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ABSTRACT

In this work, we investigate how to sparsify a pre-trained dense large language
model into a mixture-of-experts (MoE) architecture for faster inference. Our ap-
proach applies mask matrix to the activations for each expert, constrained by L0

regularization to minimize the number of activated parameters. Starting with all
parameters active, the model is progressively sparsified during training, ensuring
minimal performance loss. This approach proves more efficient than one-shot
sparsification techniques (Zhang et al., 2022), which typically require significant
resources for performance recovery. Moreover, our approach automatically iden-
tifies shared, token-specific, and inactive experts, allowing for more efficient al-
location of computational resources. Through extensive experiments, we achieve
up to 97% performance retention on downstream tasks with only 50% of the feed-
forward parameters activated in dense models. Beyond enhancing inference effi-
ciency, this strategy of sharing computational units among experts presents a valu-
able framework for designing more generalized and efficient MoE architectures,
opening avenues for future advancements in expert-based models.

1 INTRODUCTION

Under the guidance of scaling laws, the parameter count in large language models (LLMs) has con-
tinued to rise, with models ranging from LLaMA 7B to 70B parameters. To alleviate the substantial
computational burden associated with model inference and deployment, various model compression
techniques have been proposed. However, their application to LLMs often results in unacceptable
degradation of performance. Thus, a critical challenge remains: how to effectively reduce inference
computation without compromising model efficacy?

Table 1: Comparison of MoM and MoE.
“Flexibility” refers to the adaptability in ex-
pert structure design, “Mem” indicates mem-
ory usage, and “Training Cost” reflects the
computational budget required for training.

Methods Flexibility Mem Training
Cost

MoE ✘ ✘ High
MoEfication ✘ ✔ Low

MoM ✔ ✔ Minimal

Sparse activation presents a promising solution. A
notable example is the Mixture-of-experts (MoE)
approach, which designs multiple expert structures
with extensive parameters but activates only a sub-
set during computation. This limits the number of
active parameters and effectively mitigates the com-
putational load. Despite the effectiveness of cur-
rent sparse activation methods, they typically re-
quire training from scratch, which incurs prohibitive
computational costs. An alternative research direc-
tion explores converting existing dense models into
sparsely activated ones. Techniques such as MoEfi-
cation (Zhang et al., 2022), LLaMA-MoE (Zhu
et al., 2024), and Turbo Sparse (Song et al., 2024)
exemplify this approach by treating specific dimen-
sions of the weights in the feed-forward network (FFN) as expert structures, selectively activating
these dimensions during forward computation. Although these methods avoid the need to retrain
from scratch, they rely on heuristic-based expert construction (e.g., equally distributing weight di-
mensions across all experts), which neglects the varying significance of different dimensions within
large language models. This can lead to suboptimal performance, as it overlooks the fact that some
dimensions can be pruned while others can be shared across experts.

To address these challenges, our approach follows the principle of maximizing efficiency while main-
taining model performance and structure. Specifically, inspired by MoEfication (Zhang et al., 2022),
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we propose transforming the dense FFN structure into a sparse Mixture-of-Experts (MoE) module
using a routing mechanism for selective activation of parameters. However, achieving activated
sparsity with MoEfication style is non-trivial due to following practical challenges:

1. Construct experts by identifying the varying importance of different weight dimensions.

2. Minimize performance degradation during the conversion from a dense to a sparse model.

To achieve this, we develop a learning-based expert construction mechanism that dynamically as-
signs different dimensions to experts during the continue pre-training phase, based on the varying
importance of dimensions. Furthermore, we propose an efficient training method that aims to maxi-
mize activation sparsity while minimizing performance degradation.

We propose a novel sparsification method for large language models, called Mixture-of-
Masks (MoM), which dynamically selects and activates a subset of parameters through learning-
based masks. This approach reduces computational overhead while maintaining model performance,
offering an efficient solution for balancing sparsity and effectiveness. MoM achieves expertization
by integrating mask matrices into the FFN structure, where the mask vectors serve as substitutes
for expert modules. These masks, composed of {0,1} values, determine which dimensions to acti-
vate during training. Through this mechanism, we can: (1) Adaptively learn which dimensions to
share, token-specific, or prune. By training the masks with L0 norm constraints, we retain only
the dimensions crucial for the current token, enabling automated expert construction without rely-
ing on heuristic-based methods, thereby eliminating prior biases. (2) Perform lossless pruning for
efficient continued pre-training. We initialize the masks with all ones, ensuring that model perfor-
mance remains unaffected during the initial pruning phase, allowing for the integration of multiple
compression techniques.

We conducted comprehensive experiments to evaluate the performance of MoM, focusing on model
accuracy restoration, data efficiency, and inference costs. In publicly available evaluation bench-
marks, MoM outperformed existing methods with fixed expert allocation, restoring 97% of the dense
model’s accuracy compared to 90% achieved by MoEfication (Zhang et al., 2022). MoM effectively
maintains model performance while exhibiting superior data efficiency during training. In addition,
starting from the original dense model, MoM gradually prunes parameters with minimal accuracy
loss, achieving the compression target after processing just 10B tokens. In contrast, methods with
fixed expert allocation introduce significant structural changes, resulting in prolonged training times
to restore model accuracy.

In addition, we also conducted an in-depth analysis to shed light on why MoM works well. Upon
analyzing the experts obtained through MoM training, we observed that the experts were automat-
ically divided into shared experts, independent experts, and ineffective experts. Both shared and
ineffective experts can be excluded from routing, thereby reducing the model’s inference costs and
further improving efficiency. This observation is consistent with conclusions from some of the most
advanced model structures, opening new directions for us to explore the characteristics of MoE
architectures.

2 METHODS

In this section, we introduce Mixture-of-Masks (MoM), a novel sparsification method designed to
produce compact models by selectively activating a subset of parameters. This approach achieves
sparsity and computational efficiency while maintaining strong performance within a modest re-
source budget.

2.1 PRELIMINARY

We first present the background for our approach to mixture-of-experts architecture and the pruning
methods.

Mixture-of-Experts. The MoE architecture enhances model capacity by increasing the number
of parameters, but only activates a subset during computation, minimizing the computational cost.
Typically, this involves duplicating the Feed-Forward Network (FFN) multiple times within the
Transformer block, with only a subset of these “experts” active at any given moment. Inspired
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Figure 1: Overview of MoM architecture. MoM-FFN trains multiple masks as experts instead of
multiple copies. For training, the masks are regularized by L0 normalization. For inference, we
construct experts with identified expert patterns.

by this, recent work has shown that transforming a dense model into an MoE structure effectively
achieves activation sparsity. Formally, the output of MoE architecture y can be computed as:

h = Σn
i=1G(x) · Ei(x), (1)

where G(x) and Ei(x) are the output vectors of the gating network and the i-th expert for a given
input x, respectively. However, current methods randomly allocate dimensions, disregarding the
varying importance of each dimension. This non-optimal allocation often results in performance
degradation. Therefore, there is a pressing need for a method that can establish experts tailored to
the model and pre-training data.

Learning the Masks. Pruning aims to achieve sparsity in large models by removing less impor-
tant weights or components. Common approaches include structured pruning (removing specific
structures) and unstructured pruning (removing individual weights). However, for Large Language
Models, scaling laws indicate that a large number of parameters is crucial for optimal performance.
Directly reducing the total number of parameters can harm the model’s capacity. Therefore, we
propose the concept of “activation pruning”, which maintains the total number of parameters while
pruning only the activated ones. This approach aims to preserve the model’s advanced capabilities
while reducing computational costs. In this context, we follow the study Louizos et al. (2017) of L0

regularization to constrain the sparsity of large language models.

2.2 CONSTRUCTING EXPERTS BY MASKS

Following the work (Zhang et al., 2022), we treat the dimensions of weights in FFN as the minimal
unit, and experts are constructed by grouping multiple dimensions together. Instead of manually
assigning dimensions to experts, our objective is to dynamically group related dimensions into ex-
perts based on their interrelationships. In this section, we introduce Mixture-of-Masks (MoM),a
mask-based expert construction approach that enables dynamic selection of dimensions.

To implement this, we consider a LLaMA AI@Meta (2024) style decoder-only model with N Trans-
former layers. Then the output of FFN can be described as follows:

h = F (Wgx) ·Wux, (2)

where Wg,Wu ∈ Re×d are the weight of gate and up projections and F (·) is the activation function.
Our goal is to insert mask variables (denoted as v ∈ Rd) at various positions in this formulation to
achieve sparse activation of different components. Depending on where the masks are inserted,
we then introduce our method within two steps: (1) basic masking method by selecting expand
intermediate dimensions in the FFN, and (2) fine-grained method with three strategies to further
increase sparsity.

Basic Masking Method. The basic characteristic of the FFN structure is that expanding through
the gate and up components can increase model capacity, but it also introduces significant redun-
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dancy. Our approach involves adding a mask module with values {0,1} after the gate and up outputs.
Then, the output of the FFN becomes:

h = [F (Wgx) ·Wux]⊙ v. (3)
The masks are dynamically learned (see Section 2.3) rather than being statically assigned, as in
previous work (Zhang et al., 2022; Zhu et al., 2024). This dynamic approach allows dimensions
corresponding to similar tokens to be grouped together after training, aligning with the core idea of
the MoE structure, i.e., similar tokens activate similar sets of parameters, improving both efficiency
and specialization. Finally, the sparsity calculation method is:

R(v) =

∑d
i=1 I(vi = 0)

d
, (4)

where I is a indicator function.

Fine-grained Masks Strategies. While the basic masking method provides an initial reduction
in redundancy, further improvements can be achieved by targeting specific components of the FFN
with more fine-grained masking strategies. Because each component, such as the gate and up projec-
tions, may require different sparsity levels based on their relative contribution to the model overall
performance, allowing for more granular control over the sparsity (Song et al., 2024).

Then, we extend the masking approach to fine-grained modules (i.e., gate, up, and hidden states
separately). For gate and up projections, the final sparsity is calculated as RFFN = (Rgate ⊙Rup).
Additionally, we add masks to the FFN inputs, considering the differences between inputs where
only a few dimensions need to be expanded to higher dimensions. This approach results in a sparsity
calculation of Rh ⊙RFFN .

2.3 TRAINING WITH L0 REGULARIZATION

Building on the mask construction strategy described earlier, the final set of experts is determined
by the parts of the model that are retained by the learned masks. To increase sparsity and reduce
the number of active parameters, we frame this as a constrained optimization problem. Here, the
goal is to learn mask matrices that select sub-dimensions corresponding to specific tokens, while
still maintaining overall model performance.

Inspired by the L0 regularization method (Louizos et al., 2017), we parameterize the masks to model
hard concrete distributions. These distributions are defined on the interval [0, 1] but concentrate their
probability mass at 0 or 1, enabling discrete decisions to either prune or retain specific dimensions.
In addition, by starting with all parameters active, the model is progressively sparsified during train-
ing, ensuring minimal performance loss.

To formalize this process, let l, and E represent the number of layers and the number of experts
per layer, respectively. Given a target sparsity ratio Rt, the optimization objective for each layer is
defined as:

Lmask =

l∑ E∑
(Re −Rt) + (Re −Rt)

2, (5)

where Re denotes the actual sparsity of the layer after mask application. Combined with the lan-
guage modeling loss, the final loss is Llm + Lmask. This formulation encourages the model to
achieve the desired sparsity while minimizing the impact on performance.

Since each expert learns independently, the model naturally categorizes dimensions into three types:
shared dimensions (across all experts), independent dimensions (specific to individual experts), and
unused dimensions (not allocated to any expert). By automating this process, we reduce the risk
of introducing prior biases and improve the efficiency of the model’s sparse activation mechanism.
Then we will introduce inference optimization based on identified expert types.

2.4 INFERENCE OPTIMIZATION VIA EXPERT PATTERN IDENTIFICATION

In this section, we optimize inference by leveraging the expert patterns identified through the L0

regularization process. Specifically, we categorize experts into three groups: shared experts, inde-
pendent experts, and redundant experts. This classification allows us to apply customized strategies
for each type:
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• Shared experts. Shared experts are dimensions that remain active across all experts. These are
processed only once, as their outputs can be reused across different inputs, thereby reducing memory
usage and computational load.

• Independent experts. For independent experts, we introduce a routing mechanism that selectively
activates experts, following the standard MoE routing strategy. This approach helps to significantly
decrease computational costs by activating only the necessary experts.

• Redundant experts. Redundant experts are dimensions that are never routed across any of the
experts. These dimensions are pruned, as their contribution to model performance is negligible,
further reducing the overall parameter count.

Interestingly, several advanced studies (Dai et al., 2024) have manually divided experts into shared
and independent groups, arguing that shared experts capture common knowledge while independent
experts focus on domain-specific tasks. Our findings after applying MoM are consistent with this,
but in our case, the model automatically learns this division. To provide deeper insights into the
underlying rationale, we conduct a more detailed analysis of the expert patterns, which is presented
in Section 3.4. This analysis sheds light on the architectural design principles that guide the optimal
allocation of experts.

2.5 DISCUSSION

A closely related approach to the L0 regularization-based sparsification presented in this paper
is pruning, which directly compresses the total number of parameters. For example, Sheared
LLaMA (Xia et al., 2024) removes unimportant structures, while SparseGPT (Frantar & Alistarh,
2023) masks redundant values in the weight matrices. However, reducing the total number of pa-
rameters can limit the model capacity to capture complex patterns, which contradicts the goals of
large language models.

In contrast, our method focuses on selective activation of parameters, preserving the model’s full
capacity while significantly reducing computational overhead. Through our experiments, we found
that this approach is more suitable for large models compared to direct pruning. Specifically, we
observe two key advantages: (1) Balancing model capacity and computational efficiency: Selective
parameter activation requires fewer data to recover model performance compared to total parameter
pruning. (2) Scalability for larger models: In our experiments with LLaMA-3-8B, we find that
achieving a compression rate of 50% required only 20B tokens.

3 EXPERIMENTS

In this section, we first set up the experiments and then report the results and analysis. Then we
conduct a detailed analysis under different MoE settings.

3.1 EXPERIMENTAL SETUP

Datasets. For continue pre-training process, we aim to restore the performance when selectively
activating a subset of the parameters. So we use a mixture of several data sources to cover several
domains, including: (1) RedPajama (Computer, 2023), a mixture of CommonCrawl, C4, Github,
Wikipedia, Books, arXiv, and StackExchange. We try to cover a diverse set of domains for a better
performance restoration. (2) Dolma (Soldaini et al., 2024), built from a diverse mixture of web
content, scientific papers, code, public-domain books, social media, and encyclopedic materials. (3)
SkyPile (Wei et al., 2023), a large-scale Chinese dataset containing approximately 150B tokens.
For evaluation, we follow the study (Wei et al., 2023; Zhu et al., 2024) and utilize HellaSwag to
evaluate the model ability since the performance on HellaSwag is reported to grow smoothly during
pre-training.

For a comprehensive assessment of downstream tasks, we follow Sheared LLaMA (Xia et al.,
2024) and use lm-evaluation-harness package (Gao et al., 2024) to evaluate the following tasks:
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SiQA (Welbl et al., 2017), HellaSwag (Zellers
et al., 2019) and ARC easy (Clark et al., 2018).
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(a) Training Loss. (b) Activated Sparsity. (c) Accuracy of HellaSwag.

Figure 2: Model loss and activated sparsity. (a) shows the comparison between MoM and MoEfi-
cation. (b) and (c) illustrate the compression rate and downstream task performance of our method
under the fine-grained masking strategy.

Implementation. For the implementation of continued pre-training setting, we utilize the open-
source SkyWork model (Wei et al., 2023) with 300M parameters for our experiments. SkyWork pro-
vides a general LLaMA-style model framework, ensuring that our method can be easily transferred
to other similar frameworks. Additionally, since all data associated with this model is accessible, it
provides a fair platform for comparing the effectiveness of different methods. Based on this model,
we start from a checkpoint trained with 200 billion tokens. According to the Section 2.2, we provide
four variants of different masking strategies: MoM, MoMFH , MoMFW and MoMFWH :

• MoM is the base variant that only masks the intermediate dimensions in FFN module.

• MoMFH use fine-grained masks of the hidden states dimensions based on MoM.

• MoMFW use fine-grained masks to weights (i.e., gate projection and up projection separatedly).

• MoMFWH is a combination of MoMFH and MoMFW to achieve higher sparsity ratio.

Subsequently, we assess the efficacy of various methods in restoring model performance under con-
strained training resources. To further demonstrate the scalability of our approach, we also conduct
experiments on a larger LLaMA-3-8B model (AI@Meta, 2024). In the next section, we will present
the detailed experimental results.

Baseline Models. Here we introduce relevant methods as our baselines.

• MoEfication (Zhang et al., 2022) for sparse activation. MoEfication converts dense models into
a MoE version by splitting the FFN weights into multiple partitions as experts, with dimensions
evenly distributed across experts.

• Pruning. We additionally employ model pruning as a baseline to validate the effectiveness of
activation-based compression in comparison to full parameter pruning. Specifically, when the total
number of experts is set to 1, our method reduces to traditional pruning, effectively compressing
the total number of parameters. We use this configuration as a variant of pruning to provide a
comparative baseline.

3.2 MAIN RESULTS

Comparing with MoEfication. First, we show dense downstream task evaluation results on both
dense models and activated pruning methods. As shown in Table 2, MoM uses limited training
tokens and outperforms MoEfication in all tasks. Specifically, MoM preserves 98% of original
dense model (49.1 vs. 50.3), while MoEficaiton only preserves around 90% (45.1 vs. 50.3).

As for the data efficiency, we observe obviously from Figure 2 (a), that our method (red curve)
converges to the same loss as the MoEfication (blue curve) very quickly, whereas MoEfication re-
quires approximately 20B tokens to achieve a similar loss. This result indicates that using a lossless
compression method in MoM can effectively enhance the data utilization efficiency than one-short
sparsification like MoEfication.
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Table 2: Models with MoM outperforms publicly available methods of sparsification. Models with
“†” are our reproduced result.

Commonsense & Reading Comprehension
Model (#tokens for training) #Activated BoolQ PIQA SiQA HellaSwag (10) ARC-E Average

Dense (200B) 100% 58.4 67.8 39.1 36.9 49.5 50.3

MoEfication (20B)† 50% 59.4 58.5 36.5 29.3 42.0 45.1
MoM (20B) 75% 60.0 66.9 36.3 35.3 46.6 49.0
MoMFH (20B) 50% 59.5 65.6 37.2 34.9 48.2 49.1

As for the effect of our method during the compression process, Figure 2 (b,c) shows that the re-
covery of model performance remains stable across various compression rates. Specifically, per-
formance recovery stays within 92% of the dense model (i.e., 34.2 vs. 36.9), indicating minimal
degradation even with significant compression. In the early stages of training, there is a slight
drop in performance, despite a low loss value, but this is quickly corrected as training continues.
The overall trend suggests that our method ensures performance stabilizes and recovers effectively.
These results confirm the robustness of our approach, demonstrating that it achieves substantial
compression without severely affecting model accuracy.

To demonstrate the scaling effect, we extend to the LLaMA3-8B model (see Figure 3). As for data
preparation, existing work has shown that more complex datasets are often required to recover the
model after compression, including data ratios (Xia et al., 2024) and larger data sizes (Zhu et al.,
2024). Therefore, we adopt a classic dataset preparation pipeline to ensure a fair comparison. The
results show that our method can still achieve faster model compression on the 8B model. It is worth
noting that in LLaMA-8B, the compression process can be completed more quickly, requiring only
a budget of 15B tokens. However, model recovery is a more prolonged process. Overall, the model
performance gradually improves, while the recovery process for MoEfication might be a more long-
term task. This demonstrates that MoM offers greater data efficiency compared to MoEfication.

(a) Loss (b) Sparsity

Figure 3: Extending experiments on LLaMA-3-8B.

Comparing with Pruning. To
highlight the advantages of reduc-
ing activated parameters over prun-
ing the total number of parame-
ters, we constrain the number of
experts to 1, effectively simulat-
ing a pruning-based approach, and
compare the results with MoMFH .
The outcomes are presented in Fig-
ure 4 (a,d). Our findings indi-
cate that the pruning method strug-
gles to achieve lower compression
rates, likely due to the challenge of
balancing model performance and
compression. As the compression
rate decreases, maintaining model performance becomes increasingly difficult. In contrast, MoMFH

easily achieves higher compression rates while preserving performance, demonstrating that activa-
tion sparsity is a more effective strategy for performance efficiency, particularly in large models.

3.3 DETAIL ANALYSIS

Here we provide detailed studies of two important aspects of learning masks: masking strategies
and learning strategies.

Masking Strategies. In this section, we investigate different settings of mask strategies, includ-
ing (1) MoMFH remove dimensions in the input hidden states, (2) MoMFW only remove the
weights of the gate and up projections, and (3) MoMFWH additionally remove weights in the gate

7
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(a) MoM vs. Pruning (b) Masking Strategies (c) L0 vs. L1

(d) MoM vs. Pruning (e) Masking Strategies (f) L0 vs. L1

Figure 4: Influence of Masking Strategies for different metrics. Figures (a,d) denote the comparison
with pruning. Figures (b,e) denote the ablation of different masking strategies. Figures (c,f) denote
the ablation study of different learning strategies.

and up projections based on hidden states. Then we continue pre-train the 300M models with 20B
tokens and report the evaluations on Hellaswag datasets in the Figure 4 (b,e). From the sparsity
ratio, we find that MoMFH achieves a lower sparsity ratio than the others. Meanwhile, these com-
pression gains sacrifice the performance as we can see from the evaluation in Hellaswag. For the
300M model, we find that MoMFH consistently performed the best. Therefore, we recommend
prioritizing MoMFH for initial trials. However, if a larger training budget is available, MoMFWH

may be more advantageous as it may lead to more sparsified models.

Learning strategies. In practice, optimizing binary masks can be challenging due to their discrete
nature. Therefore, it is crucial to design an appropriate technique for learning effective masks.
Popular approaches include normalization methods such as L1 and L0 regularization. To evaluate
the effectiveness of these techniques, we performed an ablation study and present the results in
Figure 4 (c, f). As shown in the figure, applying L1 regularization results in a significant degradation
in model performance at the early stages of training, with the loss rapidly increasing. This indicates
that L1 is not well-suited for sparsification tasks. Consequently, we halted the L1 experiment after
training with less than 10B tokens, as the sparsity achieved was considerably lower compared to L0.
In contrast, the L0 regularization technique proved to be much more effective in achieving sparsity,
validating its suitability for tasks involving sparse activation.

3.4 ANALYSIS FOR THE EXPERTS

Experts Selection Across Layers. In the Section 2.4, we propose that different experts, repre-
sented by individual dimensions, should have varying levels of significance in the model. Our
method uses an adaptive training approach to assign dimensions into three categories: shared ex-
perts, independent experts, and redundant experts. By distinguishing the roles of each expert, the
model can better allocate importance, improving both efficiency and interoperability.

To further understand this result, we visualize the experts at different layers, as shown in the Figure 5.
We observe varying levels of preference for the experts across layers. For example, Expert 2 shows
a relatively even level of participation, with activation remaining below 50% and spread across all
layers. In contrast, Expert 4 exhibits activation in some layers that reaches approximately 80%,
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(a) Expert-2. (b) Expert-4.

Figure 5: Visulizaton of experts selection.

(a) Visualization of Expert Selection (b) Routing Distribution Similarity

Figure 6: Analysis of the experts. (a) denotes the visulizaton of experts selection and (b) denotes the
routing distribution similarity across MMLU 57 tasks.

but the number of activated layers remains relatively low, around 30%, which maintains higher
efficiency.

Then we analyze the roles of shared, independent, and redundant experts across layers and their
relationship to activation sparsity. Specifically, we use 8-hit dimensions to represent shared experts
(blue bars) and 0-hit dimensions to represent redundant experts (red bars), see Figure 6 (a). Our
analysis reveals two intriguing patterns: (1) in shallow layers, more experts are redundant, and
the model focuses on common, token-agnostic information. This leads to higher activation spar-
sity, with many parameters deemed unnecessary. As we move to deeper layers, sparsity decreases,
suggesting that the model requires more experts to handle the increasing complexity of semantic
information. (2) In the deepest layers (21, 22, and 23), we observe a rise in shared experts, even
though these layers handle more complex and nuanced semantic tasks. This implies that, de-
spite the increased task complexity, there are underlying patterns or features that remain consistent
across tasks, captured effectively by shared experts. This discovery points to the model’s ability to
extract cross-task or cross-domain information, a feature that may contribute to its generalization
capabilities. Our findings offer valuable insights into the interpretability and efficiency of deep MoE
models, showing how expert roles evolve across layers. Understanding these dynamics could lead to
more efficient model architectures that balance the trade-off between task-specific adaptations and
shared knowledge extraction.

Experts Selection Across Tasks Then we empirically investigate whether different experts con-
tain domain-specific information. For the dataset, we use the benchmark of MMLU where the tasks
are categories into four groups (Hendrycks et al., 2021). First, we collect the output of the gate
projections across all the layers and form a gate distribution vector of the dimension of 8 (experts
per layer) × 24 (layers). Then we calculate the cosine similarity of the vectors and report the
results in the Figure 6 (b). We observe a clear boundary between the STEM and humanities sub-
jects, as shown by the clustering patterns in the heatmap. Additionally, three history tasks—high
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school european history, high school US history, and high school world
history—exhibit strong correlations with each other, more so than with other tasks. This is likely
due to the significant overlap in the subject matter across these history topics, which makes them
more similar compared to other tasks.

Notably, even though our experts are constructed using masks rather than the traditional MoE ap-
proach, they still successfully learn to capture domain-specific information and categorize tokens
based on their content. This demonstrates that our approach retains the essential characteristics of
traditional MoE models while offering greater flexibility.

4 RELATED WORK

Pruning. Existing models are often impractical to deploy due to their large parameter count. A di-
rect solution to this issue is pruning (Xia et al., 2024), which involves the removal of model weights.
Pruning generally follows two primary approaches. The first approach is structured pruning (Xia
et al., 2024), which typically achieves higher compression rates and enhances inference efficiency.
However, this method often results in significant performance degradation due to the coarse gran-
ularity of pruning, which inadequately preserves essential weights. Consequently, extensive re-
training is often necessary to recover model performance. The second approach is unstructured
pruning (Song et al., 2024; Wang et al., 2024), which eliminates non-essential weight values. This
finer-grained method effectively retains important weights, resulting in minimal performance loss.
However, it does not substantially improve inference speed. The traditional work focus on reducing
the total parameters which may not against the spirit of scaline law (Kaplan et al., 2020): the large
language models where the superior ability comes from a large number of parameters.

Sparsed Methods. In contrast to pruning, activating fewer parameters during computation main-
tains model capabilities without increasing computational load, making it an effective augmentation
strategy. A typical approach is the Mixture of Experts (MoE) structure (Fedus et al., 2022; Lepikhin
et al., 2020), where multiple FFN structures act as experts, with only a subset activated for com-
putation, effectively reducing parameter count. Numerous studies have validated the efficiency of
this method in large-scale models. For instance, the Mixtral (Jiang et al., 2024) model implements
a standard MoE structure at a 7B scale, while DeepSeek (Dai et al., 2024) enhances MoE by incor-
porating shared experts for common knowledge and unique experts for specific tasks. Additionally,
existing pre-trained models can be transformed into MoE structures by replicating the FFN multiple
times and activating only a few each time. This process, termed “MoEfication” (Zhang et al., 2022)
has successfully modified smaller models like BERT and larger ones like Llama-MoE (Zhu et al.,
2024). Although these methods effectively leverage the knowledge of existing models, the structural
changes often lead to performance degradation. This paper focuses on enhancing the effectiveness
of MoEfication to establish it as a viable solution.

5 CONCLUSION

We introduced Mixture-of-Masks (MoM), a novel method to transform an existing dense model
into a sparsely activated architecture, offering high efficiency while maintaining performance. With
MoM, we achieved 97% of the performance of the dense counterpart, with only 50% of the feed-
forward network (FFN) parameters activated, significantly reducing computational costs under a
10B parameter training budget. Compared to the traditional Mixture-of-Experts (MoE) approach,
MoM had been demonstrated superior efficiency in both parameter usage and computation. In ad-
dition to its performance gains, we also provided valuable insights into the distribution of experts,
revealing key design principles that can inform the construction of more interpretable and efficient
MoE architectures. These findings not only improve our understanding of how to optimize sparse
models but also suggest new directions for enhancing the balance between performance and effi-
ciency in large-scale language models. For future work, we plan to extend our method to more
components within the model architecture, including attention weights and even embeddings. we
aim to further improve the model’s parameter efficiency and achieve greater computational savings.
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Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts. CoRR, abs/2401.04088, 2024. doi: 10.48550/ARXIV.2401.04088. URL
https://doi.org/10.48550/arXiv.2401.04088.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
http://arxiv.org/abs/1803.05457
https://github.com/togethercomputer/RedPajama-Data
https://aclanthology.org/2024.acl-long.70
https://aclanthology.org/2024.acl-long.70
https://jmlr.org/papers/v23/21-0998.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://doi.org/10.48550/arXiv.2401.04088


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l0 regularization. CoRR, abs/1712.01312, 2017. URL http://arxiv.org/abs/1712.
01312.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Au-
thur, Ben Bogin, Khyathi Raghavi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann,
Ananya Harsh Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Ja-
cob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhi-
lasha Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind
Tafjord, Evan Pete Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy,
Dirk Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an open corpus of three trillion tokens
for language model pretraining research. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 15725–
15788. Association for Computational Linguistics, 2024. URL https://aclanthology.
org/2024.acl-long.840.

Yixin Song, Haotong Xie, Zhengyan Zhang, Bo Wen, Li Ma, Zeyu Mi, and Haibo Chen.
Turbo sparse: Achieving LLM SOTA performance with minimal activated parameters. CoRR,
abs/2406.05955, 2024. doi: 10.48550/ARXIV.2406.05955. URL https://doi.org/10.
48550/arXiv.2406.05955.

Hongyu Wang, Shuming Ma, Ruiping Wang, and Furu Wei. Q-sparse: All large language models
can be fully sparsely-activated. CoRR, abs/2407.10969, 2024. doi: 10.48550/ARXIV.2407.10969.
URL https://doi.org/10.48550/arXiv.2407.10969.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu, Lijie Wang, Haihua Yang, Biye Li, Cheng
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