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Abstract

In the past year, large language models (LLMs) have had remarkable success in domains
outside the traditional natural language processing, and their capacity is further expanded
into the so-called LLM agents when connected with external tools. In all domains, the
prompt to the LLMs has been shown to make a big difference in what the LLM would
generate and thus affect the performance of the LLM agents. Therefore, automatic prompt
engineering (APE) has become an important question for many researchers and users of
LLMs. However, previous works in APE rely on a final checker to evaluate the performance
of the given prompt – a requirement that is hard to meet in the case of LLM agents,
where intermediate feedback is easier to obtain, and the final evaluation could be expensive,
inaccurate, or even missing. In this paper, we propose a novel method, RePrompt, which
does a “gradient descent"-like approach to optimize the step-by-step instructions in the
prompts given to LLM agents, based on the chat history obtained from interactions and
reflections with LLM agents. By leveraging intermediate feedback, RePrompt can optimize
the prompt without the need for a final solution checker. We evaluate our approach on PDDL
generation, TravelPlanner, and Meeting Planning to show that our method could generally
improve performance for different reasoning tasks.

1 Introduction

Large language models (LLMs) have won significant success since the release of ChatGPT (OpenAI, 2022).
In addition to traditional natural language tasks like summarization and sentiment analysis, LLMs have
been shown to be effective in many domains that are closer to applications like code generation (Chen
et al., 2023; Roziere et al., 2023), human-computer interaction (Li et al., 2023) and math problem solving
(Wei et al., 2022; Yu et al., 2024). While pure LLMs are limited in their reasoning capability (Sun et al.,
2023; Valmeekam et al., 2023; Chen et al., 2024a), researchers have introduced tool-use to LLMs and built
integrated systems, namely LLM agents, to enable the use of LLM in even more general domains (Wang
et al., 2023a; Mao* et al., 2023; Xie et al., 2024).

Prompts play a crucial role in these successes, as variations in prompt design can lead to dramatically
different success rates (Wei et al., 2022). Consequently, prompt engineering is often necessary for task-specific
optimization. However, manual prompt engineering is both challenging and time intensive, motivating the
development of automatic prompt engineering (APE), where LLMs generate prompts in their preferred
natural language (Zhou et al., 2023). With some trials, APE can efficiently converge to a robust prompt,
outperforming the original prompts that are often simple (Zhou et al., 2023; Zhang et al., 2023).

However, in complex LLM-agent tasks such as reasoning, APE is still under-studied, and most users still
use primitive prompts or carefully hand-crafted prompts in their LLM. On the one hand, this is because
LLM agents normally have high constraints on the output format, and previous APE methods can easily
break the format requirement. On the other hand, existing APE methods rely highly on trying different
prompts, checking the performance of each one, and finding the best one. However, there are numerous
cases where an accurate final evaluator is highly costly, making it impractical for most people to use the
evaluator frequently during training or, in our case, while optimizing the prompt. This is especially common
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Figure 1: The workflow of our method RePrompt.
.

in high-specialization domains that demand extensive domain knowledge, such as physics, chemistry, and
other scientific disciplines. There are also scenarios where a final evaluation might be entirely absent, as seen
in applications like ChatGPT, and particularly in GPT’s tools. In these situations, users interact with the
application, sometimes providing intermediate feedback, but often leaving without clarifying whether they
received a satisfactory response or abandoning the interaction due to dissatisfaction with the model’s ability
to assist further. Without cheap prompt performance evaluators, existing APE methods cannot be applied
to these scenarios.

In this paper, we focus on a scenario where there is a specific reasoning task one wants to use LLMs
for, while there is no ground-truth checker to check the correctness of the outputs. One example is the
OpenAI GPTs tool in ChatGPT (OpenAI, 2023b) to plan their travel or help in writing a code. In these
domains, LLMs typically use a Chain-of-Thought (CoT) prompt with interactive procedures like ReAct
(Yao et al., 2023b) and Reflexion (Shinn et al., 2023) to improve their performance. We propose a novel
automatic prompt engineering method called RePrompt, which takes the common practices of using CoT
and ReAct into consideration and uses the dialogue history from these results as the information for each
prompt update. By summarizing the dialogue history and then analyzing how to improve the prompt step-
by-step, we optimize the prompt based on past history while not overfitting to corner cases. An overview of
our proposed framework is shown in Figure 1.

We benchmark our approach on Planning Domain Definition Language (PDDL) generation (Guan et al.,
2023), TravelPlanner (Xie et al., 2024), and Meeting Planning Zheng et al. (2024) to show that our methods
can achieve a higher first-round success rate, and our methods can be combined with different types of
feedback generator.

In conclusion, our contributions are:

1. Propose to use “gradient-based"-like prompt optimization in LLM agents.

2. Propose a summarization-based prompt optimization that focuses on optimizing steps in the prompt,
and demonstrate that optimizing the steps is an efficient way of prompt optimization in LLM agents.

3. Our proposed method does not require a solution checker, and can be used in LLM-agents scenarios
where such a checker is not available.

2 Related Works

Our work lies at the intersection of prompt optimization and LLM for reasoning.
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In prompt optimization, many works have proposed to optimize the prompt using differentiable tuning on
soft prompts (Lester et al., 2021; Qin & Eisner, 2021), train auxiliary models as the optimizer (Hao et al.,
2023; Deng et al., 2022; Zhou et al., 2023), or directly train the prompter themselves (Wang et al., 2023b).
This line of work requires access to the model weights of the language models and is not generally applicable
in the current era of using LLMs like GPT-4 (OpenAI, 2023a) and Claude-3 (Anthropic, 2024) through
APIs. Another line of work chooses to use machine learning models to provide approximate guidance on
which prompt is better, either by using reinforcement learning (Shin et al., 2020; Zhang et al., 2023; Chen
et al., 2024b) or by discrete manipulation with LLM feedbacks (Guo et al., 2023). There are also some
other works in prompt optimization that propose a relatively general solution, such as using beam search or
Monte Carlo tree search as the "gradient descent" optimizer (Pryzant et al., 2023; Tang et al., 2024; Wang
et al., 2024). Our work is very close to the second group of works, and can be seen as a generalization of the
current methods to reasoning domains. Importantly, in our settings, we do not require ground-truth feedback
that checks the general performance of the current prompt, which is more aligned with the applications of
prompting for LLM agents in scenarios like GPTs OpenAI (2023b).

In LLM for reasoning, a key challenge identified by researchers is how to correctly use prompts to guide the
LLM to generate useful auxiliary output that leads to a good final solution. Chain-of-Thought (CoT) (Wei
et al., 2022) is the most commonly used prompt that can improve the performance of LLMs that consists
of simply adding a fixed sentence, such as "Let’s think step by step.". More recently, Tree-of-thought (Yao
et al., 2023a) and Graph-of-Thoughts (Besta et al., 2024) were also proposed as an extension of the simple
line-based architecture of auxiliary output to tree and graph-structured output. Orthogonally, researchers
have also found that utilizing the interaction capability of LLMs could also improve their performance.
Yao et al. (2023b) proposed ReAct by letting the LLMs list some thoughts before proposing the actual
actions. Reflexion (Shinn et al., 2023) prompts an LLM agent to reflect on the actions, and save the
reflections in the memory to improve efficiency. There are extensive other works like self-refine (Madaan
et al., 2023), RCI (Kim et al., 2023), and self-debugging (Chen et al., 2023) that use similar ideas of providing
feedback as guidance in the reasoning-related task and strategically adapt the idea to fit the needs of specific
domains. Furthermore, recently, o1-like models Jaech et al. (2024) naturally integrate this self-correction
process into the generation procedure. Our approach uses this iterative workflow that incorporates feedback
before finalizing the answer, optimizing the prompt based on the provided interaction history. This process
mitigates early-stage errors and, more importantly, reduces the inherent randomness seen in methods like
ReAct and Reflexion. By summarizing recurring issues — such as budget balancing — our method,
RePrmopt, ensures these concerns are systematically addressed within the prompt. This allows ReAct
and Reflexion to focus on case-specific challenges, such as unexpected price surges for hotels in particular
cities on specific days in the case of solving a TravelPlanner task.

3 Methods

3.1 Background on LLM agents

In this paper, we consider the problem of LLM agents for reasoning tasks. For LLM agents to focus on
reasoning, the Chain-of-Thoughts (CoT) Wei et al. (2022) is one of the most popular methods used in LLMs.
By adding a simple sentence of "Let’s do it step-by-step," LLMs will automatically outputting auxiliary steps
before generating the final answer. Based on this, there has also been recent success in OpenAI o1 Jaech
et al. (2024) and Deepseek-R1 et al. (2025) which further demonstrate that by introducing more steps before
the answer, LLMs can solve harder problems.

Because LLM might not be correct in the first shot, prior approaches have proposed allowing a few inter-
actions before the final answer is given by the LLM (Yao et al., 2023b; Shinn et al., 2023). In these cases,
users provide the LLMs with some feedback and let the LLMs try again with the additional information.
This information does not necessarily provide any hint about the final solution, but can be an error message
about why the current solution is not correct. For example, this information could be a Python runtime error
message in code generation tasks. How to use specific prompts with error messages would mainly depend
on each specific task. For example, in the widely used ReAct (Yao et al., 2023b), LLMs are required to
provide thoughts on the current results before doing the next round, and these thoughts are often not a
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concrete error but may also include a short analysis that reaches a conclusion that the current action is
good. However, due to the difficulty of LLM agent’s tasks, checking how good a given prompt is could be
expensive and unsuitable for regular in the prompt optimization process. As we mentioned earlier, this could
be either very expensive in domains that require high intelligence like physics, or completely infeasible in
applications like the web version of GPTs.

3.2 RePrompt

3.2.1 Overview

In LLM agents for reasoning tasks, we consider the task planning part of LLM agents with prompt optimiza-
tion, where the tasks of the agents are known ahead of time, and the final solution checker is not available
due to its cost.

As shown in Fig. 1, our method, RePrompt, is a prompt optimizer that is based on the interaction-based
action-generating process. Our prompt optimization method is similar to a machine learning training loop,
which iterates between getting the output based on the current parameters, calculating the loss based on the
output, and optimizing the parameters based on the loss. But in our case, the parameters to be trained are
the prompts to be fed into the LLM model, the model forward pass is replaced by the complete interaction-
based action-generating process, which includes the feedback generator, and final components of RePrompt
are the loss and optimizer, which are both LLMs instead of numerical calculation for the distance and the
gradients.

Given a specific small dataset of reasoning tasks used for training, we first let the LLMs generate their
responses using the current prompt. This process needs to include some interaction schemes with some kind
of feedback generator like ReAct or Reflexion, but we do not put any constraint on how this part should
be done, or how accurate the feedback is. We call this process the Actor.

We then wait until a complete batch of chat histories has been collected, at which point we input the entire
batch into another large language model, which we call the summarizer, to summarize the primary focus
point. This focus point might be a recurring issue that frequently prolongs iterations or specific suggestions
(or “thoughts” in the case of ReAct) that have proven effective in producing high-quality responses. Typ-
ically, the essential information is already present in the chat history and does not require further analysis
or summarization. Our summarizer is designed to capture key insights across various scenarios, omitting
scenario-specific details and recommendations while avoiding overly broad summaries that would demand
additional reasoning steps. Due to space constraints, we provide the prompt for this summarizer in Appendix
D. Unlike prior works, which rely on ground-truth checkers to separate successful from unsuccessful trials
before comparison, our approach aggregates feedback from all trials without differentiation, using only the
signals produced by the Actor. Without explicit labels, identifying informative cues becomes substantially
more challenging, and naively leveraging the raw aggregate often proves ineffective.

With the summarized typical errors identified, we leverage another LLM, the Prompt Optimizer, to refine
the prompt accordingly. After the steps, we will get an updated prompt, and we can continue to do more
iterations, which can also be seen as more epochs as an analogy to training ML models, until the prompt has
converged and does not change with more iterations. This converged prompt will help improve the generated
result in the first round, and also help assure common problems that can be fixed by the feedback generator
to be resolved as early as possible. During test time, we directly use the converged updated prompt and test
it on the new test set. During the test, we do not require the exact same process to generate the response,
e.g., the feedback generator can be removed completely from the Actor procedure if it is quite expensive.

3.2.2 Optimizer

Because the Actor can adopt any architecture and the Summarizer merely aggregates the collected feedback,
we direct our attention to the Prompt Optimizer. For this component we propose a novel, step-based design
that tackles the central challenges faced by LLM-driven agents.
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To begin with, this optimizer LLM is instructed to adhere to the following principles that are commonly
used in prompt engineering:

1. The refinement process should prioritize the common structural components of the prompt rather
than scenario-specific elements that vary across data points. For instance, in the task of PDDL
formulation generation, a frequent suggestion is to include additional details about the specific
domain the LLM is targeting, along with more comprehensive background knowledge. However,
since our goal is to construct a generalizable prompt capable of handling diverse PDDL formulation
tasks, incorporating such domain-specific details would reduce its applicability and should therefore
be avoided.

2. The improvement should prefer to identify whether the specific problem does occur in the given
scenario. For example, suppose there is a certain budget one wants the solution provided by LLMs
to satisfy, and the previous history shows that this budget constraint could be one of the main
problems that lead to a wrong solution. In that case, the cost of a typical plan should first be
approximated. If it breaks the constraint, it could prioritize the budget constraint when getting a
solution; otherwise, it should ignore this problem.

Based on the above principles, we use the prompt to ask the optimizer LLM to do the following step-by-step,
as detailed in Appendix D:

1. Propose a few potential solutions to the problem.

2. Analyze the solutions one by one to see which one meets the rules better.

3. Choose the single solution that is the best. Unlike some of the existing work (Zhou et al., 2023;
Deng et al., 2022), we do not ask the LLM to give a concrete number as the value of the prompt
sentence.

4. Analyze the original steps in the original prompts, check whether the chosen solution should be
inserted before the current step or the solution is a more concrete detail on the step, and the prompt
on the current step should be replaced by the solution. If it is the step, add the prompt here.

5. Output the final prompt that combines the original prompt and the updated prompt.

To assist the optimizer in handling common challenges, we have pre-encoded several frequently used solutions
directly within the optimizer prompt. While these solutions could be discovered over multiple iterations,
providing them upfront minimizes the number of iterations required for prompt refinement, accelerating the
optimization process.

Furthermore, while we understand that in-context learning is very important for reasoning, we found it
extremely challenging to update the examples to follow our instructions step-by-step perfectly all the time.
And therefore, we choose not to change the examples at all. In most cases, the examples serve as a hint to
the LLM on the output format and the related capabilities rather than a concrete guide on how to follow
the step-by-step instructions, and we currently do not see any empirical drawback by not updating them.

3.2.3 Prompt Intialization

To initialize the training process, we start with the original prompt. Because not all original prompts
include detailed step-by-step instructions that our optimizer can leverage, we introduce an auxiliary checker
(excluded from the main workflow for simplicity) to convert prompts into a structured, step-by-step format
when needed. Specifically, we first use a language model to assess whether the current prompt already
contains such instructions. If it does not, we manually append a standardized sequence of steps to the
prompt, placing it just before any examples. This sequence comprises two primary steps: a brief problem
analysis followed by the solution. This structure is functionally similar to a single "Chain of Thought" (CoT)
prompt (Wei et al., 2022), “let’s think step-by-step” in most reasoning tasks by encouraging essential analysis
without introducing domain-specific knowledge, and also the recent paradigm of "thinking" in reasoning
models Jaech et al. (2024).
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3.2.4 Final Prompt

Note that in the optimization process, RePrompt only changes the step-by-step instruction phase rather
than any other problem description or format requirement specified in the prompt. This brings us to, in
general, three possible formats of prompts that the algorithm will end up with:

1. If the current prompt is ReAct-like, or o1-like Jaech et al. (2024), which already includes a step-
by-step instruction that gives a specific step, like Thought in ReAct, to include all the potential
analysis, our prompt will converge to always update this thinking step by adding more and more
hints on what to do to it. Our method becomes an algorithm that gives a more specific hint on what
part the analysis should focus on compared to other prompt engineering work that introduces hints
dynamically.

2. For step-by-step prompts, such as those involving mathematical or logical problem-solving, our
algorithm progressively refines the generated procedure by incrementally adding steps. This iterative
expansion enhances the concreteness of the planning process, providing a more structured pathway
for the model to explore. By guiding the LLM toward the correct final answer, our approach
effectively decomposes high-level tasks into granular substeps, improving both reasoning accuracy
and interoperability.

3. In some rare case, a list of original guidance is already provided. While they do not require the
Actor to follow them in order, this can sometimes also be seen and recognized as step guidance. In
this case, RePrompt will adjust this part or maybe add some additional guidance. But overall this
is a very rare case.

None of the three prompt formats is universally superior; their effectiveness depends on the underlying
task. As an APE algorithm that relies on LLM to optimize, RePrompt integrates seamlessly with all three
settings. Detailed results and illustrative examples are presented in the experimental section and Appendix.

4 Experiments

4.1 Experiment Settings

To test the capability of our algorithm in different scenarios, we choose three environments, PDDL generation
(Guan et al., 2023), TravelPlanner (Xie et al., 2024), and Meeting Planning from Natural Plan Zheng et al.
(2024). The first two tasks are selected because their feedback generator is already included in the paper,
and the reality is that both datasets are hard to conduct iterations with feedback generators. The Meeting
Planning task is selected as another LLM agent task that differs from the existing ones.

The PDDL generation task provides accurate but expensive feedback and challenges the exact translation
capability of the LLMs, which is necessary for LLMs to be further able to write correct code. The Trav-
elPlanner environment, on the other hand, provides cheap but not accurate feedback through Reflexion
without knowing ground-truth information. TravelPlanner also provides tools to be used to query the cost
information in the database and challenges the reasoning capability by asking for direct generating solu-
tions. Furthermore, in TravelPlanner, we are testing RePrompt with Reflexion, which further includes
the thought-action-observation steps rather than a standard step-by-step instruction in the PDDL where
each step is an intermediate step that could be helpful for guiding the generation for final results. For
Natural Plan, we test the performance of deepseek-R1 et al. (2025), an open-source model that provides its
complete long chain-of-thought, and we directly use its own thinking part in the output as the feedback as
recent models like deepseek-R1 already included self-evaluation and self-correction in its outputs. Given the
different types of feedback, the purpose of our RePrompt also change: in PDDL, our RePrompt serves
to improve the generation performance without any iteration between the LLM actor and the feedback gen-
erator that is used to reduce the cost of generating feedback; in TravelPlanner, RePrompt is used to help
guide the LLM to take all the important steps of concern in all scenarios and reduce the potential failures;
in Meeting Planning, RePrompt is used to reduce the unnecessary trail happens in the thinking process of
the LLM, and also reduce the randomness on the steps in the thoughts.
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# of Incorrect Actions Total # of Errors
TyreWorld Logistics Household TyreWorld Logistics Household

Dataset Size 13 6 22 INF INF INF

Guan et al. (2023) 3 1 19 6 1 52
RePrompt 3 0 12 4 0 23

Table 1: The results on generating PDDL instances correctly without any additional domain expert help.
The number of actions is the number of tests provided to the LLMs, and each action can have as many
errors as it wants, annotated by human experts. Our method, RePrompt, is trained for only 1-epoch with
only the annotations used to evaluate the original results, and without additional annotation from human
experts in training.

In the experiments, the stopping criteria and other hyperparameter settings for each domain will be the
same as in the original environments. For PDDL generation and TravelPlanner, we use a temperature = 0,
a seed of 42, and results are tested on GPT-4-turbo-1106-preview. To help reproducibility, we provide all
the optimized prompts generated by RePrompt in Appendix E.

4.2 PDDL Generation

We first test the Planning Domain Definition Language (PDDL) generation task (Guan et al., 2023). Given
a natural language description of a PDDL instance, the job is to define the precondition and the effects of the
actions in PDDL. Specifically, we consider the very first step of constructing the model and do not further
consider the later correction phase and PDDL translation phase. 1 After generating the preconditions and
effects of the actions, human domain experts are introduced to check whether the generation is correct. In
this paper, we not only have human domain experts but also use another LLM as a separate checker to verify
whether any of the errors that appear in the results given by the prompt in the original paper (Guan et al.,
2023), which are released together with the code of it, have also appeared in our result.

In this experiment, we use the generated result and the annotation from human experts of the prompt from
the previous paper Guan et al. (2023) in “Tyreworld" as the chat history used in the RePrompt training
set, and update it for one epoch to get the updated prompt. Here, because the feedback is provided by
domain experts, it is accurate but expensive, so multiple rounds of iterations are not feasible, and so we
choose to only train RePrompt for one epoch and greatly reduce the need for extra annotations. As shown
in Table. 1, the prompt we get from RePrompt not only outperforms in the set that we are training on, i.e.,
the Tyreworld domain, but also generalizes to other related domains and improves the success rate there.
Interestingly, we found that after changing the prompt, the prompt does not introduce any new errors, i.e.,
the errors the new prompt made are a subset of the errors made by the prompt in the original paper. With
this subset of errors, fewer domain experts will be needed to give annotations, and make the whole PDDL
translation process much faster.

Among the remaining errors, some stem from the omission of common knowledge explicitly stated in the
description. For instance, in the action "Empty a Vacuum Cleaner," the description includes the sentence:
"The trash can should be opened if it’s openable." While this is a commonsense statement with no new
information, in the given context, it implicitly defines a necessary precondition. However, the LLM-generated
PDDL precondition fails to capture this, leading to errors. Similar issues occur multiple times, collectively
accounting for a significant portion of the observed errors, which can be categorized under this broader
pattern.

4.3 TravelPlanner

Next, we test on the sole-planning setting in TravelPlanner benchmark (Xie et al., 2024). In this benchmark,
the LLMs are required to provide a concrete day-to-day plan, including where they should stay, eat, and

1At the time of submission of our paper, the evaluation phase is missing in the official Github repository, and we are not
able to compare the success rate in those phases in a fair manner.
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Delivery
Rate

Commonsense
Pass Rate

Hard Constraint
Pass Rate Final

Pass Rate
Train Set
Final
Pass RateMicro Macro Micro Macro

Reflexion 76.67% 56.39% 3.89% 37.39% 33.89% 2.78% 1/10
PromptAgent 94.44% 56.39% 3.89% 32.61% 30.22% 2.11% 2/10
RePrompt (1-epoch) 89.44% 64.03% 3.89% 35.0% 32.78% 2.78% 1/10
RePrompt (5-epochs) 99.44% 80.00% 6.11% 48.81% 25.56% 3.89% 2/10

Table 2: Results on TravelPlanner Benchmark. The best results are marked in bold. The delivery rate,
commonsense pass rate, and hard constraint pass rate overall contribute to the final pass rate, which is
the main metric in this table. Because we are “training" on part of the data, but not using any additional
ground-truth information, we split the results into overall final pass rate and training set final pass rate. All
the metrics in the table are better when the numbers are larger.

how they should travel, and satisfying both commonsense constraints like reasonable city routes and budget
constraints. While there are some breakdowns of what specific kind of constraints the plan does not satisfy,
the primary metric that is used for comparing different methods is the final pass rate. It needs to be addressed
that in this benchmark, the evaluation is done after the act loop is done, separately with a ground-truth
checker rather than directly to the feedback loop in Reflexion, and thus, the feedback in the chat history
used by RePrompt does not actually involve any human interference or oracles on what is the correct
answer and what is the list of constraints. This allows us to train on a subset of the test set without
worrying about leaking any extra oracle information to the model. Because of this, we choose to report
results on the validation set of 180 data points instead of results on the larger test set in order to save API
costs. And because RePrompt is based on further collecting data, we choose a subset of 10 data points in
the validation set as our training dataset. We report the same group of metrics defined in the original paper.

As shown in Table. 2, the prompt generated by 5 epochs of training of RePrompt is better than the
pure Reflexion Shinn et al. (2023) result in the final pass rate, and also outperform PromptAgent Wang
et al. (2024) as an example of previous automatic prompt engineering work that was primarily designed
for single-round question-answering task 2. In the optimization procedure, unlike the PDDL environment,
the optimized prompt after one epoch does not show any benefit. This is because, as we discussed earlier,
the prompt after the first epoch will only include one additional suggestion, which is about looking into
the budget constraint in this case. No matter what this round of updates is, it is something summarized
from the thoughts provided by the ReAct scheme and something the iteration loop of generating a final
plan has often already noticed and addressed. The optimized prompt after 5 epochs helps LLMs perform
better in both the data set we used for training and the other data not included in the optimization process.
This shows the generalizability of the prompt we get through the process. We observe that our baseline,
PromptAgent, tends to change an extensive amount on the original prompt, and became even worse on the
final test.

To better understand the source of our improvement in final pass rate, we analyzed its impact on macro
commonsense pass rate—a key bottleneck in leveraging LLMs for TravelPlanner. As shown in Table 2,
our method substantially enhances performance in this metric. Further analysis reveals that our prompt
significantly improves the pass rate for the so-called "reasonable city route" constraint, a critical aspect tested
by TravelPlanner (though not explicitly shown in Table 2). This common sense is to ensure “Changes in cities
during the trip must be reasonable". This represents a commonsense constraint that LLMs can recognize
during the process. However, while such constraints occasionally appear in the feedback loop’s reasoning,
they are not consistently addressed. Our RePrompt framework successfully identifies and integrates this
constraint into the prompt, ensuring that it is accounted for in most iterations. We believe this is one
example that our algorithm has addressed the challenge of “Agents struggle to align their actions with their
reasoning." mentioned in the original paper Xie et al. (2024). However, for our baseline PromptAgent, the

2Because their design was not suitable for Travelplanner, we have made necessary adaptations to make it testable in this
case. We provide more details in Appendix B.
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# Training Samples Final Pass Rate

1 1.22
2 2.44
5 3.44
10 3.89
25 2.00

Table 3: Number of Training Samples and Final Pass Rate for RePrompt on TravelPlanner.

# Prompt Final Pass Rate (%)

Original 21.00
RePrompt 26.00

Table 4: Results on Meeting Planning from Natural Plan benchmark. Results are based on Deepseek-R1.

extensive changes have made the LLMs fail to follow the desired format, leading to more useless steps and
more failures.

Surprisingly, our method does not mitigate the issue of agents producing hallucinations due to information
confusion. Specifically, our agents continue to generate incorrect flight numbers—assigning them to the
wrong flight leg or erroneously using the same flight number for both departure and return flights. While,
in theory, such errors could be corrected by the feedback generator, we observe that this feedback is rarely
generated or incorporated into the prompt optimization loop. Moreover, our RePrompt training loop
fails to detect these errors. Moving forward, we aim to explore how our RePrompt framework can serve
as an additional verification layer for simple hallucination errors. One potential approach is incorporating
scenario-specific information and chat history when computing the “loss."

Ablation Study Next, we provide an ablation study on the sampling size and the number of iterations.
To fix the total budget spent on training the same, we fix a multiplication of the number of training samples
times training epoch to 50. So, with more training samples, one will have fewer training epochs, which might
lead to returning a prompt before its convergence. As a special case, when training samples are equal to
1, our method is a vanilla prompt optimizer without a summarizer that is done per scenario. We show our
results in Table. 3. We found that selecting an appropriate number of training samples—balancing diversity
with the number of epochs- can significantly enhance the performance of RePrompt. This aligns with our
intuition, as RePrompt can be viewed as a form of gradient descent.

4.4 Meeting Planning

Lastly, we evaluate our algorithm on the Meeting Planning task, which involves scheduling meetings with
friends while considering availability and travel-time constraints, aiming to maximize the total number of
successful meetings. A key challenge of this task is that not every meeting can be scheduled for every problem
instance, making it impossible to determine whether an optimal solution has been achieved. In real-world
applications, this uncertainty complicates the feedback loop, as accurate assessments of solution quality are
inherently difficult. Our approach leverages the think section of DeepSeek-R1, presenting a unique challenge
for RePrompt: effectively extracting useful insights from long and unstructured chat histories. To ensure
compatibility with the R1 model, we made specific modifications to the dataset, detailed in Appendix B. For
training, we use the first nine data points, applying a batch size of three, and further evaluate performance
on the first 100 data points. 3

3We do not use the complete dataset mainly due to the limited availability of the Deepseek-R1 when the experiment is
conducted.
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The results, presented in Table 4, show that despite the presence of highly noisy thinking logs, RePrompt
still improves the original prompt. This demonstrates RePrompt’s adaptability to the latest models,
highlighting its ability to improve performance without relying on a specific type of feedback information.

5 Error Analysis

In our experiments, our automatic prompt optimization process does not guarantee the successful generation
of an improved prompt. In this section, we outline common errors that arise and describe the ad-hoc strategies
we employ to mitigate them. While these methods are neither universally necessary nor broadly applicable
across domains, we include them here as pragmatic solutions to specific issues. We anticipate that as LLMs’
instruction-following capabilities continue to advance, these ad-hoc interventions will become obsolete and
can be seamlessly eliminated.

5.1 Incomplete Prompt

You are defining the preconditions and effects (represented in PDDL format) of an AI agent’s actions.
Information about the AI agent will be provided ...
Before defining the preconditions for an action, consider the implications of the action within the given
domain.

Here are two examples from the classical BlocksWorld domain to demonstrate the output format.
<Examples from the original prompt>

Here is the task.
Domain information: {domain_desc}
Action:

Figure 2: An example output of the optimizer LLM that outputs a prompt template instead of a complete
prompt. While it is technically correct and successfully added the additional instruction shown in blue, this
output is not acceptable since it includes a template holder for examples marked in red, and this output still
needs post-processing with the original prompt to complete the prompt. For simplicity, we have omitted
the parts of the original prompt that are not changed, marked in green, and this part of the prompt can be
found in the original paper (Guan et al., 2023).

The prompt optimizer occasionally fails to generate a complete prompt. As detailed in Appendix D, we have
incorporated explicit instructions to ensure completeness; however, as shown in Fig. 2, LLMs sometimes
produce prompt templates that require manual copy-pasting by users to finalize the prompt. This issue
arises in both our algorithm, RePrompt, and our baseline, PromptAgent. We observed that this failure is
more frequent when the initial prompt is relatively long, likely because LLMs are trained to generate concise
responses whenever possible, despite our instructions to output a fully formed prompt. To address this, we
introduce an additional LLM to automatically complete the prompt template. This approach enables us to
generate fully structured prompts in the TravelPlanner domain. We opted against a rule-based fixer, as the
generated templates use a variety of delimiters—including but not limited to <> and —making it impractical
to manually define exhaustive replacement rules. Instead, we rely on the LLM’s ability to recognize and
complete these templates autonomously, reducing manual intervention and improving efficiency.

5.2 Incorrect Change by Accident

In some domains, the output format can be similar to a more commonly used domain, and LLMs are misled
to correct the prompt in certain parts. For example, in our PDDL domains, we ask the LLM to generate
the preconditions of the actions rather than the actual PDDL file. In our experiments, we found that even
though our prompt has explicitly required the LLM not to change the output format part of the prompt
text, the updated prompt still sometimes changes the output format by mistake, specifically, changing the
output of “Preconditions" in capital into “precondition" in smaller cases. To solve this problem, we leverage
the feedback of the syntax checker. While the generated results could have some errors, the results should

10
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always be complete, and have the required syntax. And if our syntax parser that extracts the answer from
the LLM output cannot find the word “Precondition", we know the prompt used is not correct, then we
re-run RePrompt on the same step to generate a correct one. Because the fail rate with our current code
is empirically less than 10%, this ad-hoc solution is enough.

6 Conclusion

In this paper, we have focused on optimizing the prompts used in LLM agents. We propose a new automatic
prompt optimizer, RePrompt, which is based on the summarization of the interaction between LLM agents
and feedback generators and optimizes the step instructions in the prompt. Although the performance is still
limited by the natural capability of the feedback generation loop, our experiments across three challenging
reasoning tasks show that LLM agents could benefit from an updated prompt, regardless of the type of
feedback provided and without the need for a ground-truth checker to be included in the procedure.
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A Limitations

It is important to discuss the limitations of our proposed method RePrompt. First of all, as the prompt
is optimized similarly to fine-tuning, our generated prompts are also limited to the training data and harm
the generalizability of LLMs to a certain degree, i.e., if the training data demonstrate unique challenges to
LLMs that only occur in those training scenarios but not general cases, our optimized prompts may even be
less efficient compared to the original prompts.

Next, our prompts rely on comprehensive tools available to the LLM agents. Because the optimized methods
are provided directly from LLMs rather than processed with a search-based method, RePrompt can propose
to use some statistic tools that are not available in the actual given settings. We leave the possibility of
letting LLM code the extra, not-available, but commonly used tools themselves to future works.

Furthermore, sometimes, the feedback generator, which we do not have and put any control on, can generate
useless or even wrong and misleading results. While RePrompt is based on summarization, RePrompt
will take such feedback into the prompt if such a mistake is often made. And because we do not consider
removing useless steps in the prompt in this paper, such a mistake will only increase the total number of
tokens used, not contributing to better results. Future work could add a search-based mechanism to identify
such a mistake and potentially fix it, but this will potentially require more ground-truth feedback from the
environment and can lead to a more constraint in applicable domains.

Last but not least, our proposed method is doing the planning in the prompt phase, and thus, if the LLM
agents are proposed for very general domains that need completely different procedures in different scenarios,
e.g., LLM agents for solving math problems, our proposed method will not work at all. However, if the LLM
agents are proposed for specific tasks, like using LLM agents to solve high-school geometry problems, our
proposed method could help learn the planning very efficiently, as shown above in the experiments.

B Implementation Details

B.1 PromptAgent Baseline

PromptAgent Wang et al. (2024) was initially proposed as an APE algorithm for question-answering tasks,
which made its design mostly use the fact of ground-truth feedback generator which tells at least whether
the final prediction is correct or not. In our TravelPlanner settings, the environment does not even provide
this boolean checker during the APE process.

To adapt the PromptAgent framework to our settings, we created an LLM-based checker, which provided
exactly the same input as the plan generator and the plan just generated. The checker is called after the
reflection is finished and submitted a plan, i.e., each node in the MCTS tree of PromptAgent is now a
complete reflection run. We provide the prompt of the checker in Fig. 4. During testing, we compared the
performance of the LLM-based checker with a ground-truth checker, which is only available under specific
dataset test conditions. The accuracy of the LLM-based checker is 89%. Although the 89% accuracy might
seem reasonable, it’s important to note that the success rate of a plan is less than 5%. This means that even
a checker that consistently marks plans as incorrect would achieve better performance overall. We observe
the same type of hallucinations as the ones in the plan generation, which is one of the main reasons that
there are many false negatives in this checker. Meanwhile, we have briefly tested 5 of the false negatives with
the latest GPT-4o, and we found that, surprisingly, they are all correct. However, to make a fair comparison
and for the consistent of models used in the experiment, we are still using GPT-4-turbo as the model for the
checker.

Additionally, we have made some necessary changes to the gradient descent prompt template to remove the
requirement of labels, also known as the ground-truth answers, which in our case is also not provided.

To make the comparison between Reprompt and PromptAgent fair, we use the Lite version of PromptAgent
to limit the number of iterations. However, even with PromptAgent-Lite, it is still about twice as expensive
compared to RePrompt, which shows another advantage of our algorithm.
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B.2 Meeting Planning Dataset

You are a format transformer. You will be provided with a meeting plan, your job is to transform it
into a more strict output format that start with word "You" and then to more detailed activity. Here
are some examples:
You start at Russian Hill at 9:00AM.
You travel to Marina District in 7 minutes and arrive at 9:07AM.
You wait until 3:45PM.
You meet James for 75 minutes from 3:45PM to 5:00PM.
Try to change only the location, time, and name in your output for the above examples. Begin your
final answer with: "The formatted output is: ".
==== Here is the solution you need to transform:
Solution

Figure 3: The prompt used to transform the output from Deepseek-R1 from 0-shot prompt to the desired
format. The prompt should be fed into an LLM, which in the experiment is Deepseek-V3 to transform the
output to meet the desired format of Natural Plan.

The dataset is provided in the format of directly providing prompts in both 0-shot settings and 5-shot
settings. However, the checker from the original repository only support a specific output format, that is
inferred only in the 5-shot version of the prompt. Nevertheless, the official guideline of Deepseek-R1 has
instructed users to always use 0-shot settings et al. (2025) as few-shot prompts always significantly degrade
the performance. Considering all of these, we use the 0-shot prompt as the initial prompt, collect the results,
and use Deepseek-v3 to transform the collected solution to the desired output format. It need to be noticed
that this additional process may introduce certain responses that should be correct to go wrong. We provide
the prompt of this transformation in Fig. 3.

C Pseudo Code for RePrompt

While in the main paper, we only provided the workflow of our paper, here we provide actual pseudo code.
While RePrompt can be an analogy to fine-tuning on the prompt space, the code is very similar to a typical
ML training loop as shown in Alg. 1.

Algorithm 1 RePrompt Train Loop
1: function Train
2: Prompt← Initial Prompt
3: for (batch, x) in Dataloader do
4: Response← Actor(Prompt, x)
5: Loss← LLM_Summarizer(Response, x, Prompt)
6: Prompt← PromptOptimizer(Loss, Prompt)
7: end for
8: return Prompt
9: end function

D Prompts for RePrompt

Here, we provide all the prompts used in our paper. The prompt used to summarize the loss is provided in
Fig. 5, the prompt used to optimize the prompt is provided in Fig. 7, and the prompt used to replace the
placeholders that could be accidently included, which is discussed in Sec. 5, is provided in Fig. 6.
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You are an AI assistant. Your job is to determine whether a specific travel plan meets the constraints of
both commonsense constraints like reasonable route and hard constraints like budgets. The constraints
are provided below. You will be provided with some information about the candidate trip contents, a
specific query, and a proposed solution to the query. Please analyze the query and evaluate whether
the query is correct or not. Note that all the information in the plan should be derived from the
provided data, and do not do any additional estimation or approximation. Put your final judgment of
"Correct" or "Wrong" in a \bbox{}.

==== Given information: {information}
Query: {query}
The generated plan is: {plan}

Figure 4: The checker prompt for PromptAgent. The prompt should be fed into an LLM, which in this
paper is GPT4-turbo, to get the judgement of whether the current result is correct or wrong.

System Prompt
You are a summarizer. You wil be provided with a chat history from an AI assistant and the user. Please
choose one of the following that you believe is the case, and summarize the focus point as instructed:
a). You can summarize the main reason for failures that led to this length of discussion. You only need
to summarize the reason that has appeared, but not further summarize and infer the reason behind all
the reasons. Make sure you choose only one reason at a time.
b). There is a specific thought or a list of similar thoughts that is very helpful to getting the correct
answer. In this case, try to generalize the thought and make it does not involve detail information like
concrete numbers, but as a high-level thought of what aspect should be highlighted and focus on.
c). There is no general reason that leads to a failure. It is case-by-case errors that is inevitable.
First, do some short analysis, and then finish your conclusion in one single line, starting with: "In
conclusion, the main focus point should be: "
User Prompt

Here is the chat history, please follow the instructions above and tell me what is the main focus point
should be in the required format:
<Chat History>

Figure 5: The loss summarize prompt. The prompt should be fed into an LLM, which in this paper is
GPT4-turbo, to get the loss used to optimize the prompt.

You are a template replacer. You will be provided with an original prompt, and an optimized prompt.
Part of the new optimized prompt is a placeholder that needs to be replaced with the original prompt.
Your job is to replace the placeholder with the original prompt.
One example of the placeholder is: “ ⟨ Original Prompt Start ⟩ ”. You need to replace this placeholder
with the original prompt.
Another exmpale is <Examples from the original prompt>. You need to replace this placeholder with
the examples from the original prompt.
Output directly the new prompt with the placeholder replaced. Do not provide any additional note or
analysis.

Figure 6: The prompt to fix the place holders in the optimized prompt.
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System Prompt
You are a prompt optimizer. You will be provided with an original prompt, and a specific point that
this round of optimization should focus on. Your job is to update the prompt based on the provided
focus point. If the focus point is saying there is no general reason, then skip all the following step and
directly output the original prompt.
In the process, do the following steps one by one:
1. List a few different options that could address the given focus point.
2. Choose the solution that you think is the most promising. Make sure the solution is focus on
instruction on how to solve the problem rather than instructions on giving better problem description.
The solution should not be too general and should bring in actual insights.
3. Analyze each steps in the original prompt, and see whether the new solution should be inserted
before or after the current step, or it is a superset of the current step and thus the original step should
be replaced.
4. Finish your output with your final prompt, in the format of: "Based on the above analysis, the
improved prompt is: ".
A few common solutions for specific problems are:
- If some details are missed, a sentence by sentence check ahead of time could be helpful.
- If some requirement are not meet, then a first analysis on that constraint could be helpful, or keep
satisfying that requirement in mind when giving the solution could be useful.
- If it is already a thought, then a check on whether the thought is still workable in the given scenario is
very helpful. For example, if it is about a speicific requirement need to be meet, then maybe also make
sure to check it in every step. However, make sure this does not limit what the feedback can provide,
and using words like “specifically" to remind such a check.
During the process, make sure that you focus on optimizing the prompt for the given focus point, and
do not provide any additional information.
Do not change any other part of the prompt. Only focus on the step-by-step instructions. Especially,
do not change the examples and the format requirement. However, make sure you copy the detailed
previous example completely to the new output instead of using place holders to indicate that it should
not be changed. Do not worry about the output length caused by the examples.
Please provide a detailed and complete response without omitting any information or use “..." or “[...]"to
replace any part of the prompt. Again, ensure that no information is omitted or summarized.

Figure 7: The prompt optimizer prompt. The prompt should be fed into an LLM to update the prompt for
problem solving.
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You are defining the preconditions and effects (represented in PDDL format) of an AI agent’s actions.
Information about the AI agent will be provided in the domain description. Note that individual
conditions in preconditions and effects should be listed separately. For example, "object_1 is washed and
heated" should be considered as two separate conditions "object_1 is washed" and "object_1 is heated".
Also, in PDDL, two predicates cannot have the same name even if they have different parameters.
Each predicate in PDDL must have a unique name, and its parameters must be explicitly defined in
the predicate definition. It is recommended to define predicate names in an intuitive and readable way.
Here are two examples from the classical BlocksWorld domain for demonstrating the output format.
<Examples from the original prompt>
Before defining the preconditions for an action, consider the implications of the action within the
given domain. Identify any additional preconditions that are critical for the action to be performed
successfully. Ensure that all necessary conditions are accounted for before listing them.

Here is the task.
Domain information: {domain_desc}
Action:

Figure 8: The optimized prompt for PDDL generation. The main changes are highlighted in blue.

E Optimized Prompt from RePrompt

Here, to help reproducibility, we provide all the optimized prompts that leads to the results shown in Table. 1
and Table. 2. It needs to be addressed that even if the prompt, the temperature, the model used, and the
seed are the same, OpenAI APIs still do not guarantee that the generated output will be exactly the same
every time. This will greatly affect the final results in our case, given that Reflexion (Shinn et al., 2023)
is used to provide the feedback, and a small change on the earlier reflection can lead to completely different
results in the end. Due to unknown reasons, we found that the reflection module in Reflexion (Shinn et al.,
2023) can provide completely useless and even wrong suggestions to the LLM and lead to very bad results.
If this happens, we suggest rerunning the baseline model without RePrompt to make sure the OpenAI is
providing correct feedbacks. However, the final conclusion, especially the relatively superior of our model,
is always found to be true in our experiments. And for a fair comparison and to match the results from
the TravelPlanner paper, all the results reported in the paper are the best among the 3 trials over time
(Best-of-3).

In Fig. 8, we provide the optimized prompt for PDDL action generation. In Fig. 9 and Fig. 11, we provide
the optimized prompt for the TravelPlanner environment (Xie et al., 2024). In Fig. 10, we provide the
optimized prompt for Meeting Planning task. In Fig. 12, we provide the optimized prompt generated by
PromptAgent Wang et al. (2024) for TravelPlanner environment.
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You are a proficient planner. Based on the provided information and query, please give me a detailed
plan, including specifics such as flight numbers (e.g., F0123456), restaurant names, and hotel names.
Note that all the information in your plan should be derived from the provided data. You must adhere
to the format given in the example. Additionally, all details should align with common sense. Attraction
visits and meals are expected to be diverse. The symbol ’-’ indicates that information is unnecessary. For
example, in the provided sample, you do not need to plan after returning to the departure city. When
you travel to two cities in one day, you should note it in the ’Current City’ section as in the example
(i.e., from A to B). Before starting the planning process, establish a budget breakdown for each category
(transportation, meals, attractions, accommodation) to ensure that the total cost does not exceed the
provided budget. Solve this task by alternating between Thought, Action, and Observation steps.
The ’Thought’ phase involves reasoning about the current situation and specifically the budget con-
straints.

The ’Action’ phase can be of two types:
(1) CostEnquiry[Sub Plan]: This function calculates the cost of a detailed sub plan, which you need
to input the people number and plan in JSON format. The sub plan should encompass a complete
one-day plan. An example will be provided for reference.
(2) Finish[Final Plan]: Use this function to indicate the completion of the task. You must submit a
final, complete plan as an argument.
***** Example *****
<Examples>
***** Example Ends *****
{reflections}
You must use Finish to indict you have finished the task. And each action only calls one function once.
Given information: {text}
Query: {query}{scratchpad}

Figure 9: The prompt of TravelPlanner optimized after 1 epoch of Reprompt. The main changes are
highlighted in blue.
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You are visiting San Francisco for the day and want to meet as many friends as possible. Solve the
problem by considering various different schedules and picking the best one to optimize your goals.
1. **Identify mandatory time constraints**: Start by listing all fixed commitments (e.g., travel to/from
the city, meal breaks, pre-scheduled events). Calculate total time consumed by these.
2. **Maximize flexible availability**: Subtract mandatory time from your total available hours. This
remaining time will be used for friend meetings.
3. **Evaluate scheduling options**:
a. **Identify friend clusters**:
- **First analyze proximity efficiency factors**:
• Evaluate mandatory commitments’ locations **and time windows**
• Identify transit corridors/routes connecting multiple commitments
• Map time-sensitive opportunities (e.g., friends available during/after nearby commitments)
- Form initial clusters by:
• Grouping friends within 15-minute transit of **any mandatory commitment location or transit cor-
ridor**
• Prioritizing clusters that align with commitment time windows (e.g., friends near lunch spot during
meal break)
- Then map remaining friends into geographic clusters based on density
- Calculate transit time between all clusters and to/from mandatory commitments
b. Prioritize clusters that:
- **Use a scoring system**:
• Calculate cluster scores by combining:
- **Proximity score**:
- 8 points if ≤10min transit to nearest commitment/corridor
- 5 points if 11-20min
- 2 points if 21-30min
- 0 points if >30min
- **Density score**: (Number of friends in cluster) × (3 ÷ cluster radius in miles)
- Example: 6 friends in 0.6-mile radius = 6 × (3/0.6) = 30 points
• Prioritize clusters with the highest combined scores first
• **Re-evaluate scores after completing each mandatory commitment** to account for new proximity
opportunities
- **Structure clusters to**:
• Start with clusters **adjacent to early mandatory commitments** to establish proximity early
• **After completing any mandatory commitment, remain in its cluster** to meet nearby friends and
avoid backtracking
• Sequence clusters **along transit corridors in one direction** (e.g., north-to-south) to minimize
crisscrossing
• Place clusters scoring ≥35 total points
**immediately after mandatory commitments** when time windows allow extended stays
- Enable efficient sequential visitation with minimal internal transit time
c. Compare scenarios where you:
- Start early vs. late
- Sequence clusters by proximity to mandatory commitments first
- Adjust meeting durations within clusters
4. **Select the optimal schedule**: Choose the option that maximizes the number of friends met while
respecting all constraints.

query
Your response should start with ’SOLUTION:’.

Figure 10: The prompt of Meeting Planning optimized after 5 epoch of Reprompt. The main changes are
highlighted in blue.
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You are a proficient planner. Based on the provided information and query, please give me a detailed
plan, including specifics such as flight numbers (e.g., F0123456), restaurant names, and hotel names.
Before you start planning, conduct a preliminary budget analysis to understand the cost constraints for
each category (transportation, accommodation, meals, and attractions). Ensure that the accommoda-
tion information is formatted according to the predefined template compatible with the cost calculation
environment. After setting the preliminary budget, conduct a comparative analysis of transportation
options to select the most cost-effective one, research meal options to find the best value that fits dietary
preferences and proximity requirements, and compare accommodation choices based on cost, location,
amenities, and reviews. Set specific budget limits for meals and accommodations to ensure the overall
expenses do not exceed the budget while maintaining a satisfactory experience. Ensure that each choice
of transportation, accommodation, meal, and attraction is tailored to the specific preferences and re-
quirements provided in the query, making iterative adjustments to the plan as necessary to stay within
budget constraints.

Note that all the information in your plan should be derived from the provided data. You must adhere
to the format given in the example. Additionally, all details should align with common sense. Attraction
visits and meals are expected to be diverse. The symbol ’-’ indicates that information is unnecessary. For
example, in the provided sample, you do not need to plan after returning to the departure city. When
you travel to two cities in one day, you should note it in the ’Current City’ section as in the example
(i.e., from A to B). Before starting the planning process, establish a budget breakdown for each category
(transportation, meals, attractions, accommodation) to ensure that the total cost does not exceed the
provided budget. Solve this task by alternating between Thought, Action, and Observation steps.
The ’Thought’ phase involves reasoning about the current situation and specifically the budget con-
straints.

The ’Action’ phase can be of two types:
(1) CostEnquiry[Sub Plan]: This function calculates the cost of a detailed sub plan, which you need
to input the people number and plan in JSON format. The sub plan should encompass a complete
one-day plan. An example will be provided for reference.
(2) Finish[Final Plan]: Use this function to indicate the completion of the task. You must submit a
final, complete plan as an argument.
***** Example *****
<Examples>
***** Example Ends *****
{reflections}
You must use Finish to indict you have finished the task. And each action only calls one function once.
Given information: {text}
Query: {query}{scratchpad}

Figure 11: The prompt of TravelPlanner optimized after 5 epochs of Reprompt. The main changes are
highlighted in blue.
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You are a proficient planner with a keen eye for detail and practicality. Your task is to create a
comprehensive travel plan that adheres to the provided budget and timeframe, ensuring a diverse and
enjoyable experience. The plan should include specific flight numbers, restaurant names, hotel names,
and attraction details, all of which must be derived from the provided data. Follow the format shown
in the example, and ensure that all details are sensible and feasible.
When planning, consider the following guidelines:
- Ensure meal diversity by not repeating restaurant choices for different meals.
- Select transportation options that are practical and feasible, considering the distance and geography.
- Provide complete information, including all meals for each day and any in-city transportation if
necessary.
- Adhere to the budget, allocating funds across flights, accommodations, meals, and attractions.
- Check for any minimum stay requirements or house rules for accommodations.
- Use the symbol ’-’ to indicate when information is unnecessary, such as after returning to the departure
city or when no transportation is needed within the current city.
Your planning process should consist of alternating Thought, Action, and Observation steps:
- Thought: Reason about the current situation and what needs to be planned next.
- Action: Perform one of two types of actions: (1) CostEnquiry[Sub Plan]: Calculate the cost of a
detailed sub-plan for a complete one-day plan. Input the number of people and the plan in JSON
format.
(2) Finish[Final Plan]: Indicate the completion of the task by submitting a final, complete plan as an
argument.
- Observation: Reflect on the information received from the actions and adjust the plan accordingly.
Remember, each action should only call one function once, and you must use Finish to indicate you
have finished the task.
Here is an example for reference:
***** Example *****
{Example content}
***** Example Ends *****
Now, let’s begin planning based on the given information and query. Keep in mind that the plan should
be logical, feasible, and within the specified constraints. Good luck!
{reflections}
Given information: {text} Query: {query}{scratchpad}

Figure 12: The prompt of TravelPlanner optimized by PromptAgent. Unlike Reprompt, majority prompt
has been changed and thus we do not do further highlight.
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