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ABSTRACT

Lightweight, controllable, and physically plausible human motion synthesis is
crucial for animation, virtual reality, robotics, and human-computer interaction
applications. Existing methods often compromise between computational effi-
ciency, physical realism, or spatial controllability. We propose FlexMotion, a
novel framework that leverages a computationally lightweight diffusion model
operating in the latent space, eliminating the need for physics simulators and en-
abling fast and efficient training. FlexMotion employs a multimodal pre-trained
Transformer encoder-decoder, integrating joint locations, contact forces, joint ac-
tuations and muscle activations to ensure the physical plausibility of the generated
motions. FlexMotion also introduces a plug-and-play module, which adds spatial
controllability over a range of motion parameters (e.g., joint locations, joint actu-
ations, contact forces, and muscle activations). Our framework achieves realistic
motion generation with improved efficiency and control, setting a new benchmark
for human motion synthesis. We evaluate FlexMotion on extended datasets and
demonstrate its superior performance in terms of realism, physical plausibility,
and controllability.

1 INTRODUCTION

Generating controllable and realistic human motion is a critical task with applications in various
domains, including animation Zhu et al. (2023), sports and rehabilitation Yang et al. (2023); Zhang
et al. (2024a); Cheng et al. (2023); Tashakori et al. (2022), virtual reality Zhu et al. (2023), robotics
Tashakori et al. (2024), and human-computer interaction Arkushin et al. (2023); Zhang et al. (2022);
Servati et al. (2024). Human motion involves complex interactions between joint movements, con-
tact forces, and muscle activations, necessitating a comprehensive approach that can capture both
kinematic and dynamic aspects. Despite the remarkable progress in human motion generation, chal-
lenges remain in developing models that effectively balance physical realism, computational effi-
ciency, and fine-grained controllability.

Traditional methods often fail to control the intricate biomechanics of human movement, which in-
volve complex interactions between kinematics, dynamics, and environmental context Tripathi et al.
(2023b); Zhang et al. (2024b); Xie et al. (2021a); Chiquier & Vondrick (2023). This deficiency is
particularly notable in applications such as sports and rehabilitation, where the precision of mus-
cle activations and contact forces is crucial for accurate simulation Chiquier & Vondrick (2023).
Furthermore, current methods focused on physical plausibility often demand high computational
resources, such as physics engines, rendering them impractical for real-time applications Yuan et al.
(2023); Xie et al. (2021a); Tripathi et al. (2023a).

We propose FlexMotion, a novel, lightweight, and physics-aware framework that generates mul-
timodal human motion sequences conditioned on text and diverse kinematics and dynamics infor-
mation. FlexMotion leverages a multimodal, physically plausible pre-trained Transformer encoder-
decoder, learning the relationship between joint trajectories, contact forces, joint actuations, and
muscle activations to ensure that the generated motions are aligned with human biomechanics. Flex-
Motion operates in the latent space, significantly reducing the computational cost for training and
inference compared to traditional human motion generation methods. Our model also introduces a
spatial controllability module that allows for fine-grained control over spatial, muscle, joint actua-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Text + Contact Force Text + Joint Location Text + Muscle Activation Text + Joint Actuation

a b c d

Figure 1: The proposed FlexMotion can generate physically-plausible human motion sequences
using text prompt and spatial control over diverse motion kinematic properties, including (a)
contact forces, (b) joint locations, (c) muscle activation, and (d) joint actuation.

tion, and contact force parameters, enhancing the applicability of generated motions across various
domains.

FlexMotion’s capabilities can be best understood through examples of its generated data. We present
a few instances in Fig. 1. In Fig. 1(a), a person performs a handspring, demonstrating FlexMotion’s
performance by combining contact forces and text. In Fig. 1(b), a person walks on a wavy path,
showcasing FlexMotion’s spatial controllability over movement trajectory. In Fig. 1(c), a person
walks in a straight line, where the output is controlled using quadriceps activation over time. In
Fig. 1(d), a person moves their left hand while sitting on the ground, where FlexMotion was given
a combination of forearm actuation and textual description. For each of these examples, motion
generators conditioned only on text descriptions might generate a wide range of possibilities that
may not align with the user’s intent. By integrating the spatial conditioning module, we can control
the generated motion to follow specific trajectories, contact forces, joint actuations, and muscle
activations, enabling precise and contextually appropriate motion generation.

Our main contributions are as follows:

• Physical Plausibility: We propose the first method that ensures generated motions are
physically plausible by training a Transformer encoder-decoder with physical constraints.
We extend current datasets to include muscle activations, contact forces, and joint actua-
tions, enabling multimodal sensor fusion.

• Computational Efficiency: Our diffusion model operates in the latent space, making it
lightweight and fast to train and infer without requiring complex physics simulators for
further correction.

• Enhanced Controllability: FlexMotion provides plug-and-play fine-grained control over
spatial, muscle, joint activation, and contact force parameters, enhancing the applicability
of generated motions across various domains.

The following section discusses related works in human motion generation, physics-aware human
motion modeling, and controllability. Next, we describe our proposed method, including mathe-
matical formulations and architectural details. We then discuss our experimental results on popular
datasets, including HumanML3D Guo et al. (2022a), KIT-ML Plappert et al. (2016), and FLAG3D
Tang et al. (2023). Finally, we conclude with insights and directions for future work.

2 RELATED WORK

2.1 HUMAN MOTION GENERATION

Motion generation literature has focused on two main approaches: first, using autoregressive mod-
els, which use past generated frames to generate the subsequent frames recursively Zhu et al. (2023).
Second, sequence-based models which generate the entire sequence at once Zhu et al. (2023); Feng
et al. (2024); Lou et al. (2023); Zhong et al. (2023); Xu et al. (2023); Ma et al. (2024); Dabral
et al. (2023). In the second approach, researchers have employed a variety of generative models to
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achieve this, including Generative Adversarial Networks (GANs) Zhu et al. (2023), Variational Au-
toencoders (VAEs) Zhu et al. (2023); Jiang et al. (2024), Normalizing Flows (NFs) Zhu et al. (2023),
and Diffusion Models (DMs) Zhu et al. (2023); Tevet et al. (2023), as well as a task-specific model
known as Motion Graphs (MGs) Zhu et al. (2023). Among these approaches, Diffusion Models,
particularly Denoising Diffusion Probabilistic Models (DDPMs), have demonstrated promising and
diverse results Tevet et al. (2023); Zhu et al. (2023).

DDPMs have been particularly successful due to their ability to model complex data distributions
and generate high-quality samples without mode collapse, a common issue in other generative mod-
els like GANs Stypułkowski et al. (2024). These models have found applications beyond motion se-
quence generation, including image synthesis Ruiz et al. (2023); Li et al. (2024); Wang et al. (2024);
He et al. (2022); Zhang et al. (2023c;a); Van Le et al. (2023), video generation Zhou et al. (2024);
Zhang et al. (2023a); Wu et al. (2023), and other domains where generating realistic sequences is
essential.

Motion synthesis research aims to produce realistic and natural human motion patterns under various
conditions, leveraging the flexibility and robustness of models like DDPMs. These conditions can
include text Tevet et al. (2023); Zhang et al. (2024c; 2023b); Zhao et al. (2023); Chen et al. (2023);
Qian et al. (2023), audio Zhu et al. (2023), action Tevet et al. (2023), music Zhu et al. (2023), images
Zhu et al. (2023), 3D scene Zhu et al. (2023), spatial contexts Xie et al. (2023); Karunratanakul et al.
(2023), objects Zhu et al. (2023), or a combination of such conditions Ling et al. (2023); Jin et al.
(2024). These generated sequences can consist of either key point locations, joint rotation Zhu et al.
(2023); Delmas et al. (2023), or mesh parameters extracted from models such as SMPL Loper et al.
(2015).

Despite the advancements in generating realistic human motion sequences, current models often
perform inadequately when tasked with synthesizing complex dynamic movements that adhere to
biomechanical and physical laws. These models produce noticeable physical artifacts, such as unnat-
ural joint rotations, unrealistic muscle dynamics, and incorrect contact points during environmental
interactions. This deficiency arises especially while generating long motion sequences, primarily
because existing approaches lack an explicit understanding of the relative mapping between muscle
activations, joint torques, and contact forces, which are crucial for generating physically plausible
motions Zhang et al. (2024c). To address these limitations, we employ a pretrained autoencoder that
encodes motion properties in the latent space while preserving essential biomechanical informa-
tion, with a decoder that integrates physics-based constraints to ensure physically accurate motion
reconstruction, as detailed in the method section.

2.2 PHYSICS-AWARE HUMAN MOTION MODELING

To generate physically plausible motion sequences, researchers have employed two primary ap-
proaches: first, interaction with physics simulators Xie et al. (2021b); Lee et al. (2019); Yuan et al.
(2023), and second, the integration of physics-based constraints into the reconstruction loss function
Tevet et al. (2023). While physics simulators provide detailed physical interactions, they are com-
putationally expensive and non-differentiable Zhang et al. (2024b); Tripathi et al. (2023b), signifi-
cantly limiting their utility. The non-differentiability obstructs gradient backpropagation, hindering
the effective optimization and refinement of generated motions Zhang et al. (2024b); Tripathi et al.
(2023b). Alternatively, integrating physics-based constraints directly into generative models offers a
more computationally efficient approach to maintaining physical realism without needing full sim-
ulation. In the second category, MDM integrates pose consistency, foot placement, and velocity
loss Tevet et al. (2023), while IPMAN-R introduces stability and ground interaction loss to enhance
motion realism in dynamic environments Tripathi et al. (2023b). PhysPT integrates contact points,
force, and Euler–Lagrange consistency loss to accurately simulate physical interactions Zhang et al.
(2024b). Additionally, authors in Xie et al. (2021a) incorporate dynamic constraints, contact points,
penetration avoidance, and smooth transition terms to produce realistic motion estimation. How-
ever, despite these advancements, both approaches struggle to capture complex dynamic motions
thoroughly and often fail to adhere to biomechanical laws, leading to noticeable physical artifacts,
especially in long sequence generations Zhang et al. (2024c). Our work addresses these challenges
by utilizing a pretrained autoencoder architecture to generate physically plausible outputs, detailed
in the method section.
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2.3 CONTROLLABLE MOTION GENERATION

Controlling motion generation algorithms is essential for creating realistic and contextually appro-
priate human motions, especially when these motions must adhere to specific spatial constraints or
trajectories. Recent advancements have been inspired by techniques from image generation, such as
ControlGAN Li et al. (2019), ControlNet Zhang et al. (2023c), ControlNet+ Li et al. (2024), and the
T2I adapter Mou et al. (2024); Cao et al. (2024), which offer nuanced control over generated out-
puts. OmniControl Xie et al. (2023) introduces flexible spatial control signals into a diffusion-based
motion model. It allows precise control over various joints over time and improves motion realism
Xie et al. (2023). Guided Motion Diffusion (GMD) Karunratanakul et al. (2023) enhances spatial
accuracy by integrating constraints such as predefined trajectories and obstacles, using feature pro-
jection and dense guidance to ensure coherence between spatial information and generated motions
Karunratanakul et al. (2023).

However, both OmniControl and GMD only control joint trajectories and do not account for crucial
kinematic parameters such as joint actuation, ground contact forces, or muscle activation, which lim-
its their ability to generate refined motion sequences that adhere to the physical constraints required
for realistic and application-specific human movement synthesis. We propose a spatial controllabil-
ity module to incorporate these critical kinematic and biomechanical factors, enabling more precise
motion generation, as detailed in the method section.

3 PROPOSED METHOD

The objective of FlexMotion is to generate realistic motion sequences {xt}Tt=1 conditioned on a text
prompt c and a wide range of spatial conditions {ct}Tt=1, where T is desired sequence length. The
overall architecture of FlexMotion, illustrated in Fig.2, consists of three main components. First,
the Physics-aware Multimodal Autoencoder (Sec.3.1) learns to map detailed kinematic and dy-
namic properties of motion to a latent space that captures the essential features of human motion
while enforcing physical plausibility through physics-based constraints during motion sequence re-
construction in the decoder. Second, the FlexMotion Diffusion Model (Sec.3.2) generates desired
latent embedding sequences conditioned on the text prompt. Third, the Spatial Controllability
Module (Sec.3.3) provides fine-grained spatial control over critical motion parameters, enabling
precise and contextually appropriate motion generation. In the following sections, we discuss each
component in detail. Further details and pseudocode for both the training and inference processes
are provided in the appendix.

3.1 PHYSICS-AWARE MULTIMODAL AUTOENCODER

To model complex human motions while enforcing physical plausibility, we use a transformer-based
autoencoder architecture capable of handling multiple motion modalities, similar to the architecture
introduced in Zhang et al. (2024b). Fig. 3 provides an overview of the proposed multimodal au-
toencoder. At each time step t, the motion data xt consists of various components, including joint
positions pt ∈ RJ×3, joint rotations rt ∈ RJ×3, joint velocities ṙt ∈ RJ×3, joint accelerations
r̈t ∈ RJ×3, muscle activations at ∈ RM , joint torques τt ∈ RJ×3, and contact forces λt ∈ RJ×3,
where J and M denotes total number of joints and muscles respectively. These modalities are con-
catenated into a single feature vector, as described in Eqn. 1, where D represents the dimensionality
of the input feature vector, calculated based on the dimensions of each modality.

xt = [pt, rt, ṙt, r̈t,at, τt,λt] ∈ RD (1)

The encoder E(.) processes the input sequence xt ∈ RD and maps it to a sequence of latent repre-
sentations xet ∈ Rd (Eqn. 2), where θE is the encoder parameters, and d is latent space dimension
where d� D.

xet = E(xt; θE) (2)

The decoder D(.) reconstructs the motion sequence from the latent representations xet ∈ Rd
(Eqn. 3), with θD being the decoder parameters. Here, x̂t ∈ RD denote the reconstructed output.
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Figure 2: Overview of the proposed FlexMotion framework. It consists of first, multimodal au-
toencoder, which maps motion kinematic and dynamic properties to latent space (Sec. 3.1), second,
latent space motion diffusion model, which generates a motion sequence in latent space conditioned
on text prompt (Sec. 3.2) and third, spatial controllability module, which adds further control to the
generated motion (Sec. 3.3).

x̂t = D(xet ; θD) (3)

To ensure accurate reconstruction of each modality, we define a total reconstruction loss Lrecon as
a weighted sum of modality-specific losses (Eqn. 4). The loss terms include the l2 norm between
the ground truth and reconstructed values for joint positions, rotations, velocities, accelerations,
muscle activations, joint torques, and l1 norm for contact forces since its mostly sparse vector.
The parameters αpos, αrot, αvel, αacc, αtorque, αforce, and αmuscle are weighting factors that balance the
importance of each modality.

Lrecon =

T∑
t=1

[
αpos‖pt − p̂t‖22 + αrot‖rt − r̂t‖22 + αvel‖ṙt − ˆ̇rt‖22 + αacc‖r̈t − ˆ̈rt‖22

+ αtorque‖τt − τ̂t‖22 + αforce‖λt − λ̂t‖11+αmuscle‖at − ât‖22
] (4)

To ensure that the generated motions adhere to the laws of physics, inspired by Zhang et al. (2024b);
Lee et al. (2019), we incorporate physics-based constraints derived from body dynamics. Specifi-
cally, we enforce the Euler-Lagrange equation (Eqn. 5) to ensure the generated motions are physi-
cally plausible.

M(rt)r̈t + C(rt, ṙt)ṙt + G(rt) = τt + J>C(rt)λt (5)

In this equation, M(rt) represents the mass matrix, C(qt, ṙt) accounts for Coriolis and centrifugal
forces, G(rt) is the gravitational force vector, and JC(rt) refers to the contact Jacobian matrix.
More details can be found in the appendix.

We define the physics-based loss Leuler as the l2 norm between the left-hand side and right-hand
side of Eqn. 5 (Eqn. 6). This differentiable loss encourages the reconstructed motion to satisfy the
physical equations governing the musculoskeletal system (More details in Zhang et al. (2024b); Lee
et al. (2019)).
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Figure 3: Overview of Physics-aware Multimodal Autoencoder. It maps diverse motion properties
into the latent space and reconstructs them while enforcing physics-based loss terms (Sec. 3.1).

Leuler =

T∑
t=1

∥∥M(rt)r̈t + C(rt, ṙt)ṙt + G(rt)− τt − J>C(rt)λt
∥∥2 (6)

Enforcing muscle coordination is also critical for generating realistic and physically plausible mo-
tions. We model muscle coordination by computing muscle activations that produce desired joint
accelerations while minimizing excessive activation. Following Lee et al. (2019), the muscle loss
function Lmuscle is defined as Eqn. 7.

Lmuscle =

T∑
t=1

(
‖r̈t − Lat‖22 + βreg‖at‖22

)
(7)

The matrix L ∈ R(J×3)×M maps muscle activations to joint accelerations, which is derived from
musculoskeletal dynamics, and βreg serves as a regularization weight to prevent excessive muscle
activations. The network is trained to minimize Lmuscle, ensuring that the activations produce the
desired accelerations while adhering to physical constraints.

The total loss for training the Transformer encoder-decoder is defined as Eqn. 8, where βeuler and
γmuscle are weighting factors for the physics-based constraints and muscle loss, respectively.

LAE = Lrecon + γeulerLeuler + γmuscleLmuscle (8)

We train the physics-aware Transformer encoder-decoder by minimizing the total loss Ltotal. This
involves updating the encoder parameters θE , and decoder parameters θD. The training ensures that
the reconstructed motions match the input data and satisfy physical laws and muscle dynamics.

3.2 LATENT SPACE MOTION DIFFUSION MODEL

To generate diverse and realistic motion sequences, we employ a diffusion model operating in the
latent space Xe = {xet}Tt=1 obtained from the trained Transformer encoder E(.). Following Tevet
et al. (2023), we define a forward and reverse diffusion process. An overview of the model can be
found in Fig. 2.

The forward process gradually adds Gaussian noise to the latent variables, where βn is a variance
schedule. The noise is sampled from a Gaussian distribution with mean

√
1− βnXe

n−1 and variance
βnI (Eqn. 9).

q(Xe
n|Xe

n−1) = N (Xe
n|
√

1− βnXe
n−1, βnI) (9)

The reverse process learns to remove noise step by step, where µθ is a neural network parameterized
by θ that predicts the noise at each iteration n (Eqn. 10).

pθ(X
e
n−1|Xe

n) = N (Xe
n−1|µθ(Xe

n, n, c), σ
2
nI) (10)
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To train the diffusion model, we freeze the pretrained Transformer encoder-decoder and optimize
Ldiff, where Xe

n−1 = εθ(X
e
n, n, c) Murphy (2023) (Eqn. 11), and N is number of diffusion steps.

Ldiff = EXe
0∼q(E(X0)|c),n∼Unif(0,N−1),ε∼N (0,1)

[
‖ε− εθ(Xe

n, n, c)‖
2
2

]
(11)

3.3 SPATIAL CONTROLLABILITY MODULE

We integrate a spatial controllability module inspired by Zhang et al. (2023c) to enable fine-grained
control over the generated motion. At each time step t, the control inputs ct ∈ RD can include
desired joint positions, velocities, muscle activations, or other motion parameters that resemble the
modalities in xt. We use the frozen encoder E(.), trained in section 3.1, to map the sequence of
control signals {ct}Tt=1 into a latent spaceCe ∈ Rd. We freeze the trained diffusion model described
in section 3.2 and introduce a trainable copy between two zero-initialized convolution layers, Z, as
shown in Eqn. 12.

εθtotal(X
e
n, C

e, n, c) = εθ(X
e
n, n, c) + Z(εθC (Xe

n + Z(Ce, θz1), n, c), θz2) (12)

This design ensures that initially, the control module’s output does not interfere with the pretrained
diffusion model, allowing the network to learn how to gradually incorporate control conditions dur-
ing training. The overall learning objective can be described as Eqn. 13.

Ltotal = EXe
0∼q(E(X0)|c),Ce,n∼Unif(0,N−1),ε∼N (0,1)

[
‖ε− εθtotal(X

e
n, C

e, n, c)‖22
]

(13)

4 EXPERIMENTAL RESULTS

Datasets. We evaluate FlexMotion on three popular datasets: HumanML3D Guo et al. (2022a),
KIT-ML Plappert et al. (2016), and Flag3D Tang et al. (2023). HumanML3D, derived from
AMASS and HumanAct12, contains 14,616 motion sequences with 44,970 textual annotations.
KIT-ML provides 3,911 motion sequences with 6,278 descriptions, while Flag3D offers 180,000
videos spanning 60 fitness activities.

Data Augmentation. To support physics-aware motion modeling, we augmented these datasets
using OpenSim Delp et al. (2007); Seth et al. (2018), a popular and widely acceptable software for
biomechanics research and motor control science Delp et al. (2007); Seth et al. (2018), incorporating
detailed muscle activations, contact forces, joint positions, rotations, actuation, and velocity. We
employed a full-body OpenSim model Van Horn & Team (2016) with 21 body segments, 29 degrees
of freedom, and 324 musculotendon actuators, providing rich detail for lumbar movements and trunk
muscle dynamics. This augmentation enhances the biomechanical fidelity of the motion data, which
is critical for realistic motion synthesis. We provide more details in the appendix.

Evaluation Metrics. FlexMotion’s performance is comprehensively evaluated across several key
metrics, encompassing naturalness, textual relevance, diversity, physical plausibility, and spatial
control accuracy. Naturalness is quantified using the Fréchet Inception Distance (FID) Tevet et al.
(2023), which compares the distribution of generated motions to real data. Textual relevance is
measured via R-Precision Tevet et al. (2023), assessing how well the generated motions align with
textual descriptions. To ensure variability, diversity (DIV) is evaluated by computing the pairwise
distance between generated motions Tevet et al. (2023). Physical plausibility is verified through
metrics like Foot Skating, Penetration, Contact Force Accuracy, and Joint Actuation Consis-
tency Xie et al. (2023). Biomechanical plausibility is ensured by checking that Muscle Activation
Limits stay within realistic physiological constraints Lee et al. (2019). Finally, spatial control ac-
curacy is assessed using the Trajectory Error metric Xie et al. (2023), focusing on how well the
generated motions adhere to intended spatial trajectories. All results are reported as mean across
ten independent runs, ensuring robustness and reproducibility. More details can be found in the
appendix.

Implementation Details. FlexMotion is built on the MDM framework Tevet et al. (2023), lever-
aging CLIP Radford et al. (2021) for text encoding and employing classifier-free guidance during
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Table 1: HumanML3D test set Guo et al. (2022b): Performance comparisons of text-to-motion
synthesis methods. The complete table can be found in the appendix.

Method R-Precision ↑ FID ↓ DIV→ Skate ↓ Float ↓ Penetrate ↓ Contact Force ↓ Joint Actuation ↓ Muscle Limit ↓ Trajectory ↓
Real 0.797 0.002 9.503 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MotionDiffuse (MD) Zhang et al. (2022) 0.782 0.630 9.410 3.925 6.450 20.278 18.313 4.293 31.025 0.741
GMD Karunratanakul et al. (2023) 0.665 0.576 9.206 1.311 15.402 9.978 8.351 2.101 15.213 0.093

PriorMDM Shafir et al. (2023) 0.583 0.475 9.156 1.210 16.127 10.131 9.870 2.231 16.824 0.345
MDM Tevet et al. (2023) 0.602 0.698 9.197 1.406 18.876 11.291 10.205 2.277 16.114 0.402

OmniControl Xie et al. (2023) 0.693 0.310 9.502 0.754 8.113 7.197 6.832 2.192 15.012 0.038
TLControl Wan et al. (2023) 0.779 0.271 9.569 -∗ - - - - - 0.108

MLD Chen et al. (2023) 0.602 0.696 9.195 1.402 18.873 11.288 10.202 2.274 16.111 0.400
PhysDiff Yuan et al. (2023) 0.631 0.433 - 0.512 2.601 0.998 - - - -

Ours

No Condition 0.757 0.298 9.297 0.612 4.810 4.954 2.109 0.902 5.264 0.393

Muscle Activation 1 Muscle 0.788 0.257 9.492 0.517 4.770 4.949 1.127 0.692 2.028 0.341
20 Muscles 0.794 0.255 9.497 0.512 2.657 2.930 1.118 0.510 1.943 0.311

Joint Location 1 Joint 0.790 0.277 9.500 0.523 4.670 4.937 1.124 0.572 2.223 0.033
10 Joints 0.794 0.256 9.502 0.512 2.657 2.930 1.118 0.510 1.943 0.011

Joint Actuation 1 Joint 0.790 0.790 9.479 0.790 4.790 4.790 2.790 0.790 1.790 0.790
10 Joints 0.793 0.256 9.492 0.512 2.657 2.930 2.004 0.510 1.043 0.112

Contact Force 0.773 0.281 9.460 0.513 2.780 3.949 1.129 0.581 1.281 0.057

All Conditions 1% of frames 0.778 0.257 9.496 0.513 3.660 3.932 2.120 0.591 1.945 0.032
20% of frames 0.793 0.198 9.502 0.473 2.404 2.311 1.103 0.470 1.089 0.015

∗ The symbol - indicates that the value could not be reported as the authors have not released the code, and the corresponding results were not provided in their publication.

Table 2: KIT-ML test set Plappert et al. (2016): Performance comparisons of text-to-motion syn-
thesis methods. The complete table can be found in the appendix.

Method R-Precision ↑ FID ↓ DIV→ Skate ↓ Float ↓ Penetrate ↓ Contact Force ↓ Joint Actuation ↓ Muscle Limit ↓ Trajectory ↓
Real 0.779 0.031 11.080 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MotionDiffuse (MD) Zhang et al. (2022) 0.739 0.630 9.410 3.925 21.917 18.494 16.518 3.872 24.572 1.509
GMD Karunratanakul et al. (2023) 0.382 1.565 9.664 1.311 22.949 9.100 7.533 1.895 12.049 0.189

PriorMDM Shafir et al. (2023) 0.397 0.851 10.518 1.210 26.861 9.239 8.903 2.012 13.325 0.703
MDM Tevet et al. (2023) 0.602 0.698 9.197 1.406 11.545 10.297 9.205 2.054 12.762 0.819

OmniControl Xie et al. (2023) 0.693 0.310 9.502 0.754 8.103 6.564 6.162 1.977 11.890 0.077
MLD Chen et al. (2023) 0.598 0.695 9.193 1.402 13.026 10.295 9.202 2.051 12.760 0.815

Ours

No Condition 0.734 0.285 10.227 0.672 6.845 4.518 5.273 1.194 9.433 0.801

Muscle Activation 1 Muscle 0.764 0.244 10.441 0.584 6.788 4.513 2.818 0.916 3.634 0.695
20 Muscles 0.770 0.242 10.447 0.579 3.781 2.672 2.795 0.675 3.482 0.634

Joint Location 1 Joint 0.766 0.264 10.550 0.589 6.645 4.503 2.810 0.757 3.984 0.067
10 Joints 0.770 0.243 10.553 0.579 3.781 2.672 2.795 0.675 3.482 0.021

Joint Actuation 1 Joint 0.766 0.777 10.527 0.838 6.816 4.368 6.975 1.046 3.208 1.609
10 Joints 0.769 0.243 10.541 0.579 3.781 2.672 5.010 0.675 1.869 0.228

Contact Force 0.750 0.268 10.506 0.580 3.956 3.601 2.823 0.769 2.296 0.116

All Conditions 1% of frames 0.755 0.244 10.546 0.580 5.208 3.586 5.300 0.782 3.485 0.065
20% of frames 0.769 0.185 10.552 0.543 3.421 2.108 2.758 0.622 1.951 0.031

motion generation Ho & Salimans (2022). Pretrained weights from MDM are fine-tuned jointly
with the realism guidance model. The training was conducted in PyTorch on a single NVIDIA 4090
GPU with a batch size of 64, using the AdamW optimizer Loshchilov & Hutter (2023) and a learn-
ing rate of 1 × 10−5. However, for inference a general purpose GPU such as NVIDIA 2080 Ti is
sufficient. The Transformer backbone adopts a six-layer encoder-decoder architecture with eight
attention heads and 1024-dimensional embeddings inspired by Zhang et al. (2024b). The experi-
mental conditions explore varying levels and types of input data to evaluate the model’s adaptability
and performance. The Muscle Activation conditions involve using activation data from either one
or multiple (e.g., 20) randomly selected muscles for the entire sequence. The Joint Conditions focus
on either location/rotation or actuation data, applying inputs from one or several (e.g., 20) randomly
selected joints across the sequence. The Contact Force condition incorporates both contact force and
location data throughout the motion. Additionally, the Frame Conditions vary the application of all
constraints, with inputs applied to a small subset (e.g., 1%) or a larger subset (e.g., 20%) of randomly
selected frames, providing insights into the model’s behavior under sparse or more comprehensive
constraints. More details can be found in the appendix.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We evaluated FlexMotion against several state-of-the-art human motion generation meth-
ods—including MD Zhang et al. (2022), GMD Karunratanakul et al. (2023), PriorMDM Shafir
et al. (2023) and MDM Tevet et al. (2023), MLD Chen et al. (2023), OmniControl Xie et al. (2023),
and PhysDiff Yuan et al. (2023)—across three datasets: HumanML3D (Table 1), KIT-ML (Table 2),
and FLAG3D (Table 3).

Methodological standpoint. FlexMotion advances human motion generation by addressing the
critical limitations of existing models. Unlike MDM Tevet et al. (2023), MLD Chen et al. (2023),
and OmniControl Xie et al. (2023), FlexMotion integrates physics-based constraints and muscle
dynamics directly into the generation process, ensuring motions that are both visually realistic and
biomechanically accurate. Compared to PhysDiff Yuan et al. (2023), which also aims for physical
plausibility using a physics simulator, FlexMotion offers enhanced controllability and efficiency by
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Table 3: Flag3D test set Tang et al. (2023): Performance comparisons of text-to-motion synthesis
methods. The complete table can be found in the appendix.

Method R-Precision ↑ FID ↓ DIV→ Skate ↓ Float ↓ Penetrate ↓ Contact Force ↓ Joint Actuation ↓ Muscle Limit ↓ Trajectory ↓
Real 0.805 0.032 11.446 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MotionDiffuse (MD) Zhang et al. (2022) 0.763 0.651 9.721 4.055 22.640 19.104 17.063 4.000 25.383 1.559
GMD Karunratanakul et al. (2023) 0.395 1.617 9.983 1.354 23.706 9.400 7.781 1.958 12.446 0.196

PriorMDM Shafir et al. (2023) 0.410 0.879 10.865 1.250 27.747 9.544 9.197 2.079 13.764 0.726
MDM Tevet et al. (2023) 0.622 0.721 9.501 1.452 11.926 10.637 9.509 2.122 13.183 0.846

OmniControl Xie et al. (2023) 0.716 0.320 9.816 0.779 8.370 6.780 6.366 2.042 12.282 0.080
MLD Chen et al. (2023) 0.618 0.718 9.496 1.448 13.456 10.634 9.506 2.119 13.181 0.842

Ours

No Condition 0.759 0.294 10.564 0.694 7.071 4.667 5.446 1.234 9.744 0.827

Muscle Activation 1 Muscle 0.790 0.252 10.786 0.603 7.012 4.662 2.910 0.946 3.754 0.718
20 Muscles 0.795 0.250 10.791 0.598 3.906 2.760 2.887 0.698 3.597 0.654

Joint Location 1 Joint 0.792 0.273 10.898 0.609 6.865 4.651 2.903 0.782 4.115 0.069
10 Joints 0.796 0.251 10.900 0.598 3.906 2.760 2.887 0.698 3.597 0.023

Joint Actuation 1 Joint 0.792 0.803 10.874 0.865 7.041 4.513 7.205 1.080 3.314 1.662
10 Joints 0.795 0.251 10.889 0.598 3.906 2.760 5.175 0.698 1.931 0.236

Contact Force 0.775 0.277 10.853 0.599 4.086 3.720 2.916 0.795 2.371 0.120

All Conditions 1% of frames 0.780 0.252 10.894 0.599 5.380 3.704 5.475 0.808 3.600 0.067
20% of frames 0.795 0.191 10.901 0.560 3.530 2.177 2.848 0.640 2.016 0.032

Table 4: Performance comparison of methods in terms of computational efficiency to generate 2048
motion clips.

Method
Total Inference Time (s) ↓ FLOPs (G) ↓

Parameter
FID ↓

DDIM DDPM DDIM DDPM DDIM DDPM
50 100 200 1000 50 100 200 1000 50 100 200 1000

MDM Tevet et al. (2023) 225.283 456.702 911.362 4546.233 597.971 1195.942 2391.891 11959.447 x ∈ R196×512 7.334 5.990 5.936 0.544
MLD Chen et al. (2023) 10.242 16.381 28.672 148.975 29.862 33.125 39.613 91.604 x ∈ R1×256 0.473 0.426 0.432 0.568

Ours 13.158 25.142 36.450 255.127 44.176 57.208 68.024 162.273 x ∈ R1×1024 0.378 0.317 0.298 0.302

embedding physics constraints directly into the generative model, thus bypassing the need for exter-
nal simulators, which are computationally intensive, non-differentiable, and require nearly constant
communication iterations with the simulator. Furthermore, FlexMotion surpasses GMD Guo et al.
(2022b), and OmniControl Xie et al. (2023) regarding spatial control and adherence to biomechan-
ical principles. While these models control joint trajectories, they neglect critical aspects such as
muscle activations and contact forces, essential for physical realism and fine-grained motion con-
trol. FlexMotion addresses this gap by providing spatial control over a wide range of kinematic
properties, resulting in more refined and physically plausible motion sequences.

HumanML3D. As shown in Table 1, FlexMotion achieves superior performance on the Hu-
manML3D dataset. Specifically, FlexMotion attains an R-Precision of 0.794 when conditioned on
twenty muscle activations or ten joint locations, outperforming all compared methods. Additionally,
FlexMotion achieves the lowest FID score of 0.198, indicating a closer distribution to real motion
data. Regarding physical plausibility, FlexMotion significantly reduces foot skating and floating
errors compared to other methods. Regarding penetration errors, PhysDiff performs better, while
FlexMotion achieves second the best results. The muscle activation and joint actuation errors are
also substantially lower, demonstrating the effectiveness of our physics-aware approach.

KIT-ML. Table 2 illustrates that FlexMotion consistently outperforms existing methods on the KIT-
ML dataset. With an R-Precision of 0.770 and an FID score of 0.185 when conditioned on 20%
of frames with all conditions, FlexMotion demonstrates both high textual relevance and motion
naturalness. The model also significantly improves physical plausibility metrics, such as reduced
foot skating and penetration errors. The trajectory error is minimized to 0.031, indicating precise
adherence to spatial constraints.

FLAG3D. On the FLAG3D dataset, FlexMotion again achieves state-of-the-art results, as presented
in Table 3. The R-Precision reaches 0.795 with an FID of 0.191 under all conditions on 20 %
of frames. The model demonstrates superior diversity and physical plausibility, with the lowest
foot skating and penetration errors among all compared methods. The muscle activation and joint
actuation errors are also minimized, showcasing the model’s capability to generate biomechanically
accurate motions.

Computational efficiency. FlexMotion excels in performance metrics and offers significant com-
putational advantages. As shown in Table 4, FlexMotion requires fewer floating-point operations
(FLOPs) and less inference time compared to MDM Tevet et al. (2023). For instance, under the
DDIM sampler with 100 steps, FlexMotion’s inference time is 25.142 seconds, compared to MDM’s
456.702 seconds. This efficiency is achieved without compromising motion quality, as FlexMotion
attains a lower FID score of 0.254 compared to MDM’s 5.990 under the same settings. The reduced
computational complexity makes FlexMotion more suitable for real-time applications. It’s important
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to note that although MLD Chen et al. (2023) has slightly faster inference time and FLOPs, it per-
forms worse than FlexMotion in terms of FID. It’s because they only include joint location/rotation
values in their latent space, while we preserve a wide range of motion kinematic properties in the
latent space.

4.2 ABLATION STUDIES AND KEY INSIGHTS

To analyze FlexMotion’s components, we conducted ablation studies on the impact of various mo-
tion properties. Conditioning on muscle activations and joint locations significantly improved mo-
tion quality and physical plausibility, with R-Precision on HumanML3D increasing from 0.788 to
0.794 and Muscle Limit error decreasing from 2.028 to 1.943. Combining all conditions on 20%
of frames further reduced trajectory error to 0.015 and minimized physical plausibility errors such
as foot skating and penetration. Importantly, FlexMotion maintained high diversity (stable DIV
metrics) while improving realism and control.

Lessons learned:

• Physics-based constraints enhance realism: Embedding physical laws and muscle dy-
namics enables biomechanically accurate motion generation.

• Fine-grained control improves quality: Conditioning on specific properties enhances
alignment with intended behaviors and spatial accuracy.

• Efficiency without quality loss: FlexMotion balances computational efficiency and mo-
tion quality, making it practical for real-time use.

• Robust generalization: Consistent performance across datasets highlights adaptability for
various motion contexts.

• Balanced improvements: FlexMotion achieves superior results across accuracy, control-
lability, and physical plausibility without trade-offs.

5 CONCLUSION

In this paper, we presented FlexMotion, a novel framework for efficiently generating controllable
and physically plausible human motion. By utilizing a diffusion model in the latent space and a
physics-aware Transformer-based autoencoder, FlexMotion achieves computational efficiency while
ensuring realism. The model captures key biomechanical aspects such as joint locations, contact
forces, and muscle activations without relying on physics simulators, making it suitable for real-time
applications. FlexMotion also introduces a spatial controllability module that enables fine-grained
control over motion parameters, such as trajectories and muscle activations, enhancing its versatil-
ity for various tasks. Our experiments on HumanML3D, KIT-ML, and Flag3D datasets show that
FlexMotion outperforms state-of-the-art models in realism, physical plausibility, and computational
efficiency. The framework achieves higher R-Precision and lower FID scores, indicating better
alignment with textual descriptions and realistic motions. Additionally, it demonstrates lower foot
skating, penetration, and muscle activation errors, making it more physically consistent and feasible.
FlexMotion’s reduced computational complexity further allows for faster inference, positioning it as
a promising practical solution for animation, robotics, and virtual reality. Future work could explore
more complex dynamics and real-time applications. While FlexMotion leverages physics-informed
modeling, a sim-to-real gap persists due to differences between simulated dynamics and real-world
variability. Future work will address this gap by integrating real-world data and improving alignment
with experimental benchmarks to enhance its applicability in diverse real-world scenarios.
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A APPENDIX

A.1 TRAINING PIPELINE

The training of FlexMotion proceeds in three stages:

1. Stage 1: Training the Physics-aware Multimodal Autoencoder

• Train the encoder-decoder to reconstruct motion sequences while enforcing physics-
based constraints and muscle coordination.

• Optimize the total loss LAE as defined in Eqn. 8.

2. Stage 2: Training the Diffusion Model

• Freeze the pretrained encoder-decoder parameters.
• Train the diffusion model in the latent space using the loss Ldiff as defined in Eqn. 11.

3. Stage 3: Training the Spatial Controllability Module

• Freeze both the encoder-decoder and diffusion model parameters.
• Train the controllability module (ControlNet) to incorporate control conditions by

minimizing the total loss Ltotal as defined in Eqn. 13.

Algorithm 1 FlexMotion Training Pipeline

1: Stage 1: Training the Physics-aware Multimodal Autoencoder
2: for each motion sequence {xt}Tt=1 do
3: Encode the motion sequence: {zt}Tt=1 = E({xt}Tt=1; θE)
4: Decode the latent representations: {x̂t}Tt=1 = D({zt}Tt=1; θD)
5: Compute reconstruction losses: Lrecon
6: Compute physics-based losses: Leuler, Lmuscle
7: Compute total loss: LAE = Lrecon + γeulerLeuler + γmuscleLmuscle
8: Update encoder and decoder parameters: θE , θD
9: end for

10: Stage 2: Training the Diffusion Model
11: Freeze the encoder-decoder parameters θE , θD
12: for each latent sequence {zet}Tt=1 do
13: for each diffusion step n do
14: Sample noise ε ∼ N (0, I)
15: Generate noised latent: zn =

√
αnz0 +

√
1− αnε

16: Predict noise: ε̂ = εθ(zn, n, c)
17: Compute diffusion loss: Ldiff = ‖ε− ε̂‖22
18: Update diffusion model parameters: θ
19: end for
20: end for
21: Stage 3: Training the Spatial Controllability Module
22: Freeze parameters θE , θD, and θ
23: for each control condition sequence {ct}Tt=1 do
24: Encode control conditions: {cet}Tt=1 = E({ct}Tt=1; θE)
25: for each diffusion step n do
26: Sample noise ε ∼ N (0, I)
27: Generate noised latent: zn =

√
αnz0 +

√
1− αnε

28: Predict noise with control: ε̂ = εθtotal(zn, c
e
t , n, c)

29: Compute control loss: Ltotal = ‖ε− ε̂‖22
30: Update controllability module parameters: θctrl
31: end for
32: end for

15
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A.2 INFERENCE

FlexMotion generates motion sequences during inference by sampling from the diffusion model,
guided by control conditions provided to the spatial controllability module. The inference process
involves:

1. Input: Text prompt c and control conditions {ct}Tt=1

2. Step 1: Initialize the latent variable zN ∼ N (0, I)

3. Step 2: For n = N down to 1, perform the reverse diffusion process:
(a) Adjust the predicted noise with control conditions:

ε̂ = εθtotal(zn, c
e
t , n, c)

(b) Update the latent variable:

zn−1 =
1
√
αn

(
zn −

1− αn√
1− ᾱn

ε̂

)
+ σnz

where z ∼ N (0, I) if n > 1, else z = 0

4. Step 3: Decode the final latent representation:

{x̂t}Tt=1 = D(z0; θD)

5. Output: Generated motion sequence {x̂t}Tt=1 adhering to control conditions and text
prompt.

Algorithm 2 FlexMotion Inference Pipeline

1: Input: Text prompt c, control conditions {ct}Tt=1
2: Initialize: zN ∼ N (0, I)
3: Encode control conditions: {cet}Tt=1 = E({ct}Tt=1; θE)
4: for n = N to 1 do
5: Predict noise with control: ε̂ = εθtotal(zn, c

e
t , n, c)

6: Update latent variable:

zn−1 =
1
√
αn

(
zn −

1− αn√
1− ᾱn

ε̂

)
+ σnz

7: If n > 1, sample z ∼ N (0, I), else z = 0
8: end for
9: Decode latent representation: {x̂t}Tt=1 = D(z0; θD)

10: Output: Generated motion sequence {x̂t}Tt=1

A.3 ADDITIONAL IMPLEMENTATION DETAILS

Hyperparameter settings. In our experiments, the weighting factors for the loss terms in the
physics-aware Transformer encoder-decoder were set as follows: αpos = 1.0, αrot = 1.0, αvel = 0.1,
αacc = 0.1, αtorque = 0.5, αforce = 0.5, βeuler = 1.0, and γmuscle = 1.0. These values were chosen to
balance the importance of accurately reconstructing each modality while enforcing physical plausi-
bility. For the diffusion model, we used a linear variance schedule for the noise parameters βt, with
T = 1000 diffusion steps during training. During inference, we employed the DDIM sampler Song
et al. (2023) with 100 steps for efficient sampling without significant loss in motion quality.

Dataset preprocessing. All motion sequences were downsampled to 20 frames per second to reduce
computational complexity while retaining essential motion characteristics. The joint positions and
rotations were normalized based on the mean and standard deviation computed over the training set
to facilitate stable neural network training.

Datasets. We evaluate the proposed FlexMotion on several extended datasets, including Hu-
manML3D Guo et al. (2022a), KIT-ML Plappert et al. (2016), and Flag3D Tang et al. (2023), each
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augmented with muscle activation, contact force, and joint actuation data. The HumanML3D dataset
is a textually re-annotated collection derived from the AMASS and HumanAct12 datasets. It con-
tains 14,616 motion sequences annotated with 44,970 textual descriptions, averaging approximately
three descriptions per motion. The KIT-ML dataset includes 3,911 motion sequences annotated
with 6,278 textual descriptions, averaging around two descriptions per motion. Flag3D dataset is an
extensive collection comprising 180,000 videos of 60 daily fitness activities.

Dataset augmentation. To validate FlexMotion, we augmented existing datasets by incorporating
additional modalities for our model, including muscle activations, contact forces, and joint actuation
data. This augmentation was achieved using OpenSim Delp et al. (2007); Seth et al. (2018), a biome-
chanical modeling simulator that enables detailed musculoskeletal analysis. Specifically, we utilized
a comprehensive whole-body OpenSim model Van Horn & Team (2016) featuring 21 segments, 29
degrees of freedom, and 324 musculotendon actuators. This model includes a detailed representa-
tion of the lumbar spine, with each of the five lumbar vertebrae connected by a 6-degree-of-freedom
joint, allowing for the simulation of complex lumbar movements such as flexion-extension, axial ro-
tation, and lateral bending. Additionally, the model incorporates eight key muscle groups, including
the rectus abdominis and erector spinae, which facilitate multi-directional trunk muscle action.

We utilized OpenSim’s robust biomechanics simulation platform to synthesize physics-informed
motion data that aligns with real-world biomechanical principles. Here is a step-by-step breakdown
of the process:

We started with a full-body OpenSim model based on Van Horn & Team (2016), which includes
21 body segments, 29 degrees of freedom (DOF), and 324 musculotendon actuators. This model
captures detailed joint kinematics and dynamics, including lumbar spine motion and trunk muscle
activations, making it ideal for biomechanically informed motion modeling.

The base datasets provided joint angles, positions, and basic kinematics from motion capture sys-
tems. We imported these data into OpenSim to initialize the simulation. Using OpenSim’s Inverse
Kinematics (IK) tool, we ensured the input motion conformed to the skeletal model’s constraints.

To enrich the data with physiological realism, we used OpenSim’s Computed Muscle Control
(CMC) and Static Optimization tools. These tools generated muscle activation patterns and corre-
sponding forces required to produce the observed motion. Specifically, CMC estimates the muscle
excitation signals to track the observed motion, while Static Optimization resolves muscle forces by
minimizing an objective function such as energy expenditure or effort.

Beyond muscle activations, we extracted:

• Joint Contact Forces: Calculated from dynamic simulations, providing insights into load
distribution at joints during motion.

• Joint Torques and Velocities: Derived from the musculoskeletal model for each DOF.

• Muscle Forces and Lengths: Detailing musculotendon dynamics during movement.

• Ground Reaction Forces: Synthesized from a combination of kinematics and muscle acti-
vations, reflecting interactions with the environment.

Given the focus on realistic lumbar motion and trunk muscle dynamics, we paid special attention
to the spine’s multi-segmental nature in the model. We tracked lumbar vertebra rotations, stiffness,
and associated muscle activations to capture complex trunk movements.

To diversify the dataset, we introduced perturbations to initial conditions, such as joint angles, force
profiles, and external loads. This randomized approach helps simulate variations in human motion
due to individual differences or environmental changes. These perturbations were carefully con-
strained to remain within physiologically plausible ranges.

The augmented data was validated through consistency checks. We compared synthesized motion
profiles with experimentally observed patterns from biomechanics literature to ensure biomechanical
fidelity and realistic variability.

Evaluation metrics. To assess FlexMotion’s performance, we employ a comprehensive set of es-
tablished metrics that evaluate various aspects of the generated motion, including naturalness, rele-
vance, diversity, physical plausibility, and spatial control accuracy. The Fréchet Inception Distance
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(FID) is used to evaluate the naturalness of the generated motions by measuring the distance between
the feature distributions of the generated motions and those of actual motion data, thus indicating
how realistic the generated motions appear.

To assess the relevance of the generated motions to their corresponding textual prompts, we use
the R-Precision metric, which measures the degree to which the generated motions align with the
intended textual descriptions, with higher precision indicating better correspondence between the
generated motion and the specified action.

The Diversity metric evaluates the variability within the generated motion set, ensuring that Flex-
Motion produces a wide range of distinct motions. This metric is typically computed as the average
pairwise distance between the generated motions in the feature space, with higher diversity values
indicating a more versatile model output.

For evaluating physical plausibility, we consider several factors: 1) Foot Skating, which measures
the extent of unnatural sliding or "skating" of the feet during motion, indicating a lack of physical
realism; Penetration, which assesses whether any body parts unnaturally intersect or penetrate each
other or the environment, violating physical plausibility; 2) Contact Force Accuracy, which evaluates
the correctness of the contact forces generated during motion, ensuring they correspond to realistic
physical interactions with the environment; and 3) Joint Actuation Consistency, which ensures that
the generated joint actuations remain within plausible ranges of motion and force, aligning with
real-world biomechanics.

For biomechanical plausibility, we use the Muscle Activation Limits metric. This metric ensures that
the generated motions respect physiological constraints by verifying that muscle activations remain
within feasible ranges, thus preventing unrealistic overextension or underuse of muscles.

To assess spatial control accuracy, we employ the Trajectory Error metric, defined as the ratio of
unsuccessful trajectories—those where any keyframe location error exceeds a predefined threshold.
This metric ensures that the generated motions accurately follow the intended spatial trajectories,
which is critical for applications requiring precise motion paths.

All evaluations were conducted over ten independent runs to ensure the reliability and robustness
of our results. The reported values for each metric are presented in the format of mean ± standard
deviation, where the mean represents the average performance across the ten runs, and the standard
deviation reflects the variability in the performance, thereby providing a measure of consistency and
reproducibility in the evaluation process.

A.4 COMPLETE RESULTS

The experimental conditions in the study involve varying levels of input data to test the performance
of the model under different scenarios. The 1 Muscle condition uses activation data from a single
randomly selected muscle out of 324 actuators for the entire motion sequence, while the 20 Muscles
condition extends this to 20 randomly selected muscles. Similarly, the 1 Joint condition utilizes
location or rotation data from one randomly selected joint for the entire sequence, whereas 20 Joints
expands this to 20 joints. For joint actuation, the 1 Joint Actuation condition employs actuation
data from a single randomly selected joint, and the 20 Joints Actuation condition includes 20 joints.
The Contact Force condition uses both contact force data and location information as constraints
throughout the sequence. Finally, 1% of frames applies all conditions to only 1% of randomly
selected frames as spatial constraints, while 20% of frames applies them to 20% of the sequence.
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Table 5: HumanML3D test set Guo et al. (2022b): Performance comparisons of text-to-motion synthesis methods.

Method R-Precision ↑ FID ↓ DIV→ Skate ↓ Float ↓ Penetrate ↓ Contact Force ↓ Joint Actuation ↓ Muscle Limit ↓ Trajectory ↓
Real 0.797±0.003 0.002±0.001 9.503±0.065 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

MotionDiffuse (MD) Zhang et al. (2022) 0.782±0.001 0.630±0.001 9.410±0.049 3.925±0.035 6.450±0.052 20.278±0.018 18.313±0.017 4.293±0.002 31.025±0.017 0.741±0.012

GMD Karunratanakul et al. (2023) 0.665±0.002 0.576±0.001 9.206±0.048 1.311±0.011 15.402±0.122 9.978±0.008 8.351±0.006 2.101±0.001 15.213±0.008 0.093±0.007

PriorMDM Shafir et al. (2023) 0.583±0.001 0.475±0.001 9.156±0.053 1.210±0.010 16.127±0.135 10.131±0.009 9.870±0.007 2.231±0.001 16.824±0.010 0.345±0.005

MDM Tevet et al. (2023) 0.602±0.002 0.698±0.001 9.197±0.052 1.406±0.012 18.876±0.161 11.291±0.009 10.205±0.009 2.277±0.001 16.114±0.009 0.402±0.006

OmniControl Xie et al. (2023) 0.693±0.001 0.310±0.001 9.502±0.055 0.754±0.063 8.113±0.063 7.197±0.006 6.832±0.006 2.192±0.001 15.012±0.008 0.038±0.002

TLControl Wan et al. (2023) 0.779 0.271 9.569 - - - - - - 0.108
MLD Chen et al. (2023) 0.602±0.002 0.696±0.001 9.195±0.049 1.402±0.010 18.873±0.160 11.288±0.009 10.202±0.009 2.274±0.001 16.111±0.009 0.400±0.006

PhysDiff Yuan et al. (2023) 0.631 0.433 - 0.512 2.601 0.998 - - - -

Ours

No Condition 0.757±0.001 0.298±0.002 9.297±0.055 0.612±0.057 4.81±0.025 4.954±0.001 2.109±0.001 0.902±0.001 5.264±0.003 0.393±0.004

1 Muscle Activation 0.788±0.001 0.257±0.002 9.492±0.059 0.517±0.048 4.770±0.024 4.949±0.001 1.127±0.001 0.692±0.001 2.028±0.002 0.341±0.002

5 Muscles Activation 0.791±0.000 0.256±0.001 9.494±0.057 0.514±0.047 3.713±0.023 3.939±0.000 1.122±0.000 0.601±0.000 1.985±0.001 0.326±0.001

10 Muscles Activation 0.792±0.000 0.256±0.001 9.494±0.056 0.513±0.046 2.685±0.023 2.934±0.000 1.120±0.000 0.555±0.000 1.964±0.001 0.318±0.001

20 Muscles Activation 0.794±0.000 0.255±0.001 9.497±0.055 0.512±0.045 2.657±0.022 2.930±0.000 1.118±0.000 0.510±0.000 1.943±0.001 0.311±0.001

1 Joint Location 0.790±0.001 0.277±0.002 9.500±0.062 0.523±0.049 4.670±0.021 4.937±0.001 1.124±0.001 0.572±0.001 2.223±0.002 0.033±0.002

2 Joints Location 0.791±0.000 0.266±0.001 9.501±0.060 0.517±0.048 3.663±0.020 3.933±0.000 1.121±0.000 0.541±0.000 2.083±0.001 0.022±0.001

5 Joints Location 0.792±0.000 0.261±0.001 9.501±0.059 0.514±0.047 3.660±0.020 2.931±0.000 1.119±0.000 0.525±0.000 2.013±0.001 0.016±0.001

10 Joints Location 0.794±0.000 0.256±0.001 9.502±0.058 0.512±0.046 2.657±0.019 2.930±0.000 1.118±0.000 0.510±0.000 1.943±0.001 0.011±0.001

1 Joint Actuation 0.790±0.001 0.790±0.001 9.479±0.060 0.790±0.049 4.790±0.023 4.790±0.001 2.790±0.001 0.790±0.001 1.790±0.002 0.790±0.002

2 Joints Actuation 0.793±0.000 0.523±0.000 9.482±0.058 0.651±0.048 3.723±0.022 4.360±0.000 2.954±0.000 0.650±0.000 1.366±0.001 0.400±0.001

5 Joints Actuation 0.791±0.000 0.389±0.000 9.488±0.056 0.581±0.046 3.190±0.021 3.645±0.000 2.036±0.000 0.580±0.000 1.154±0.001 0.205±0.001

10 Joints Actuation 0.793±0.001 0.256±0.001 9.492±0.055 0.512±0.048 2.657±0.025 2.930±0.001 2.004±0.001 0.510±0.001 1.043±0.003 0.112±0.001

Contact Force 0.773±0.001 0.281±0.001 9.460±0.060 0.513±0.048 2.780±0.020 3.949±0.001 1.129±0.001 0.581±0.001 1.281±0.001 0.057±0.001

All Conditions 1% frames 0.778±0.001 0.257±0.001 9.496±0.060 0.513±0.045 3.660±0.025 3.932±0.001 2.120±0.001 0.591±0.001 1.945±0.001 0.032±0.001

All Conditions 5% frames 0.785±0.001 0.213±0.001 9.499±0.053 0.501±0.042 2.508±0.021 2.699±0.001 1.920±0.001 0.503±0.001 1.310±0.001 0.025±0.001

All Conditions 10% frames 0.791±0.001 0.201±0.001 9.501±0.049 0.488±0.039 2.493±0.019 2.431±0.001 1.420±0.001 0.492±0.001 1.202±0.001 0.018±0.001

All Conditions 20% frames 0.793±0.001 0.198±0.001 9.502±0.048 0.473±0.036 2.404±0.016 2.311±0.001 1.103±0.001 0.470±0.001 1.089±0.001 0.015±0.001
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Table 6: KIT-ML test set Plappert et al. (2016): Performance comparisons of text-to-motion synthesis methods.

Method R-Precision ↑ FID ↓ DIV→ Skate ↓ Float ↓ Penetrate ↓ Contact Force ↓ Joint Actuation ↓ Muscle Limit ↓ Trajectory ↓
Real 0.779±0.006 0.031±0.004 11.080±0.097 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

MotionDiffuse (MD) Zhang et al. (2022) 0.739±0.692 0.630±0.002 9.410±0.098 3.925±0.350 21.917±0.519 18.494±0.180 16.518±0.170 3.872±0.020 24.572±0.170 1.509±0.120

GMD Karunratanakul et al. (2023) 0.382±0.087 1.565±0.001 9.664±0.096 1.311±0.110 22.949±1.218 9.100±0.080 7.533±0.060 1.895±0.010 12.049±0.080 0.189±0.070

PriorMDM Shafir et al. (2023) 0.397±0.322 0.851±0.001 10.518±0.106 1.210±0.100 26.861±1.348 9.239±0.090 8.903±0.070 2.012±0.010 13.325±0.100 0.703±0.050

MDM Tevet et al. (2023) 0.602±0.375 0.698±0.001 9.197±0.104 1.406±0.120 11.545±1.608 10.297±0.090 9.205±0.090 2.054±0.010 12.762±0.090 0.819±0.060

OmniControl Xie et al. (2023) 0.693±0.035 0.310±0.001 9.502±0.110 0.754±0.629 8.103±0.629 6.564±0.060 6.162±0.060 1.977±0.010 11.890±0.080 0.077±0.020

MLD Chen et al. (2023) 0.598±0.374 0.695±0.001 9.193±0.098 1.402±0.100 13.026±1.598 10.295±0.090 9.202±0.090 2.051±0.010 12.760±0.090 0.815±0.060

Ours

No Condition 0.734±0.367 0.285±0.000 10.227±0.110 0.672±0.569 6.845±0.250 4.518±0.010 5.273±0.010 1.194±0.010 9.433±0.030 0.801±0.040

1 Muscle Activation 0.764±0.318 0.244±0.002 10.441±0.118 0.584±0.479 6.788±0.240 4.513±0.010 2.818±0.010 0.916±0.010 3.634±0.020 0.695±0.020

5 Muscles Activation 0.767±0.304 0.243±0.002 10.443±0.114 0.581±0.469 5.284±0.230 3.592±0.000 2.805±0.000 0.796±0.000 3.557±0.010 0.664±0.010

10 Muscles Activation 0.768±0.297 0.243±0.001 10.443±0.112 0.580±0.459 3.821±0.230 2.676±0.000 2.800±0.000 0.735±0.000 3.519±0.010 0.648±0.010

20 Muscles Activation 0.770±0.290 0.242±0.001 10.447±0.110 0.579±0.449 3.781±0.220 2.672±0.000 2.795±0.000 0.675±0.000 3.482±0.010 0.634±0.010

1 Joint Location 0.766±0.031 0.264±0.001 10.550±0.124 0.589±0.489 6.645±0.210 4.503±0.010 2.810±0.010 0.757±0.010 3.984±0.020 0.067±0.020

2 Joints Location 0.767±0.021 0.253±0.002 10.551±0.120 0.584±0.479 5.212±0.200 3.587±0.000 2.803±0.000 0.716±0.000 3.733±0.010 0.045±0.010

5 Joints Location 0.768±0.015 0.248±0.001 10.551±0.118 0.581±0.469 5.208±0.200 2.673±0.000 2.798±0.000 0.695±0.000 3.607±0.010 0.033±0.010

10 Joints Location 0.770±0.010 0.243±0.001 10.553±0.116 0.579±0.459 3.781±0.190 2.672±0.000 2.795±0.000 0.675±0.000 3.482±0.010 0.021±0.010

1 Joint Actuation 0.766±0.738 0.777±0.001 10.527±0.120 0.838±0.489 6.816±0.230 4.368±0.010 6.975±0.010 1.046±0.010 3.208±0.020 1.609±0.020

2 Joints Actuation 0.766±0.374 0.510±0.001 10.530±0.116 0.708±0.479 5.298±0.220 3.976±0.000 7.385±0.000 0.861±0.000 2.448±0.010 0.815±0.010

5 Joints Actuation 0.767±0.191 0.376±0.000 10.537±0.112 0.643±0.459 4.539±0.210 3.324±0.000 5.090±0.000 0.768±0.000 2.068±0.010 0.418±0.010

10 Joints Actuation 0.769±0.105 0.243±0.000 10.541±0.110 0.579±0.479 3.781±0.250 2.672±0.010 5.010±0.010 0.675±0.010 1.869±0.030 0.228±0.010

Contact Force 0.750±0.053 0.268±0.001 10.506±0.120 0.580±0.479 3.956±0.200 3.601±0.010 2.823±0.010 0.769±0.010 2.296±0.010 0.116±0.010

All Conditions 1% frames 0.755±0.030 0.244±0.001 10.546±0.120 0.580±0.449 5.208±0.250 3.586±0.010 5.300±0.010 0.782±0.010 3.485±0.010 0.065±0.010

All Conditions 5% frames 0.761±0.023 0.200±0.001 10.549±0.106 0.569±0.419 3.569±0.210 2.461±0.010 4.800±0.010 0.666±0.010 2.348±0.010 0.051±0.010

All Conditions 10% frames 0.767±0.017 0.188±0.001 10.551±0.098 0.557±0.389 3.548±0.190 2.217±0.010 3.550±0.010 0.651±0.010 2.154±0.010 0.037±0.010

All Conditions 20% frames 0.769±0.014 0.185±0.001 10.552±0.096 0.543±0.360 3.421±0.160 2.108±0.010 2.758±0.010 0.622±0.010 1.951±0.010 0.031±0.010
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Table 7: Flag3D test set Tang et al. (2023): Performance comparisons of text-to-motion synthesis methods.

Method R-Precision ↑ FID ↓ DIV→ Skate ↓ Float ↓ Penetrate ↓ Contact Force ↓ Joint Actuation ↓ Muscle Limit ↓ Trajectory ↓
Real 0.805±0.006 0.032±0.004 11.446±0.100 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

MotionDiffuse (MD) Zhang et al. (2022) 0.763±0.715 0.651±0.002 9.721±0.101 4.055±0.361 22.640±0.536 19.104±0.186 17.063±0.175 4.000±0.021 25.383±0.175 1.559±0.124

GMD Karunratanakul et al. (2023) 0.395±0.090 1.617±0.001 9.983±0.099 1.354±0.113 23.706±1.259 9.400±0.083 7.781±0.062 1.958±0.010 12.446±0.083 0.196±0.072

PriorMDM Shafir et al. (2023) 0.410±0.333 0.879±0.001 10.865±0.109 1.250±0.103 27.747±1.393 9.544±0.093 9.197±0.072 2.079±0.010 13.764±0.103 0.726±0.052

MDM Tevet et al. (2023) 0.622±0.388 0.721±0.001 9.501±0.107 1.452±0.124 11.926±1.661 10.637±0.093 9.509±0.093 2.122±0.010 13.183±0.093 0.846±0.062

OmniControl Xie et al. (2023) 0.716±0.037 0.320±0.001 9.816±0.114 0.779±0.650 8.370±0.650 6.780±0.062 6.366±0.062 2.042±0.010 12.282±0.083 0.080±0.021

MLD Chen et al. (2023) 0.618±0.386 0.718±0.001 9.496±0.101 1.448±0.103 13.456±1.651 10.634±0.093 9.506±0.093 2.119±0.010 13.181±0.093 0.842±0.062

Ours

No Condition 0.759±0.379 0.294±0.000 10.564±0.114 0.694±0.588 7.071±0.258 4.667±0.010 5.446±0.010 1.234±0.010 9.744±0.031 0.827±0.041

1 Muscle Activation 0.790±0.329 0.252±0.002 10.786±0.122 0.603±0.495 7.012±0.248 4.662±0.010 2.910±0.010 0.946±0.010 3.754±0.021 0.718±0.021

5 Muscles Activation 0.793±0.315 0.251±0.002 10.788±0.118 0.600±0.485 5.458±0.237 3.711±0.000 2.898±0.000 0.822±0.000 3.675±0.010 0.686±0.010

10 Muscles Activation 0.794±0.307 0.251±0.001 10.788±0.116 0.599±0.475 3.947±0.237 2.764±0.000 2.892±0.000 0.759±0.000 3.636±0.010 0.669±0.010

20 Muscles Activation 0.795±0.300 0.250±0.001 10.791±0.114 0.598±0.464 3.906±0.227 2.760±0.000 2.887±0.000 0.698±0.000 3.597±0.010 0.654±0.010

1 Joint Location 0.792±0.032 0.273±0.001 10.898±0.128 0.609±0.506 6.865±0.217 4.651±0.010 2.903±0.010 0.782±0.010 4.115±0.021 0.069±0.021

2 Joints Location 0.793±0.021 0.261±0.002 10.899±0.124 0.603±0.495 5.384±0.206 3.705±0.000 2.895±0.000 0.740±0.000 3.856±0.010 0.046±0.010

5 Joints Location 0.794±0.015 0.256±0.001 10.899±0.122 0.600±0.485 5.380±0.206 2.761±0.000 2.890±0.000 0.718±0.000 3.726±0.010 0.034±0.010

10 Joints Location 0.796±0.011 0.251±0.001 10.900±0.120 0.598±0.475 3.906±0.196 2.760±0.000 2.887±0.000 0.698±0.000 3.597±0.010 0.023±0.010

1 Joint Actuation 0.792±0.762 0.803±0.001 10.874±0.124 0.865±0.506 7.041±0.237 4.513±0.010 7.205±0.010 1.080±0.010 3.314±0.021 1.662±0.021

2 Joints Actuation 0.792±0.386 0.527±0.001 10.878±0.120 0.732±0.495 5.473±0.227 4.108±0.000 7.629±0.000 0.889±0.000 2.529±0.010 0.842±0.010

5 Joints Actuation 0.793±0.198 0.388±0.000 10.885±0.116 0.665±0.475 4.689±0.217 3.434±0.000 5.258±0.000 0.793±0.000 2.136±0.010 0.431±0.010

10 Joints Actuation 0.795±0.108 0.251±0.000 10.889±0.114 0.598±0.495 3.906±0.258 2.760±0.010 5.175±0.010 0.698±0.010 1.931±0.031 0.236±0.010

Contact Force 0.775±0.055 0.277±0.001 10.853±0.124 0.599±0.495 4.086±0.206 3.720±0.010 2.916±0.010 0.795±0.010 2.371±0.010 0.120±0.010

All Conditions 1% frames 0.780±0.031 0.252±0.001 10.894±0.124 0.599±0.464 5.380±0.258 3.704±0.010 5.475±0.010 0.808±0.010 3.600±0.010 0.067±0.010

All Conditions 5% frames 0.787±0.024 0.207±0.001 10.897±0.109 0.588±0.433 3.687±0.217 2.543±0.010 4.958±0.010 0.688±0.010 2.425±0.010 0.053±0.010

All Conditions 10% frames 0.793±0.017 0.194±0.001 10.899±0.101 0.575±0.402 3.665±0.196 2.290±0.010 3.667±0.010 0.673±0.010 2.225±0.010 0.038±0.010

All Conditions 20% frames 0.795±0.014 0.190±0.001 10.900±0.099 0.560±0.371 3.530±0.165 2.177±0.010 2.848±0.010 0.643±0.010 2.016±0.010 0.032±0.010
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A.5 IMPLEMENTATION OF PHYSICS-BASED CONSTRAINTS

In this section, we provide detailed explanations of how the physics-based constraints are imple-
mented in FlexMotion.

Computation of the mass matrix M(rt). The mass matrix M(rt) represents the inertia of the
system and is computed based on the configuration of the skeletal model at time t. Each joint and
limb contributes to the overall mass and inertia, which are derived from the physical properties
(mass and moment of inertia) of the body segments. The mass matrix is assembled by summing the
contributions of each body segment using the principles of rigid body dynamics Lee et al. (2019);
Zhang et al. (2024b). Mathematically, the mass matrix is computed as Eqn. 14, where Ji(rt) is
the Jacobian matrix of segment i with respect to the joint angles rt, and Ii is the inertia matrix of
segment i Lee et al. (2019); Xie et al. (2021a).

M(rt) =

Nsegments∑
i=1

J>i (rt)IiJi(rt) (14)

Coriolis and centrifugal forces C(rt, ṙt). The Coriolis and centrifugal forces account for the
effects of joint velocities on the dynamics of the system. These forces are computed using Christoffel
symbols, which involve the partial derivatives of the mass matrix with respect to the joint angles.
The Coriolis and centrifugal forces are calculated as Eqn. 15. In practice, we approximate these
forces by computing the necessary partial derivatives numerically or using analytical expressions
provided by the musculoskeletal model Lee et al. (2019); Xie et al. (2021a).

C(rt, ṙt)ṙt =
1

2

(
∂M

∂rt
+
∂M

∂rt

>
− ∂M

∂rt

)
ṙtṙt (15)

Gravitational forces G(rt). The gravitational forces are calculated based on the positions of the
body segments and the gravitational acceleration g. The gravitational forces are computed as Eqn.
16, where mi is the mass of segment i Lee et al. (2019); Xie et al. (2021a).

G(rt) =

Nsegments∑
i=1

J>i (rt)mig (16)

Contact jacobian JC(rt). The contact Jacobian relates the joint velocities to the velocities at the
contact points with the environment (e.g., the ground). It is computed as Eqn. 17, where pC(rt)
represents the positions of the contact points Lee et al. (2019); Zhang et al. (2024b) (Eqn. 17).

JC(rt) =
∂pC(rt)

∂rt
(17)

Integration into training. The computed dynamics components are integrated into the physics-
based loss Leuler as described in Eqn. 6. During training, we ensure that all computations are
differentiable to allow gradient backpropagation through the physics-based loss terms.

A.6 MUSCLE ACTIVATION MODEL

The muscle activation model aims to compute muscle activations at that produce the desired joint
accelerations r̈t while minimizing excessive muscle effort.

Derivation of the mapping matrix L. The mapping matrix L relates muscle activations to joint
accelerations and is derived from the musculoskeletal model’s moment arms and muscle force-
generating properties. For each muscle m and joint j, the moment arm rjm represents the torque
produced at joint j per unit muscle force from muscle m. The mapping matrix L is constructed as
Eqn. 18, where M is the mass matrix, R is the matrix of moment arms rjm, and Fmax is the diagonal
matrix of maximum isometric muscle forces Lee et al. (2019).
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L = M−1(RFmax) (18)

Muscle activation dynamics. We model muscle activations considering the first-order dynamics
of muscle activation-deactivation dynamics Lee et al. (2019) as shown in Eqn. 19,where ut is the
neural excitation signal, and τ is the muscle activation time constant. For simplicity, we assume
steady-state conditions where at = ut.

ȧt =
1

τ
(ut − at) (19)

Regularization and constraints. To prevent unrealistic muscle activations, we include a regulariza-
tion term in Lmuscle and enforce physiological constraints on muscle activations. The regularization
term penalizes excessive muscle activations, while the constraints ensure that muscle activations are
within physiologically plausible limits. The regularization term is defined as Eqn. 20, where λ is the
regularization coefficient. These constraints are implemented using penalty methods or projection
techniques during optimization.

0 ≤ amt ≤ 1 ∀m, t (20)

A.7 ABLATION STUDY ON PHYSICS-BASED CONSTRAINTS

We conducted an ablation study to assess the impact of the physics-based constraints on the model’s
performance. We trained variants of FlexMotion with and without the Euler-Lagrange loss term
Leuler and the muscle loss Lmuscle. To have a consistent comparision, we report the results on the
HumanML3D dataset, when there is no spatial condition applied. The results are summarized in
Table 8.

Table 8: Ablation study results on HumanML3D dataset.

AE Training Losses FID ↓ Muscle Limit ↓ Penetration ↓ Skate ↓
Lrecon + Leuler + Lmuscle 0.298 5.264 4.954 0.612
Lrecon + Lmuscle 0.512 10.873 6.802 0.618
Lrecon + Leuler 0.494 13.142 6.021 0.713
Lrecon 0.611 14.614 8.820 0.793

The results in Table 8 demonstrate that the inclusion of physics-based constraints significantly im-
proves physical plausibility metrics without compromising motion naturalness.

A.8 EFFECT OF LATENT SPACE DIMENSIONALITY

We conducted an ablation study on the HumanML3D dataset (without spatial conditions) to evaluate
the effect of latent space dimensionality on FlexMotion’s performance. As shown in Table 9, per-
formance improves with larger dimensions, peaking at x ∈ R1×1024, after which further increases
result in slight degradation.

Table 9: Ablation study results on HumanML3D dataset with varying latent space dimensions.

Latent Space Dimension FID ↓ Muscle Limit ↓ Penetration ↓ Skate ↓

w/t compression

x ∈ R1×256 0.353 12.504 6.322 0.957
x ∈ R1×512 0.331 11.200 5.813 0.854
x ∈ R1×1024 0.298 5.264 4.954 0.612
x ∈ R1×4096 0.372 13.133 7.124 1.052
x ∈ R1×16384 0.450 15.574 9.037 1.314

w/o compression x ∈ R196×1452 0.607 17.007 11.592 1.473
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A.9 TRADE-OFFS BETWEEN REALISM AND PHYSICAL ACCURACY

To analyze the trade-offs, we conducted experiments where we varied the weights of the physical
constraints in our loss function. Specifically, we adjusted the parameters λeuler and λmuscle, which
control the influence of the Euler angle regularization and muscle activation limits, respectively. By
observing the impact of these adjustments on both realism and physical accuracy metrics, we can
provide valuable insights into how these aspects interact.
We present the results in Table 1, which compares our model’s performance under different settings
of λeuler and λmuscle on the HumanML3D dataset.
From the results, we observe that decreasing the weights of the physical constraints (e.g., λeuler =
0.0, λmuscle = 0.0) leads to improved realism metrics, such as higher R-Precision and lower FID,
indicating that the generated motions are more perceptually similar to real data. However, this
comes at the cost of physical accuracy, as evidenced by higher values in metrics like Skate, Float,
and Penetrate.
Conversely, increasing the weights of the physical constraints (e.g., λeuler = 2.0, λmuscle = 2.0)
enhances physical accuracy, with lower values in physical metrics, but slightly degrades realism
metrics.
This trade-off suggests that there is a balance to be struck depending on the application requirements.
For scenarios where physical accuracy is paramount, higher weights on physical constraints are
advisable. In contrast, applications prioritizing perceptual realism might benefit from lower weights
on these constraints.

Table 10: Trade-offs Between Realism and Physical Accuracy: Comparison of FlexMotion’s
performance with and without physical constraints on the HumanML3D dataset.

Method R-Precision ↑ FID ↓ DIV→ Skate ↓ Float ↓ Penetrate ↓ Contact Force ↓ Joint Actuation ↓ Muscle Limit ↓ Trajectory ↓
Real 0.797 0.002 9.503 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ours

λeuler = 0.0, λmuscle = 0.0 0.765 0.282 9.310 1.204 6.533 7.001 3.502 1.504 8.070 0.501
λeuler = 0.5, λmuscle = 0.5 0.760 0.292 9.313 0.810 5.523 5.504 2.500 1.121 6.003 0.420
λeuler = 1.0, λmuscle = 1.0 0.757 0.298 9.297 0.612 4.810 4.954 2.109 0.902 5.264 0.393
λeuler = 1.5, λmuscle = 1.5 0.750 0.311 9.282 0.501 4.029 4.207 1.828 0.800 4.800 0.350
λeuler = 2.0, λmuscle = 2.0 0.739 0.322 9.253 0.402 3.500 3.800 1.502 0.700 4.037 0.307
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