference in "llama.cpp”. Then, we test the four
resulting fine-tuned models.

Experimental Setup. We use the same datasets
and surprisal calculation methodology as in Exper-
iment 1. For each domain (news, dialogue, creative
writing), we compare the following models: (1)
BASE models (no fine-tuning), (2) INSTRUCTION-
TUNED models (general instruction following), (3)
DOMAIN-ADAPTED models (trained on target do-
main), (4) CROSS-DOMAIN FINE-TUNED models
(trained on other domains).

5.2 Results

5.2.1 Mean Surprisal

Model WC CNN DD WP
Human Texts N/A 429 5.22 5.04

"LlamaBase  4.09 4.11 3.82 4.03
Llama Instruct 3.50 391 3.72 3.94
Llama RLHF 349 351 4.27 393

"Llama WC 391 4.16 4.17 451
Llama CNN 420 391 452 455
Llama DD 410 4.50 4.40 451
Llama WP 4.18 428 433 4.50

Table 4: Median values for mean surprisal across fine-
tuned models on the WildChat (WC), CNN/DailyMail
(CNN), Daily Dialog (DD), and WritingPrompts (WP)
datasets.

Table 4 shows median values for mean surprisal

for the models in Experiment 2 on each of the data
domains. Across the domains, we fail to find con-
sistent evidence that supervised domain adaptation
meaningfully alters mean surprisal. The broader
UID picture echoes this null result: fine-tuned mod-
els do not appear to have an effect in correcting for
this information-rate disparity; they remain sub-
stantially more uniform than human texts, and the
degree of deviation is unaffected by whether the
domain is domain-matched or cross-domain.

Model WC CNN DD WP
Human Texts N/A 16.17 20.80 17.28
"LlamaBase 1492 14.06 10.74 10.38
Llama Instruct 13.20 12.34 11.75 11.19
Llama RLHF  13.58 11.95 13.20 11.66
"LlamaWC 1423 13.09 13.05 13.07
Llama CNN 15.07 1242 14.38 13.39
Llama DD 13.84 14.99 12.84 12.17
Llama WP 14.33 13.01 13.94 12.01

Table 5: Median values for surprisal variance across
fine-tuned models and datasets.

5.2.2 UID Metrics

Model WC CNN DD WP
Human Texts N/A 31.09 36.76 34.52
"LlamaBase  24.54 25.80 18.56 20.18
Llama Instruct 25.19 23.50 21.19 22.42
Llama RLHF  26.57 23.14 2645 23.67
"Llama WC  25.61 26.88 23.94 2548
Llama CNN 26.57 21.98 2593 24.24
Llama DD 2483 27.26 2242 24.38
Llama WP 2471 24.87 25.05 22.55

Table 6: Median values for local consistency across fine-
tuned models and datasets.

Table 6 and Table 5 show that the DOMAIN-
ADAPTED models and CROSS-DOMAIN FINE-
TUNED models tended to be about as uniform, if
slightly less, than their BASE counterparts, suggest-
ing similar information rates. This matches the
effect seen in RLHF models in Table 3. However,
unlike RLHF models in Experiment 1, there is no
evidence for a reduction in variance due to domain
adaptation, as seen in Figure 3 Humans still tended
to be less uniform than DOMAIN-ADAPTED and
CROSS-DOMAIN FINE-TUNED models both within
individual datasets (Figure 3) and when aggregated
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Figure 3: UID metrics for Llama models (including fine-tuned models) across datasets.
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Figure 4: UID metrics for Llama models (including fine-tuned models), aggregated across datasets.

across datasets (Figure 4), which is consistent with
our results from Experiment 1.

5.3 Discussion

We observe that DOMAIN-ADAPTED models ex-
hibit a similar lack of effect on the center of unifor-
mity distributions as RLHF models in Experiment
1. This confirms that the lack of shift in center
was not due to any special effects in Experiment 1
from fine-tuning on a dialogue domain; fine-tuning
in general seems to have little to no effect on the
uniformity of model generations. However, there
were differences in the effect on variance in unifor-
mity. Our results show that domain adaptation does
not increase consistency in information flow when
comparing to their base counterparts. This suggests
that human preferences may push not for more or
less uniform text, but rather for a more consistent
rate of information across different generations.

6 Conclusion

Our study investigated how different fine-tuning
paradigms — particularly, instruction tuning and
Reinforcement Learning with Human Feedback
(RLHF) — affect the distribution of information in
language model outputs, inspired by the Uniform
Information Density (UID) hypothesis. Contrary
to our initial hypothesis, RLHF did not uniformly
increase information uniformity. Rather, it con-
strained the range of UID patterns a model pro-
duces by reducing variance across generated texts,
while leaving central tendencies relatively the same
from the BASE model, or even lowering uniformity

slightly. This suggests that while RLHF tuning
had little to no effect on information rate, RLHF
models still implicitly control for the variance in in-
formation flow patterns, similarly to humans. Our
domain adaptation experiments revealed that the
effects of RLHF are not replicable by simply fine-
tuning on a dialogue domain or any other domain,
suggesting that training on human preference ex-
hibits some special effect on the consistency of uni-
formity. Furthermore, aligning models to particular
text genres typically has little effect on uniformity.
Overall, we corroborate earlier findings that
modern LLMs exhibit higher information unifor-
mity than human-authored text across domains, and
demonstrate that even more modern fine-tuning
paradigms have minimal impact on the uniformity
of model generations. While RLHF does have
an effect of information uniformity, it neither in-
creases uniformity as predicted if the model is
learning audience design principles, nor signifi-
cantly decreases uniformity to human-like levels.

7 Limitations

Model Prompting In this paper, we adopt spe-
cific prompting strategies to encourage the model
to produce comparable generations without explic-
itly instructing it to generate human-like texts. We
devise these prompting strategies heuristically, and
we do not conduct a comprehensive comparison of
strategies and their overall effect on information
rate. Future work could address this limitation by
measuring the effect of giving each model more
explicit instructions, rather than providing it with



context and allowing it to continue the remaining
documents, as was done for the CNN/DailyMail
and WritingPrompts datasets.

Language limitations As mentioned in subsec-
tion 3.1, we use only English-language datasets in
our analysis. While studies have upheld the UID
hypothesis cross-linguistically (Clark et al., 2023),
the behavior of LLMs in different languages could
differ, especially for low-resource languages.

UID Calculation We calculate UID using GPT-2
surprisal values, following the practice of (Venka-
traman et al., 2024). We chose GPT-2 partly be-
cause it has higher predictive power for human
reading times than very large LMs (Lopes Rego
et al., 2024), making it a decent estimate for hu-
man cognitive load; additionally, prior work has
shown that UID metrics computed with LM sur-
prisals predict human reading times better than raw
frequency-based metrics. However, each model has
its own predictions for next-token probability. It is
possible that the internal measure of information
rate of each model differs from the estimation ac-
cording to GPT-2’s probability measures. To verify
for robustness, as GPT-2 may overweight frequent
tokens relative to larger models, we replicated our
methods using surprisals computed by a more pow-
erful LM, Qwen (Qwen et al., 2025). We found
that for RLHF models, this change makes no qual-
itative difference in the results. The direction of
change in UID metrics is still the same, although
the absolute magnitude of the metrics was different.
We therefore conclude that in the majority of cases,
RLHF makes texts less uniform, and that this re-
sult is robust to surprisal calculation. More detail
can be found in Appendix D However, there are
certainly still limitations in using LMs for estimat-
ing information rate. Biases have been observed
in LMs as models for human cognitive behavior
(Haller et al., 2024). Future work could seek to
establish best practices for estimating information
rate.

Fine-Tuning Due to computational restraints,
we use 8-bit quantizations of the models through
GGUF and llama.cpp, and fine-tuned using
parameter-efficient methods via low rank adapta-
tion (LoRA). LoRA allows us to specialize Llama-
7B cheaply, but its low-rank updates touch on only
a fraction of the network, so deeper discourse pat-
terns and UID are not as affected as if we had
used a broader architecture, longer full-precision or

LoRA runs, and a loss that directly rewarded UID
for fuller experimentation.

8 Potential Risks

A potential risk of this research is in guiding the ob-
fuscation of LLM-generated text. Since we have es-
tablished known disparities in uniformity between
human text and model generations, work could be
done to account for this in pursuit of hiding LLM
use. This risk is minor at present as there are no
clear techniques to produce generations with more
human-like UID. It should also be noted that UID
metrics are not a stand-alone authenticity metric
of human natural language in the absolute. Our
UID metrics were measured using GPT-2 probabil-
ities; mismatches between that lens and real-world
comprehension may mislead less informed readers.
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A Llama Instruct Prompting

With the standard prompting strategies, the Llama
2 7b 32k Instruct model produced artifacts such as
special instruct tokens, chat template tokens, etc.
in its generations. In order to clean up generations,
the Llama 2 chat template was applied to every
prompt with an instruction preceding the text snip-
pet. Special strings such as [INST] and [/INST]
were added as stop strings, such that the model
generation was halted upon observation of these
strings. Unless otherwise specified, all models in-
cluding chat and instruct variants were queried in
pure continuation mode; we supplied only the par-
tial document context and terminated generation as
mentioned above, with no special system or user
instruction for terminating generation.

B Outlier Removal

In our dataset generation, we tried to remove as
many unreasonable generations as possible through
a minimal prompt engineering process. However,
there still remained texts that had unreasonable
surprisal values, leading to extremely low or high
uniformity. Qualitative assessment of these outliers
revealed that many were nonsensical generations
or, in the case of many WildChat generations, not
in English. This led to the generation of tokens
that had extreme surprisal values, such as charac-
ters in another language or programming language
syntax. Some prompts also led to empty genera-
tions, from which a uniformity calculation would
be impossible.

To clean our dataset, we removed any documents
that displayed above two times the human maxi-
mum or below one-half the human minimum for ei-
ther of the two uniformity metrics, including empty
generations. This was done with consideration of
our overall motivation of concerns over unnatural-
ness in LLM-generated content. If a human were
trying to generate, say, a news article with an LLM,
such outliers would immediately stand out to them
and be discarded. Removing such outliers reduced
our total number of generations from 12,000 to
11,674. On average, less than 3% of texts were
removed, and the distribution of removed texts
was even across models and datasets. Much of
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the analysis was unchanged, but this corrected for
over-estimations of variance in uniformity for the
INSTRUCTION-TUNED models in particular.

C Fine Tuning

For each target domain (news, human-human &
human-chatbot dialogue, creative writing), we col-
lected n > 2000 documents, cleaned whitespace
and removed instances shorter than 50 characters.
Datasets were shuffled and split 80/10/10 into train,
validation, and test sets.

We fine-tuned the Llama-2-7B base checkpoint,
with the following configuration for parameter-
efficient updates via LoRA (low rank adaptation):

e Target modules: q_proj, k_proj, v_proj,
0_proj, gate_proj, up_proj, down_proj.

* Rank r = 24, o = 48, dropout = 0.05.

The hyperparameter configurations for each fine
tune are listed in Table ??.

Batch Size 8

Grad Accumulation 4

Epochs 5

Optimizer AdamW (fused)
Learning Rate 2 x 107 (cosine decay)
Warm-up 10% of steps

Weight Decay 0.01

FP16 Enabled

Early Stopping Patience=3 eval steps

Table 7: Hyperparameters used for each fine tune.

For tokenization, we used the HuggingFace
Llama-2 tokenizer and default settings. We
performed a heuristic search before a grid search
over smaller parameter ranges to optimize for
hyperparameters on perplexity. For inference, we
merged the LoRA adapters onto the Base GGUF
weights before converting to an 8-bit quantization,
using the same generation parameters as the base
model. Here were our perplexity scores for base
versus our domain fine-tunes:

Dataset + Perplexity | Base | Fine-tune
Daily Dialog 7.684 3.698
WildChat 4.109 2.931
CNNDailyMail 13.911 5.597
WritingPrompts 11.288 9.829
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D Qwen Experiments

In order to verify the robustness of our results to
a different surprisal calculation method, we repli-
cated our methods using surprisals computed by
a more powerful LLM, Qwen2.5 (Qwen et al.,
2025). Using the WritingPrompts dataset, we per-
formed experiment 1. Using probability values
from Qwen2.5 instead of GPT2, we calculated the
same metrics with the equations described in sub-
section 3.3. We then aggregated the data into me-
dian and standard deviation, as shown in Table 8
and Table 9.

Model Median Std
Llama Base 20.180481  6.866043
Llama Instruct  22.461929 12.592461
Llama RLHF 23.666833  7.681891
Mistral base ~ 19.541096  7.664134
Mistral Instruct  20.069720 10.746450
Mistral RLHF  21.758398  4.621838

Table 8: Local Consistency calculations from GPT2 on
WritingPrompts

Model Median Std
Llama Base 12.639551  4.727139
Llama Instruct  14.583953 12.800454
Llama RLHF 15.208221  6.567605

" Mistral Base ~ 12.058930  4.688608
Mistral Instruct  11.753679  7.816419
Mistral RLHF  14.615638  4.272996

Table 9: Local Consistency calculations from Qwen2.5
on WritingPrompts
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