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Abstract

This study applies machine learning (ML) to predict
hospital admissions influenced by air pollution and
meteorological conditions in Lisbon (Portugal), fo-
cusing on Hospital de Santa Maria. Four models, Ar-
tificial Neural Networks (ANNs), Random Forest, ex-
treme gradient boosting (XGBoost), and Histogram-
Based Gradient Boosting Regressor (HGBR), were
trained using air quality (PM2.5, PM10, NO2) and
weather variables (temperature, humidity, pressure,
wind). HGBR achieved the best performance (Tun-
ing R2: 0.722, Testing R2: 0.521). SHapley Additive
exPlanations (SHAP)analysis also showed temper-
ature, particulate matter, and NO2 as key factors.
The results highlight that combining gradient boost-
ing with explainable AI provides a reliable, data-
driven framework for forecasting hospital demand
under changing environmental conditions.

1 Introduction

Air pollution is a major environmental factor affect-
ing human health through multiple pathways. It
results from both anthropogenic and natural sources,
including transportation, industry, energy produc-
tion, household heating, and natural events such as
dust storms or forest fires. Key pollutants include
particulate matter (PM10, PM2.5), nitrogen oxides
(NOx), sulfur dioxide (SO2), and ozone (O3), which
can remain in the atmosphere and enter the human
body through inhalation [1,2]. Continuous exposure
may induce short-term effects, such as coughing and
irritation, and long-term impacts, including respi-
ratory illnesses and cardiovascular disease (CVD)
[3,4]. Increases in pollutant levels are often linked
to higher hospital admissions (HA), particularly for
respiratory conditions [5,6]. Short-term spikes in
PM or NOx frequently lead to emergency visits [7,8],
whereas chronic exposure increases long-term health-
care demand. Therefore, predicting HA related to
air pollution is crucial for assessing health risks and
improving public health planning [9,10].
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Traditional statistical models, mainly regression-
based, are limited in capturing complex nonlinear
relationships. Machine learning (ML) techniques,
such as artificial neural networks (ANNs) [11], ran-
dom forest [12], and extreme gradient boosting (XG-
Boost), [13] can better model the complex interac-
tions between pollutants, weather, and population
factors [11,14]. Meteorological variables also play
a crucial role in pollutant dispersion and can in-
directly affect population vulnerability and health
outcomes[15-17].

This study aims to predict hospital admissions in
the Lisbon Metropolitan Area (Portugal), focusing
on Hospital de Santa Maria. Four ML models are
applied to analyze and predict hospital demand, in-
tegrating air quality indicators with meteorological
variables to identify the key environmental factors
influencing admission patterns. By combining these
datasets, the study seeks to accurately capture how
fluctuations in air pollution and weather conditions
affect healthcare demand. The results are expected
to provide valuable insights into the relationship
between environmental conditions and hospital ad-
missions, offering a predictive framework to help
authorities anticipate patient surges and optimize
resources.

2 Methodology

Hospital admissions were predicted using a data-
driven ML approach implemented in Jupyter Note-
book. Four ML algorithms were applied, Histogram-
Based Gradient Boosting Regressor (HGBR), XG-
Boosting, Random Forest, and ANN to evaluate
interactions between air pollution and meteorologi-
cal variables.

The dataset integrated three primary sources cov-
ering a 12-year period: (i) Air pollution data (PM2.5,
PM10, and NO2) obtained from the QUALAR net-
work; (ii) Hospital admissions data (daily records)
provided by Servigo Nacional de Satde (SNS); and
(iii) Meteorological data (2m temperature, 2m dew-
point temperature, surface pressure, 10m wind u
and v components) were obtained from ERA5-Land
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dataset, extracted for the nearest location of En-
trecampos Station, in Lisbon. From this dataset,
derived variables (wind speed and direction, relative
humidity) were acquired.

3 Results

The HGBR model showed the best balance between
accuracy and stability among the tested models.
The mean coefficient of determination during train-
ing was (R2 = 0.521), indicating that the model
learned the underlying relationships without signifi-
cant overfitting. During the tuning phase, HGBR
achieved (R2= 0.722), (MAE = 8.26), and (RMSE
= 10.57), showing a good trade-off between preci-
sion and model simplicity. In the testing phase, the
model maintained (R2= 0.521) with controlled er-
ror levels, confirming consistent behavior. Parity
plots (Figure 1) show predictions closely aligned
with observations along the 1:1 line.

The SHAP feature importance analysis (Figure
2) revealed that temperature variables, particularly
mean and maximum temperature with seven-day
rolling averages, exerted the strongest influence on
hospital admissions. This relationship likely reflects
the physiological stress of temperature fluctuations
on vulnerable groups such as the elderly and those
with cardiovascular conditions. PM10 and PM2.5
also ranked among the most impactful features,
consistent with their well-known role in triggering
respiratory and cardiac events. NO2, representing
traffic-related pollution, further emphasized the con-
tribution of urban emission sources to hospital load.
Surface pressure and relative humidity showed indi-
rect but consistent effects, probably linked to their
control over pollutant dispersion and atmospheric
stability.

When comparing model behavior, tree-based al-
gorithms such as HGBR and XGBoost captured
complex, nonlinear interactions between environ-
mental variables more effectively than the ANN.
This advantage arises from their additive and hier-
archical structure, which naturally models delayed
or cumulative effects (lags and rolling windows). In
contrast, ANN required more extensive tuning and
was more sensitive to data size and parameter config-
uration. Overall, the findings indicate that combin-
ing gradient-boosting approaches with interpretable
tools such as SHAP provides a reliable, transpar-
ent, and data-driven framework for analyzing and
predicting hospital admissions under variable air
pollution and meteorological conditions. The results
highlight temperature fluctuations, fine particulate
matter, and NO2 as key features.
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Parity Plot — Predicted vs Actual
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Figure 1. Parity plots of predicted versus actual hospi-
tal admissions for the highest-performing model (HGBR)
across training, tuning, and testing datasets.
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Figure 2. SHAP feature importance of the top 20 most
influential variables derived from the HGBR.

4 Conclusion

This study demonstrates the effectiveness of ma-
chine learning in predicting hospital admissions un-
der varying air pollution and meteorological con-
ditions. Among the tested algorithms, the HGBR
model showed the best predictive accuracy and gen-
eralization, supported by SHAP analysis that iden-
tified temperature, particulate matter, and NO2 as
key contributors. These findings suggest that inte-
grating gradient-boosting methods with explainable
AT can support early-warning systems and improve
hospital preparedness through data-driven insights
into environmental health risks. Future work will
explore deep learning architectures, such as LSTM,
to assess whether they can better capture long-term
temporal dependencies in multivariate environmen-
tal time series, particularly when larger datasets
become available.
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