
CLIPAway: Harmonizing Focused Embeddings for
Removing Objects via Diffusion Models

Yiğit Ekin∗,†, Ahmet Burak Yildirim†, Erdem Eren Caglar†,
Aykut Erdem‡,⋆, Erkut Erdem♦, Aysegul Dundar†

† Department of Computer Engineering, Bilkent University, Ankara, Turkey
‡ Department of Computer Engineering, Koç University, Istanbul, Turkey

⋆ KUIS AI Center, Koç University, Istanbul, Turkey
♦ Department of Computer Engineering, Hacettepe University, Ankara, Turkey

∗ Correspondence: yigit.ekin@bilkent.edu.tr

Abstract

Advanced image editing techniques, particularly inpainting, are essential for seam-
lessly removing unwanted elements while preserving visual integrity. Traditional
GAN-based methods have achieved notable success, but recent advancements in
diffusion models have produced superior results due to their training on large-scale
datasets, enabling the generation of remarkably realistic inpainted images. Despite
their strengths, diffusion models often struggle with object removal tasks without
explicit guidance, leading to unintended hallucinations of the removed object. To
address this issue, we introduce CLIPAway, a novel approach leveraging CLIP
embeddings to focus on background regions while excluding foreground elements.
CLIPAway enhances inpainting accuracy and quality by identifying embeddings
that prioritize the background, thus achieving seamless object removal. Unlike
other methods that rely on specialized training datasets or costly manual anno-
tations, CLIPAway provides a flexible, plug-and-play solution compatible with
various diffusion-based inpainting techniques. Code and models are available via
our project website: https://yigitekin.github.io/CLIPAway/.

1 Introduction

In today’s digital era, the demand for sophisticated image editing techniques has surged, with
inpainting emerging as a fundamental method for seamlessly removing unwanted elements from
images while maintaining visual coherence. Image inpainting has long been studied in both academia
and industry. Traditionally, research has predominantly focused on Generative Adversarial Network
(GAN)-based methods [21, 17, 12, 16, 14, 26, 32], which have shown notable success in inpainting
tasks. However, recent advancements in diffusion models have attracted considerable interest due to
their ability to produce high-quality results [24, 28, 1, 31]. A key factor behind the effectiveness of
diffusion models is their extensive training on large-scale datasets. By leveraging comprehensive
collections of diverse image data, diffusion models can learn complex patterns and correlations, and
intricate details, allowing them to inpaint missing regions with exceptional realism.

Despite their strengths, diffusion-based text-guided image inpainting models [28, 1] often encounter
challenges in object removal tasks without explicit guidance. When tasked with object removal
without explicit text cues to insert a replacement or with the text of “background”, these models may
inadvertently hallucinate the removed object, substituting it instead of erasing it entirely. This issue
contrasts with user expectations, as users typically anticipate the erased portion to be seamlessly filled
with the background. For example, when removing a person on a surfboard (Figure 1, second row), a
diffusion model might insert another person, given the context that surfboards often have people on

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:yigit.ekin@bilkent.edu.tr
https://yigitekin.github.io/CLIPAway/

Input Mask SD-Inpaint CLIPAway Input Mask SD-Inpaint CLIPAway

Figure 1: Diffusion-based inpainting methods often struggle with object removal tasks. Instead
of seamlessly filling the erased area with background elements, diffusion models may unintentionally
replace the removed object with another or add irrelevant objects. This outcome diverges from the
user’s intention, which is typically to restore the area with the background alone, without introducing
new elements. Our method, CLIPAway, aims at amending this deficiency by precisely focusing on
maintaining the integrity of the background, ensuring that the space is filled as intended by the user.

them. Similarly, when removing a plane from an image of an airport field (Figure 1, fourth row), a
model might insert another plane due to the presence of other planes in the background. Alternatively,
a model might introduce shoes on the floor (Figure 1, first row) when the user’s intention was to fill
the space with background elements. In this paper, to address this issue, we propose a novel approach
called CLIPAway that leverages AlphaCLIP [25] embeddings to distinguish between foreground (the
object to be removed) and background regions. Our method aims to identify an embedding for the
inpainted region that focuses on the background while excluding the foreground content, thereby
enhancing the quality and accuracy of the inpainting process.

Recent advancements in diffusion-based inpainting for object removal have yielded notable works
such as InstInpaint [31], MagicBrush [34], InstructPix2Pix [3], and concurrently ObjectDrop [27].
These methods introduce training datasets with varying approaches: Some generate targets through
existing inpainting methods [31], resulting in imperfect targets, while others rely on synthetically
generated pairs [3] that may contain annotation errors. Certain methods resort to costly manual
annotations [34] or require extensive data collection setups where images of scenes before and after
object removal are captured [27]. Furthermore, these techniques typically involve either training a
model from scratch or fine-tuning existing models specifically for the removal task. In contrast, our
model, CLIPAway, distinguishes itself by its lack of dependency on a specialized training set. It
offers a plug-and-play solution compatible with various diffusion-based inpainting methods, ensuring
seamless object removal without the need for costly or complex data preparation.

Our contributions can be summarized as follows:

• We introduce CLIPAway, a method that utilizes AlphaCLIP embeddings to effectively
differentiate between foreground and background regions for superior object removal.

• Our approach offers a simple plug-and-play solution that does not require specialized
training datasets, making it adaptable to various diffusion-based inpainting methods.

• By focusing on background regions, CLIPAway significantly improves the quality and
accuracy of inpainting results, avoiding the common issue of object hallucination.

• We provide comprehensive evaluations on a standard dataset, demonstrating consistent
improvements over state-of-the-art methods.

2

2 Related Work

Image inpainting involves replacing missing pixels in an image with new ones that blend seamlessly
with the surrounding content. Historically, Generative Adversarial Networks (GANs) have dominated
this field where they demonstrated significant success across various image domains [21, 17, 33, 12,
16, 32]. However, GAN-based models are typically trained separately for specific image domains,
such as face inpainting using training datasets like FFHQ [10] or scenery inpainting using datasets
like Places [37]. This domain-specific training restricts their ability to generalize to diverse scenes,
thereby limiting their versatility.

Recently, diffusion-based models have made strides, showing promising results [18, 24]. For in-
stance, the Repaint model [18] employs a pretrained unconditional diffusion model to perform image
inpainting by conditioning the generation on the unerased parts of the image. Despite its effective-
ness, Repaint operates on the image space, thus computationally demanding and slow. Alternative
approaches that work in the latent space, e.g. SD-Inpaint [24] and Blended Latent Diffusion [1],
adapt the Stable Diffusion (SD) model by adding a mask channel to the latent inputs. These methods,
however, often introduce new objects into the scene based on context rather than removing existing
ones, conflicting with the user’s intention of background restoration. Other diffusion-based methods,
such as GLIDE [20] and SmartBrush [28], are designed to add objects rather than remove them.

There has been growing interest in instruction-based inpainting methods for object removal, such as
Instruct-Pix2Pix [3] and Inst-Inpaint [31], which use prompts instead of masks for object removal.
These methods require datasets specifically tailored for this task. For example, Instruct-Pix2Pix
generates paired datasets using the GPT-3 language model [4] and the text-to-image Stable Diffusion
model [24], incorporating prompt-to-prompt techniques [6]. While capable of object removal,
Instruct-Pix2Pix performs this task with limited precision, possibly due to the synthetic data’s lack of
diversity or inaccurate annotations. Inst-Inpaint, on the other hand, is trained with paired data where
targets are inpainted images generated with GAN-based models. Hence, it inherits the artifacts of
these GAN models.

Other works have relied on manual annotation efforts [34], or extensive data collection setups
involving scenes captured with and without the object [27]. However, the high cost of manual
annotations limits the scale of these datasets. In contrast, our method, CLIPAway, sets itself apart
by eliminating the need for specialized training sets. It offers a flexible, plug-and-play solution
compatible with various diffusion-based inpainting methods, ensuring seamless object removal
without the necessity for costly or complex data preparation.

3 Method

3.1 Preliminaries

Our framework leverages pretrained diffusion models, particularly the latent diffusion model [24],
chosen for its computational efficiency. This model includes an encoder (E) and a decoder (D). The
encoder compresses images into a lower-dimensional latent space while the decoder reconstructs
images from these latent codes. These components function similarly to a variational autoencoder
and are trained separately from the diffusion process.

The diffusion process, as described by [8], operates on latent codes, denoted as z0 = E(x), where x
is the input image. Noise is gradually added to z0 over a series of time steps t until, after T steps, zT
approximates a normal distribution with zero mean and an identity covariance matrix.

Diffusion models act as denoising autoencoders, trained to reverse the noise addition process. They
aim to predict a denoised version of their input, zt, where zt is a noisy version of z0. The objective
function for this denoising task on the latent codes is defined as follows:

LLDM := EE(x),ϵ∼N(0,1),t[∥ϵ− ϵθ(zt, t)∥] (1)
Here, t is sampled from the range 1 to T , and ϵθ(zt, t) represents a neural network, specifically a
UNet that predicts the noise added to zt, conditioned on the time step t. We specifically employ
models fine-tuned for inpainting tasks. These methods involve adding a single-channel mask, which
is downsampled to fit the latent space, to the denoising UNet. The diffusion models are commonly
trained using text-image pairs, where the text information is extracted from a frozen CLIP text
encoder [23]. This encoded text data is then integrated into the UNet via attention layers.

3

IP-Adapter
+

SD-Inpaint
im

ag
e

pr
om

pt
input output input output

text prompt
"Background"

input output

im
ag

e
pr

om
pt

IP-Adapter
+

SD-Inpaint
IP-Adapter

+
SD-Inpaint

Figure 2: Limitations of IP-Adapter [30] for Inpainting. Direct use of the IP-Adapter with the
input image as the image prompt is ineffective for inpainting, as it predictably fills the erased area
with the original object. In addition, directly giving the prompt “background” is also problematic as
the background can also contain instances of the images that we want to remove, resulting in a direct
replacement of the foreground object. On the other hand, using an erased image as the prompt results
in the generation of black artifacts.

3.2 CLIPAway

Our objective is to seamlessly remove objects while maintaining the integrity of the background.
Unlike conventional inpainting methods that ignore the pixels from the erased area, our approach
utilizes these pixels to guide the model on what not to fill in. This distinguishes our method
significantly from others. To achieve this, we exploit the detailed pixel-level information available
from both the regions to be erased and the unerased regions of the image. While popular Stable-
Diffusion models typically rely solely on text conditioning, we explore conditioning the inpainting
process on embeddings derived from image pixels.

Recent advancements have introduced additional control signals via adapters, addressing the limi-
tations of text in fully expressing desired outcomes. In some cases, edge maps, poses, or reference
images are necessary to effectively control the generation process [35, 36, 19]. The CLIP model
utilized for text embedding is originally trained with a contrastive objective jointly with a CLIP image
encoder. Adapters have demonstrated that rather than training an image encoder from scratch for
reference image-based control, the existing CLIP image encoder can be utilized. UniControl [36]
and T2IAdapter [19] extract features from the CLIP image encoder, map them to new features via
a trainable network, and concatenate them with text features. These merged features are then fed
into the UNet of the diffusion model to guide the image generation process. IP-Adapter [30] further
shows that instead of merging image and text features in the cross-attention layer, the features can
pass through a small trainable projection network, which are then fed into the UNet via a decoupled
attention layer. Our implementation is based on IP-Adapter but can be used with others as well
[36, 19].

Our goal is to achieve inpainting by focusing on the background. However, directly using the IP-
Adapter with the input image proves ineffective. Using the entire image as the reference (prompt
image), the method predictably fills the erased area with the original object (Figure 2, left pane).
Conversely, erasing the input image results in black pixels in the masked area, leading to black
artifacts in the filled regions (Figure 2, middle pane). Lastly, providing a text prompt as "background",
also does not help in removing the object (Figure 2, right pane). Therefore, we need an embedding
that solely focuses on the background. To address this, we explore AlphaCLIP [25], which achieves
region focus without altering the original image by incorporating regions of interest through an
additional alpha channel input. Although it is initialized with the CLIP [22] model, its training
requires a substantial set of region-text paired data. By utilizing the Segment Anything Model (SAM)
[11] and multimodal large model BLIP-2 [13] for image captioning, millions of region-text pairs are
generated. AlphaCLIP model is pretrained on a mixture of region-text pairs and image-text pairs.
Their dataset has not been released; fortunately, our method does not require a specialized training
set. Instead, we leverage existing models and techniques to achieve our inpainting objectives.

We train a Multi-Layer Perceptron (MLP) model to adapt the publicly released AlphaCLIP image
encoder (CLIP-L/14) to the CLIP image encoder used in the IP-Adapter (OpenCLIP ViT-H/14).
The MLP consists of six blocks, each containing a linear layer, layer normalization, and GELU
activation. It begins with 768 features and outputs 1024 features, matching the output dimensions of
the CLIP-L/14 encoder and the OpenCLIP ViT-H/14 encoder, respectively. For this training, we use

4

full mask

LMSE

CLIPAway

 MLP CLIP
encoder

image

AlphaCLIP
encoder MLP

AlphaCLIP
encoder MLP

Projection
Block SD

Inpaint

IP
Adapter

image & mask

image & (1-mask)

Z0

image

Z T
m

as
k

En
co

de
d

m
as

ke
d

im
ag

e

x T

Fg-focused
embedding

Bg-focused
embedding

Final
embedding

Fg-focused
embedding

Bg-focused
embeddingBg to Fg

projection

Inference

Training Projection Block

: concatenation

Final
embedding

AlphaCLIP
encoder

Figure 3: The overall framework of CLIPAway. Input images, comprising both foreground and
background elements, are embedded via AlphaCLIP. These embedded images are then processed
through an MLP trained to adapt features to the IPAdapter input space. Through vector arithmetic
on the features, a background embedding without foreground influence is achieved. SDInpaint is
depicted as if it is working on the image space for clarity; it works on the latent space.

the COCO image dataset with the alpha channel set to all 1s, corresponding to the full image rather
than focusing on a specific region for AlphaCLIP. This setup aligns with AlphaCLIP training, where
the authors occasionally set alpha channels to all 1s to indicate full images and sometimes to local
regions. In our training, the target is the OpenCLIP embeddings for a given image. This allows us to
train a projection layer so that AlphaCLIP outputs features that the rest of the IP-Adapter expects.
This part is shown in Figure 3 (Training). We show that AlphaCLIP can be aligned with other CLIP
Image encoders without a special dataset.

One of the promises of AlphaCLIP is its ability to focus on a specific region while maintaining
contextual awareness. For example, given an image and mask pointing to the background, it may
primarily focus on the background while still encoding the foreground, albeit with reduced emphasis.
This behavior is illustrated in Figure 4, where we use image prompts as input images with alpha
channels corresponding to the mask for foreground focus and the inverse of the mask for background
focus. The results shown incorporate our projection layer, which bridges the AlphaCLIP and IP-
Adapter. The first row displays the conditional image generations, while the second row shows the
inpainting results. When the foreground is focused, the foreground object appears more prominent.
Conversely, when the background is focused, the foreground object is present but receives less
attention. Therefore, even when the background is focused, the inpaintings still include the object one
aims to remove. To remove the foreground overall, we propose to subtract the foreground embedding
from the background via projection.

Given two vectors eb (background focused embedding) and ef (foreground focused embedding), the
final embedding efinal can be calculated as the equation below:

efinal = eb −
(
eb · ef
∥ef∥

)
ef
∥ef∥

(2)

where eb · ef is the dot product of eb and ef , and ∥ef∥ is the norm of ef . With this vector arithmetic,
we find the final embedding that is orthogonal to the foreground embedding. After performing
this subtraction, the embedding process predominantly focuses on the background, as illustrated in
Figure 4 in our results. This tendency is evident in conditional image generation, where the resulting
image predominantly exhibits the background style. Consequently, this translates into consistent
background filling in the inpainting task for erased areas.

5

Ours OursBG-FocusedFG-FocusedFG-Focused BG-Focused ImageImage

Ours OursBG-FocusedFG-FocusedFG-Focused BG-Focused MaskMask

Ours OursBG-FocusedFG-FocusedFG-Focused BG-Focused ImageImage

Ours OursBG-FocusedFG-FocusedFG-Focused BG-Focused MaskMask

Conditional Image Generation Results

Conditional Image Inpainting Results

Figure 4: Starting with an input image and mask, we present our findings utilizing both foreground
and background-focused embeddings. The images in the first row depict the conditional image
generation outcomes of the stable-diffusion model without the inpainting task. These visuals offer
insights into the focus of the embeddings. While both embeddings capture features from various parts
of the image, the foreground embedding tends to emphasize the foreground, whereas the background
embedding predominantly focuses on the background but still contains the foreground. Our approach
successfully removes the foreground in the generated results, yielding pure background. This outcome
is consistent with the image inpainting outputs, as demonstrated in the second row.

The overall framework is depicted in Figure 3 (Inference). Input images containing both foreground
and background elements are embedded via AlphaCLIP. These embedded images are then fed into
the MLP, which we trained to adapt the features to the IP-Adapter input space. By performing
vector arithmetic on the features, we achieve a background embedding without the influence of the
foreground. Notably, this method does not necessitate an object removal dataset and can be readily
utilized as a plug-and-play feature.

4 Experiments

4.1 Baselines

We compare our method with state-of-the-art GAN-based and diffusion-based inpainting methods.
The GAN based methods include ZITS++ [5], MAT [14], and LaMa [26] models, whereas diffusion
based models include Blended Latent Diffusion [1], Unipaint [29], SD-Inpaint [24]. We use the
models released by the authors that achieve the best scores.

For GAN-based models, we use the models that are trained on the Places2 dataset. For the diffusion
models, we provide an empty prompt. We also experiment with providing prompts as “background”,
but that does not change the results. In our experiments with Unipaint combined with CLIPAway, the
masking mechanism proposed in Unipaint is applied to the projected embeddings of our network
and then fed into the UNet with the help of IP-Adapter. To demonstrate the flexibility of our method
across different CLIP and AlphaCLIP embedding spaces, we also present comparative analyses of our
approach when the projection step is applied both before and after the MLP layer. This comparison

6

employs three distinct AlphaCLIP backbones—ViT-L/14, ViT-L/14@336px, and ViT-B/16—by
training an MLP layer tailored to each evaluated backbone.

4.2 Datasets

We evaluate the models on the COCO 2017 validation dataset [15], which provides us with the
collection of images indoor and outdoor and instance level annotations. For each image in the
validation set, we set the masks that correspond to object instances, excluding stuff categories. We
dilate the masks with a kernel size of 5 as sometimes the pixels from an object remain in the image
and result in artifacts for all models.

4.3 Metrics

We report the Frechet Inception Distance (FID) [7], Kernel Inception Distance (KID) [2] and the
CLIP Maximum Mean Discrepancy (CMMD) metrics [9] to assess the photorealism of the generated
images by comparing the source image distribution with the inpainted image distributions. However,
these metrics do not evaluate if the object is correctly removed.

To measure the accuracy of correct object removal, we use the CLIP metrics proposed by Inst-Inpaint
[31], namely CLIP Distance and CLIP Accuracy. The goal of CLIP Distance is to evaluate how well
the target object is removed. We extract the image regions indicated by bounding boxes from both
the source and the inpainted images, then estimate the CLIP similarities [22] between these regions.
We expect a larger distance if the object is correctly removed. For CLIP Accuracy, we utilize CLIP as
a zero-shot classifier. We identify the most likely semantic label of the image region extracted from
the source image using the object’s bounding box, considering the object classes in our dataset. Next,
we perform another prediction for the image region extracted from the inpainted image. We expect
the class prediction to change after performing the object removal operation. If the predicted class
based on the source image is not in the Top-1, Top-3, or Top-5 predictions of the inpainted image, it
is considered a success. We report the percentage of successes.

We also conduct a user study with 20 participants on the first 20 samples of the validation set. We
include ZITS++, Unipaint, SD-Inpaint, and CLIPAway to provide a range of the best-performing
models. Participants are asked to evaluate whether the object is correctly removed and to assess the
quality of the inpainting, and then select the best result among all choices. Details of the study are
given in the Appendix.

4.4 Results

50 60 70 80 90 100
50

60

70

80

CLIP Score

FI
D

Sc
or

e

Scatter Plot of FID vs CLIP@3 Scores

ZITS++
MAT
LaMa

Blended
Unipaint

SD-Inpaint
CLIPAway

Figure 5: Comparison of CLIPAway with
state-of-the-art methods based on image
quality and inpainting accuracy.

We provide quantitative and qualitative comparisons
of our method with state-of-the-art inpainting models
in Table 1 and Figure 6, respectively. Our approach,
when combined with various diffusion-based inpaint-
ing methods, demonstrates consistent improvements in
both FID and CLIP metrics. Figure 5 illustrates that
CLIPAway (with SD-Inpaint) achieves significantly bet-
ter CLIP@3 and FID scores, positioning it in the top
left corner, indicating more accurate and higher quality
results compared to other methods. Additionally, our
user study shows a strong preference for our approach
over competing methods. Human subjects preferred
our method 71.75% of the time, compared to 13.25%
for ZITS++, 11.25% for SD-Inpaint, and 3.75% for
Unipaint.

A few predictions from competing models are presented
in Figure 6. GAN-based models, namely LaMa, MAT,
and ZITS++, do not exhibit issues with object insertion. However, this problem is evident in the
outputs of diffusion-based methods. This may be because diffusion models are more powerful and
better at modeling data distribution, leading them to generate objects that more closely match the
real distribution. Although GAN-based models avoid object insertion object insertion, they fail to

7

Models FID ↓ KID ↓ CMMD ↓ CLIP Dist.↑ CLIP@1 ↑ CLIP@3 ↑ CLIP@5 ↑
ZITS++ [5] 67.72 0.0208 0.74 0.66 76.15 61.31 52.91
MAT [14] 63.39 0.0278 0.93 0.76 80.62 65.85 60.10
LaMa [26] 65.76 0.0195 0.81 0.66 78.34 64.42 56.85
SD-Inpaint + LaMa 51.33 0.0117 0.45 0.75 72.29 57.61 50.01
Blended Diff. [1] 72.24 0.0362 0.89 0.85 85.69 75.01 69.34

+ CLIPAway 61.66 (-10.58) 0.0194 (-0.0168) 0.78 (-0.11) 0.83 (-0.02) 87.28 (+1.59) 78.87 (+3.86) 73.20 (+3.86)

Unipaint [29] 77.58 0.0360 0.98 0.78 85.38 74.48 67.44
+ CLIPAway 62.18 (-15.40) 0.0199 (-0.0161) 0.79 (-0.19) 0.84 (+0.06) 88.26 (+2.88) 78.65 (+4.17) 73.05 (+5.61)

SD-Inpaint [24] 59.21 0.0145 0.54 0.75 70.45 57.14 49.88
+ CLIPAway 57.32 (-1.89) 0.0108 (-0.0037) 0.53 (-0.01) 0.81 (+0.06) 84.82 (+14.37) 74.42 (+17.28) 67.76 (+17.88)

Table 1: Evaluation results. Improvements of CLIPAway over the base models are given in
parenthesis for each metric.

generate realistic backgrounds. Our method, CLIPAway, is the only one that effectively removes
objects and fills the regions realistically. For example, in the first row, GAN-based models fill the
inpainted area in a blurry way, and diffusion models insert a person. In contrast, our method removes
the person and fills the area seamlessly. In the third example, our approach is the only one that
realistically fills the kitchen background. Similarly, in the eighth example, while GAN-based models
extend the object in a blurry way and diffusion models add unrelated content, our method provides a
sharp and realistic result.

Table 2 illustrates the adaptability of our approach across various CLIP and AlphaCLIP embedding
spaces. Our method is not constrained to the CLIP embedding spaces employed in our initial
experiments; with different backbones, the results consistently enhance the performance of the
SD-Inpaint model across diverse CLIP embeddings. Additionally, our projection method is applicable
beyond the OpenCLIP embedding space. Since AlphaCLIP’s vision transformer is trained with
objectives similar to those of the CLIP vision transformer, the resulting feature spaces are conceptually
aligned. Consequently, projections can be effectively performed in the AlphaCLIP embedding space
or in other CLIP embedding spaces with comparable properties. To validate this, we evaluated the
projection method on the AlphaCLIP feature space (projection on AlphaCLIP space followed by
MLP) using the same experimental setup.

Models FID ↓ CMMD ↓ CLIP Dist.↑ CLIP@1 ↑ CLIP@3 ↑ CLIP@5 ↑
SD-Inpaint [24] 59.21 0.54 0.75 70.45 57.14 49.88

projection before MLP
SD-Inpaint + CLIPAway (VIT L/14) [24] 57.32 0.53 0.81 84.82 74.42 67.76
SD-Inpaint + CLIPAway (VIT L/14@336px) [24] 54.93 0.48 0.80 82.36 71.68 63.28
SD-Inpaint + CLIPAway (ViT-B/16) [24] 55.31 0.48 0.78 83.57 72.44 63.81

projection after MLP
SD-Inpaint + CLIPAway (VIT L/14) [24] 56.15 0.42 0.86 85.31 74.26 68.58
SD-Inpaint + CLIPAway (VIT L/14@336px) [24] 54.46 0.36 0.82 82.13 70.02 63.28
SD-Inpaint + CLIPAway (ViT-B/16) [24] 54.99 0.41 0.84 85.08 74.79 68.35

Table 2: Evaluation results. SD-Inpaint and SD-Inpaint + CLIPAway across different CLIP embed-
ding configurations, with projections evaluated before and after MLP.

Figure 7 shows our method integrated with various diffusion-based inpainting techniques, highlighting
the significant performance enhancement our module offers. In Figure 8, we present qualitative
comparisons between our method and instruction-based diffusion models. Since our method requires
a mask and these models require prompts, this is not a direct one-to-one comparison. The visual
results reveal that Instruct-Pix2Pix [3] struggles to accurately remove an object, and Inst-Inpaint [31]
produces blurry inpainted images due to its training with GAN-generated targets. It is important to
note that these competing methods rely on specialized datasets and specific model training for this
task. In contrast, our method does not necessitate a special dataset and can seamlessly integrate with
existing diffusion models.

8

Image Mask LaMa MAT ZITS++ Blended Unipaint SDInpaint CLIPAway

Figure 6: Diffusion models often replace the removed object or insert new content instead of
simply removing it. GAN-based models avoid adding new objects but struggle to generate realistic
backgrounds. Our method, CLIPAway, effectively removes objects and fills the regions with realistic
background content.

Image Mask Blended +CLIPAway Unipaint +CLIPAway SDInpaint +CLIPAway

Figure 7: Qualitative results of diffusion-based models and our method combined with them.

5 Conclusion and Broader Impacts

In this paper, we introduced CLIPAway, a novel approach for object removal in images using diffusion-
based inpainting methods. Specifically, CLIPAway addresses the common issue of diffusion models
hallucinating removed objects by focusing embeddings on the background. Our method leverages
AlphaCLIP embeddings to effectively distinguish between foreground and background regions,
focusing on background restoration to achieve seamless and realistic inpainting. By eliminating

9

Image Instruct-Pix2Pix Inst-Inpaint CLIPAway Image Instruct-Pix2Pix Inst-Inpaint CLIPAway

➥ Remove the woman on the right ➥ Remove the man in the middle

➥ Remove the bear in the left ➥ Remove the suitcase at the bottom

➥ Remove the bear in the middle ➥ Remove the man in the middle

Figure 8: Qualitative results comparing instruction-based diffusion models with our method, which
utilizes a mask for object removal.

the dependency on specialized training datasets, CLIPAway provides a flexible, plug-and-play
solution compatible with various diffusion-based inpainting techniques. Our extensive experiments
demonstrated that CLIPAway significantly improves the quality and accuracy of inpainting compared
to state-of-the-art methods.

Broader Impacts. Our framework has the potential to image restoration, editing, and completion.
However, this technology also brings important ethical considerations. One potential misuse is in the
alteration or falsification of visual content, leading to the creation of misleading or deceptive images.
We do not endorse such activities and emphasize the necessity of establishing safeguards to ensure
the ethical use of this technology.

Limitations. Our method is demonstrated using latent-based diffusion models. A limitation is that,
despite the diffusion occurring in the latent space, these models are still slower than GAN-based
methods and do not run real-time. Another limitation of our model is the degradation in performance
when the preferred resolution is not used. For instance, when utilizing the SD-Inpaint pipeline 1,
the expected resolution for inference without quality loss is 512×512. If a different resolution is
provided, performance degrades. While this issue is inherent to latent-based diffusion models rather
than specific to our approach, it remains a present limitation. Additionally, our model, while removing
objects, does not remove their shadows if they are not included in the mask. This can be seen in
Figure 1 in the first two examples on the right, where shadows are handled as patterns by the model
instead of being removed.

Acknowledgments

This work was supported in part by KUIS AI Research Award. We thank all the reviewers for their
valuable comments.

1https://huggingface.co/botp/stable-diffusion-v1-5-inpainting

10

References
[1] Avrahami, O., Fried, O., Lischinski, D.: Blended latent diffusion. ACM Trans. Graph. 42(4) (jul

2023). https://doi.org/10.1145/3592450, https://doi.org/10.1145/3592450

[2] Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd gans (2021),
https://arxiv.org/abs/1801.01401

[3] Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image editing
instructions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 18392–18402 (2023)

[4] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in
neural information processing systems 33, 1877–1901 (2020)

[5] Cao, C., Dong, Q., Fu, Y.: Zits++: Image inpainting by improving the incremental transformer
on structural priors. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023)

[6] Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-
prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022)

[7] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two
time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems 30 (2017)

[8] Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems 33, 6840–6851 (2020)

[9] Jayasumana, S., Ramalingam, S., Veit, A., Glasner, D., Chakrabarti, A., Kumar, S.: Rethinking
fid: Towards a better evaluation metric for image generation. arXiv preprint arXiv:2401.09603
(2023)

[10] Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial
networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 4401–4410 (2019)

[11] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S.,
Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

[12] Li, J., Wang, N., Zhang, L., Du, B., Tao, D.: Recurrent feature reasoning for image inpainting.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
7760–7768 (2020)

[13] Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In: International conference on machine
learning. pp. 19730–19742. PMLR (2023)

[14] Li, W., Lin, Z., Zhou, K., Qi, L., Wang, Y., Jia, J.: Mat: Mask-aware transformer for large hole
image inpainting. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 10758–10768 (2022)

[15] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.:
Microsoft coco: Common objects in context. In: Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. pp. 740–755.
Springer (2014)

[16] Liu, G., Dundar, A., Shih, K.J., Wang, T.C., Reda, F.A., Sapra, K., Yu, Z., Yang, X., Tao,
A., Catanzaro, B.: Partial convolution for padding, inpainting, and image synthesis. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022)

[17] Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for
irregular holes using partial convolutions. In: Proceedings of the European conference on
computer vision (ECCV). pp. 85–100 (2018)

11

https://doi.org/10.1145/3592450
https://arxiv.org/abs/1801.01401

[18] Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: RePaint: Inpainting
using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 11461–11471 (2022)

[19] Mou, C., Wang, X., Xie, L., Wu, Y., Zhang, J., Qi, Z., Shan, Y.: T2i-adapter: Learning adapters
to dig out more controllable ability for text-to-image diffusion models. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 38, pp. 4296–4304 (2024)

[20] Nichol, A.Q., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., Mcgrew, B., Sutskever, I., Chen,
M.: Glide: Towards photorealistic image generation and editing with text-guided diffusion
models. In: International Conference on Machine Learning. pp. 16784–16804. PMLR (2022)

[21] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: Feature
learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 2536–2544 (2016)

[22] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable visual models
from natural language supervision. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th
International Conference on Machine Learning. Proceedings of Machine Learning Research,
vol. 139, pp. 8748–8763. PMLR (18–24 Jul 2021)

[23] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language
supervision. In: International conference on machine learning. pp. 8748–8763. PMLR (2021)

[24] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis
with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 10684–10695 (2022)

[25] Sun, Z., Fang, Y., Wu, T., Zhang, P., Zang, Y., Kong, S., Xiong, Y., Lin, D., Wang, J.: Alpha-clip:
A clip model focusing on wherever you want. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2024)

[26] Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov, A., Kong,
N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask inpainting with fourier
convolutions. In: Proceedings of the IEEE/CVF winter conference on applications of computer
vision. pp. 2149–2159 (2022)

[27] Winter, D., Cohen, M., Fruchter, S., Pritch, Y., Rav-Acha, A., Hoshen, Y.: Objectdrop:
Bootstrapping counterfactuals for photorealistic object removal and insertion. arXiv preprint
arXiv:2403.18818 (2024)

[28] Xie, S., Zhang, Z., Lin, Z., Hinz, T., Zhang, K.: Smartbrush: Text and shape guided object
inpainting with diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 22428–22437 (2023)

[29] Yang, S., Chen, X., Liao, J.: Uni-paint: A unified framework for multimodal image inpainting
with pretrained diffusion model. In: Proceedings of the 31st ACM International Conference on
Multimedia. p. 3190–3199. MM ’23, Association for Computing Machinery, New York, NY,
USA (2023). https://doi.org/10.1145/3581783.3612200

[30] Ye, H., Zhang, J., Liu, S., Han, X., Yang, W.: Ip-adapter: Text compatible image prompt adapter
for text-to-image diffusion models. arXiv preprint arXiv:2308.06721 (2023)

[31] Yildirim, A.B., Baday, V., Erdem, E., Erdem, A., Dundar, A.: Inst-inpaint: Instructing to remove
objects with diffusion models. arXiv preprint arXiv:2304.03246 (2023)

[32] Yildirim, A.B., Pehlivan, H., Bilecen, B.B., Dundar, A.: Diverse inpainting and editing with
gan inversion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 23120–23130 (2023)

12

[33] Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated
convolution. In: Proceedings of the IEEE/CVF international conference on computer vision. pp.
4471–4480 (2019)

[34] Zhang, K., Mo, L., Chen, W., Sun, H., Su, Y.: Magicbrush: A manually annotated dataset
for instruction-guided image editing. Advances in Neural Information Processing Systems 36
(2024)

[35] Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3836–3847
(2023)

[36] Zhao, S., Chen, D., Chen, Y.C., Bao, J., Hao, S., Yuan, L., Wong, K.Y.K.: Uni-controlnet: All-
in-one control to text-to-image diffusion models. Advances in Neural Information Processing
Systems 36 (2023)

[37] Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million image
database for scene recognition. IEEE transactions on pattern analysis and machine intelligence
40(6), 1452–1464 (2017)

13

A Supplementary Material

In this supplementary material we provide:

1. Training and inference algorithm
2. Architectural details of the MLP network and training details
3. Conditional image generation examples for projected embeddings
4. Visual comparison with LaMa, MAT, ZITS++, Blended Latent Diffusion, Unipaint and

SD-Inpaint
5. Details of the user study that we have conducted
6. Potential extension to SDXL-Inpainting pipeline
7. Our models flexibility across CLIP embedding styles
8. Our models contextual understanding
9. Reference-based background inpainting examples of our model

10. LaMa + SDInpainting comparison with our model

14

A.1 Training and Inference Algorithm

Algorithm 1 Algorithm for our training and inference
1: Training Algorithm Of MLP Projection Layer:
2: Input: Training data D = {(xi)}ni=1, Alpha-CLIP Image Encoder (α-CLIP), CLIP Image

Encoder (CLIP), MLP with parameters θ, learning rate η, number of epochs E
3: Output: Model parameters θ
4: for epoch = 1 to E do
5: for each (xi) ∈ D do
6: mask← ones(xi.shape)
7: eα−clip ← α-CLIP(mask,xi)
8: eprojected ← MLP(eα−clip)
9: eclip ← CLIP(xi)

10: LMSE ← ||eclip − eα−clip||2
11: θ ← θ − η∇θLMSE

12: end for
13: end for
14: Inference Algorithm of CLIPAway:
15: Input: Image Iin, Mask M , downscaled mask m, Alpha-CLIP Image Encoder (α-CLIP), Trained

MLP from 1.1, trained Stable Diffusion model SD, trained IP-Adapter, a timestep t
16: Output: Inpainted Image Iout
17: ZT ∼ N (0, I)
18: efg ← α-CLIP(mask,Iin)
19: ebg ← α-CLIP(1 - mask,Iin)
20: ˆefg ← MLP(efg)
21: êbg ← MLP(ebg)

22: efinal ← êbg −
(

b·f
∥f∥2

)
f

23: eip ← IP-Adapter(efinal)
24: Iout ← SD(ZT , t, eip)

A.2 Architectural details of the MLP network and training details

As stated, we have trained a multi-layer perceptron (MLP) to project Alpha-CLIP embeddings
into CLIP embeddings subspace. The network consists of 6 blocks each containing a linear layer
followed by a layer normalization followed by a GELU activation function. The dimension of linear
layers changes midway to adapt to a different embedding dimension, transitioning from Alpha-CLIP
embedding dimension to IP-Adapter embedding dimension. It is also important to note that the final
layer does not include a GELU activation function. Complete implementation of the model in a
Pytorch-like syntax is given in Table 3.

The MLP model is trained on a single NVIDIA A40 GPU with batch size 8. Adam, optimizer is used
with learning rate and weight decay are set to 1e−5 and 1e−4, respectively. The model is trained for
300k steps on COCO2017 which took approximately 7 GPU hours.

15

Layer Description

1 Linear(768, 768)
LayerNorm(768)
GELU()

2 Linear(768, 768)
LayerNorm(768)
GELU()

3 Linear(768, 1024)
LayerNorm(1024)
GELU()

4 Linear(1024, 1024)
LayerNorm(1024)
GELU()

5 Linear(1024, 1024)
LayerNorm(1024)
GELU()

6 Linear(1024, 1024)
LayerNorm(1024)
GELU()

7 Linear(1024, 1024)

Table 3: Layer-by-Layer Description of the MLP

16

A.3 Conditional Image Generation Examples

Image Mask Fg Focused Bg Focused Projected

Figure 9: Conditional image generation results (not inpainting), when condition is foreground,
background, and projected embeddings.

17

A.4 Additional Qualitative Results

Image Mask LaMa MAT ZITS++ Blended Unipaint SDInpaint CLIPAway

Figure 10: Qualitative results of our and competing methods on the COCO2017 Validation dataset.
Diffusion models often replace the object or insert new content instead of removing it, while GAN-
based models, although not struggling with object insertion, fail to generate a realistic background.
Our method is the only one that effectively removes objects and fills the regions in a realistic manner.

18

A.5 User Study Details

We have conducted a user study to obtain a better comparison between our model and our competitors.
20 people voted as volunteers. Random 20 samples are included in our user study without cherry-
picking. We include ZITS++, Unipaint, SD-Inpaint, and CLIPAway to have a variety of the best-
performing models. The voters were asked to select the option that achieved the best object removal
regarding realism and consistency with the scene. The instructions and an example from the study are
given in Figure 11 and 12, respectively. The order of the methods are randomized for each question.
There was no time limit set in the study.

Figure 11: Guideline given to the voters for correctly completing the user study

A.6 Extension to SDXL-Inpainting Pipeline

SDXL-Inpainting is another widely-used pipeline for inpainting tasks, yet it has notable limitations
when applied to object removal. Upon examination, we observed that issues related to unintended
object additions are particularly pronounced. SDXL-Inpainting recommends setting the strength
parameter to 0.99, using the unerased image as input, and applying noise at this strength level 2.
The strength parameter, which ranges from 0 to 1, controls the degree of transformation applied to
the masked area, with higher values introducing more noise and necessitating additional denoising
steps. When set to 1, the strength parameter applies maximum noise, often resulting in a degradation
of image quality, as noted in the documentation’s limitations. Conversely, using a strength of 0.99
frequently causes the model to regenerate erased foreground objects, as residual information about
the object remains. Under this configuration, SDXL-Inpainting achieves a CLIP-1 score of 67.22,
the lowest among those reported in Table 1 of the main paper. However, when combined with
our CLIPAway method, the SDXL-Inpaint model achieves an improved CLIP-1 score of 85.91.
These results are presented in Figure 17, which illustrates that at a strength of 1, the model tends to
hallucinate or replace objects, while at a strength of 0.99, it may partially regenerate the object.

A.7 Flexibility Across CLIP Embedding Styles

CLIPAway demonstrates robust adaptability across various CLIP embedding spaces. To explore this
flexibility, we trained the MLP for AlphaCLIP with additional model keys—VIT-L/14@336px and
VIT-B/16—alongside VIT-L/14. Each model was subsequently evaluated, and the results underscored

2https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1

19

Figure 12: An example question from the user study

20

the effectiveness of our approach across diverse CLIP embeddings, as shown in 2. This analysis
validates that our method can seamlessly operate within different embedding spaces.

Image Mask L/14 L/14@336px B/16

Figure 13: CLIPAway results with different CLIP embedding spaces.

Our projection method is not confined to the OpenCLIP embedding space. As AlphaCLIP’s vision
transformer and CLIP’s vision transformer are trained with aligned objectives, their feature spaces
are conceptually similar. Consequently, the projection method can be effectively applied within
the AlphaCLIP embedding space or other similar CLIP embedding spaces. To validate this, our
projection approach on the AlphaCLIP feature space is evaluated. The outputs of this approach,
projection on AlphaCLIP space followed by MLP, confirmed that our method is applicable beyond
the OpenCLIP embedding space.

A.8 Contextual Understanding

As our approach leverages SDInpaint as its backbone, the inpainting process is constrained to regions
delineated by the provided masks, a characteristic shared with other competing methods, such as
LAMA, MAT, and ZITS++. Additional experiments incorporating both the primary objects and their
associated shadow regions within the input masks were conducted. The results, presented in 14,
demonstrate that our method successfully eliminates both objects and their corresponding shadows
when the mask encompasses both elements.

Image Mask Result Image Mask Result

Figure 14: Shadows can be included in the masks if preferred.

21

A.9 Reference-based Background Inpainting

While the primary focus of our work centers on object removal, our framework demonstrates versatil-
ity across various tasks. We explore the application of our method to reference-based background
inpainting, as illustrated in 15. By computing the projected embedding of a reference image that
represents the target background, our framework successfully inpaints the background while main-
taining the integrity of the foreground. These results highlight the broader potential of our approach
in addressing general image manipulation and inpainting challenges.

Image-Fg Mask-Fg Image-Bg Mask-Bg Result

Figure 15: Reference-based background inpainting with CLIPAway.

A.10 LaMa + SDInpainting

To further evaluate the effectiveness of our approach, we compared our method to a widely-used com-
munity pipeline for object removal3. This approach first applies LaMa inpainting as a preprocessing
step to the SD-Inpaint pipeline, creating a hybrid method intended to capitalize on the strengths of
both models. While the integration of SD-Inpaint as a post-processing step enhances overall visual
quality metrics, as shown by improved FID scores, it also introduces certain limitations. Specifically,
a reduction in object removal effectiveness is noted, primarily due to SD-Inpaint’s tendency to
hallucinate or introduce extraneous objects in the inpainted regions. Our CLIPAway model notably
surpasses this hybrid approach, achieving superior KID (Kernel Inception Distance) metrics and
consistently higher scores in CLIP-based object removal metrics. This result is illustrated in Figure
16, where, although LaMa provides a more refined intermediate image for the SD-Inpaint pipeline,
the tendency of SD-Inpaint to replace or hallucinate objects remains evident.

3https://github.com/Mikubill/sd-webui-controlnet/discussions/1597

22

Image Mask LaMa Lama w/SD-Inpaint Ours

Figure 16: LaMa + SD-Inpaint comparison with Ours.

23

Image Mask SDXL-Inpaint Ours (CLIPAway)
s = 1.0 s = 0.99 s = 1.0 s = 0.99

Figure 17: SDXL-Inpaint and SDXL-Inpaint+CLIPAway results with strength values of 1.0 and 0.99.

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Justification: Introduction and Abstract state the limitations of current models
and reflect the paper’s contribution over them. In addition, the paper’s task of object removal
is clearly stated in both the abstract and the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are mentioned in Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

25

Answer: [NA]
Justification: The paper does not include theoretical results. Hence, there is not any proof
that needs to be included.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The training details are given in Sec. A.2 of the supplementary material and
the algorithm is given step-by- step in Sec. A.1 of the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The project code can be accessed through the project page url in abstract

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are given in Sec. A.2. of the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not provide error bars as we evaluate pretrained models. Our model is
combined with three baselines and consistently improve all metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Resources are given in Sec. A.2. of the supplementary material
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Impact is given in Sec. 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

28

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: in Sec. 5.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Open release models and datasets are used with proper citations and the
licenses are properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

29

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: New assets are not introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: User study is conducted in a volunteer basis among college students. The
details are given in Sec. A.5 of the supplementary material.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There were no potential risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Related Work
	Method
	Preliminaries
	CLIPAway

	Experiments
	Baselines
	Datasets
	Metrics
	Results

	Conclusion and Broader Impacts
	Supplementary Material
	Training and Inference Algorithm
	Architectural details of the MLP network and training details
	Conditional Image Generation Examples
	Additional Qualitative Results
	User Study Details
	Extension to SDXL-Inpainting Pipeline
	Flexibility Across CLIP Embedding Styles
	Contextual Understanding
	Reference-based Background Inpainting
	LaMa + SDInpainting

