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ABSTRACT

Individual rationality, which involves maximizing expected individual return, does
not always lead to optimal individual or group outcomes in multi-agent prob-
lems. For instance, in social dilemma situations, Reinforcement Learning (RL)
agents trained to maximize individual rewards converge to mutual defection that
is individually and socially sub-optimal. In contrast, humans evolve individual
and socially optimal strategies in such social dilemmas. Inspired by ideas from
human psychology that attribute this behavior in humans to the status-quo bias,
we present a status-quo loss (SQLoss) and the corresponding policy gradient al-
gorithm that incorporates this bias in an RL agent. We demonstrate that agents
trained with SQLoss evolve individually as well as socially optimal behavior in
several social dilemma matrix games. To apply SQLoss to games where co-
operation and defection are determined by a sequence of non-trivial actions, we
present GameDistill, an algorithm that reduces a multi-step game with visual
input to a matrix game. We empirically show how agents trained with SQLoss
on a GameDistill reduced version of the Coin Game evolve optimal policies.

1 INTRODUCTION

In sequential social dilemmas, individually rational behavior leads to outcomes that are sub-optimal
for each individual in the group (Hardin, 1968; Ostrom, 1990; Ostrom et al., 1999; Dietz et al.,
2003). Current state-of-the-art Multi-Agent Deep Reinforcement Learning (MARL) methods that
train agents independently can lead to agents that play selfishly and do not converge to optimal
policies, even in simple social dilemmas (Foerster et al., 2018; Lerer & Peysakhovich, 2017).

To illustrate why it is challenging to evolve optimal policies in such dilemmas, we consider the Coin
Game (Foerster et al., 2018). Each agent can play either selfishly (pick all coins) or cooperatively
(pick only coins of its color). Regardless of the other agent’s behavior, the individually rational
choice for an agent is to play selfishly, either to minimize losses (avoid being exploited) or to maxi-
mize gains (exploit the other agent). However, when both agents behave rationally, they try to pick
all coins and achieve an average long term reward of −0.5. In contrast, if both play cooperatively,
then the average long term reward for each agent is 0.5. Therefore, when agents cooperate, they
are both better off. Training Deep RL agents independently in the Coin Game using state-of-the-art
methods leads to mutually harmful selfish behavior (Section 2.2).

The problem of how independently learning agents evolve optimal behavior in social dilemmas has
been studied by researchers through human studies and simulation models (Fudenberg & Maskin,
1986; Green & Porter, 1984; Fudenberg et al., 1994; Kamada & Kominers, 2010; Abreu et al., 1990).
A large body of work has looked at the mechanism of evolution of cooperation through reciprocal
behaviour and indirect reciprocity (Trivers, 1971; Axelrod, 1984; Nowak & Sigmund, 1992; 1993;
1998), through variants of reinforcement using aspiration (Macy & Flache, 2002), attitude (Damer &
Gini, 2008) or multi-agent reinforcement learning (Sandholm & Crites, 1996; Wunder et al., 2010),
and under specific conditions (Banerjee & Sen, 2007) using different learning rates (de Cote et al.,
2006) similar to WoLF (Bowling & Veloso, 2002) as well as using embedded emotion (Yu et al.,
2015), social networks (Ohtsuki et al., 2006; Santos & Pacheco, 2006).

However, these approaches do not directly apply to Deep RL agents (Leibo et al., 2017). Recent
work in this direction (Kleiman-Weiner et al., 2016; Julien et al., 2017; Peysakhovich & Lerer,
2018) focuses on letting agents learn strategies in multi-agent settings through interactions with
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other agents. Leibo et al. (2017) defines the problem of social dilemmas in the Deep RL framework
and analyzes the outcomes of a fruit-gathering game (Julien et al., 2017). They vary the abundance of
resources and the cost of conflict in the fruit environment to generate degrees of cooperation between
agents. Hughes et al. (2018) defines an intrinsic reward (inequality aversion) that attempts to reduce
the difference in obtained rewards between agents. The agents are designed to have an aversion
to both advantageous (guilt) and disadvantageous (unfairness) reward allocation. This handcrafting
of loss with mutual fairness evolves cooperation, but it leaves the agent vulnerable to exploitation.
LOLA (Foerster et al., 2018) uses opponent awareness to achieve high cooperation levels in the
Coin Game and the Iterated Prisoner’s Dilemma game. However, the LOLA agent assumes access
to the other agent’s network architecture, observations, and learning algorithms. This access level is
analogous to getting complete access to the other agent’s private information and therefore devising
a strategy with full knowledge of how they are going to play. Wang et al. (2019) proposes an
evolutionary Deep RL setup to evolve cooperation. They define an intrinsic reward that is based
on features generated from the agent’s past and future rewards, and this reward is shared with other
agents. They use evolution to maximize the sum of rewards among the agents and thus evolve
cooperative behavior. However, sharing rewards in this indirect way enforces cooperation rather
than evolving it through independently learning agents.

Interestingly, humans evolve individual and socially optimal strategies in such social dilemmas with-
out sharing rewards or having access to private information. Inspired by ideas from human psychol-
ogy (Samuelson & Zeckhauser, 1988; Kahneman et al., 1991; Kahneman, 2011; Thaler & Sunstein,
2009) that attribute this behavior in humans to the status-quo bias (Guney & Richter, 2018), we
present the SQLoss and the corresponding status-quo policy gradient formulation for RL. Agents
trained with SQLoss evolve optimal policies in multi-agent social dilemmas without sharing re-
wards, gradients, or using a communication channel. Intuitively, SQLoss encourages an agent to
stick to the action taken previously, with the encouragement proportional to the reward received
previously. Therefore, mutually cooperating agents stick to cooperation since the status-quo yields
higher individual reward, while unilateral defection by any agent leads to the other agent also switch-
ing to defection due to the status-quo loss. Subsequently, the short-term reward of exploitation is
overcome by the long-term cost of mutual defection, and agents gradually switch to cooperation.

To apply SQLoss to games where a sequence of non-trivial actions determines cooperation and
defection, we present GameDistill, an algorithm that reduces a dynamic game with visual input to
a matrix game. GameDistill uses self-supervision and clustering to extract distinct policies from a
sequential social dilemma game automatically.

Our key contributions can be summarised as:

1. We introduce a Status-Quo loss (SQLoss, Section 2.3) and an associated policy gradient-
based algorithm to evolve optimal behavior for agents playing matrix games that can act
in either a cooperative or a selfish manner, by choosing between a cooperative and selfish
policy. We empirically demonstrate that agents trained with the SQLoss evolve optimal
behavior in several social dilemmas iterated matrix games (Section 4).

2. We propose GameDistill (Section 2.4), an algorithm that reduces a social dilemma game
with visual observations to an iterated matrix game by extracting policies that implement
cooperative and selfish behavior. We empirically demonstrate that GameDistill extracts
cooperative and selfish policies for the Coin Game (Section 4.2).

3. We demonstrate that when agents run GameDistill followed by MARL game-play using
SQLoss, they converge to individually as well as socially desirable cooperative behavior
in a social dilemma game with visual observations (Section 4.2).

2 APPROACH

2.1 SOCIAL DILEMMAS MODELED AS ITERATED MATRIX GAMES

To remain consistent with previous work, we adopt the notations from Foerster et al. (2018). We
model social dilemmas as general-sum Markov (simultaneous move) games. A multi-agent Markov
game is specified byG = 〈S,A, U , P , r, n, γ〉. S denotes the state space of the game. n denotes the
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number of agents playing the game. At each step of the game, each agent a ∈ A, selects an action
ua ∈ U . ~u denotes the joint action vector that represents the simultaneous actions of all agents. The
joint action ~u changes the state of the game from s to s′ according to the state transition function
P (s′|~u, s) : S × U × S → [0, 1]. At the end of each step, each agent a gets a reward according
to the reward function ra(s, ~u) : S × U → R. The reward obtained by an agent at each step is a
function of the actions played by all agents. For an agent a, the discounted future return from time t
is defined as Rat =

∑∞
l=0 γ

lrat+l, where γ ∈ [0, 1) is the discount factor. Each agent independently
attempts to maximize its expected discounted return.

Matrix games are the special case of two-player perfectly observable Markov games (Foerster et al.,
2018). Table 1 shows examples of matrix games that represent social dilemmas. Consider the
Prisoner’s Dilemma game in Table 1a. Each agent can either cooperate (C) or defect (D). Playing
D is the rational choice for an agent, regardless of whether the other agent plays C or D. Therefore,
if both agents play rationally, they each receive a reward of −2. However, if each agent plays C,
then it will obtain a reward of−1. This fact that individually rational behavior leads to a sub-optimal
group (and individual) outcome highlights the dilemma.

In Infinitely Iterated Matrix Games, agents repeatedly play a particular matrix game against each
other. In each iteration of the game, each agent has access to the actions played by both agents in the
previous iteration. Therefore, the state input to an RL agent consists of both agents’ actions in the
previous iteration of the game. We adopt this state formulation as is typically done in such games
(Press & Dyson, 2012; Foerster et al., 2018). The infinitely iterated variations of the matrix games in
Table 1 represent sequential social dilemmas. We refer to infinitely iterated matrix games as iterated
matrix games in subsequent sections for ease of presentation.

2.2 LEARNING POLICIES IN ITERATED MATRIX GAMES: THE SELFISH LEARNER

The standard method to model agents in iterated matrix games is to model each agent as an RL agent
that independently attempts to maximize its expected total discounted reward. Several approaches
to model agents in this way use policy gradient-based methods (Sutton et al., 2000; Williams, 1992).
Policy gradient methods update an agent’s policy, parameterized by θa, by performing gradient
ascent on the expected total discounted reward E[Ra0 ]. Formally, let θa denote the parameterized
version of an agent’s policy πa and V aθ1,θ2 denote the total expected discounted reward for agent a.
Here, V a is a function of the policy parameters (θ1, θ2) of both agents. In the ith iteration of the
game, each agent updates θai to θai+1, such that it maximizes it’s total expected discounted reward.
θai+1 is computed as follows:

θ1i+1 = argmaxθ1V
1(θ1, θ2i ) and θ2i+1 = argmaxθ2V

2(θ1i , θ
2) (1)

For agents trained using reinforcement learning, the gradient ascent rule to update θ1i+1 is,

f1nl = ∇θi1V
1(θ1i , θ

2
i ) · δ and θ1i+1 = θ1i + f1nl(θ

1
i , θ

2
i ) (2)

where δ is the step size of the updates. In the Iterated Prisoner’s Dilemma (IPD) game, agents trained
with the policy gradient update method converge to a sub-optimal mutual defection equilibrium (Fig-
ure 3a, Lerer & Peysakhovich (2017)). This sub-optimal equilibrium attained by Selfish Learners
motivates us to explore alternative methods that could lead to a desirable cooperative equilibrium.
We denote the agent trained using policy gradient updates as a Selfish Learner (SL).

2.3 LEARNING POLICIES IN ITERATED MATRIX GAMES: THE STATUS-QUO AWARE
LEARNER (SQLoss)

Figure 1 shows the high-level architecture of our approach.

2.3.1 SQLoss: INTUITION

Why do independent, selfish learners converge to mutually harmful behavior in the IPD? To under-
stand this, consider the payoff matrix for a single iteration of the IPD in Table 1a. In each iteration,
an agent can play either C or D. Mutual defection (DD) is worse for each agent than mutual coop-
eration (CC). However, one-sided exploitation (DC or CD) is better than mutual cooperation for
the exploiter and far worse for the exploited. Therefore, as long as an agent perceives the possibility
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Figure 1: High-level architecture of our approach. Each agent runs GameDistill by performing
steps (1), (2), (3) individually to obtain two oracles per agent. During game-play(4), each agent
(with SQLoss) takes either the action suggested by the cooperation or the defection oracle

of exploitation, it is drawn to defect, both to maximize the reward (through exploitation) and mini-
mize its loss (through being exploited). To increase the likelihood of cooperation, it is important to
reduce instances of exploitation between agents. We posit that, if agents either mutually cooperate
(CC) or mutually defect (DD), then they will learn to prefer C overD and achieve a socially desir-
able equilibrium. (for a detailed illustration of the evolution of cooperation, see Appendix C, which
is part of the Supplementary Material)

Motivated by ideas from human psychology that attribute cooperation in humans to the status-quo
bias (Guney & Richter, 2018), we introduce a status-quo loss (SQLoss) for each agent, derived
from the idea of imaginary game-play (Figure 2). Intuitively, the loss encourages an agent to imag-
ine an episode where the status-quo (current situation) is repeated for several steps. This imagined
episode causes the exploited agent (in DC) to perceive a continued risk of exploitation and, there-
fore, quickly move to (DD). Hence, for the exploiting agent, the short-term gain from exploitation
(DC) is overcome by the long-term loss from mutual defection (DD). Therefore, agents move
towards mutual cooperation (CC) or mutual defection (DD). With exploitation (and subsequently,
the fear of being exploited) being discouraged, agents move towards cooperation.
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Figure 2: Intuition behind Status − Quo-aware learner. At each step, the SQLoss encourages an
agent to imagine the consequences of sticking to the status-quo by imagining an episode where the
status-quo is repeated for κ steps. Section 2.3 describes SQLoss in more detail.

2.3.2 SQLoss: FORMULATION

We describe below the formulation of SQLoss with respect to agent 1. The formulation for agent
2 is identical to that of agent 1. Let τa = (s0, u

1
0, u

2
0, r

1
0, · · · sT , u1T , u2T , r1T ) denote the collection

of an agent’s experiences after T time steps. Let R1
t (τ1) =

∑T
l=t γ

l−tr1l denote the discounted
future return for agent 1 starting at st in actual game-play. Let τ̂1 denote the collection of an agent’s
imagined experiences. For a state st, where t ∈ [0, T ], an agent imagines an episode by starting
at st and repeating u1t−1, u

2
t−1 for κt steps. This is equivalent to imagining a κt step repetition of

already played actions. We sample κt from a Discrete Uniform distribution U{1, z} where z is a
hyper-parameter ≥ 1. To simplify notation, let φt(st, κt) denote the ordered set of state, actions,
and rewards starting at time t and repeated κt times for imagined game-play. Let R̂1

t (τ̂1) denote the
discounted future return starting at st in imagined status-quo game-play.

φt(st, κt) =
[
(st, u

1
t−1, u

2
t−1, r

1
t−1)0, (st, u

1
t−1, u

2
t−1, r

1
t−1)1, · · · , (st, u1t−1, u2t−1, r1t−1)κt−1

]
(3)
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τ̂1 =
(
φt(st, κt), (st+1, u

1
t+1, u

2
t+1, r

1
t+1)κt+1, · · · , (sT , u1T , u2T , r1T )T+κt−t

)
(4)

R̂1
t (τ̂1) =

(1− γκ
1− γ

)
r1t−1 + γκR1

t (τ1) =
(1− γκ
1− γ

)
r1t−1 + γκ

T∑
l=t

γl−tr1l (5)

V 1
θ1,θ2 and V̂ 1

θ1,θ2 are approximated by E[R1
0(τ1)] and E[R̂1

0(τ̂1)] respectively. These V values are
the expected rewards conditioned on both agents’ policies (π1, π2). For agent 1, the regular gradients
and the Status-Quo gradients, ∇θ1E[R1

0(τ1)] and ∇θ1E[R̂1
0(τ̂1)], can be derived from the policy

gradient formulation as

∇θ1E[R1
0(τ1)] = E[R1

0(τ1)∇θ1 logπ1(τ1)] = E
[ T∑
t=1

∇θ1 logπ1(u1t |st) ·
T∑
l=t

γlr1l

]
= E

[ T∑
t=1

∇θ1 logπ1(u1t |st)γt
(
R1
t (τ1)− b(st)

)] (6)

∇θ1E[R̂1
0(τ̂1)] = E [R̂1

0(τ̂1)∇θ1 logπ1(τ̂1)]

= E

[
T∑
t=1

∇θ1 logπ1(u1t−1|st)×

(
t+κ∑
l=t

γlr1t−1 +

T∑
l=t

γl+κr1l

)]

= E

[
T∑
t=1

∇θ1 logπ1(u1t−1|st)×

((1− γκ
1− γ

)
γtr1t−1 + γκ

T∑
l=t

γlr1l

)]

= E
[ T∑
t=1

∇θ1 logπ1(u1t−1|st)γt
(
R̂1
t (τ̂1)− b(st)

)]
(7)

where b(st) is a baseline for variance reduction.

Then the update rule fsql,pg for the policy gradient-based Status-Quo Learner (SQL-PG) is,

f1sql,pg =
(
α · ∇θ1E[R1

0(τ1)] + β · ∇θ1E[R̂1
0(τ1)]

)
· δ (8)

where α, β denote the loss scaling factor for REINFORCE, imaginative game-play respectively.

2.4 LEARNING POLICIES IN DYNAMIC NON-MATRIX GAMES USING SQLoss AND
GameDistill

The previous section focused on evolving optimal policies in iterated matrix games that represent
sequential social dilemmas. In such games, an agent can take one of a discrete set of policies at each
step. For instance, in IPD, an agent can either cooperate or defect at each step. However, in social
dilemmas such as the Coin Game (Appendix A), cooperation and defection policies are composed of
a sequence of state-dependent actions. To apply the Status-Quo policy gradient to these games, we
present GameDistill, a self-supervised algorithm that reduces a dynamic game with visual input
to a matrix game. GameDistill takes as input game-play episodes between agents with random
policies and learns oracles (or policies) that lead to distinct outcomes. GameDistill (Figure 1)
works as follows.

1. We initialize agents with random weights and play them against each other in the game.
In these random game-play episodes, whenever an agent receives a reward, we store the
sequence of states along with the rewards for both agents.

2. This collection of state sequences is used to train the GameDistill network, which is a
self-supervised trajectory encoder. It takes as input a sequence of states and predicts the
rewards of both agents during training.

3. We then extract the embeddings from the penultimate layer of the trained GameDistill
network for each state sequence. Each embedding is a finite-dimensional representation
of the corresponding state sequence. We cluster these embeddings using Agglomerative
Clustering (Friedman et al., 2001). Each cluster represents a collection of state sequences
that lead to a consistent outcome (with respect to rewards). For the Coin Game, when we
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C D

C (-1, -1) (-3, 0)
D (0, -3) (-2, -2)

(a) Prisoners’ Dilemma (PD)

H T

H (+1, -1) (-1, +1)
T (-1, +1) (+1, -1)

(b) Matching Pennies (MP)

C D

C (0, 0) (-4, -1)
D (-1, -4) (-3, -3)

(c) Stag Hunt (SH)

Table 1: Payoff matrices for the different games used in our experiments. (X,Y ) in a cell represents
a reward of X to the row and Y to the column player. C, D, H , and T denote the actions for the
row and column players. In the iterated versions of these games, agents play against each other over
several iterations. In each iteration, an agent takes an action and receives a reward based on the
actions of both agents. Each matrix represents a different kind of social dilemma.

use the number of clusters as 2, we find that one cluster consists of state sequences that
represent cooperative behavior (cooperation cluster) while the other cluster represents state
sequences that lead to defection (defection cluster).

4. Using the state sequences in each cluster, we train an oracle to predict the next action
given the current state. For the Coin Game, the oracle trained on state sequences from the
cooperation cluster predicts the cooperative action for a given state. Similarly, the oracle
trained on the defection cluster predicts the defection action for a given state. Each agent
uses GameDistill independently to extract a cooperation and a defection oracle. Figure 8
(Appendix D.4) illustrates the cooperation and defection oracles extracted by the Red agent
using GameDistill.

During game-play, an agent can consult either oracle at each step. In the Coin Game, this is equiva-
lent to either cooperating (consulting the cooperation oracle) or defecting (consulting the defection
oracle). In this way, an agent reduces a dynamic game to its matrix equivalent using GameDistill.
We then apply the Status-Quo policy gradient to evolve optimal policies in this matrix game. For the
Coin Game, this leads to agents who cooperate by only picking coins of their color (Figure 4a). It is
important to note that for games such as the Coin Game, we could have also learned cooperation and
defection oracles by training agents using the sum of rewards for both agents and individual reward,
respectively (Lerer & Peysakhovich, 2017). However, GameDistill learns these distinct policies
without using hand-crafted reward functions.

Appendix B provides additional details about the architecture and pseudo-code for GameDistill.

3 EXPERIMENTAL SETUP

In order to compare our results to previous work, we use the Normalized Discounted Reward
or NDR = (1 − γ)

∑T
t=0 γ

trt. A higher NDR implies that an agent obtains a higher re-
ward in the environment. We compare our approach (Status-Quo Aware Learner or SQLearner)
to Learning with Opponent-Learning Awareness (Lola-PG) (Foerster et al., 2018) and the Self-
ish Learner (SL) agents. For all experiments, we perform 20 runs and report average NDR,
along with variance across runs. The bold line in all the figures is the mean, and the shaded
region is the one standard deviation region around the mean. All of our code is available at
https://github.com/user12423/MARL-with-SQLoss/.

3.1 ITERATED MATRIX GAME SOCIAL DILEMMAS

For our experiments with social dilemma matrix games, we use the Iterated Prisoners Dilemma
(IPD) (Luce & Raiffa, 1989), Iterated Matching Pennies (IMP) (Lee & Louis, 1967), and the Iterated
Stag Hunt (ISH) (Fang et al., 2002). Each matrix game in Table 1 represents a different dilemma. In
the Prisoner’s Dilemma, the rational policy for each agent is to defect, regardless of the other agent’s
policy. However, when each agent plays rationally, each is worse off. In Matching Pennies, if an
agent plays predictably, it is prone to exploitation by the other agent. Therefore, the optimal policy
is to randomize between H and T , obtaining an average NDR of 0. The Stag Hunt game represents
a coordination dilemma. In the game, given that the other agent will cooperate, an agent’s optimal
action is to cooperate as well. However, each agent has an attractive alternative at each step, that
of defecting and obtaining a guaranteed reward of −1. Therefore, the promise of a safer alternative
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(a) (b)

Figure 3: (a) Average NDR values for different learners in the IPD game. SQLearner agents obtain
a near-optimal NDR value (−1) for this game. (b) Average NDR values for different learners in the
IMP game. SQLearner agents avoid exploitation by randomising between H and T to obtain a
near-optimal NDR value (0) for this game.

and the fear that the other agent might select the safer choice could drive an agent to select the safer
alternative, thereby sacrificing the higher reward of mutual cooperation.

In iterated matrix games, at each iteration, agents take an action according to a policy and receive
the rewards in Table 1. To simulate an infinitely iterated game, we let the agents play 200 iterations
of the game against each other, and do not provide an agent with any information about the number
of remaining iterations. In an iteration, the state for an agent is the actions played by both agents in
the previous iteration.

3.2 ITERATED DYNAMIC GAME SOCIAL DILEMMAS

For our experiments on a social dilemma with extended actions, we use the Coin Game (Fig-
ure 5a) (Foerster et al., 2018) and the non-matrix variant of the Stag Hunt (Figure 5b). We provide
details of these games in Appendix A due to space considerations.

4 RESULTS

4.1 LEARNING OPTIMAL POLICIES IN ITERATED MATRIX DILEMMAS

Iterated Prisoner’s Dilemma (IPD): We train different learners to play the IPD game. Figure 3a
shows the results. For all learners, agents initially defect and move towards an NDR of −2.0. This
initial bias towards defection is expected, since, for agents trained with random game-play episodes,
the benefits of exploitation outweigh the costs of mutual defection. For Selfish Learner (SL) agents,
the bias intensifies, and the agents converge to mutually harmful selfish behavior (NDR of −2.0).
Lola-PG agents learn to predict each other’s behavior and realize that defection is more likely to
lead to mutual harm. They subsequently move towards cooperation, but occasionally defect (NDR
of −1.2). In contrast, SQLearner agents quickly realize the costs of defection, indicated by the
small initial dip in the NDR curves. They subsequently move towards close to 100% cooperation,
with an NDR of −1.0. Finally, it is important to note that SQLearner agents have close to zero
variance, unlike other methods where the variance in NDR across runs is significant.

Iterated Matching Pennies (IMP): We train different learners to play the IMP game. Figure 3b
shows the results. SQLearner agents learn to play optimally and obtain an NDR close to 0.
Interestingly, Selfish Learner and Lola-PG agents converge to an exploiter-exploited equilibrium
where one agent consistently exploits the other agent. This asymmetric exploitation equilibrium is
more pronounced for Selfish Learner agents than for Lola-PG agents. As before, we observe that
SQLearner agents have close to zero variance across runs, unlike other methods where the variance
in NDR across runs is significant.

Iterated Stag Hunt (ISH): Appendix D.5 shows additional results for the ISH game.
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4.2 LEARNING OPTIMAL POLICIES IN ITERATED DYNAMIC DILEMMAS

(a) (b)

Figure 4: (a) Probability that an agent will pick a coin of its color in Coin Game. (b) Representation
of clusters obtained after GameDistill. Each point is a t-SNE projection of the 100-dimensional
feature vector output by the GameDistill network for an input sequence of states. The figure on
the left is colored based on rewards obtained by the Red and Blue agents. The figure on the right is
colored based on clusters learned by GameDistill.

GameDistill: To evaluate the Agglomerative clustering step in GameDistill, we make two t-
SNE (Maaten & Hinton, 2008) plots of the 100-dimensional feature vectors extracted from the
penultimate layer of the trained GameDistill network in Figure 4b. In the first plot, we color
each point (or state sequence) by the rewards obtained by both agents in the format r1|r2. In the
second, we color each point by the cluster label output by the clustering technique. GameDistill
correctly learns two clusters, one for state sequences that represent cooperation (Red cluster) and
the other for state sequences that represent defection (Blue cluster). We experiment with different
values for feature vector dimensions and obtain similar results (see Appendix B for details). Results
on Stag Hunt using GameDistill are presented in Appendix D.3. To evaluate the trained oracles
that represent cooperation and a defection policy, we alter the Coin Game environment to contain
only a single agent (the Red agent). We then play two variations of the game. In the first variation,
the Red agent is forced to play the action suggested by the first oracle. In this variation, we find
that the Red agent picks only 8.4% of Blue coins, indicating a high cooperation rate. Therefore, the
first oracle represents a cooperation policy. In the second variation, the Red agent is forced to play
the action suggested by the second oracle. We find that the Red agent picks 99.4% of Blue coins,
indicating a high defection rate, and the second oracle represents a defection policy.

SQ Loss: During game-play, at each step, an agent follows either the action suggested by its cooper-
ation oracle or the action suggested by its defection oracle. We compare approaches using the degree
of cooperation between agents, measured by the probability that an agent will pick the coin of its
color (Foerster et al., 2018). Figure 4a shows the results. The probability that an SQLearner agent
will pick the coin of its color is close to 1. This high probability indicates that the other SQLearner
agent is cooperating with this agent and only picking coins of its color. In contrast, the probability
that a Lola-PG agent will pick a coin of its color is close to 0.8, indicating higher defection rates.
As expected, the probability of an agent picking its own coin is the smallest for the selfish learner
(SL).

5 CONCLUSION

We presented a status-quo policy gradient inspired by human psychology that encourages an agent
to imagine the counterfactual of sticking to the status quo. We demonstrated how agents trained with
SQLoss evolve optimal policies in several social dilemmas without sharing rewards, gradients, or
using a communication channel. To work with dynamic games, we proposedGameDistill, an algo-
rithm that reduces a dynamic game with visual input to a matrix game. We combined GameDistill
and SQLoss to demonstrate how agents evolve optimal policies in dynamic social dilemmas with
visual observations.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Dilip Abreu, David Pearce, and Ennio Stacchetti. Toward a theory of discounted repeated games
with imperfect monitoring. Econometrica, 58(5):1041–1063, 1990. ISSN 00129682, 14680262.
URL http://www.jstor.org/stable/2938299.

Robert Axelrod. Robert Axelrod’s (1984) The Evolution of Cooperation. Basic Books, 1984.

Dipyaman Banerjee and Sandip Sen. Reaching pareto-optimality in prisoner’s dilemma using con-
ditional joint action learning. Autonomous Agents and Multi-Agent Systems, 15(1), August 2007.
ISSN 1387-2532.

Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning rate. Artificial
Intelligence, 136(2):215–250, April 2002. ISSN 0004-3702.

Steven Damer and Maria Gini. Achieving cooperation in a minimally constrained environment.
volume 1, pp. 57–62, 01 2008.

Enrique Munoz de Cote, Alessandro Lazaric, and Marcello Restelli. Learning to cooperate in multi-
agent social dilemmas. In Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’06, 2006.

Thomas Dietz, Elinor Ostrom, and Paul C. Stern. The struggle to govern the commons. Science,
302(5652):1907–1912, 2003. doi: 10.1126/science.1091015.

Christina Fang, Steven Orla Kimbrough, Stefano Pace, Annapurna Valluri, and Zhiqiang Zheng. On
adaptive emergence of trust behavior in the game of stag hunt. Group Decision and Negotiation,
11(6):449–467, 2002.

Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 122–130. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2018.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, vol-
ume 1. Springer series in statistics New York, 2001.

Drew Fudenberg and Eric Maskin. The folk theorem in repeated games with discounting or with
incomplete information. Econometrica, 54(3):533–554, 1986. ISSN 00129682, 14680262.

Drew Fudenberg, David Levine, and Eric Maskin. The folk theorem with imperfect public in-
formation. Econometrica, 62(5):997–1039, 1994. ISSN 00129682, 14680262. URL http:
//www.jstor.org/stable/2951505.

Edward J Green and Robert H Porter. Noncooperative Collusion under Imperfect Price Information.
Econometrica, 52(1):87–100, 1984.

Begum Guney and Michael Richter. Costly switching from a status quo. Journal of Economic
Behavior & Organization, 156:55–70, 2018.

Garrett Hardin. The tragedy of the commons. Science, 162(3859):1243–1248, 1968. doi: 10.1126/
science.162.3859.1243.

Edward Hughes, Joel Z. Leibo, Matthew Phillips, Karl Tuyls, Edgar Dueñez Guzman, Anto-
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Appendix for
STATUS-QUO POLICY GRADIENT IN MULTI-AGENT REINFORCEMENT
LEARNING

A DESCRIPTION OF ENVIRONMENTS USED FOR DYNAMIC SOCIAL
DILEMMAS

LEFT / RIGHT /
UP / DOWN

LEFT / RIGHT /
UP / DOWN

(a)

STAG STAG

(b)

Figure 5: Illustration of two agents (Red and Blue) playing the dynamic games: (a) Coin Game and
the (b) Stag-Hunt Game

A.1 COIN GAME

Figure 5a illustrates the agents playing the Coin Game. The agents, along with a Blue or Red coin,
appear at random positions in a 3× 3 grid. An agent observes the complete 3× 3 grid as input and
can move either left, right, up, or down. When an agent moves into a cell with a coin, it picks the
coin, and a new instance of the game begins where the agent remains at their current positions, but
a Red/Blue coin randomly appears in one of the empty cells. If the Red agent picks the Red coin,
it gets a reward of +1, and the Blue agent gets no reward. If the Red agent picks the Blue coin, it
gets a reward of +1, and the Blue agent gets a reward of −2. The Blue agent’s reward structure is
symmetric to that of the Red agent.

A.2 STAG-HUNT

Figure 5b shows the illustration of two agents (Red and Blue) playing the visual Stag Hunt game.
The STAG represents the maximum reward the agents can achieve with HARE in the center of the
figure. An agent observes the full 7 × 7 grid as input and can freely move across the grid in only
the empty cells, denoted by white (yellow cells denote walls that restrict the movement). Each agent
can either pick the STAG individually to obtain a reward of +4, or coordinate with the other agent
to capture the HARE and obtain a better reward of +25.

B GameDistill: ARCHITECTURE AND PSEUDO-CODE

B.1 GameDistill: ARCHITECTURE DETAILS

GameDistill consists of two components.

The first component is the state sequence encoder that takes as input a sequence of states (input
size is 4× 4× 3× 3, where 4× 3× 3 is the dimension of the game state, and the first index in the
state input represents the data channel where each channel encodes data from both all the different
colored agents and coins) and outputs a fixed dimension feature representation. We encode each state
in the sequence using a common trunk of 3 convolution layers with relu activations and kernel-size
3 × 3, followed by a fully-connected layer with 100 neurons to obtain a finite-dimensional feature
representation. This unified feature vector, called the trajectory embedding, is then given as input to
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the different prediction branches of the network. We also experiment with different dimensions of
this embedding and provide results in Figure 6.

The two branches, which predict the self-reward and the opponent-reward (as shown in Figure 1),
independently use this trajectory embedding as input to compute appropriate output. These branches
take as input the trajectory embedding and use a dense hidden layer (with 100 neurons) with linear
activation to predict the output. We use the mean-squared error (MSE) loss for the regression tasks
in the prediction branches. Linear activation allows us to cluster the trajectory embeddings using a
linear clustering algorithm, such as Agglomerative Clustering (Friedman et al., 2001). In general,
we can choose the number of clusters based on our desired level of granularity in differentiating out-
comes. In the games considered in this paper, agents broadly have two types of policies. Therefore,
we fix the number of clusters to two.

We use the Adam (Kingma & Ba, 2014) optimizer with learning-rate of 3e− 3. We also experiment
with K-Means clustering in addition to Agglomerative Clustering, and it also gives similar results.
We provide additional results of the clusters obtained using GameDistill in Appendix D.

The second component is the oracle network that outputs an action given a state. For each oracle
network, we encode the input state using 3 convolution layers with kernel-size 2×2 and relu activa-
tion. To predict the action, we use 3 fully-connected layers with relu activation and the cross-entropy
loss. We use L2 regularization, and Gradient Descent with the Adam optimizer (learning rate 1e−3)
for all our experiments.

B.2 GameDistill: PSEUDO-CODE

Algorithm 1: Pseduo-code for GameDistill
1 Collect list of episodes with (r1, r2) > 0 from random game play;
2 for agents do
3 Create dataset: {listEpisodes,myRewards, opponentRewards} ← {[ ], [ ], [ ]};
4 for episode in episodes do
5 for (s,a,r,s’) in episode do
6 if r > 0 then
7 add sequence of last three states leading up to s′ to listEpisodes ;
8 add respective rewards to myRewards and opponentRewards
9 end

10 end
11 end
12 Train Sequence Encoding Network;
13 Train with NetLoss;
14 Cluster embeddings using Agglomerative Clustering;
15 Map episode to clusters from Step 14;
16 Train oracle for each cluster.
17 end

C SQLoss: EVOLUTION OF COOPERATION

Equation 6 (Section 2.3.2) describes the gradient for standard policy gradient. It has two
terms. The logπ1(u1t |st) term maximises the likelihood of reproducing the training trajectories
[(st−1, ut−1, rt−1), (st, ut, rt), (st+1, ut+1, rt+1), . . . ]. The return term pulls down trajectories that
have poor return. The overall effect is to reproduce trajectories that have high returns. We refer to
this standard loss as Loss for the following discussion.

Lemma 1. For agents trained with random exploration in the IPD, Qπ(D|st) > Qπ(C|st) for all
st.

13
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Let Qπ(at|st) denote the expected return of taking at in st. Let Vπ(st) denote the expected return
from state st.

Qπ(C|CC) = 0.5[(−1) + Vπ(CC)] + 0.5[(−3) + Vπ(CD)]

Qπ(C|CC) = −2 + 0.5[Vπ(CC) + Vπ(CD)]

Qπ(D|CC) = −1 + 0.5[Vπ(DC) + Vπ(DD)]

Qπ(C|CD) = −2 + 0.5[Vπ(CC) + Vπ(CD)]

Qπ(D|CD) = −1 + 0.5[Vπ(DC) + Vπ(DD)]

Qπ(C|DC) = −2 + 0.5[Vπ(CC) + Vπ(CD)]

Qπ(D|DC) = −1 + 0.5[Vπ(DC) + Vπ(DD)]

Qπ(C|DD) = −2 + 0.5[Vπ(CC) + Vπ(CD)]

Qπ(D|DD) = −1 + 0.5[Vπ(DC) + Vπ(DD)]

(9)

Since Vπ(CC) = Vπ(CD) = Vπ(DC) = Vπ(DD) for randomly playing agents, Qπ(D|st) >
Qπ(C|st) for all st.

Lemma 2. Agents trained to only maximize the expected reward in IPD will converge to mutual
defection.

This lemma follows from Lemma 1. Agents initially collect trajectories from random exploration.
They use these trajectories to learn a policy that optimizes for a long-term return. These learned
policies always play D as described in Lemma 1.

Equation 7 describes the gradient for SQLoss. The logπ1(u1t−1|st) term maximises the likelihood
of taking ut−1 in st. The imagined episode return term pulls down trajectories that have poor
imagined return.

Lemma 3. Agents trained on random trajectories using only SQLoss oscillate between CC and
DD.

For IPD, st = (u1t−1, u
2
t−1). The SQLoss maximises the likelihood of taking ut−1 in st when the

return of the imagined trajectory R̂t(τ̂1) is high.

Consider state CC, with u1t−1 = C. π1(D|CC) is randomly initialised. The SQLoss term reduces
the likelihood of π1(C|CC) because R̂t(τ̂1) < 0. Therefore, π1(D|CC) > π1(C|CC).
Similarly, for CD, the SQLoss term reduces the likelihood of π1(C|CD). Therefore,
π1(D|CD) > π1(C|CD). For DC, R̂t(τ̂1) = 0, therefore π1(D|DC) > π1(C|DC). Interest-
ingly, for DD, the SQLoss term reduces the likelihood of π1(D|DD) and therefore π1(C|DD) >
π1(D|DD).

Now, if st is CC or DD, then st+1 is DD or CC and these states oscillate. If st is CD or DC, then
st+1 is DD, st+2 is CC and again CC and DD oscillate. This oscillation is key to the emergence
of cooperation as explained in section 2.3.1.

Lemma 4. For agents trained using both standard loss and SQLoss, π(C|CC) > π1(D|CC).

For CD, DC, both the standard loss and SQLoss push the policy towards D. For DD, with
sufficiently high κ, the SQLoss term overcomes the standard loss and pushes the agent towards
C. For CC, initially, both the standard loss and SQLoss push the policy towards D. However,
as training progresses, the incidence of CD and DC diminish because of SQLoss as described
in Lemma 3. Therefore, Vπ(CD) ≈ Vπ(DC) since agents immediately move from both states
to DD. Intuitively, agents lose the opportunity to exploit the other agent. In equation 9, with
Vπ(CD) ≈ Vπ(DC), Qπ(C|CC) > Qπ(D|CC) and the standard loss pushes the policy so that
π(C|CC) > π(D|CC). This depends on the value of κ. For very low values, the standard loss
overcomes SQLoss and agents defect. For very high values, SQLoss overcomes standard loss,
and agents oscillate between cooperation and defection. For moderate values of κ (as shown in our
experiments), the two loss terms work together so that π(C|CC) > π(D|CC).
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D EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

D.1 INFRASTRUCTURE FOR EXPERIMENTS

We performed all our experiments on an AWS instance with the following specifications. We use
a 64-bit machine with Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz installed with Ubuntu
16.04LTS operating system. It had a RAM of 189GB and 96 CPU cores with two threads per core.
We use the TensorFlow framework for our implementation.

D.2 SQLOSS

For our experiments with the Selfish and Status-Quo Aware Learner (SQLearner), we use policy
gradient-based learning to train an agent with the Actor-Critic method (Sutton & Barto, 2011). Each
agent is parameterized with a policy actor and critic for variance reduction in policy updates. During
training, we use α = 1.0 for the REINFORCE and β = 0.5 for the imaginative game-play. We use
gradient descent with step size, δ = 0.005 for the actor and δ = 1 for the critic. We use a batch
size of 4000 for Lola-PG (Foerster et al., 2018) and use the results from the original paper. We use
a batch size of 200 for SQLearner for roll-outs and an episode length of 200 for all iterated matrix
games. We use a discount rate (γ) of 0.96 for the Iterated Prisoners’ Dilemma, Iterated Stag Hunt,
and Coin Game. For the Iterated Matching Pennies, we use γ = 0.9 to be consistent with earlier
works. The high value of γ allows for long time horizons, thereby incentivizing long-term rewards.
Each agent randomly samples κ from U ∈ (1, z) (z = 10, discussed in Appendix D.7) at each step.

D.3 GameDistill CLUSTERING

Figures 6 and 7 show the clusters obtained for the state sequence embedding for the Coin Game and
the dynamic variant of Stag Hunt respectively. In the figures, each point is a t-SNE projection of the

(a) 3-dimensional (b) 4-dimensional

(c) 10-dimensional (d) 100-dimensional

Figure 6: Representation of the clusters learned by GameDistill for Coin Game. Each point is a
t-SNE projection of the feature vector (in different dimensions) output by theGameDistill network
for an input sequence of states. For each of the sub-figures, the figure on the left is colored based on
actual rewards obtained by each agent (r1|r2). The figure on the right is colored based on clusters
as learned by GameDistill. GameDistill correctly identifies two types of trajectories, one for
cooperation and the other for defection.

feature vector (in different dimensions) output by the GameDistill network for an input sequence
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Figure 7: t-SNE plot for the trajectory embeddings obtained from the Stag Hunt game along with
the identified cooperation and defection clusters.

of states. For each of the sub-figures, the figure on the left is colored based on actual rewards
obtained by each agent (r1|r2). The figure on the right is colored based on clusters, as learned by
GameDistill. GameDistill correctly identifies two types of trajectories, one for cooperation and
the other for defection for both the games Coin Game and Stag-Hunt.

Figure 6 also shows the clustering results for different dimensions of the state sequence embedding
for the Coin Game. We observe that changing the size of the embedding does not have any effect on
the results.

D.4 ILLUSTRATIONS OF TRAINED ORACLE NETWORKS FOR THE COIN GAME

Figure 8 shows the predictions of the oracle networks learned by the Red agent using GameDistill
in the Coin Game. We see that the cooperation oracle suggests an action that avoids picking the coin
of the other agent (the Blue coin). Analogously, the defection oracle suggests a selfish action that
picks the coin of the other agent.

+1/-2

0/0

Action predicted by 
the Cooperation

Oracle

Action predicted by 
the Defection

Oracle

Figure 8: Illustrative predictions of the oracle networks learned by the Red agent using
GameDistill in the Coin Game. The numbers in red/blue show the rewards obtained by the Red
and the Blue agent respectively. The cooperation oracle suggests an action that avoids picking the
coin of the other agent while the defection oracle suggests an action that picks the coin of the other
agent
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D.5 RESULTS FOR THE ITERATED STAG HUNT (ISH) USING SQLOSS

We provide the results of training two SQLearner agents on the Iterated Stag Hunt game in Fig-
ure 9. In this game also, SQLearner agents coordinate successfully to obtain a near-optimal NDR
value (0) for this game.

Figure 9: NDR values for SQLearner agents in the ISH game. SQLearner agents coordinate
successfully to obtain a near optimal NDR value (0) for this game.

D.6 RESULTS FOR THE CHICKEN GAME USING SQLOSS

We provide the results of training two SQLearner agents on the Iterated Chicken game in Fig-
ure 10. The payoff matrix for the game is shown in the Table 2. From the payoff, it is clear that the
agents may defect out of greed. In this game also, SQLearner agents coordinate successfully to

C D

C (-1, -1) (-3, 0)
D (0, -3) (-4, -4)

Table 2: Chicken Game

obtain a near-optimal NDR value (0) for this game.

Figure 10: NDR values for SQLearner agents in the Chicken game. SQLearner agents coordinate
successfully to obtain a near optimal NDR value (−1.12) for the game.
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D.7 SQLoss: EFFECT OF z ON CONVERGENCE TO COOPERATION

We explore the effect of the hyper-parameter z (Section 2) on convergence to cooperation, we also
experiment with varying values of z. In the experiment, to imagine the consequences of maintaining
the status quo, each agent samples κt from the Discrete Uniform distribution U{1, z}. A larger
value of z thus implies a larger value of κt and longer imaginary episodes. We find that larger z
(and hence κ) leads to faster cooperation between agents in the IPD and Coin Game. This effect
plateaus for z > 10. However varying and changing κt across time also increases the variance in
the gradients and thus affects the learning. We thus use κ = 10 for all our experiments.

D.8 SQLEARNER: EXPLOITABILITY AND ADAPTABILITY

Given that an agent does not have any prior information about the other agent, it must evolve its
strategy based on its opponent’s strategy. To evaluate an SQLearner agent’s ability to avoid ex-
ploitation by a selfish agent, we train one SQLearner agent against an agent that always defects
in the Coin Game. We find that the SQLearner agent also learns to always defect. This persistent
defection is important since given that the other agent is selfish, the SQLearner agent can do no
better than also be selfish. To evaluate an SQLearner agent’s ability to exploit a cooperative agent,
we train one SQLearner agent with an agent that always cooperates in the Coin Game. In this case,
we find that the SQLearner agent learns to always defect. This persistent defection is important
since given that the other agent is cooperative, the SQLearner agent obtains maximum reward by
behaving selfishly. Hence, the SQLearner agent is both resistant to exploitation and able to exploit,
depending on the other agent’s strategy.
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