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Abstract

Mean-field Langevin dynamics (MFLD) minimizes an entropy-regularized nonlinear convex
functional defined over the space of probability distributions. MFLD has gained attention
due to its connection with noisy gradient descent for mean-field two-layer neural networks.
Unlike standard Langevin dynamics, the nonlinearity of the objective functional induces
particle interactions, necessitating multiple particles to approximate the dynamics in a finite-
particle setting. Recent works (Chen et al., 2022; Suzuki et al., 2023b) have demonstrated
the uniform-in-time propagation of chaos for MFLD, showing that the gap between the
particle system and its mean-field limit uniformly shrinks over time as the number of
particles increases. In this work, we improve the dependence on logarithmic Sobolev
inequality (LSI) constants in their particle approximation errors which can exponentially
deteriorate with the regularization coefficient. Specifically, we establish an LSI-constant-
free particle approximation error concerning the objective gap by leveraging the problem
structure in risk minimization. As the application, we demonstrate improved convergence of
MFLD, sampling guarantee for the mean-field stationary distribution, and uniform-in-time
Wasserstein propagation of chaos in terms of particle complexity.

1 Introduction

In this work, we consider the following entropy-regularized mean-field optimization problem:

L(µ) = F (µ) + λEnt(µ), (1)

where F : P2(Rd) → R is a convex functional on the space of probability distributions P2(Rd) and
Ent(µ) =

∫
µ(dx) log dµ

dx (x) is a negative entropy. Especially we focus on the learning problem
of mean-field neural networks, that is, F (µ) is a risk of (infinitely wide) two-layer neural networks
EX∼µ[h(X, ·)] where h(X, ·) represents a single neuron with parameter X . One advantage of this
problem is that the convexity of F with respect to µ can be leveraged to analyze gradient-based
methods for a finite-size two-layer neural network: 1

N

∑N
i=1 h(x

i, ·) (xi ∈ Rd). This is achieved
by translating the optimization dynamics of the finite-dimensional parameters (x1, . . . , xN ) ∈ RdN

into the dynamics of µ via the mean-field limit: 1
N

∑N
i=1 δxi → µ (N → ∞). This connection was

pointed out by Nitanda and Suzuki (2017); Mei et al. (2018); Chizat and Bach (2018); Rotskoff and
Vanden-Eijnden (2022); Sirignano and Spiliopoulos (2020b,a) in the case of λ = 0, and used for
showing the global convergence of the gradient flow for (1) by Mei et al. (2018); Chizat and Bach
(2018).

One may consider adding Gaussian noise to the gradient descent to make the method more stable.
Then, we arrive at the following mean-field Langevin dynamics (MFLD) (Hu et al., 2019; Mei et al.,
2018) as a continuous-time representation under N = ∞ of this noisy gradient descent.

dXt = −∇δF (µt)

δµ
(Xt)dt+

√
2λdWt, µt = Law(Xt), (2)
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where {Wt}t≥0 is the d-dimensional standard Brownian motion and ∇ δF (µ)
δµ is the Wasserstein

gradient that is the gradient of the first-variation δF (µ)
δµ of F . Even though several optimization

methods (Nitanda et al., 2021; Oko et al., 2022; Chen et al., 2023) that can efficiently solve the
above problem with polynomial computational complexity have been proposed, MFLD remains an
interesting research subject because of the above connection to the noisy gradient descent. In fact,
recent studies showed that MFLD globally converges to the optimal solution (Hu et al., 2019; Mei
et al., 2018) thanks to noise perturbation and that its convergence rate is exponential in continuous-
time under uniform log-Sobolev inequality (Nitanda et al., 2022; Chizat, 2022).

However, despite such remarkable progress, the above studies basically assume the mean-field limit:
N = ∞. To analyze an implementable MFLD, we have to deal with discrete-time and finite-particle
dynamics, i.e., noisy gradient descent:

Xi
k+1 = Xi

k − η∇δF (µXk
)

δµ
(Xi

k) +
√
2ληξik, (i ∈ {1, . . . , N}), (3)

where ξik ∼ N (0, Id) (i ∈ {1, . . . , d}) are i.i.d. standard normal random variables and µXk
=

1
N

∑N
i=1 δXi

k
is an empirical measure. On the one hand, the convergence in the discrete-time setting

has been proved by Nitanda et al. (2022) using the one-step interpolation argument for Langevin
dynamcis (Vempala and Wibisono, 2019). On the other hand, approximation error induced by using
finite-particle system Xk = (X1

k , . . . , X
N
k ) has been studied in the literature of propagation of

chaos (Sznitman, 1991). As for MFLD, Mei et al. (2018) suggested exponential blow-up of particle
approximation error in time, but recent works (Chen et al., 2022; Suzuki et al., 2023a) proved uniform-
in-time propagation of chaos, saying that the gap between N -particle system and its mean-field limit
shrinks uniformly in time as N → ∞. Afterward, Suzuki et al. (2023b) established truly quantitative
convergence guarantees for (3) by integrating the techniques developed in Nitanda et al. (2022); Chen
et al. (2022). Furthermore, Kook et al. (2024) proved the sampling guarantee for the mean-field
stationary distribution: µ∗ = argminP2(Rd) L(µ), building upon the uniform-in-time propagation of
chaos.

1.1 Contributions

In this work, we further improve the particle approximation error (Chen et al., 2022; Suzuki
et al., 2023b) by alleviating the dependence on logarithmic Sobolev inequality (LSI) constants
in their bounds. This improvement could exponentially reduce the required number of particles
because LSI constant α could exponentially deteriorate with the regularization coefficient, i.e.,
α ≳ exp(−Θ(1/λ)). Specifically, we establish an LSI-constant-free particle approximation error
concerning the objective gap by leveraging the problem structure in risk minimization. Additionally,
as the application, we demonstrate improved (i) convergence of MFLD, (ii) sampling guarantee for
the mean-field stationary distribution µ∗, and (iii) uniform-in-time Wasserstein propagation of chaos
in terms of particle complexity. We summarize our contributions below.

• We demonstrate the particle approximation error O( 1
N ) (Theorem 1) regarding the objective gap.

A significant difference from the existing approximation error O( λ
αN ) (Chen et al., 2022; Suzuki

et al., 2023b) is that our bound is free from the LSI-constant. Therefore, the approximation error
uniformly decreases as N → ∞ regardless of the value of LSI-constant as well as λ.

• As applications of Theorem 1, we derive the convergence rates of the finite-particle MFLDs
(Theorem 2), sampling guarantee for µ∗ (Corollary 1), and uniform-in-time Wasserstein propa-
gation of chaos (Corollary 2) with the approximation errors inherited from Theorem 1, which
improve upon existing errors (Chen et al., 2022; Suzuki et al., 2023b; Kook et al., 2024).

Here, we mention the proof strategy of Theorem 1. Langevin dynamics (LD) is a special case of
MFLD corresponding to the case where F is a linear functional. It is well known that even with a
single particle, we can simulate LD and the particle converges to the target Gibbs distribution. This
means that the particle approximation error is due to the non-linearity of F . Therefore, in our analysis,
we carefully treat the non-linearity of F and obtain an expression for the particle approximation error
using the Bregman divergence induced by F . Finally, we relate this divergence to the variance of an
N -particle neural network and show the error of O(1/N). This proof strategy is quite different from
existing ones and is simple. Moreover, it leads to an improved approximation error as mentioned
above. We refer the readers to Section 4 for details about the proof.
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1.2 Notations

We denote vectors and random variables on Rd by lowercase and uppercase letters such as x and
X , respectively, and boldface is used for N -pairs of them like x = (x1, . . . , xN ) ∈ RNd and
X = (X1, . . . , XN ). ∥ · ∥2 denotes the Euclidean norm. Let P2(Rd) be the set of probability
distributions with finite second moment on Rd. For probability distributions µ, ν ∈ P2(Rd), we
define Kullback-Leibler (KL) divergence (a.k.a. relative entropy) by KL(µ∥ν) def

=
∫
dµ(x) log dµ

dν (x).
Ent denotes the negative entropy: Ent(µ) =

∫
µ(dx) log dµ

dx (x). We denote by dµ
dx the density

function of µ with respect to the Lebesgue measure if it exists. We denote ⟨f,m⟩ =
∫
f(x)m(dx)

for a (singed) measure m and integrable function f on Rd. Given x = (x1, . . . , xN ) ∈ RNd, we
write an empirical measure supported on x as µx = 1

N

∑N
i=1 δxi .

2 Preliminaries

In this section, we explain a problem setting and give a brief overview of the recent progress of the
mean-field Langevin dynamics.

2.1 Problem setting

We say the functional G : P2(Rd) → R is differentiable when there exists a functional (referred to as
a first variation): δG

δµ : P2(Rd)× Rd ∋ (µ, x) 7→ δG(µ)
δµ (x) ∈ R such that for ∀µ, µ′ ∈ P2(Rd),

dG(µ+ ϵ(µ′ − µ))

dϵ

∣∣∣∣
ϵ=0

=

∫
δG(µ)

δµ
(x)(µ′ − µ)(dx),

and say G is convex when for ∀µ, µ′ ∈ P2(Rd),

G(µ′) ≥ G(µ) +

∫
δG(µ)

δµ
(x)(µ′ − µ)(dx). (4)

For a differentiable and convex functional F0 : P2(Rd) → R and coefficients λ, λ′ > 0 we consider
the minimization of an entropy-regularized convex functional (Mei et al., 2018; Hu et al., 2019;
Nitanda et al., 2022; Chizat, 2022; Chen et al., 2022; Suzuki et al., 2023b; Kook et al., 2024):

min
µ∈P2(Rd)

{
L(µ) = F0(µ) + λ′EX∼µ[∥X∥22] + λEnt(µ)

}
. (5)

We set F (µ) = F0(µ) + λ′Eµ[∥X∥22]. Note both F and L are differentiable convex functionals. In
particular, we focus on the empirical risk F0 of the mean-field neural networks, i.e., two-layer neural
networks in the mean-field regime. The definition of this model is given in Section 3. Throughout
the paper, we assume the existence of the solution µ∗ ∈ P2(Rd) of the problem (5) and make the
following regularity assumption on the objective function, which is inherited from Chizat (2022);
Nitanda et al. (2022); Chen et al. (2023).

Assumption 1. There exists M1,M2 > 0 such that for any µ ∈ P2(Rd), x ∈ Rd,
∣∣∣∇ δF0(µ)

δµ (x)
∣∣∣ ≤

M1 and for any µ, µ′ ∈ P2(Rd), x, x′ ∈ Rd,∥∥∥∥∇δF0(µ)

δµ
(x)−∇δF0(µ

′)

δµ
(x′)

∥∥∥∥
2

≤ M2 (W2(µ, µ
′) + ∥x− x′∥2) .

Then, under Assumption 1, µ∗ uniquely exists and satisfies the optimality condition: µ∗ ∝
exp

(
− 1

λ
δF (µ∗)

δµ

)
. We refer the readers to Chizat (2022); Hu et al. (2019); Mei et al. (2018) for

details.

We introduce the proximal Gibbs distribution (Nitanda et al., 2022; Chizat, 2022), which plays a key
role in showing the convergence of mean-field optimization methods (Nitanda et al., 2022; Chizat,
2022; Oko et al., 2022; Chen et al., 2023).
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Definition 1 (Proximal Gibbs distribution). For µ ∈ P2(Rd), the proximal Gibbs distribution µ̂
associated with µ is defined as follows:

dµ̂

dx
(x) =

exp
(
− 1

λ
δF (µ)
δµ (x)

)
Z(µ)

, (6)

where Z(µ) is the normalization constant and dµ̂/dx is the density function w.r.t. Lebesgue measure.

We remark that µ̂ exists, that is Z(µ) < ∞, for any µ ∈ P2(Rd) because of the boundedness
of δF0/δµ in Assumption 1 and that the optimality condition for the problem (5) can be simply
written using µ̂ as follows: µ∗ = µ̂∗. Since the proximal Gibbs distribution µ̂ minimizes the
linear approximation of F at µ: F (µ) +

∫
δF
δµ (µ)(x)(µ

′ − µ)(dx) + λEnt(µ′) with respect to µ′,
µ̂ can be regarded as a surrogate of the solution µ∗. In the case where F0(µ) is a linear functional:
F0(µ) = Eµ[f ] (∃f : Rd → R), the proximal Gibbs distribution µ̂ coincides with µ∗.

2.2 Mean-field Langevin dynamics and finite-particle approximation

The mean field Langevin dynamics (MFLD) is one effective method for solving the problem (5).
MFLD {Xt}t≥0 is described by the following stochastic differential equation:

dXt = −∇δF

δµ
(µt)(Xt)dt+

√
2λdWt, µt = Law(Xt), (7)

where {Wt}t≥0 is the d-dimensional standard Brownian motion with W0 = 0. We refer the reader
to Huang et al. (2021) for the existence of the unique solution of this equation under Assumption
1. Nitanda et al. (2022); Chizat (2022) showed the convergence of MFLD: L(µt) − L(µ∗) ≤
exp(−2αλt)(L(µ0)− L(µ∗)) under the uniform log-Sobolev inequality (LSI):

Assumption 2. There exists a constant α > 0 such that for any µ ∈ P2(Rd), proximal Gibbs
distribution µ̂ satisfies log-Sobolev inequality with α, that is, for any smooth function g : Rd → R,

Eµ̂[g
2 log g2]− Eµ̂[g

2] logEµ̂[g
2] ≤ 2

α
Eµ̂[∥∇g∥22].

Because of the appearance of µt in the drift term, MFLD is a distribution-dependent dynamics referred
to as general McKean–Vlasov (McKean Jr, 1966). This dependence makes the difference from the
standard Langevin dynamics. Hence, we need multiple particles to approximately simulate MFLD
(7) unlike the standard Langevin dynamics. We here introduce the finite-particle approximation of (7)
described by the N -tuple of stochastic differential equation {Xt}t≥0 = {(X1

t , . . . , X
N
t )}t≥0:

dXi
t = −∇δF (µXt)

δµ
(Xi

t)dt+
√
2λdW i

t , (i ∈ {1, . . . , N}), (8)

where µXt =
1
N

∑N
i=1 δXi

t
is an empirical measure supported on Xt, {W i

t }t≥0, (i ∈ {1, . . . , N})
are independent standard Brownian motions, and the gradient in the first term in RHS is taken for the
function: δF (µXt )

δµ (·) : Rd → R. We often denote F (x) = F (µx) when emphasizing F as a function

of x. Noticing N∇xiF (x) = ∇ δF (µx)
δµ (xi) (Chizat, 2022), we can identify the dynamics (8) as the

Langevin dynamics dXt = −N∇F (Xt)dt+
√
2λdWt, where {Wt}t≥0 is the standard Brownian

motion on RdN , for sampling from the following Gibbs distribution µ
(N)
∗ on RdN (Chen et al., 2022):

dµ
(N)
∗

dx
(x) ∝ exp

(
−N

λ
F (x)

)
= exp

(
−N

λ
F0(x)−

λ′

λ
∥x∥22

)
. (9)

In other words, the dynamics (8) minimizes the entropy-regularized linear functional: µ(N) ∈
P2(RdN ),

L(N)(µ(N)) = NEX∼µ(N) [F (X)] + λEnt(µ(N)), (10)

and µ
(N)
∗ is the minimizer of L(N). Therefore, two objective functions L and L(N) are tied together

through the two aspects of the dynamics (8); one is the finite-particle approximation of the MFLD (7)
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for L and the other is the optimization methods for L(N). We then expect L(N)(µ
(N)
∗ )/N converges

to L(µ∗) as N → ∞. Such finite-particle approximation error between L(N)(µ
(N)
∗ )/N and L(µ∗)

has been studied in the literature of propagation of chaos. Especially, Chen et al. (2022) proved
λ

N
KL(µ

(N)
∗ ∥µ⊗N

∗ ) ≤ 1

N
L(N)(µ

(N)
∗ )− L(µ∗) ≤

λC

αN
(11)

where C > 0 is some constant and µ⊗N
∗ is an N -product measure of µ∗. Suzuki et al. (2023b)

further studied MFLD in finite-particle and discrete-time setting defined below: given k-th iteration
Xk = (X1

k , . . . , X
N
k ),

Xi
k+1 = Xi

k − η∇δF (µXk
)

δµ
(Xi

k) +
√
2ληξik, (i ∈ {1, . . . , N}), (12)

where ξik ∼ N (0, Id) (i ∈ {1, . . . , N}) are i.i.d. standard normal random variables. By extending the
proof techniques developed by Chen et al. (2022), Suzuki et al. (2023b) proved the uniform-in-time
propagation of chaos for MFLD (12); there exist constants C1, C2 > 0 such that

1

N
L(N)(µ

(N)
k )− L(µ∗) ≤ exp (−λαηk/2)

(
1

N
L(N)(µ

(N)
0 )− L(µ∗)

)
+

(λη + η2)C1

λα
+

λC2

αN
,

(13)
where µ

(N)
k = Law(Xk). The last two terms are due to time-discretization and finite-particle

approximation, respectively. The finite-particle approximation error O( λ
αN ) appearing in (11), (13)

means the deterioration as α → 0. Considering typical estimation α ≳ exp(−Θ(1/λ)) (e.g.,
Theorem 1 in Suzuki et al. (2023b)) of LSI-constant using Holley and Stroock argument (Holley and
Stroock, 1987) or Miclo’s trick (Bardet et al., 2018), these bounds imply that the required number of
particles increases exponentially as λ → 0.

3 Main results

In this section, we present an LSI-constant free particle approximation error between 1
NL(N)(µ

(N)
∗ )

and L(µ∗) for mean-field neural networks and apply it to the mean-field Langevin dynamics.

3.1 LSI-constant free particle approximation error for mean-field neural networks

We focus on the empirical risk minimization problem of mean-field neural networks. Let h(x, ·) :
Z → R be a function parameterized by x ∈ Rd, where Z is the data space. The mean-field
model is obtained by integrating h(x, ·) with respect to the probability distribution µ ∈ P2(Rd)
over the parameter space: hµ(·) = EX∼µ[h(X, ·)]. Typically, h is set as h(x, z) = σ(w⊤z) or
h(x, z) = tanh(vσ(w⊤z)) where σ is an activation function and x = w or x = (v, w) is the
trainable parameter in each case. Given training examples {(zj , yj)}nj=1 ⊂ Z × R and loss function
ℓ(·, ·) : R× R → R, we consider the empirical risk of the mean-field neural networks:

F0(µ) =
1

n

n∑
j=1

ℓ(hµ(zj), yj). (14)

For our analysis, we make the following assumption which is satisfied in the common settings.
Assumption 3. ℓ(·, y) is convex and L-smooth, and h(X, z) (X ∼ µ∗) has a finite-second moment;

• There exists L > 0 such that for any a, b, y ∈ Y , ℓ(b, y) ≤ ℓ(a, y) + ∂ℓ(a,y)
∂a (b− a) + L

2 |b− a|2.

• There exists R > 0 such that for any z ∈ Z , EX∼µ∗ [|h(X, z)|2] ≤ R2.

We can directly verify this assumption for mean-field neural networks using a bounded activation
function (Nitanda et al., 2022; Chizat, 2022; Chen et al., 2022; Suzuki et al., 2023b) and standard
loss functions such as logistic loss and squared loss. The following is the main theorem that bounds
1
NL(N)(µ

(N)
∗ )− L(µ∗). The proof is deferred to Section 4 and Appendix A.1.

Theorem 1. Under Assumptions 1 and 3, it follows that

λ

N
KL(µ

(N)
∗ ∥µ⊗N

∗ ) ≤ 1

N
L(N)(µ

(N)
∗ )− L(µ∗) ≤

LR2

2N
. (15)
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A significant difference from the previous results (11), (13) with k → ∞, and Kook et al. (2024) is
that our bound is free from the LSI-constant. Therefore, the approximation error uniformly decreases
as N → ∞ at the same rate regardless of the value of LSI-constant as well as λ.

As discussed in Section 4 later, the differences between 1
NL(N)(µ

(N)
∗ ) and L(µ∗) is due to non-

linearity of the loss ℓ. In fact, since L = 0 for a linear loss function ℓ, it follows that 1
NL(N)(µ

(N)
∗ ) =

L(µ∗).

3.2 Application: mean-field Langevin dynamics in the finite-particle setting

As an application of Theorem 1, we present the convergence analysis of the mean-field Langevin
dynamics (MFLD) in the finite-particle settings (8) and (12), sampling guarantee for the mean-field
stationary distribution µ∗ ∈ P2(Rd), and uniform-in-time Wasserstein propagation of chaos.

3.2.1 Convergence of the mean-field Langevin dynamics

Our convergence theory assumes the logarithmic Sobolev inequality (LSI) on µ
(N)
∗ .

Assumption 4. There exists a constant ᾱ > 0 such that µ(N)
∗ satisfies log-Sobolev inequality with

constant ᾱ, that is, for any smooth function g : RdN → R, it follows that

E
µ
(N)
∗

[g2 log g2]− E
µ
(N)
∗

[g2] logE
µ
(N)
∗

[g2] ≤ 2

ᾱ
E
µ
(N)
∗

[∥∇g∥22].

By setting g =
√

dµ(N)

dµ
(N)
∗

, Assumption 4 leads to KL(µ(N)∥µ(N)
∗ ) ≤ 1

2ᾱEµ(N)

[∥∥∥∇ log dµ(N)

dµ
(N)
∗

∥∥∥2
2

]
.

For instance, using Holley and Stroock argument (Holley and Stroock, 1987) under the boundedness
assumption |F0(x)| ≤ B (∀x ∈ RdN ), we can verify LSI on µ

(N)
∗ with a constant ᾱ that satisfies:

ᾱ ≥ 2λ′

λ exp
(
− 4NB

λ

)
. For the detail, see Appendix B.

The following theorem demonstrates the convergence rates of L(N)(µ(N)) with the finite-particle
MFLD in the continuous- and discrete-time settings. The first assertion is a direct consequence
of Theorem 1 and the standard argument based on LSI for continuous-time Langevin dynamics.
Whereas for the second assertion, we employ the one-step interpolation argument (Vempala and
Wibisono, 2019) with some refinement to avoid the dependence on the dimensionality dN where
the dynamics (12) performs. The proof is given in Appendix A.2. We denote µ

(N)
t = Law(Xt) and

µ
(N)
k = Law(Xk) for continuous- and discrete-time dynamics (8) and (12), respectively.

Theorem 2. Suppose Assumptions 1, 3, and 4 hold. Then, it follows that

1. MFLD (8) in finite-particle and continuous-time setting satisfies

1

N
L(N)(µ

(N)
t )− L(µ∗) ≤

LR2

2N
+ exp(−2ᾱλt)

(
1

N
L(N)(µ

(N)
0 )− 1

N
L(N)(µ

(N)
∗ )

)
,

2. MFLD (12) with ηλ′ < 1/2 in finite-particle and discrete-time setting satisfies

1

N
L(N)(µ

(N)
k )−L(µ∗) ≤

LR2

2N
+

δ
(N)
η

2ᾱλ
+ exp(−ᾱληk)

(
1

N
L(N)(µ

(N)
0 )− 1

N
L(N)(µ

(N)
∗ )

)
,

where δ(N)
η = 16η(M2

2 +λ′2)(ηM2
1 +λd)+64η2λ′2(M2

2 +λ′2)

(
E[∥X0∥2

2]
N + 1

λ′

(
M2

1

4λ′ + λd
))

.

The term of LR2

2N is the particle approximation error inherited from Theorem 1. Again our result shows
the LSI-constant independence particle approximation error for MFLD unlike existing results (Chen
et al., 2022; Suzuki et al., 2023b) where their error bounds O( λ

αN ) scale inversely with LSI-constant
α as seen in (11) and (13). Hence, the required number of particles to achieve ϵ-accurate optimization:
1
NL(N)(µ(N)) − L(µ∗) ≤ ϵ suggested by our result and Chen et al. (2022); Suzuki et al. (2023b)
are N = O( 1ϵ ) and N = O( λ

αϵ ), respectively. Whereas the iterations complexity of MFLD (12) is
O( 1

ᾱ2λϵ log
1
ϵ ) which is same as that in Suzuki et al. (2023b) up to a difference in LSI constants α or

ᾱ.
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3.2.2 Sampling guarantee for µ∗

After running the finite-particle MFLD with a sufficient number of particles for a long time, each
particle is expected to be distributed approximately according to µ∗. In Corollary 1, we justify
this sampling procedure for µ∗ as an application of Theorem 2. We set ∆(N)

0 = 1
NL(N)(µ

(N)
0 ) −

1
NL(N)(µ

(N)
∗ ) and write the marginal distribution of µ(N)

t /µ
(N)
k on the first particle x1 as µ(N)

t,1 /µ
(N)
k,1 .

Corollary 1. Under the same conditions as in Theorem 2, we run MFLDs (8) and (12) with i.i.d.
initial particles X = (X1

0 , . . . , X
N
0 ). Then, it follows that

1. MFLD (8) in finite-particle and continuous-time setting satisfies

λKL(µ
(N)
t,1 ∥µ∗) ≤ L(µ(N)

t,1 )− L(µ∗) ≤
LR2

2N
+ exp(−2ᾱλt)∆

(N)
0 ,

2. MFLD (12) with ηλ′ < 1/2 in finite-particle and discrete-time setting satisfies

λKL(µ
(N)
k,1 ∥µ∗) ≤ L(µ(N)

k,1 )− L(µ∗) ≤
LR2

2N
+

δ
(N)
η

2ᾱλ
+ exp(−ᾱληk)∆

(N)
0 .

Proof. For any distribution µ(N) ∈ P2(RdN ) whose marginal µ(N)
i on i-th coordinate xi (i ∈

{1, . . . , N}) are identical to each other, it follows that by the convexity of the objective function
and the entropy sandwich (Nitanda et al., 2022; Chizat, 2022): λKL(µ∥µ∗) ≤ L(µ)− L(µ∗) (∀µ ∈
P2(Rd)),

λKL(µ
(N)
1 ∥µ∗) ≤ L(µ(N)

1 )− L(µ∗) ≤
1

N
L(N)(µ(N))− L(µ∗). (16)

Because of i.i.d. initialization, the distributions of µ(N)
t /µ

(N)
k satisfies this property. That is, (16)

with µ(N) = µ
(N)
t /µ

(N)
k holds. Hence, Theorem 2 concludes the proof.

Corollary 1 shows the convergence of the objective L(·) and KL-divergence KL(·∥µ∗) which attain
the minimum value at µ = µ∗. For instance, we can deduce that the particle and iteration complexities

to obtain
√

KL(µ
(N)
k,1 ∥µ∗) < ϵ by MFLD (12) are O( 1

λϵ2 ) and O( 1
ᾱ2λ2ϵ2 log

1
ϵ ), respectively, whereas

Kook et al. (2024) proved the following particle and iteration complexities: O( 1
αλϵ2 ) and O( 1

α2λ2ϵ2 ).

3.2.3 Uniform-in-time Wasserstein propagation of chaos

As another application of Theorem 2, we prove the uniform-in-time Wasserstein propagation of chaos
for MFLDs (8) and (12), saying that the Wasserstein distance between finite-particle system and
its mean-field limit shrinks uniformly in time as N → ∞. For the mean-field limit of (8) in the
continuous-time setting, we refer to (7). For the discrete-time setting (12), we define its mean-field
limit as follows; let µk = Law(Xk) be the distribution of the infinite-particle MFLD defined by

Xk+1 = Xk − η∇δF (µk)

δµ
(Xk) +

√
2ληξk, (17)

where ξk ∼ N (0, Id). Now, the uniform-in-time Wasserstein propagation of chaos for MFLDs is
given below. We set ∆(N)

0 = 1
NL(N)(µ

(N)
0 )− 1

NL(N)(µ
(N)
∗ ) and ∆0 = L(µ0)− L(µ∗).

Corollary 2. Suppose Assumptions 1, 2, 3, and 4 hold. Then, it follows that

1. discrepancy between continuous-time MFLDs (7) and (8) is uniformly bounded in time as follows:

1

N
W 2

2 (µ
(N)
t , µ⊗N

t ) ≤ 4

αλ

(
LR2

2N
+ exp(−2ᾱλt)∆

(N)
0 + exp(−2αλt)∆0

)
.

2. discrepancy between discrete-time MFLDs (17) and (12) is uniformly bounded in time as follows:

1

N
W 2

2 (µ
(N)
k , µ⊗N

k ) ≤ 4

αλ

(
LR2

2N
+

δ
(N)
η

2ᾱλ
+

δη
2αλ

+ exp(−ᾱληk)∆
(N)
0 + exp(−2αληk)∆0

)
,

where δη = 8η(M2
2 +λ′2)(2ηM2

1 +2λd)+32η2λ′2(M2
2 +λ′2)

(
E
[
∥X0∥22

]
+ 1

λ′

(
M2

1

4λ′ + λd
))

.
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Proof. We only prove the first assertion because the second can be proven similarly. We apply the
triangle inequality to W2-distance as follows:

W 2
2 (µ

(N)
t , µ⊗N

t ) ≤ 2
(
W 2

2 (µ
(N)
t , µ⊗N

∗ ) +W 2
2 (µ

⊗N
∗ , µ⊗N

t )
)

Note that LSI with the same constant is preserved under tensorization: µ∗ → µ⊗N
∗ . Then, by

Taragland’s inequality (Otto and Villani, 2000), Proposition 1 with µ = µ∗, and the entropy sandwich
(Nitanda et al., 2022; Chizat, 2022): λKL(µt∥µ∗) ≤ L(µt)− L(µ∗), we get

α

2
W 2

2 (µ
(N)
t , µ⊗N

∗ ) ≤ KL(µ
(N)
t ∥µ⊗N

∗ ) ≤ 1

λ
(L(N)(µ

(N)
t )−NL(µ∗)),

α

2
W 2

2 (µ
⊗N
∗ , µ⊗N

t ) =
α

2
NW 2

2 (µ∗, µt) ≤ NKL(µt∥µ∗) ≤
N

λ
(L(µt)− L(µ∗)).

Applying the convergence rates of finite- and infinite-particle MFLDs (Theorem 2 and Nitanda et al.
(2022)), we conclude the proof. For completeness, we include the auxiliary results used in the proof
in Appendix B.

Corollary 2 uniformly controls the gap between N -particle system µ
(N)
t /µ

(N)
k and its mean-field

limit µ⊗N
t /µ⊗N

k . Again this result shows an improved particle approximation error O( 1
αλN ) over

O( 1
α2N ) (Chen et al., 2022; Suzuki et al., 2023b). Additionally, the propagation of chaos result in

terms of TV-norm can be proven by using Pinsker’s inequality instead of Talagrand’s inequality in
the proof. For the continuous-time MFLDs, we get

1

N
TV2(µ

(N)
t , µ⊗N

t ) ≤ 1

λ

(
LR2

2N
+ exp(−2ᾱλt)∆

(N)
0 + exp(−2αλt)∆0

)
,

and TV-norm counterpart for the discrete-time can be derived similary.

4 Proof outline and key results

In this section, we provide the proof sketch of Theorem 1. Our analysis carefully treats the non-
linearity of F0 because the particle approximation errors, the gap between L/µ∗ and L(N)/µ

(N)
∗ ,

come from this non-linearity. In fact if F0 is a linear functional: F0(µ) = Eµ[f ] (∃f : Rd → R),
then L(N)(µ(N)) =

∑N
i=1 EXi∼µ

(N)
i

[f(Xi) + λ′∥Xi∥22] + λEnt(µ(N)) ≥
∑N

i=1 L(µ
(N)
i ), where

µ
(N)
i are marginal distributions on Xi. This results in µ

(N)
∗ = µ⊗N

∗ and L(N)(µ
(N)
∗ ) = NL(µ∗),

and thus there is no approximation error by using finite-particles as also deduced from Theorem 1
with L = 0. Therefore, we should take into account the non-linearity of F0 to tightly evaluate the gap
between L and L(N).

To do so, we define Bregman divergence based on F on P2(Rd) as follows; for any µ, µ′ ∈ P2(Rd),

BF (µ, µ
′) = F (µ)− F (µ′)−

〈
δF (µ′)

δµ
, µ− µ′

〉
. (18)

BF measures the discrepancy between µ and µ′ in light of the strength of the convexity. If F is linear
with respect to the distribution, BF = 0 clearly holds. By the convexity F , we see BF (µ, µ

′) ≥ 0.
Moreover, we see the following relationship between µ

(N)
∗ and µ̂ for any µ ∈ P2(Rd):

dµ
(N)
∗

dx
(x) ∝ exp

(
−N

λ
F (x)

)
= exp

(
−N

λ

(
F (µ) +

〈
δF (µ)

δµ
, µx − µ

〉
+BF (µx, µ)

))
∝ exp

(
−N

λ
BF (µx, µ)

) N∏
i=1

exp

(
− 1

λ

δF (µ)

δµ
(xi)

)
∝ exp

(
−N

λ
BF (µx, µ)

)
dµ̂⊗N

dx
(x). (19)
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The proximal Gibbs distribution µ̂ has been introduced in Nitanda et al. (2022) as a proxy for
the solution µ∗ and it coincides with µ∗ when F is a linear functional. The above equation (19)
naturally reflects this property since it bridges the gap between µ

(N)
∗ and µ̂⊗N using BF and leads to

µ
(N)
∗ = µ̂⊗N for the linear functional F .

Next, we provide key propositions whose proofs can be found in Appendix A. The following
proposition expresses objective gaps L(N)(µ(N)) − NL(µ) and L(N)(µ(N)) − L(N)(µ̂⊗N ) using
only divergences.

Proposition 1. For µ ∈ P2(Rd) and µ(N) ∈ P2(RdN ), we have

L(N)(µ(N))−NL(µ) = NEX∼µ(N) [BF (µX, µ)] + λKL(µ(N)∥µ̂⊗N )− λNKL(µ∥µ̂), (20)

L(N)(µ(N))− L(N)(µ̂⊗N ) = N

∫
BF (µx, µ)(µ

(N) − µ̂⊗N )(dx) + λKL(µ(N)∥µ̂⊗N ). (21)

The following proposition shows that the KL-divergence between µ
(N)
∗ and µ̂⊗N can be upper-

bounded by the Bregman divergence BF .
Proposition 2. For any µ ∈ P2(Rd), we have

KL(µ
(N)
∗ ∥µ̂⊗N ) ≤ N

λ

∫
BF (µx, µ)(µ̂

⊗N − µ
(N)
∗ )(dx). (22)

By applying Eq. (22) to Eq. (20) with µ = µ∗ and µ(N) = µ
(N)
∗ , we obtain an important inequality:

L(N)(µ
(N)
∗ )−NL(µ∗) ≤ NEX∼µ⊗N

∗
[BF (µX, µ∗)]. Here, we give a finer result below.

Theorem 3. For the minimizes µ∗ of L and µ
(N)
∗ of L(N), it follows that

λKL(µ
(N)
∗ ∥µ⊗N

∗ ) ≤ L(N)(µ
(N)
∗ )−NL(µ∗)

≤ L(N)(µ⊗N
∗ )−NL(µ∗) = NEX∼µ⊗N

∗
[BF (µX, µ∗)] .

Proof. Proposition 1 with µ = µ∗ and µ(N) = µ
(N)
∗ lead to the following equalities:

L(N)(µ
(N)
∗ )−NL(µ∗) = NE

X∼µ
(N)
∗

[BF (µX, µ∗)] + λKL(µ
(N)
∗ ∥µ⊗N

∗ ), (23)

L(N)(µ
(N)
∗ )− L(N)(µ⊗N

∗ ) = N

∫
BF (µx, µ∗)(µ

(N)
∗ − µ⊗N

∗ )(dx) + λKL(µ
(N)
∗ ∥µ⊗N

∗ ). (24)

The first inequality of the theorem is a direct consequence of Eq. (23) since BF ≥ 0. The second
inequality results from L(N)(µ

(N)
∗ ) ≤ L(N)(µ⊗N

∗ ). The last equality is obtained by subtracting
Eq. (24) from Eq. (23).

Intuitively, EX∼µ⊗N
∗

[BF (µX, µ∗)] is small because the empirical distribution µX (X ∼ µ⊗N
∗ )

converges to µ∗ by law of large numbers. Indeed, more simply, we can relate this term to the variance
of an N -particle mean-field model hµX

(z) (X ∼ µ⊗N
∗ ), yielding a bound: EX∼µ⊗N

∗
[BF (µX, µ∗)] ≤

LR2

2N (see the proof of Theorem 1 in Appendix A). Then, we arrive at Theorem 1.

Conclusion and Discussion

We provided an improved particle approximation error over Chen et al. (2022); Suzuki et al. (2023b)
by alleviating the dependence on LSI constants in their bounds. Specifically, we established an
LSI-constant-free particle approximation error concerning the objective gap. Additionally, we
demonstrated improved convergence of MFLD, sampling guarantee for the mean-field stationary
distribution µ∗, and uniform-in-time Wasserstein propagation of chaos in terms of particle complexity.

A limitation of our result is that the iteration complexity still depends exponentially on the LSI con-
stant. This hinders achieving polynomial complexity for MFLD. However, considering the difficulty
of general non-convex optimization problems, this dependency may be unavoidable. Improving the
iteration complexity for more specific problem settings is an important direction for future research.
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Appendix

A Omitted Proofs

A.1 Finite-particle approximation error

In this section, we prove the LSI-constant-free particle approximation error (Theorem 1). First we
give proofs of Propositions 1 and 2.

Proof of Proposition 1. First, we prove Eq. (20) as follows:

L(N)(µ(N))−NL(µ)
= NEX∼µ(N) [F (µX)− F (µ)] + λ(Ent(µ(N))−NEnt(µ))

= NEX∼µ(N)

[
BF (µX, µ) +

〈
δF

δµ
(µ), µX − µ

〉]
+ λ(Ent(µ(N))−NEnt(µ))

= NEX∼µ(N)

[
BF (µX, µ)− λ

〈
log

dµ̂

dx
, µX − µ

〉]
+ λ(Ent(µ(N))−NEnt(µ))

= NEX∼µ(N)

[
BF (µX, µ)− λ

〈
log

dµ̂

dx
, µX

〉]
+ λEnt(µ(N))− λNKL(µ∥µ̂)

= NEX∼µ(N) [BF (µX, µ)]− λEX∼µ(N)

[
N∑
i=1

log
dµ̂

dx
(Xi)

]
+ λEnt(µ(N))− λNKL(µ∥µ̂)

= NEX∼µ(N) [BF (µX, µ)] + λKL(µ(N)∥µ̂⊗N )− λNKL(µ∥µ̂).
Next, we prove Eq. (21) as follows:

L(N)(µ(N))− L(N)(µ̂⊗N )

= N

∫
F (x)(µ(N) − µ̂⊗N )(dx) + λ(Ent(µ(N))− Ent(µ̂⊗N ))

= N

∫
F (x)(µ(N) − µ̂⊗N )(dx) + λKL(µ(N)∥µ̂⊗N ) + λ

∫
log

dµ̂⊗N

dx
(x)(µ(N) − µ̂⊗N )(dx)

= N

∫
F (x)(µ(N) − µ̂⊗N )(dx) + λKL(µ(N)∥µ̂⊗N )−

∫ N∑
i=1

δF

δµ
(µ)(xi)(µ(N) − µ̂⊗N )(dx)

= N

∫ (
F (x)−

〈
δF

δµ
(µ), µx

〉)
(µ(N) − µ̂⊗N )(dx) + λKL(µ(N)∥µ̂⊗N )

= N

∫ (
F (x)− F (µ)−

〈
δF

δµ
(µ), µx − µ

〉)
(µ(N) − µ̂⊗N )(dx) + λKL(µ(N)∥µ̂⊗N )

= N

∫
BF (µx, µ)(µ

(N) − µ̂⊗N )(dx) + λKL(µ(N)∥µ̂⊗N ).

Proof of Proposition 2. Let ZF (µ) be a normalizing factor in RHS of (19), that is,

ZF (µ) =

∫
exp

(
−N

λ
BF (µx, µ)

)
µ̂⊗N (dx).

By the Jensen’s inequality, we have

logZF (µ) ≥ −
∫

N

λ
BF (µx, µ)µ̂

⊗N (dx).

Therefore, we get

KL(µ
(N)
∗ ∥µ̂⊗N ) =

∫
µ
(N)
∗ (dx) log

dµ
(N)
∗

dµ̂⊗N
(x)
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=

∫
µ
(N)
∗ (dx) log

exp
(
−N

λ BF (µx, µ)
)

ZF (µ)

= −
∫

N

λ
BF (µx, µ)µ

(N)
∗ (dx)− logZF (µ)

≤ N

λ

∫
BF (µx, µ)(µ̂

⊗N − µ
(N)
∗ )(dx).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. As discussed in Section 4, the evaluation of EX∼µ⊗N
∗

[BF (µX, µ∗)] completes
the proof. For any function G : Rd → R so that the following integral is well defined, we have∫

⟨G,µx⟩µ⊗N
∗ (dx) =

∫
1

N

N∑
i=1

G(xi)

N∏
i=1

µ∗(dx
i) =

∫
G(x)µ∗(dx) = ⟨G,µ∗⟩ .

Applying this equality with G(x) = δF
δµ (µ∗)(x), G(x) = ∥x∥22, and G(x) = h(x, z), we have∫ 〈

δF

δµ
(µ∗), µx − µ∗

〉
µ⊗N
∗ (dx) = 0,∫ (

EX∼µx [∥X∥22]− EX∼µ∗ [∥X∥22]
)
µ⊗N
∗ (dx) = 0,∫

hµx(z)µ
⊗N
∗ (dx) = hµ∗(z).

Then, we can upper bound the Bregman divergence as follows.

NEX∼µ⊗N
∗

[BF (µX, µ∗)]

= NEX∼µ⊗N
∗

[
F (µX)− F (µ∗)−

〈
δF

δµ
(µ∗), µX − µ∗

〉]
= NEX∼µ⊗N

∗
[F0(µX)− F0(µ∗)]

=
N

n

n∑
j=1

EX∼µ⊗N
∗

[ℓ(hµX
(zj), yj)− ℓ(hµ∗(zj), yj)]

≤ N

n

n∑
j=1

EX∼µ⊗N
∗

[
∂ℓ(a, yj)

∂a

∣∣∣∣
a=hµ∗ (zj)

(hµX
(zj)− hµ∗(zj)) +

L

2
|hµX

(zj)− hµ∗(zj)|2
]

=
LN

2n

n∑
j=1

EX∼µ⊗N
∗

[
|hµX

(zj)− hµ∗(zj)|2
]
.

The last term is a variance of hµX
(z) (z ∈ Z); hence we simply evaluate it as follows.

EX∼µ⊗N
∗

[
|hµX

(z)− hµ∗(z)|2
]
= EX∼µ⊗N

∗

∣∣∣∣∣ 1N
N∑
i=1

h(Xi, z)− EX∼µ∗ [h(X, z)]

∣∣∣∣∣
2


= EX∼µ⊗N
∗

[
1

N2

N∑
i=1

|h(Xi, z)− EX∼µ∗ [h(X, z)]|2
]

≤ EX∼µ⊗N
∗

[
1

N2

N∑
i=1

|h(Xi, z)|2
]

≤ R2

N
.
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Therefore, we get

NEX∼µ⊗N
∗

[BF (µX, µ∗)] ≤
LR2

2
.

Combining Theorem 3, we conclude

1

N
L(N)(µ

(N)
∗ )− L(µ∗) ≤

LR2

2N
.

A.2 Convergence of Mean-field Langevin dynamics in the discrete-setting

In this section, we prove the convergence rate of MFLD (12). We first provide the following lemma
which shows the uniform boundedness of the second moment of iterations.
Lemma 1. Under Assumption 1 and ηλ′ < 1/2, we run discrete mean-field Langevin dynamics (12).
Then we get

E[∥Xi
k∥22] ≤ E

[∥∥Xi
0

∥∥2
2

]
+

1

λ′

(
M2

1

4λ′ + λd

)
.

Proof. Using the inequality (a+ b)2 ≤ (1 + γ) a2 +
(
1 + 1

γ

)
b2 with γ = 2ηλ′

1−2ηλ′ > 0, we have

E
[∥∥Xi

k+1

∥∥2
2

]
= E

[∥∥∥∥Xi
k − η∇δF (µXk

)

δµ
(Xi

k) +
√

2ληξik

∥∥∥∥2
2

]

= E

[∥∥∥∥(1− 2ηλ′)Xi
k − η∇δF0(µXk

)

δµ
(Xi

k) +
√
2ληξik

∥∥∥∥2
2

]

= E

[∥∥∥∥(1− 2ηλ′)Xi
k − η∇δF0(µXk

)

δµ
(Xi

k)

∥∥∥∥2
2

+ 2λη
∥∥ξik∥∥22

]
= E

[(
(1− 2ηλ′)

∥∥Xi
k

∥∥
2
+ ηM1

)2]
+ 2ληd

≤ (1 + γ)(1− 2ηλ′)2E
[∥∥Xi

k

∥∥2
2

]
+

(
1 +

1

γ

)
η2M2

1 + 2ληd

= (1− 2ηλ′)E
[∥∥Xi

k

∥∥2
2

]
+ η

(
M2

1

2λ′ + 2λd

)
.

This leads to E
[∥∥Xi

k

∥∥2
2

]
≤ (1− 2ηλ′)kE

[∥∥Xi
0

∥∥2
2

]
+ 1

λ′

(
M2

1

4λ′ + λd
)

.

Now, we prove Theorem 2 that is basically an extension of one-step interpolation argument in
Vempala and Wibisono (2019).

Proof of Theorem 2. The convergence rate in the continuous-time setting is a direct consequence of
Theorem 1 and the convergence of the Langevin dynamics: L(N)(µ

(N)
t ) → L(N)(µ

(N)
∗ ) based on

LSI (Vempala and Wibisono, 2019).

Next, we prove the convergence rate in the discrete-time setting. We consider the one-step interpola-
tion for k-th iteration: Xi

k+1 = Xi
k − η∇ δF (µXk

)

δµ (Xi
k) +

√
2ληξik, (i ∈ {1, 2, . . . , d}). To do so,

let us consider the following stochastic differential equation: for i ∈ {1, 2, . . . , d},

dY i
t = −∇δF (µY0

)

δµ
(Y i

0 )dt+
√
2λdWt, (25)

where Y0 = (Y 1
0 , . . . , Y

d
0 ) = (X1

k , . . . , X
d
k ) and Wt is the standard Brownian motion in Rd with

W0 = 0. Then, the following step (26) is the solution of this equation, starting from Y0, at time t:

Y i
t = Y i

0 − t∇δF (µY0
)

δµ
(Y i

0 ) +
√
2λtξi, (i ∈ {1, 2, . . . , d}), (26)
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where ξi ∼ N (0, Id) (i ∈ {1, . . . , d}) are i.i.d. standard Gaussian random variables.

In this proof, we identify the probability distribution with its density function with respect to the
Lebesgure measure for notational simplicity. For instance, we denote by µ

(N)
∗ (y) the density of µ(N)

∗ .
We denote by ν0t(y0,yt) the joint probability distribution of (Y0,Yt) for time t, and by νt|0, ν0|t

and ν0, νt the conditional and marginal distributions. Then, we see ν0 = µ
(N)
k (= Law(Xk)),

νη = µ
(N)
k+1(= Law(Xk+1)) (i.e., Yη

d
= Xk+1), and

ν0t(y0,yt) = ν0(y0)νt|0(yt|y0) = νt(yt)ν0|t(y0|yt).

The continuity equation of νt|0 conditioned on y0 is given as follows (Vempala and Wibisono, 2019):

∂νt|0(y|y0)

∂t
= ∇ ·

(
νt|0(y|y0)N∇F (y0)

)
+ λ∆νt|0(y|y0),

where we write F (y0) = F (µy0) and hence N∇yiF (y0) = ∇ δF (µy0 )

δµ (yi0). Therefore, we obtain
the continuity equation of νt:

∂νt(y)

∂t
=

∫
∂νt|0(y|y0)

∂t
ν0(y0)dy0

=

∫
(∇ · (ν0t(y0,y)N∇F (y0)) + λ∆ν0t(y0,y)) dy0

= ∇ ·
(
νt(y)

∫
ν0|t(y0|y)N∇F (y0)dy0

)
+ λ∆νt(y)

= ∇ ·
(
νt(y)

(
EY0|y [N∇F (Y0)|Yt = y] + λ∇ log νt(y)

))
= λ∇ ·

(
νt(y)∇ log

νt

µ
(N)
∗

(y)

)
+∇ ·

(
νt(y)

(
EY0|y [N∇F (Y0)|Yt = y]−N∇F (y)

))
. (27)

For simplicity, we write δt(·) = EY0| [N∇F (Y0)|Yt = ·]−N∇F (·). By LSI inequality (Assump-
tion 4) and Eq. (27), for 0 ≤ t ≤ η, we have

dL(N)

dt
(νt) =

∫
δL(N)(νt)

δµ(N)
(y)

∂νt
∂t

(y)dy

= λ

∫
δL(N)(νt)

δµ(N)
(y)∇ ·

(
νt(y)∇ log

νt

µ
(N)
∗

(y)

)
dy

+

∫
δL(N)(νt)

δµ(N)
(y)∇ · (νt(y)δt(y)) dy

= −λ

∫
νt(y)∇

δL(N)(νt)

δµ(N)
(y)⊤∇ log

νt

µ
(N)
∗

(y)dy (28)

−
∫

νt(y)∇
δL(N)(νt)

δµ(N)
(y)⊤δt(y)dy

= −λ2

∫
νt(y)

∥∥∥∥∥∇ log
νt

µ
(N)
∗

(y)

∥∥∥∥∥
2

2

dy

−
∫

ν0t(y0,y)λ∇ log
νt

µ
(N)
∗

(y)⊤ (N∇F (y0)−N∇F (y)) dy0dy (29)

≤ −λ2

∫
νt(y)

∥∥∥∥∥∇ log
νt

µ
(N)
∗

(y)

∥∥∥∥∥
2

2

dy

+
1

2

∫
ν0t(y0,y)

λ2

∥∥∥∥∥∇ log
νt

µ
(N)
∗

(y)

∥∥∥∥∥
2

2

+N2 ∥∇F (y0)−∇F (y)∥22

 dy0dy
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≤ −λ2

2

∫
νt(y)

∥∥∥∥∥∇ log
νt

µ
(N)
∗

(y)

∥∥∥∥∥
2

2

dy +
N2

2
E(Y0,Y)∼ν0t

[
∥∇F (Y0)−∇F (Y)∥22

]
≤ −ᾱλ2KL(νt∥µ(N)

∗ ) +
N2

2
E(Y0,Y)∼ν0t

[
∥∇F (Y0)−∇F (Y)∥22

]
= −ᾱλ

(
L(N)(νt)− L(N)(µ

(N)
∗ )

)
+

N2

2
E(Y0,Y)∼ν0t

[
∥∇F (Y0)−∇F (Y)∥22

]
.

(30)

Next, we bound the last term as follows:

N2E(Y0,Y)∼ν0t

[
∥∇F (Y0)−∇F (Y)∥22

]
= E(Y0,Y)∼ν0t

[
N∑
i=1

∥∥∥∥∇F (µY0)

δµ
(Y i

0 )−∇F (µY)

δµ
(Y i)

∥∥∥∥2
2

]

≤ 2E(Y0,Y)∼ν0t

[
N∑
i=1

{∥∥∥∥∇F0(µY0)

δµ
(Y i

0 )−∇F0(µY)

δµ
(Y i)

∥∥∥∥2
2

+ 4λ′2 ∥∥Y i
0 − Y i

∥∥2
2

}]

≤ 4E(Y0,Y)∼ν0t

[
NM2

2W
2
2 (µY0 , µY) + (M2

2 + 2λ′2)

N∑
i=1

∥∥Y i
0 − Y i

∥∥2
2

]

≤ 8(M2
2 + λ′2)E(Y0,Y)∼ν0t

[
N∑
i=1

∥∥Y i
0 − Y i

∥∥2
2

]

≤ 8(M2
2 + λ′2)EY0,(ξi)Ni=1

[
N∑
i=1

∥∥∥∥−t∇δF (µY0)

δµ
(Y i

0 ) +
√
2λtξi

∥∥∥∥2
2

]

≤ 8(M2
2 + λ′2)EY0,(ξi)Ni=1

[
t2

N∑
i=1

∥∥∥∥∇δF (µY0)

δµ
(Y i

0 )

∥∥∥∥2
2

+ 2λt

N∑
i=1

∥∥ξi∥∥2
2

]

≤ 8(M2
2 + λ′2)EY0

[
t2

N∑
i=1

2

(∥∥∥∥∇δF0(µY0)

δµ
(Y i

0 )

∥∥∥∥2 + 4λ′2 ∥∥Y i
0

∥∥2
2

)
+ 2λtNd

]
≤ 16N(M2

2 + λ′2)(t2M2
1 + λtd) + 64t2λ′2(M2

2 + λ′2)EY0

[
∥Y0∥22

]
≤ 16N(M2

2 + λ′2)(t2M2
1 + λtd) + 64t2λ′2(M2

2 + λ′2)

(
E
[
∥X0∥22

]
+

N

λ′

(
M2

1

4λ′ + λd

))
.

Therefore for any t ∈ [0, η], we see N2E(Y0,Y)∼ν0t

[
∥∇F (Y0)−∇F (Y)∥22

]
≤ Nδ

(N)
η , where

δ
(N)
η = 16η(M2

2 + λ′2)(ηM2
1 + λd) + 64η2λ′2(M2

2 + λ′2)
(

1
NE

[
∥X0∥22

]
+ 1

λ′

(
M2

1

4λ′ + λd
))

.

Substituting this bound into Eq. (30), we get for t ∈ [0, η],

d

dt

(
L(N)(νt)− L(N)(µ

(N)
∗ )− Nδ

(N)
η

2ᾱλ

)
≤ −ᾱλ

(
L(N)(νt)− L(µ(N)

∗ )− Nδ
(N)
η

2ᾱλ

)
.

Noting νη = µ
(N)
k+1 and ν0 = µ

(N)
k , the Gronwall’s inequality leads to

L(N)(µ
(N)
k+1)− L(N)(µ

(N)
∗ )− Nδ(N)η

2ᾱλ
≤ exp(−ᾱλη)

(
L(N)(µ

(N)
k )− L(N)(µ

(N)
∗ )− Nδ(N)η

2ᾱλ

)
.

This inequality holds at every iteration of (25). Hence, we arrive at the desired result,

L(N)(µ
(N)
k )− L(N)(µ

(N)
∗ ) ≤ Nδ(N)η

2ᾱλ
+ exp(−ᾱληk)

(
L(N)(µ

(N)
0 )− L(N)(µ

(N)
∗ )− Nδ(N)η

2ᾱλ

)
.
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B Auxiliary results

In this section, we showcase auxiliary results used in our theory.

LSI on µ
(N)
∗ can be verified by using the following two lemmas. Lemma 2 says that the strong

log-concave densities satisfy the LSI with a dimension-free constant.

Lemma 2 (Bakry and Émery (1985)). Let dµ(x)
dx ∝ exp(−f(x)) be a probability density, where

f : Rd → R is a smooth function. If there exists c > 0 such that ∇2f ⪰ cId, then µ satisfies
log-Sobolev inequality with constant c.

Additionally, the LSI is preserved under bounded perturbation as seen in Lemma 3.
Lemma 3 (Holley and Stroock (1987)). Let µ be a probability distribution on Rd satisfying the log-
Sobolev inequality with a constant α. For a bounded function B : Rd → R, we define a probability
distribution µB as follows:

dµB(x)

dx
=

exp(B(x))

EX∼µ[exp(B(X))]

dµ(x)

dx
.

Then, µB satisfies the log-Sobolev inequality with a constant α/ exp(4∥B∥∞).

Theorems 4 and 5 give convergence rates of the infinite-particle MFLDs in continuous- and discrete-
time settings.
Theorem 4 (Nitanda et al. (2022)). Under Assumptions 1 and 2, we run the infinite-particle MFLD
(7) in the continuous-time setting. Then, it follows that

L(µt)− L(µ∗) ≤ exp(−2αλt) (L(µ0)− L(µ∗)) .

For MFLD (17), we consider one-step interpolation: for 0 ≤ t ≤ η,

Xk,t = Xk − t∇δF (µk)

δµ
(Xk) +

√
2λtξk.

Set µk,t = Law(Xk,t) and δµk,t = E(Xk,Xk,t)

[∥∥∥∇ δF (µk)
δµ (Xk)−∇ δF (µk,t)

δµ (Xk,t)
∥∥∥2
2

]
.

Theorem 5 (Nitanda et al. (2022)). Under Assumptions 1 and 2, we run the infinite-particle MFLD
(17) in the discrete-time setting with the step size η. Suppose there exists a constant δη such that
δµk,t ≤ δη for any 0 < t ≤ η. Then, it follows that

L(µk)− L(µ∗) ≤
δη
2αλ

+ exp(−αληk) (L(µ0)− L(µ∗)) .

Under Assumption 1, we can evaluate δµk,t in a similar way as the proof of Theorem 2 and we obtain

δη = 8η(M2
2 + λ′2)(2ηM2

1 + 2λd) + 32η2λ′2(M2
2 + λ′2)

(
E
[
∥X0∥22

]
+

1

λ′

(
M2

1

4λ′ + λd

))
.

The next theorem gives a relationship between LSI and Talagrand’s inequalities.
Theorem 6 (Otto and Villani (2000)). If a probability distribution µ ∈ P2(Rd) satisfies the log-
Sobolev inequality with constant α > 0, then µ satisfies Talagrand’s inequality with the same constant:
for any µ′ ∈ P2(Rd)

α

2
W 2

2 (µ
′, µ) ≤ KL(µ′∥µ),

where W2(µ
′, µ) denotes the 2-Wasserstein distance
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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• The conference expects that many papers will be foundational research and not tied
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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