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Abstract001

This study applies machine learning (ML) to predict002

hospital admissions influenced by air pollution and003

meteorological conditions in Lisbon (Portugal), fo-004

cusing on Hospital de Santa Maria. Four models, Ar-005

tificial Neural Networks (ANNs), Random Forest, ex-006

treme gradient boosting (XGBoost), and Histogram-007

Based Gradient Boosting Regressor (HGBR), were008

trained using air quality (PM2.5, PM10, NO2) and009

weather variables (temperature, humidity, pressure,010

wind). HGBR achieved the best performance (Tun-011

ing R2: 0.722, Testing R2: 0.521). SHapley Additive012

exPlanations (SHAP)analysis also showed temper-013

ature, particulate matter, and NO2 as key factors.014

The results highlight that combining gradient boost-015

ing with explainable AI provides a reliable, data-016

driven framework for forecasting hospital demand017

under changing environmental conditions.018

1 Introduction019

Air pollution is a major environmental factor affect-020

ing human health through multiple pathways. It021

results from both anthropogenic and natural sources,022

including transportation, industry, energy produc-023

tion, household heating, and natural events such as024

dust storms or forest fires. Key pollutants include025

particulate matter (PM10, PM2.5), nitrogen oxides026

(NOx), sulfur dioxide (SO2), and ozone (O3), which027

can remain in the atmosphere and enter the human028

body through inhalation [1,2]. Continuous exposure029

may induce short-term effects, such as coughing and030

irritation, and long-term impacts, including respi-031

ratory illnesses and cardiovascular disease (CVD)032

[3,4]. Increases in pollutant levels are often linked033

to higher hospital admissions (HA), particularly for034

respiratory conditions [5,6]. Short-term spikes in035

PM or NOx frequently lead to emergency visits [7,8],036

whereas chronic exposure increases long-term health-037

care demand. Therefore, predicting HA related to038

air pollution is crucial for assessing health risks and039

improving public health planning [9,10].040

∗Corresponding Author.

Traditional statistical models, mainly regression- 041

based, are limited in capturing complex nonlinear 042

relationships. Machine learning (ML) techniques, 043

such as artificial neural networks (ANNs) [11], ran- 044

dom forest [12], and extreme gradient boosting (XG- 045

Boost), [13] can better model the complex interac- 046

tions between pollutants, weather, and population 047

factors [11,14]. Meteorological variables also play 048

a crucial role in pollutant dispersion and can in- 049

directly affect population vulnerability and health 050

outcomes[15–17]. 051

This study aims to predict hospital admissions in 052

the Lisbon Metropolitan Area (Portugal), focusing 053

on Hospital de Santa Maria. Four ML models are 054

applied to analyze and predict hospital demand, in- 055

tegrating air quality indicators with meteorological 056

variables to identify the key environmental factors 057

influencing admission patterns. By combining these 058

datasets, the study seeks to accurately capture how 059

fluctuations in air pollution and weather conditions 060

affect healthcare demand. The results are expected 061

to provide valuable insights into the relationship 062

between environmental conditions and hospital ad- 063

missions, offering a predictive framework to help 064

authorities anticipate patient surges and optimize 065

resources. 066

2 Methodology 067

Hospital admissions were predicted using a data- 068

driven ML approach implemented in Jupyter Note- 069

book. Four ML algorithms were applied, Histogram- 070

Based Gradient Boosting Regressor (HGBR), XG- 071

Boosting, Random Forest, and ANN to evaluate 072

interactions between air pollution and meteorologi- 073

cal variables. 074

The dataset integrated three primary sources cov- 075

ering a 12-year period: (i) Air pollution data (PM2.5, 076

PM10, and NO2) obtained from the QUALAR net- 077

work; (ii) Hospital admissions data (daily records) 078

provided by Serviço Nacional de Saúde (SNS); and 079

(iii) Meteorological data (2m temperature, 2m dew- 080

point temperature, surface pressure, 10m wind u 081

and v components) were obtained from ERA5-Land 082
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dataset, extracted for the nearest location of En-083

trecampos Station, in Lisbon. From this dataset,084

derived variables (wind speed and direction, relative085

humidity) were acquired.086

3 Results087

The HGBR model showed the best balance between088

accuracy and stability among the tested models.089

The mean coefficient of determination during train-090

ing was (R2 = 0.521), indicating that the model091

learned the underlying relationships without signifi-092

cant overfitting. During the tuning phase, HGBR093

achieved (R2= 0.722), (MAE = 8.26), and (RMSE094

= 10.57), showing a good trade-off between preci-095

sion and model simplicity. In the testing phase, the096

model maintained (R2= 0.521) with controlled er-097

ror levels, confirming consistent behavior. Parity098

plots (Figure 1) show predictions closely aligned099

with observations along the 1:1 line.100

The SHAP feature importance analysis (Figure101

2) revealed that temperature variables, particularly102

mean and maximum temperature with seven-day103

rolling averages, exerted the strongest influence on104

hospital admissions. This relationship likely reflects105

the physiological stress of temperature fluctuations106

on vulnerable groups such as the elderly and those107

with cardiovascular conditions. PM10 and PM2.5108

also ranked among the most impactful features,109

consistent with their well-known role in triggering110

respiratory and cardiac events. NO2, representing111

traffic-related pollution, further emphasized the con-112

tribution of urban emission sources to hospital load.113

Surface pressure and relative humidity showed indi-114

rect but consistent effects, probably linked to their115

control over pollutant dispersion and atmospheric116

stability.117

When comparing model behavior, tree-based al-118

gorithms such as HGBR and XGBoost captured119

complex, nonlinear interactions between environ-120

mental variables more effectively than the ANN.121

This advantage arises from their additive and hier-122

archical structure, which naturally models delayed123

or cumulative effects (lags and rolling windows). In124

contrast, ANN required more extensive tuning and125

was more sensitive to data size and parameter config-126

uration. Overall, the findings indicate that combin-127

ing gradient-boosting approaches with interpretable128

tools such as SHAP provides a reliable, transpar-129

ent, and data-driven framework for analyzing and130

predicting hospital admissions under variable air131

pollution and meteorological conditions. The results132

highlight temperature fluctuations, fine particulate133

matter, and NO2 as key features.134

Figure 1. Parity plots of predicted versus actual hospi-
tal admissions for the highest-performing model (HGBR)
across training, tuning, and testing datasets.

Figure 2. SHAP feature importance of the top 20 most
influential variables derived from the HGBR.

4 Conclusion 135

This study demonstrates the effectiveness of ma- 136

chine learning in predicting hospital admissions un- 137

der varying air pollution and meteorological con- 138

ditions. Among the tested algorithms, the HGBR 139

model showed the best predictive accuracy and gen- 140

eralization, supported by SHAP analysis that iden- 141

tified temperature, particulate matter, and NO2 as 142

key contributors. These findings suggest that inte- 143

grating gradient-boosting methods with explainable 144

AI can support early-warning systems and improve 145

hospital preparedness through data-driven insights 146

into environmental health risks. Future work will 147

explore deep learning architectures, such as LSTM, 148

to assess whether they can better capture long-term 149

temporal dependencies in multivariate environmen- 150

tal time series, particularly when larger datasets 151

become available. 152
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