FASTATTENTION: EXTEND FLASHATTENTION TO NPUS AND LOW-RESOURCE GPUS FOR EFFICIENT LLM INFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

FlashAttention series has been widely applied in the inference of large language models (LLMs). However, FlashAttention series only supports the high-level GPU architectures, e.g., Ampere and Hopper. At present, FlashAttention series is not easily transferrable to NPUs and low-resource GPUs. Moreover, FlashAttention series is inefficient for multi- NPUs or GPUs inference scenarios. In this work, we propose FastAttention which pioneers the adaptation of FlashAttention series for NPUs and low-resource GPUs to boost LLM inference efficiency. Specifically, we take Ascend NPUs and Volta-based GPUs as representatives for designing our FastAttention. We migrate FlashAttention series to Ascend NPUs by proposing a novel two-level tiling strategy for runtime speedup, tiling-mask strategy for memory saving and the tiling-AllReduce strategy for reducing communication overhead, respectively. Besides, we adapt FlashAttention for Volta-based GPUs by redesigning the operands layout in shared memory and introducing a simple yet effective CPU-GPU cooperative strategy for efficient memory utilization. On Ascend NPUs, our FastAttention can achieve a $10.7 \times$ speedup compared to the standard attention implementation. Llama-7B within FastAttention reaches up to $5.16 \times$ higher throughput than within the standard attention. On Volta architecture GPUs, FastAttention yields $1.43 \times$ speedup compared to its equivalents in xformers. Pangu-38B within FastAttention brings $1.46 \times$ end-to-end speedup using FasterTransformer. Coupled with the propose CPU-GPU cooperative strategy, FastAttention supports a maximal input length of 256K on 8 V100 GPUs. All the codes will be made available soon.

006

008 009 010

011

013

014

015

016

017

018

019

021

023

024

025

026

028

029

031

1 INTRODUCTION

Recent years have witnessed the impressive performance of transformer-based large language models (LLMs) (Zhao et al., 2023; Vaswani et al., 2017; Kaplan et al., 2020) in understanding and generative tasks (Ainslie et al., 2023; Viggiato & Bezemer, 2023; Peng et al., 2023; Beltagy et al., 2020). It's noteworthy that the runtime and memory requirements of Transformer-based LLMs scale quadratically with the input sequence length. Dao et al. (2022) proposed FlashAttention series algorithms to reduce the runtime requirements and decrease memory usage from quadratic to linear complexity with regard to sequence lengths, of which FlashAttention2/3 (Dao, 2023; Shah et al., 2024) is widely used in the domain (Aminabadi et al., 2022; Shoeybi et al., 2020; NVIDIA, 2023b; Wu et al., 2023).

044 However, the FlashAttention series is typically designed for resource-rich Graphics Processing Units (GPUs) featuring high-level architectures, e.g., FlashAttention2 for Ampere and FlashAttention3 for 046 Hopper (Jia & Van Sandt, 2021; Choquette, 2022). We identify three limitations of FlashAttention: 047 1) For architectures with lower capabilities, e.g., Volta (Choquette et al., 2018), and non-CUDA 048 architectures, e.g., the architectures of Neural network Processing Units (NPUs), the existing FlashAttention project is not applicable. Additionally, xFormers implements the memory-efficient attention for V100 GPUs with suboptimal computational efficiency (Lefaudeux et al., 2022; Rabe & 051 Staats, 2021). Moreover, a dedicated version of FlashAttention has been developed to support AMD GPUs (AMD, 2024). 2) The FlashAttention series exhibits inefficiency in distributed inference 052 across multiple devices, arising from the communication overhead incurred by the AllReduce operations. 3) Under the constraints of limited device memory, FlashAttention can not enable

inference with ultra-long sequences on a single node within multi-NPUs and multiple low-resource
GPUs. The limitations are caused by the significant differences in architectures and instruction sets,
which pose challenges to adapting the existing FlashAttention for NPUs and low-resource GPUs, as
detailed in § 3. In particular, directly transferring the workflow of the FlashAttention series to NPUs
is inefficient, which means the techniques used in FlashAttention, such as tiling and work partitioning,
typically can only exploit partial capabilities of non-CUDA architectures. As shown in Table 2.

Given the numerous inference systems that rely on low-resource GPUs and economical NPUs, failing
to deploy FlashAttention in these systems could have significant adverse impacts. To address the
issues mentioned above, we propose FastAttention, a pioneering adaptation of FlashAttention series
for NPUs and low-resource GPUs with more efficiency. Without loss of generality, we design
FastAttention for Ascend NPUs, e.g., Ascend 910B, and Volta-based GPUs, e.g., V100, serving as
examples of the FlashAttention extension for NPUs and low-resource GPUs. Our contributions are
summarized as follows:

- 067
- 068 069 070

071

073

075

076

077

078

• On NPUs, We propose a generalizable two-level tiling strategy, tiling-mask strategy and tiling-AllReduce strategy to save memory and improve runtime speedup for the adaption of FlashAttention. **Remarkably, to the best of our knowledge, we are the first to map FlashAttention series on NPUs**.

- We provide the implementation of FlashAttention tailored for low-resource GPUs, alongside a fine-grained CPU-GPU cooperative strategy to scale up the maximum input sequence length.
- Experimental results demonstrate that FastAttention achieves a $10.7 \times$ speedup over the standalone implementation and provides a $5.16 \times$ higher throughput compared to not using it on Ascend NPUs. On Volta-based GPUs, FastAttention achieves up to $1.43 \times$ speedup when compared to its equivalents in xformers, enabling a $1.46 \times$ lower latency and supporting a maximal input length of 256K when using FasterTransformer on a single node.
- 079 080 081

2 RELATED WORK

082 083

Large Transformers: Large Transformers, characterized by their extensive parameters and layers, are primarily employed for complex tasks such as natural language processing (NLP) and computer vision (Voulodimos et al., 2018). In these models, particularly in LLMs like GPT (Achiam et al., 2023), the attention mechanism plays a pivotal role, consuming a significant portion of computational resources. Although models such as Vision Transformers (ViT) and Diffusion Transformers (Spolaore & Wacziarg, 2009; Yuan et al., 2021) also incorporate attention mechanisms, the proportion of computation dedicated to attention in these models is relatively small. Consequently, the FlashAttention series is more specifically tailored to large transformer models, where attention computations are more prominent.

092 FlashAttention series algorithms: FlashAttention employs tiling and recomputation to minimize the number of memory access between the on-chip SRAM (a.k.a shared memory) and high bandwidth 094 memory (HBM). It introduces frequent data flow via SRAM between Tensor Core and Cube Core 095 (Choquette et al., 2021; Markidis et al., 2018). FlashAttention2 further optimizes the workflow 096 of FlashAttention, exhibiting better parallelism and work partitioning. Based on the characters 097 of newer GPU architectures, such as Hopper and Blackwell, FlashAttention3 hides the the non-098 GEMM operations under asynchronous General Matrix Multiplication (GEMM) with asynchronous instructions to further improve performance. Appendix A provides a more detailed description. However, FlashAttention2/3 only supports the resource-rich GPUs, neglecting low-resource GPUs 100 and powerful NPUs. What's more, FlashAttention series lacks the capability to reduce the memory 101 occupied by attention_mask and decrease the communication overhead introduced by AllReduce. 102

Ultra-long sequence inference: Limited device memory poses a significant constraint, rendering
 FlashAttention series incapable of supporting inference with ultra-long sequences (e.g., 256K) on
 a single node. Notably, the *offloading* is generally coupled with attention optimization for efficient
 memory utilization. For instance, both FlexGen (Sheng et al., 2023) and DeepSpeed-Inference
 (Aminabadi et al., 2022) design a classical *offloading* strategies that schedules data among GPUs,
 CPUs, and disks but lacks fine-grained pipeline design.

108 3 NPUS AND LOW-RESOURCE GPUS

117 118

119

120

121

122 123

125

126 127

Similarity between NPUs and GPUs: Most of the NPUs, such as Ascend NPUs, Hanguang NPUs, and Cambricon-series NPUs (Liao et al., 2021; Jiao et al., 2020; Song et al., 2023), are designed for high throughput and energy efficiency (Chen et al., 2020; Han & Yoo, 2023; Ahn et al., 2022).
Taking Ascend NPUs as a representative, as shown in Figure 1, Ascend NPUs share similar design principles with GPUs, such as AI Cores corresponding to SMs in GPUs, Vector units corresponding to Cuda Cores and Cube units corresponding to Tensor Cores. Specifically, Cube units handle matrix computations while Vector units manage element-wise computations.

Figure 1: The comparison of architectures between resource-rich GPUs and Ascend NPUs

128 Differences between NPUs and GPUs: 1) Decoupled architecture. Each AI Core in Ascend 129 NPUs integrates Cube, Vector, and Scalar units. The Cube units are decoupled from the Vector units, 130 facilitating data exchange through the L2 buffer and global memory (GM), while Tensor Cores in 131 GPUs interface with CUDA Cores via the shared memory. Consequently, the frequent data flow 132 between Tensor Cores and CUDA Cores can limit the benefits of the decoupled architecture due to the 133 synchronization overhead between the Cube and Vector units. In contrast, the decoupled architecture 134 in Ascend NPUs enables seamless pipelining between Cube and Vector units, suggesting that the 135 optimal programming model for Ascend NPUs follows a pipelined approach. This design allows 136 element-wise computations by the Vector unit to overlap with matrix computations by the Cube unit, 137 requiring a redesign of efficient attention mechanisms on NPUs from an overlapping perspective. 2) Memory hierarchy. In GPUs, Tensor Cores and Cuda Cores share access to the L2 cache, L1 138 cache, and register files. In contrast, the Cube units in NPUs are equipped with L0 buffers, which are 139 absent in the Vector units, and feature a larger L1 buffer compared to the latter. The tiling method 140 employed in FlashAttention fails to fully leverage the L1 buffer. To maximize the performance of 141 NPUs, a meticulously designed data flow is essential. 3) SDMA. Ascend NPUs support System 142 Direct Memory Access (SDMA) (Huawei, 2023b), which enables them to execute computation and 143 communication in parallel. It's imperative to redesign FlashAttention algorithm to fully capitalize on 144 SDMA, thereby reducing communication overhead and enhancing overall efficiency during inference. 145

Low-resource GPUs versus high-end GPUs: Low-resource GPUs exhibit similar architectures and memory hierarchies (HBM and SRAM) while different Tensor Cores for matrix computations compared to the resource-rich GPUs, resulting in distinct requirements for data layout in SRAM. This variation in data layout presents significant challenges when extending FlashAttention series to low-resource GPUs. Notably, high-level architectures like Ampere and Hopper already feature efficient attention implementations, i.e., FlashAttention series. GPUs with lower-level architectures than Volta do not possess Tensor Cores, which are essential for implementing various efficient attention mechanisms. For this reason, we take the Volta-based GPUs as representatives in our work.

153 Why we refer to FastAttention as an extension of FlashAttention: Due to the similarities between 154 GPUs and NPUs, some basic ideas inside FlashAttention series, such as fused blocked GEMM 155 and online softmax, can be also employed on NPUs with non-trivial implementation. However, 156 significant differences in architecture, memory hierarchy, and SDMA necessitate a tailored redesign 157 to fully leverage NPU capabilities. FlashAttention series is also not applicable for low-resource 158 GPUs, as they require distinct data layouts and block partitioning strategies to utilize Tensor Cores. 159 Moreover, FlashAttention is not optimized for multi-NPU or multi-low-resource GPU scenarios. In contrast, FastAttention incorporates only a few basic ideas from FlashAttention while introducing 160 substantial novel techniques as detailed below, extending FlashAttention in both design techniques 161 and applicability.

162 4 METHODOLOGY 163

We considers different application scenarios to design FastAttention: 1) In single-NPU scenarios, FastAttention features a two-level tiling strategy for the NPU's computational power utilization and an 166 architecture-independent tiling-mask strategy for memory saving. 2) In multi-NPU scenarios, building upon the prior method, FastAttention further integrates the tiling-AllReduce strategy to minimize 168 the communication overhead. 3) For low-resource GPUs such as those with Volta architecture, FastAttention applies the standard FlashAttention2 kernel and redesigns the shared memory layout of 170 operands in FlashAttention2 to adapt the instructions of Volta architectures. 4) In case GPU memory is insufficient for inference, FastAttention equips a fine-grained CPU-GPU cooperative strategy with the prior standard kernel to fully utilize the CPU's computing power and memory. 172

173 174

175 176

177

179

181

182

183

171

164

165

167

FASTATTENTION ON A SINGLE NPU 41

Figure 2: a) The unified tiling scheme with the fine-grained pipeline of Vector and Cube units; b) The 185 two-level tiling strategy that employs the larger block size in the first level and maintains the smaller block size in the second level.

187 In this section, we delve into the redesign of the FlashAttention2 operator for Ascend NPUs. Ini-188 tially, drawing upon the standard FlashAttention2 implementation for GPUs, we develop a standard 189 FlashAttention2 kernel for Ascend NPUs, which employs the unified tiling strategy illustrated in 190 the left of Figure 2. Specifically, considering the L1 buffer sizes in Ascend NPUs, we distribute the 191 Q matrix across the Ascend NPU's AI Core units and split the input matrices K and V along the 192 sequence length (S dimension) into small blocks.

193 **Pipeline:** Each of these small tiling blocks follows computations sequentially executed by Cube and 194 Vector units. This design allows Vector and Cube units to work in tandem, achieving a better pipeline 195 for efficient parallel computation. For instance, when the block0 performs the Exp calculation by the 196 Vector unit, the block1 will perform the matrix multiplication of $Q * K^T$ by the Cube unit. 197

NPU-specific two-level tiling strategy: The unified tiling strategy employs small block size, leading 198 to the frequent data flow between Cube unit and Vector unit via L2 buffer, which in turn introduces 199 significant synchronization overhead. Additionally, the distinct computational characteristics and 200 discrepancy in L1 buffer size between Cube and Vector units result in underutilization of the Cube's 201 L1 buffer. To address the issues, we propose a novel two-level tiling strategy. The two-level tiling 202 strategy is depicted in the right of Figure 2. In the first level, we adopt larger block sizes than the 203 former implementation for Cube unit, which can effectively decrease the number of synchronizations. 204 Additionally, we optimize the pipeline parallelism of Vector and Cube by utilizing the double-205 buffering technique on GM. Furthermore, this design allows the Cube unit to load larger continuous 206 blocks for the utilization of memory bandwidth. Considering the limited L0 and L1 size, we split the large blocks into several small blocks along row dimension for Vector unit. This design provides a 207 more refined pipeline over the multi-level memory of each computing unit. What's more, we also 208 apply the double-buffering technique to overlap the data transfer and computation in the second level. 209 The more detailed mathematical equations for the two-level tiling are provided in Appendix B. 210

211 Tiling-mask: Besides, we propose an architecture-agnostic tiling-mask strategy to eliminate the 212 memory requirement for *attention_mask*. Specifically, we implement an attention_mask generator that 213 uses a small mask matrix with the dimensions of (2 * M) * (2 * M) (M represents the maximal block size) to substitute the complete *attention_mask* matrix with the dimensions of S * S (S represents 214 the sequence length). The complete *attention_mask* matrix is a lower triangular matrix. Due to the 215 tiling strategy implemented in FlashAttention2, the corresponding attention_score blocks need to be

216 masked by a smaller mask matrix (abbreviated as *B-mask*) with the same block size dimension. It is 217 important to note that the block size (abbreviated as b) of the B-mask should be less than M. 218

The attention_mask generator can gener-219

ate the *B*-mask matrices required for any 220

attention_score block by the mask matrix 221

with dimensions of (2 * M) * (2 * M)222 (abbreviated as *M-mask*). For instance,

as depicted in Figure 3, a M-mask ma-

trix (6 * 6) can be split into multiple *B*masks when b is 3. Each attention_score Figure 3: In case b = 3, M = 3, a M-mask matrix can be 225 block can search for the required B-mask split into 6 B-mask matrices required by any given blocks 226 within the *M*-mask matrix by employing through shifting. 227

mathematical transformations. 228

224

236

237 238

239

240 241 242

243 244

245

Furthermore, there are two particular scenarios: all values within the *B*-mask are 0, and all values 229 within the *B*-mask are 1. In the first scenario, we can directly skip the computation for that block, 230 saving approximately 50% of the Cube computation. For the scenario where all values within 231 the block are 1, we can directly skip the computation of $Q * K^T + mask$, thereby reducing the 232 calculation for the vector. Tiling-mask can significantly reduce memory consumption. For instance, 233 the attention_mask matrix requires 8GB GPU memory (batchsize = 1, $sequence_length = 64K$) 234 while *M*-mask (M = 512) only demands 256KB. 235

4.2 FASTATTENTION IN MULTI-NPU SCENARIOS

Figure 4: The pipeline of FastAttention with tiling-AllReduce strategy using different block sizes.

Tiling-AllReduce strategy for multi-NPUs: When each NPU completes the attention and Linear 246 calculation in multi-NPU scenarios, AllReduce is employed to gather the computation results. 247 Note that FlashAttention series accelerates the calculation of $x_o = Softmax(\frac{QK^T}{\sqrt{d}})V$, the Linear calculation implys the multiplication of x_o and the W_o matrix. Building upon the prior work, we fuse 248 249 the attention and Linear calculation into a more efficient kernel and employ the tiling-AllReduce 250 strategy to reduce the communication overhead. Specifically, we split the AllReduce operation 251 into multiple AllReduce operations (abbreviated as B-allreduce) on a per-block basis. The 252 B-allreduce operations are overlapped with block calculations to improve performance. 253

254 As shown in Figure 4, we partition the input matrix Q with shape B * S * N * D (batch size, sequence 255 length, number of heads, and head dimension defined by B, S, N, D, respectively) into multiple blocks along the dimension B * S on each Ascend NPU. For each independent block, FastAttention 256 will sequentially complete the attention calculation, Linear calculation, and the B-allreduce 257 communication. The B-allreduce in a block can be overlapped with the calculation of other 258 blocks due to the SDMA supported by Ascend NPUs. In this way, except for the first block, the other 259 blocks can efficiently reduce the communication overhead. In order to minimize the impact of the 260 computation time of the first block, we assign smaller computation tasks to the first block. Moreover, 261 the tiling method minimizes the data transferred per communication, leading to underutilization of 262 bandwidth capacity. Therefore, we enlarge the block size to achieve better bandwidth utilization. The 263 new tiling method is illustrated in the right of Figure 4. The formalized description of this strategy 264 can be found in the Appendix B.

266

267

265

4.3 FASTATTENTION ON LOW-RESOURCE GPUS

In this section, we provide a computation-efficient adaptation of FlashAttention2 for Volta-based 268 GPUs. The main issue encountered in porting FlashAtention2 to the Volta-based GPUs is the hard-269 coded use of MMA (matrix multiply and accumulate) operations, which is supported only in Nvidia

architectures above or equal to Ampere. The code assumes the use of the m16n8k16 and m16n8k8 Tensor Core instructions, while the V100 supports only m8n8k4 one. As shown in Figure 5, Volta architecture implements an MMA instruction where a group of 8 threads called a quadpair (QP) collaborate to share data and perform an 8x8x4 MMA. In this figure, T stands for the index of the thread in a warp. Since a warp is 32 threads wide, it would perform an MMA across 4 QPs for a tile size of 16x16x4. While Ampere MMA instruction m16n8k16 operates at the granularity of 1 Warp. Hence, these operations have completely different partitioning of the input data and the resulting output. Furthermore, the implementation of many FlashAttention2 methods, such as softmax, causal masking, and transposing the data layout, can only work for Ampere and above. For example, the function convert_layout_acc_rowcol that transforms the layout cannot be used for Volta MMA.

Figure 5: An example of MMA instruction m8n8k4 for Volta.

To address the issues, we carefully redesign the data layout in SRAM with the CuTe library (Nvidia, 2023) to accommodate Volta instruction sets. And we base on Volta m8n8k4 instruction with FP16 accumulators to create a converter for the data layout redesign. Our codes are flexible and adaptable for any Volta-based GPU. The more detailed mechanism behind this data layout redesign can be found in Appendix C. The CuTe library typically focuses on new-generation GPUs and lacks the SRAM and HBM layouts examples for the Volta architecture. We delve extensively into the CuTe sources to redesign the data layout to eliminate bank conflicts (Nvidia, 2024) in SRAM access and make coalesced access to HBM. In the end, we successfully port the FlashAttention2 implementation on Volta-based GPUs, which provides better performance.

4.4 FASTATTENTION FOR ULTRA-LONG SEQUENCES IN MULTIPLE LOW-RESOURCE GPUS SCENARIOS

For inference on multiple low-resource GPUs, we propose a **CPU-GPU cooperative strategy** coupled with our efficient attention kernel to extend the maximal input sequence length and exhibit better performance than the classical *offloading*. The detailed description of this strategy is as follows: 1) In case the GPU memory is sufficient for inference, there is no need to employ the *offloading* method. 2) Otherwise, our strategy will manage the memory of CPUs and GPUs. The strategy calculates the value of L_{CPU} and L_{GPU} , which means the number of layers where the KV cache is stored on CPUs and the number of layers where the KV cache is stored on GPUs, respectively. The L_{GPU} and L_{CPU} can be computed by: $L_{GPU} = \frac{M_{GPU} - \frac{M_w}{n} - M_{mid} - M_{vocab}}{M_{kv}}$ and $L_{CPU} = L - L_{GPU}$. The M_{GPU} 324 refers to a single GPU memory. M_w , M_{kv} , M_{vocab} and M_{mid} represent the memory occupied by 325 model weights, KV cache of one layer, the vocabulary matrix and the intermediate results on a single 326 GPU, respectively. The total number of transformer layers is denoted as L, while the number of 327 GPUs is n. For details, please see our Appendix D. 3) As shown in the top of Figure 6, during the 328 *prefill* stage, the KV cache of the pre- L_{CPU} layers will be asynchronously offloaded to the CPUs after the calculation of the KV matrix, which eliminates the offloading overhead. 4) During the 329 decoding stage, as described in the bottom of Figure 6, our strategy offloads the QKV matrix of the 330 preL_{CPU} and uses CPUs to finish the *attention* calculation. It utilizes multi-threading and vectorized 331 instructions, e.g., AVX512, to reduce the calculation latency using CPUs. The calculation results will 332 be uploaded to GPUs and finish the FNN calculation. For the rest of L_{GPU} layers, all the calculations 333 will be completed by GPUs. 334

335 5 PERFORMANCE EVALUATION

337 5.1 OVERVIEW

361 362

5.2.1

We conduct extensive evaluations on our FastAtten-

339	tion. We use the closed-source PanGu-series and	Model name	# params (B)	# Layers	Heads	Head_dim	FFN size
340	open-source LLaMA-series models (Zeng et al	PanGu-38B	38	40	40	128	20480
	open source Elantit series models (Leng et al.,	OPT-30B	30	48	56	128	28672
341	2021: Ren et al., 2023: Touvron et al., 2023b:	LLaMA2-7B	7	32	32	128	11008
		LLaMA2-70B	70	80	64	128	28672
342	Huawei, 2023a) to demonstrate the superior perfor-	LLaMA-65B	65	80	64	128	22016
343	mance and generalizability of FastAttention. Ta-						

ble 1 elaborates the model configurations. We con-Table 1: The model configurations used for the
 duct the experiments on two types of hardware:model inference performance evaluation.

Ascend 910B NPUs and Nvidia Tesla V100 GPUs.

First of all, we clarify the definition of standard attention: the naive implementation of matrix 347 operations following the equation $Softmax\{\frac{QK^{T}}{\sqrt{d}}\}V$ without optimizations like operator fusion and online Softmax. These experiments show that FastAttention is 4.85-10.7× faster than the standard 348 349 350 attention implementation on an Ascend NPU and up to $1.40 \times$ faster on 8 Ascend 910B. The system 351 within FastAttention yields up to $5.1 \times$ throughput compared to the baseline on an Ascend 910B, 352 while demonstrating comparable latency and throughput on 8 Ascend 910B. Moreover, FastAttention achieves a speedup of $1.43 \times$ than xformers' FlashAttention implementation and $1.48 \times$ over the 353 classical offloading for ultra-long sequence inference on V100 GPUs. Furthermore, FastAttention 354 extends the maximum input sequence length from 16K to 256K and reaches up to $1.46 \times$ speedup 355 compared to a baseline without FastAttention on a machine equipped with 8 V100 GPUs. None 356 of our optimizations compromise accuracy and FastAttention is orthogonal to techniques such as 357 quantization. Additional experiment details are in Appendix E. Note that FlashAttention series is not 358 applicable for Ascend NPUs and V100, making a direct comparison with FastAttention infeasible in 359 these experiments. 360

5.2 The operator-level performance evaluation of FastAttention

FASTATTENTION ON A SINGLE ASCEND NPU

We compare the latency of the FastAttention operator during the *prefill* stage with that of the standard attention implementation. We use PanGu-38B and PanGu-71B to evaluate the optimization effects of the FastAttention operator on an Ascend 910B. All experiments use a batch size (B) of 1, with

Figure 10: The performance of FastAttention on eight Ascend 910B NPUs with sequence length from 2K to 32K and batch size 1 during the *prefill* stage.

5 heads (N) and a head dimension (D) of 128 for PanGu-38B, and 4 heads and a head dimension of 128 for PanGu-71B. Figure 7 demonstrates the significant performance improvements using the FastAttention operator. Embedded in PanGu-38B and PanGu-71B, the FastAttention operator can achieve at most 10.7× and 7.1× speedup, respectively.

Furthermore, we conduct experiments to analyze the impact of the two-level tiling strategy on performance improvement. The experiments compare the latency of the FastAttention operator with different block sizes of the first level across multiple input sequence lengths on an Ascend 910B. The results for BS = 128 (BS represents the basic block size) are treated as the baseline. Figure 9 shows that with the 4K input sequence length, the proposed strategy helps reduce latency by about 26% and 37% for PanGu-38B and PanGu-71B, respectively. Moreover, with the 8K and 16K input sequence length, the operator latency decreases by 33% and 38% for PanGu-38B, and the reductions are 43% and 45% for PanGu-71B, respectively. These results demonstrate the efficiency of our optimization strategy, especially for long sequence lengths.

5.2.2 FASTATTENTION ON MULTI-NPUS

Table 2: Ablation study of proposed strategies on NPUs.

Operator	Tiling-mask	Unified tiling	Two-level tiling	Tiling-AllReduce	Speedup	
Standard attention	Х	Х	Х	Х	1	
FastAttention	\checkmark	Х	Х	Х	1	
FastAttention	Х	\checkmark	Х	Х	$2.55-7 \times$	
FastAttention	Х	Х	\checkmark	Х	$3.65-10.7 \times$	
FastAttention	Х	Х	\checkmark	\checkmark	4.23-15×	
FastAttention	\checkmark	Х	\checkmark	\checkmark	4.23-15×	

In these experiments, we compare the latency of FastAttention in terms of the total latency involved in the unfused FastAttention kernel (the implementation in § 4.1), *Linear* operator, and the Allreduce operation. We conduct evaluations of the FastAttention using PanGu-38B, PanGu-71B and LLaMA2-70B with varying sequence lengths on eight Ascend 910B NPUs. Batch size is 1 in all the experiments. Figure 10 demonstrates a significant speed improvement of our FastAttention. For PanGu-38B, our FastAttention achieves a speedup ranging from $1.16 \times$ to $1.40 \times$ across sequence lengths from 2K to 32K. For PanGu-71B, it can achieve a performance improvement of 7.4%, 12.3%, 24.2%, 26.1%, and 21.3% for sequence lengths of 2K, 4K, 8K, 16K, and 32K, respectively. FastAttention achieves up to $1.3 \times$ lower latency for LLaMA2-70B. Notably, as the sequence length increases, the FastAttention operator typically can achieve more performance improvement due to the increased proportion of overlapping time. Furthermore, we give the ablation study of FastAttention for Ascend NPUs in Table 2 to demonstrate the effectiveness of the proposed strategies. Note that the tiling-AllReduce

strategy has to be built upon the two-level tiling strategy. Therefore, we don't test the tiling-AllReduce
strategy independently. With the two-level strategy, our FastAttention reaches up to 10.7× speedups
and realizes a maximum speedup of 15× coupled with tiling-AllReduce strategy. FastAttention
also demonstrates significant performance improvements for small Transformers, such as Vision
Transformers. The relevant experimental results are presented in Appendix E.

437 438

451

452

464

5.2.3 FASTATTENTION ON LOW-RESOURCE GPUS

439 We measure the runtime of the FastAttention operator across different sequence lengths and compare 440 it to the FlashAttention operator in x formers. We compare the two operators on a single V100 441 GPU under two settings: without and with causal masks. Benchmark settings are as follows: 1) 442 sequence length varies from 2k to 16k, 2) batch size is set to 8, 3) hidden dimension to 2048, and 443 4) head dimension to 64. To calculate the FLOPs, we used the formula $4 \cdot batchsize \cdot seqlen^2 \cdot$ 444 head dimension · number of heads. Figure 8 demonstrates that FastAttention always exhibits 445 higher TFLOPs/s compared to the counterpart in xformers. Without causal mask, our operator 446 achieves speedup of $1.03 \times$, $1.06 \times$, $1.12 \times$, and $1.17 \times$ for sequence lengths of 2K, 4K, 8K, and 16K, respectively. With causal mask, as the sequence length increases, FastAttention can achieve a 447 maximum speedup of $1.43 \times$. Additionally, we compare FastAttention with the vanilla implementation 448 in Transformers (huggingface, 2024), achieving maximum speedups of $8.2 \times$ and $2.2 \times$ with and 449 without causal mask, respectively. 450

5.2.4 FASTATTENTION WITH ULTRA-LONG SEQUENCE ON MULTIPLE LOW-RESOURCE GPUS Table 3: The performance comparison of our CPU-GPU strategy and classical *offloading* strategy.

	Classical Offloading			FastAttention			
Seq_length	Upload(ms)	GPU Calc(ms) T	Total(ms)		L_{CPU} layers		
	-F()			CPU_Calc(ms)	Off_Upload(ms)	Total(ms)	GPU_Calc(ms)
1K	-	0.058	0.058	-	-	-	0.058
2K	-	0.068	0.068	-	-	-	0.068
4K	-	0.095	0.095	-	-	-	0.095
8K	-	0.17	0.17	-	-	-	0.17
16K	3.58 ± 0.43	0.312	3.892	2.676	0.043	2.719	0.312
32K	6.98 ± 0.46	0.568	7.548	5.30	0.045	5.345	0.568
64K	13.13 ± 0.53	1.123	13.66	10.625	0.06	10.685	1.123
128K	25.61 ± 0.4	2.088	27.698	18.66	0.061	18.721	2.088
256K	50.81 ± 0.39	4.11	54.92	37.74	0.066	37.806	4.11

- represents that the system doesn't necessitate offloading strategies.

The data highlighted in the gray background section signifies the total latency required by attention calculation.

Figure 11: Latency and throughput comparison of FasterTransformer with and without FastAttention
 for different models and sequence lengths on eight V100 GPUs.

476 We measure the latency of *attention* calculation using FastAttention integrated with our CPU-GPU 477 cooperative strategy, as well as only using the classical offloading strategy, respectively. The classical 478 offloading offloads the KV cache from GPUs to CPUs and uploads the KV cache to GPUs when 479 necessary. We use PanGu-38B to conduct the experiments with different sequence lengths and batch 480 size 1 on eight V100 GPUs. Table 3 shows the latency breakdown to the *attention* calculation of one 481 transformer layer. For the classical offloading, Upload implies the latency of uploading KV cache to 482 a GPU. For the FastAttention, CPU_Calc time represents the latency of *attention* calculation using a 483 CPU, Off_Upload contains the latency of offloading QKV matrix and that of uploading the results. Both Total means the total latency of the *attention* calculation, and GPU_Calc implies the latency 484 of *attention* calculation using a GPU. Due to the same operators with different strategies applied, the 485 values of GPU_Calc in FastAttention and Classical Offloading are similar.

486 In Table 3, it can be observed that the sequence length can reach up to 256K using our strategy 487 on eight V100 GPUs. For the pre- L_{CPU} layers, FastAttention using our strategy is 1.27-1.48× 488 faster than using classical offloading. For the rest L_{GPU} layers, it's up to $13.36 \times$ faster than using classical offloading. Specifically, it is evident that Off_Upload remains almost constant latency, 489 490 as our strategy solely necessitates uploading results of fixed dimensions during the decoding phase. Employing our strategy, the CPU_Calc latency is notably lower than the Upload in classical 491 offloading. This discrepancy arises from the PCIe for data transfer on V100, which provides a mere 492 theoretical bidirectional bandwidth of 32GB/s. Moreover, the real-world bandwidth is often affected 493 by various factors, which may prevent it from reaching the theoretical peak. 494

495 496

5.3 THE END-TO-END PERFORMANCE OF FASTATTENTION

			Sea length	OPT	-30B	LLaMA	A-65B		
		207			Seq_iengui	Latency (ms)	token-per-sec	Latency (ms)	token-per-sec
Seq_length	PanGu-38B		PanGu-71B -		512	270.5 ± 9.35	20.25 ± 0.7	513.15 ± 16.31	10.57 ± 0.33
	Latency (ms)	token-per-sec	Latency (ms)	token-per-sec	1K	384.74 ± 30	16.27±1.26	1046.79 ± 43	6.73 ± 0.27
4K	240.81	95	539.14	34	2K	691.67 ± 100	11.59 ± 1.67	2206.95 ± 200	4.08 ± 0.4
8K	292.33	88	1052.49	33	4K	N/A	N/A	3848.61 ± 300	2.35 ± 0.18
32K	1393.42	76	4948.33	25	8K	N/A	N/A	N/A	N/A
N/A means that the sequence lengths surpass the model limitation or encounter some									

501 Table 4: End-to-end performance evaluation of 502

system errors during the experiments.

FastAttention on 8 Ascend 910B.

Table 5: End-to-end performance evaluation of Deepspeed on 8 V100.

504 We use two performance metrics: (i) latency, i.e., end-to-end time to generate one token for an input 505 sequence, and (ii) token throughput, i.e., tokens-per-second processed. We measure the latency of 506 generating one token with an input sequence of different lengths, which reflects the high computational 507 efficiency of FastAttention. For throughput, we measure the performance with an input sequence of 508 varying lengths while generating 50 tokens at a time.

509 Firstly, we measure the throughput with an input 510

prompt of 512 tokens using LLaMa2-7B on an As-511 cend 910B, thereby demonstrating the performance 512 of FastAttention on a single NPU. As shown in Ta-513 ble 6, the system within FastAttention achieves up 514 to $5.16 \times$ higher throughput. Then, we conduct the

515 experiments with PanGu-38B and PanGu-71B on eight Ascend 910B NPUs. Table 4 demonstrates 516

the excellent performance of FastAttention on 8 517 Ascend 910B. For an input sequence of varying 518 lengths, it consistently demonstrates low latency 519 and high throughput.

Potob size	Throughput (token-per-sec)				
Daten_Size	Standard attention	FastAttention			
1	11.03	56.974			
8	91.61	436.1			
16	158.34	746.27			

Table 6: The throughput comparison within and without FastAttention using PyTorch for different batch sizes on an Ascend 910B.

520 Moreover, we measure the latency and throughput of PanGu-38B and PanGu-71B on eight V100 521 GPUs. Note that we evaluate the performance of FasterTransformer (FT) (NVIDIA, 2023a) with and 522 without FastAttention, respectively. Figure 11 demonstrates the effectiveness of our optimization 523 strategies. FT without FastAttention can only support sequences up to 16K in length, while it can 524 handle up to 256K using FastAttention. This is attributed to the fine-grained CPU-GPU cooperative 525 strategy. What's more, for PanGu-38B, FT with FastAttention achieves a speedup of up to $1.46 \times$ over FT without FastAttention while $1.28 \times$ for PanGu-71B. FastAttention enables FT to surpass the GPU 526 memory limitations and achieve superior performance. We also conduct experiments with OPT-30B 527 (Zhang et al., 2022) and LLaMA-65B (Touvron et al., 2023a) using Deepspeed on eight V100 GPUs. 528 As shown in Table 5, the torch-version DeepSpeed exhibits lower inference performance compared to 529 FT. We analyze that torch-version Deepspeed doesn't utilize asynchronous methods, such as CUDA 530 graphs, introducing additional invocation overheads and driver overheads. Therefore, DeepSpeed 531 was not selected for comparative experiments. 532

533 6 CONCLUSION

534 In this paper, we propose FastAttention, an extension of FlashAttention2 for both NPUs and lowresource GPUs, enabling longer input sequence lengths and lower inference latency. FastAttention contains a series of insightful strategies and optimizations that are theoretically generalizable to 536 all of the NPUs and low-resource GPUs with similar architectures. Extensive experiments have 537 demonstrated the excellent efficiency and generalization of FastAttention on multiple LLMs. In 538 future work, we will apply our FastAttention to other NPUs and low-resource GPUs if accessible. We will also focus on compilation to facilitate easy invocation of our methods by users.

540 7 REPRODUCIBILITY STATEMENT.

In this work, we ensure the reproducibility of our results through detailed descriptions of the approaches and experimental setups. Besides the closed-source PanGu-series models, the experiments were conducted using the publicly available LLaMA-series models, and we specify the exact batch sizes, and sequence lengths used in our evaluations. The hardware configuration, including the 8 Ascend 910B NPUs and V100 GPUs, is clearly described to facilitate replication of the experiments. The scripts used to generate all results and performance metrics presented in the paper will be made available soon.

REFERENCES

549 550

556

558 559

560

561

562 563

564

565 566

567

568

569

570

571

572

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
 - Byungmin Ahn, Jaehun Jang, Hanbyeul Na, Mankeun Seo, Hongrak Son, and Yong Ho Song. Ai accelerator embedded computational storage for large-scale dnn models. In 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 483–486. IEEE, 2022.
 - Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints. *arXiv preprint arXiv:2305.13245*, 2023.
 - AMD. Accelerating large language models with flash attention on amd gpus. https: //rocm.blogs.amd.com/artificial-intelligence/flash-attention/ README.html, 2024.
 - Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference: enabling efficient inference of transformer models at unprecedented scale. In *SC22: International Conference for High Performance Computing, Networking, Storage and Analysis*, pp. 1–15. IEEE, 2022.
 - Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. *arXiv preprint arXiv:2004.05150*, 2020.
- 574 Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. A survey of accelerator ar575 chitectures for deep neural networks. *Engineering*, 6(3):264–274, 2020. ISSN 2095-8099.
 576 doi: https://doi.org/10.1016/j.eng.2020.01.007. URL https://www.sciencedirect.com/
 577 science/article/pii/S2095809919306356.
- Jack Choquette. Nvidia hopper gpu: Scaling performance. In 2022 IEEE Hot Chips 34 Symposium (HCS), pp. 1–46. IEEE Computer Society, 2022.
- Jack Choquette, Olivier Giroux, and Denis Foley. Volta: Performance and programmability. *Ieee Micro*, 38(2):42–52, 2018.
- Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky. Nvidia a100 tensor core gpu: Performance and innovation. *IEEE Micro*, 41(2):29–35, 2021.
- Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv* preprint arXiv:2307.08691, 2023.
- Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memoryefficient exact attention with io-awareness. *Advances in Neural Information Processing Systems*, 35:16344–16359, 2022.
- Donghyeon Han and Hoi-Jun Yoo. Hnpu-v1: An adaptive dnn training processor utilizing stochastic
 dynamic fixed-point and active bit-precision searching. In *On-Chip Training NPU-Algorithm*,
 Architecture and SoC Design, pp. 121–161. Springer, 2023.

- Huawei. Mindspore is a new open source deep learning training/inference framework that
 could be used for mobile, edge and cloud scenarios. https://gitee.com/mindspore/
 mindspore/pulls/61618, 2023a.
- Huawei. System direct memory access (sdma): a peripheral device that allows direct data transfers between other peripherals and memory without relying on the system processor. https://www.hiascend.com/document/detail/zh/mindstudio/60RC1/gls/gls_0001.html, 2023b.
- huggingface. Transformers:state-of-the-art machine learning for jax, pytorch and tensorflow. https:
 //github.com/huggingface/transformers, 2024.
- ⁶⁰⁴
 ⁶⁰⁵
 ⁶⁰⁶
 ⁶⁰⁶
 ⁶⁰⁶
 ⁶⁰⁶
 ⁶⁰⁶
 ⁶⁰⁷
 ⁶⁰⁷
 ⁶⁰⁸
 ⁶⁰⁸
 ⁶⁰⁹
 ⁶⁰⁹
- Yang Jiao, Liang Han, and Xin Long. Hanguang 800 npu-the ultimate ai inference solution for data centers. In 2020 IEEE Hot Chips 32 Symposium (HCS), pp. 1–29. IEEE Computer Society, 2020.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 arXiv preprint arXiv:2001.08361, 2020.
- Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable transformer modelling library. https://github.com/facebookresearch/xformers, 2022.
- Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou, Honghui Yuan, and Yuxing Hu. Ascend: a scalable and unified architecture for ubiquitous deep neural network computing: Industry track paper. In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 789–801. IEEE, 2021.
- Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S Vetter. Nvidia
 tensor core programmability, performance & precision. In 2018 IEEE international parallel and
 distributed processing symposium workshops (IPDPSW), pp. 522–531. IEEE, 2018.
- Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. *arXiv preprint arXiv:1805.02867*, 2018.
- Nvidia. Cutlass: a collection of cuda c++ template abstractions for implementing high-performance
 matrix-matrix multiplication (gemm) and related computations at all levels and scales within cuda.
 https://github.com/NVIDIA/cutlass, 2023.
- NVIDIA. Fastertransformer:providing a script and recipe to run the highly optimized
 transformer-based encoder and decoder component. https://github.com/NVIDIA/
 FasterTransformer, 2023a.
- NVIDIA. Triton inference server, art of the nvidia ai platform and available with nvidia ai enterprise, is
 open-source software that standardizes ai model deployment and execution across every workload. https://developer.nvidia.com/triton-inference-server, 2023b.
- Nvidia. Nsight compute profiling: Kernel profiling guide with metric types and meaning,
 data collection modes and faq for common problems. https://docs.nvidia.com/
 nsight-compute/ProfilingGuide/index.html, 2024.
- Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
 gpt-4. *arXiv preprint arXiv:2304.03277*, 2023.
- Markus N Rabe and Charles Staats. Self-attention does not need $o(n^2)$ memory. *arXiv preprint arXiv:2112.05682*, 2021.
- 645Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao Wang, Pengfei646Li, Xiaoda Zhang, Alexander Podolskiy, Grigory Arshinov, et al. Pangu- $\{\Sigma\}$: Towards trillion647parameter language model with sparse heterogeneous computing. arXiv preprint arXiv:2303.10845,
2023.

- 648 Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao. 649 Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint 650 arXiv:2407.08608, 2024.
- Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Christopher 652 Liang, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of large language 653 models with a single gpu. In International Conference on Machine Learning, pp. 31094–31116. 654 PMLR, 2023. 655
- 656 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-657 zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism. arXiv preprint arXiv:1909.08053, 2020. 658
- 659 Xinkai Song, Yuanbo Wen, Xing Hu, Tianbo Liu, Haoxuan Zhou, Husheng Han, Tian Zhi, Zidong Du, 660 Wei Li, Rui Zhang, et al. Cambricon-r: A fully fused accelerator for real-time learning of neural 661 scene representation. In Proceedings of the 56th Annual IEEE/ACM International Symposium on 662 *Microarchitecture*, pp. 1305–1318, 2023. 663
- Enrico Spolaore and Romain Wacziarg. The diffusion of development. The Quarterly journal of 664 economics, 124(2):469-529, 2009. 665
- 666 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée 667 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and 668 efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay 670 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation 671 and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b. 672
- 673 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 674 Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing 675 systems, 30, 2017.
- 676 Markos Viggiato and Cor-Paul Bezemer. Leveraging the opt large language model for sentiment 677 analysis of game reviews. *IEEE Transactions on Games*, 2023. 678
- 679 Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis. Deep learning for computer vision: A brief review. Computational intelligence and neuroscience, 680 2018(1):7068349, 2018. 681
 - Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu, and Xin Jin. Fast distributed inference serving for large language models. arXiv preprint arXiv:2305.05920, 2023.
- 685 Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on 686 imagenet. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 687 558-567, 2021. 688
- 689 Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao, Zhiwei Wang, Xin Jiang, ZhenZhang Yang, 690 Kaisheng Wang, Xiaoda Zhang, et al. Pangu- $\{\alpha\}$: Large-scale autoregressive pretrained chinese language models with auto-parallel computation. arXiv preprint arXiv:2104.12369, 2021. 692
- Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher 693 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt 694 Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. 695 Opt: Open pre-trained transformer language models, 2022. 696
- 697 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023. 699
- 700

669

682

683

684

702 A FLASHATTENTION SERIES

 FlashAttention: As shown in Figure 12, FlashAttention employs the unified tiling strategy to split Query (Q), Key (K), and Value (V) into multiple blocks with small block size along the batch and heads dimension. Then, FlashAttention utilize online softmax (Milakov & Gimelshein, 2018; Rabe & Staats, 2021) and fused block GEMM to complete the attention calculation. To succinctly summarize, each of these Q tiling blocks sequentially executed the following four stages: matrix multiplication of $Q * K^T$, Exp calculation for softmax, multiplication of Exp and V, and updates of the output. During the process, the matrix multiplication, i.e., GEMM, is handled by Tensor cores while non-GEMM operations like softmax are performed by CUDA Cores. This design minimizes memory access between SRAM and HBM while introduces frequent data flow between Tensor Cores and CUDA Cores due to the small block size imposed by SRAM limitations.

Figure 12: A streamlined depiction of the forward pass in FlashAttention.

FlashAttention2: FlashAttention2 refines the FlashAttention algorithm by reducing the number of non-matrix multiplication (non-matmul) FLOPs, while preserving the same output. It parallelizes both the forward and backward passes along the sequence length dimension, in addition to the batch and heads dimensions. This enhancement improves GPU resource utilization, particularly in cases where sequences are long and batch sizes are small. Additionally, within each block of attention computation, FlashAttention2 adjusts the cyclic order of operations to minimize communication and reduce SRAM reads and writes.

FlashAttention3: FlashAttention3 is specifically targeted on the newer GPU architectures, such as Hopper and Blackwell. FlashAttention3 introduces a restructured warp pipeline and enhances hardware utilization by overlapping the comparatively low-throughput non-GEMM operations, such as floating-point multiply-add and exponential computations, with asynchronous WGMMA instructions for GEMM execution. FlashAttention2 is regarded as the state-of-the-art (SOTA) method for the Ampere architecture, while FlashAttention3 represents the SOTA for architectures above Hopper.

B THE DETAILED FASTATTENTION ALGORITHM FOR NPUS

Given the matrices $Q, K, V \in \mathbb{R}^{B \times N \times S \times d}$ and *block sizes* B_r and B_c , the Q matrix will be splited along S dimension into $Q_1, Q_2, ..., Q_r \in \mathbb{R}^{B_r \times d}$. In our two-level tiling strategy, the first level adapts the larger block size B_r . There are a total of $B \times N \times \lceil \frac{S}{B_r} \rceil$ large blocks and these blocks will be distributed across AI Cores. In each AI Core, it will follow the computations as blow:

756 Matrices $K, V \in \mathbb{R}^{S \times d}$ $O_i, Q_i \in \mathbb{R}^{B_r \times d}$ (The First Level) 758 $K, V: block \ size = B_c \quad K_1, ..., K_c \ and \ V_1, ..., V_c \in R^{B_c \times d}$ 759 (2)760 $Init: O_i^{(0)} \in R^{B_r \times d}, l_i^{(0)} \in R^{B_r}, m_i^{(0)} = (-\infty)_{B_r} \in R^{B_r}$ (3)761 for $1 \leq j \leq c$: (4)762 $S_i^{(j)} = Q_i K_i^T \in R^{B_r \times B_c}(Cube)$ 763 (5)764 $S_i^{(j)}: block \ size = B_b \quad S_{i1}, ..., S_{ib} \in R^{B_b \times B_c}(Second \ Level)$ (6)765 for 1 < k < b: (Vector) (7)766 $m_{ik}^{(j)} = max(m_{ik}^{(j-1)}, rowmax(S_{ik}^{(j)})) \in R^{B_b}$ 767 (8) 768 $P_{ik}^{(j)} = exp(S_{ik}^{(j)} - m_{ik}^{(j)}) \in R^{B_b \times B_c}$ (9)769 $l_{ik}^{(j)} = e^{m_{ik}^{(j-1)} - m_{ik}^{(j)}} \, l_{ik}^{(j-1)} + rowsum(P_{ik}^{(j)}) \in R^{B_b}$ 770 (10)771 $M_i^{(j)} = P_i^{(j)} V_i \in \mathbb{R}^{B_r \times d} \quad (Cube)$ 772 $O_i^{(j)} = diag(e^{m_i^{(j-1)} - m_i^{(j)}})^{-1}O_i^{(j-1)} + M_i^j \quad (Vector)$ 773 774 $O_i = diag(l_i^c)^{-1}O_i^c$ (Vector) 775 (14)776 777 In the tiling-AllReduce strategy, once the attention for N heads in a sequence is completed, the large 778 blocks proceed to perform the Linear and AllReduce operations: 779

$$O_i = attention(Q_i, K, V) \in \mathbb{R}^{B_r \times Nd}, W_o \in \mathbb{R}^{Nd \times H}$$
(15)

$$Linear_out = OW_o \in R^{B_r \times H}$$
⁽¹⁷⁾

$$Final_Out = Allreduce(Linear_out)$$
⁽¹⁸⁾

(19)

С THE DETAILED MECHANISM OF THE DATA LAYOUT REDESIGN

We here provide a detailed explanation of the data layout redesign for the Volta architecture. Fun-791 damentally, a layout maps coordinate spaces to an index space. Layouts can be combined and 792 manipulated to construct more complicated layouts and to tile layouts across other layouts. This 793 can help users do things like partition layouts of data over layouts of threads. In the Cutlass library, 794 a layout is a tuple of (Shape, Stride). Semantically, it implements a mapping from any coordinate 795 within the Shape to an index via the Stride. For instance, Shape:(4,2) and Stride: (1,4) is a 4x2 796 column-major layout with stride-1 down the columns and stride-4 across the rows. And the more 797 detailed introduction of layout can be found in the Cutlass documents.

798 Furthermore, high-end GPUs feature resource-rich architectures, such as Ampere and Hopper, which 799 differ from Volta in terms of MMA instructions and thread-data layouts. The Cutlass documentation 800 provides a comprehensive description of thread-data layouts for Volta, Ampere, and Hopper architec-801 tures. For the implementation of FastAttention, it is crucial to utilize the MMA instructions of the 802 Volta architecture and redesign the data layout to support these instructions. 803

When executing a single MMA instruction for matrices A, B, and C, the data is distributed across 808 the threads. For Ampere's m16n8k16, as illustrated in Figure 13, thread 0 contains 8 elements of 809 matrix A (V0-V7), 4 elements of matrix B (V0-V3), and produces 4 elements of matrix C (V0-V3).

(1)

- (11)
- (12)
- (13)

- 780 781
- 782 783
- 784 785
- 786 787
- 788
- 789 790

Specifically, there are two matrix multiplications in the workflow of attention. To clarify the chal-804 lenges associated with adding support for Volta's m8n8k4 MMA instruction, we consider the con-805 vert_layout_acc_Aregs function, which converts the layout of the output argument C from the first 806 matrix multiplication into the layout of the input argument A for the second multiplication. 807

Figure 13: The first matrix multiplication using Ampere's m16n8k16 instruction.

These 4 elements of the matrix C are located in the same places (row and column) what are the first 4 elements of the matrix A. This pattern holds true for the other threads as well. The first matrix multiplication requires two m16n8k16 MMA instructions to produce two matrices C. To utilize matrix C from the first multiplication as matrix A for the second multiplication, the number of N must be even, allowing us to convert the CuTe layout of the two matrices C. This is the function of *convert_layout_acc_Aregs*.

For the Volta m8n8k4 instruction with FP32 accumulator, as shown in Figure 14, the thread0 contains 4 elements of matrix A(V0-V3), 4 elements of matrix B(V0-V3), and produces 8 elements of output matrix C(V0-V7). For the second matrix multiplication, two instructions must be executed, and the matrix C of the first multiplication must be split into two matrices as two matrices A in the second multiplication. But half of the elements of the matrix C, that are in the registers of the thread0, are not the needed elements to perform the next matrix multiplication. And before performing the next multiplication, the threads need to exchange elements, which leads to synchronization and slowdown.

For faster back-to-back matrix multiplication, we use Volta m8n8k4 instruction with FP16 accumulator. To execute this instruction, each thread operates with the same number of elements as in the case of the FP32 accumulator, but uses another layout of elements that is shown in Figure 15. And in this case, the matrix C of the first multiplication can be divided into two matrices A of the second multiplication, without the need for the exchange between threads and synchronization.

To convert the layout of the argument C of the first multiplication into the layout of argument Aof the second for any supported MMA, a converter has been developed that converts the layout in compile time depending on the CuTe MMA_Traits used.

D FORMULAS

859 860

858

834 835 836

Generative inference with LLMs typically consists of two stages: the *prefill* stage and the *decoding* stage. During the *prefill* stage, the key-value (KV) cache is generated with the prompt sequence.
Afterwards, the *decoding* stage uses the generated KV cache to generate tokens one-by-one and meanwhile updates KV cache themselves.

Figure 14: The execution of the two matrix multiplication using m8n8k4 instruction with FP32 accumulator.

Let *B* represent the batch size. *S* and *O* represent the input and output sequence length, respectively. The hidden dimension of the attention layer is denoted as H_1 , while the hidden dimension of the second MLP layer is H_2 , and the total number of transformer layers is *L*. Denote the index of a transformer layer as *i*. The weight matrices of a transformer layer are denoted by W_Q^i , W_K^i , W_V^i , $W_Q^i \in \mathbb{R}^{H_1 \times H_1}$, $W_1^i \in \mathbb{R}^{H_1 \times H_2}$, and $W_2^i \in \mathbb{R}^{H_2 \times H_1}$.

For the *prefill* stage, X^i represents the input matrix of the *i*-th transformer layer, and X_Q^i , X_K^i , X_Q^i , X_Q^i is *query*, *key*, *value*, and *output* of the attention layer, respectively. All of them have dimensions $\mathbb{R}^{B \times S \times H_1}$. The specific computation of the *i*-th layer is as follows:

 $X_K^i = X^i \cdot W_K^i \tag{20}$

 $X_V^i = X^i \cdot W_V^i \tag{21}$

$$X_Q^i = X^i \cdot W_Q^i \tag{22}$$

$$X_O^i = f_{Softmax}\left(\frac{X_Q^i X_K^{i^{-1}}}{\sqrt{h}}\right) \cdot X_V^i \cdot W_O^i + X^i \tag{23}$$

$$X^{i+1} = f_{act}(X_O^i \cdot W_1^i) \cdot W_2^i + X_O^i$$
(24)

For the *decoding* stage, denote the input matrix of the *i*-th layer by T^i . The *query*, *key*, *value*, and *output* of the *i*-th layer corresponding to the input T^i are denoted as T_Q^i , T_K^i , T_V^i , T_O^i , respectively. Note that T^i , T_Q^i , T_K^i , T_V^i , $T_O^i \in \mathbf{R}^{B \times 1 \times H_1}$. The computation for the *i*-th layer is depicted as

Figure 15: The execution of the two matrix multiplication using m8n8k4 instruction with FP16 accumulator.

follows:

$$T_K^i = T^i \cdot W_K^i \tag{25}$$

$$T_V^i = T^i \cdot W_V^i \tag{26}$$

$$X_K^i \leftarrow Contact(X_K^i, T_K^i) \tag{27}$$

$$X_V^i \leftarrow Contact(X_V^i, T_V^i) \tag{28}$$

$$T_Q^i = T^i \cdot W_Q^i \tag{29}$$

$$T_O^i = f_{Softmax}\left(\frac{T_Q^i X_K^{i^{T}}}{\sqrt{h}}\right) \cdot X_V^i \cdot W_O^i + T^i$$
(30)

$$T^{i+1} = f_{act}(T^{i}_{O} \cdot W^{i}_{1}) \cdot W^{i}_{2} + T^{i}_{O}$$
(31)

In our fine-grained CPU-GPU cooperative strategy, we can get the L_{GPU} and L_{CPU} by:

$$L_{GPU} = \frac{M_{GPU} - \frac{M_w}{n} - M_{mid} - M_{vocab}}{M_{kv}}$$
(32)

$$L_{CPU} = L - L_{GPU} \tag{33}$$

In detail, the GPU memory is primarily occupied by the model weights and the KV cache. The vocabulary matrix has the dimensions $\mathbf{R}^{V \times H_1}$, and V is the size of the vocabulary. The max memory occupied by intermediate results can be from Equation 36. The memory footprint of the bias matrices is negligible. In case weights, KV cache, and others are stored in the FP16 format, the Equation 32

972 can be extended as follows:

$$M_w = L(2*4*H_1*H_1 + 2*2*H_1*H_2)$$
(34)

978 979

974

$$= L(8H_1^2 + 4H_1H_2)$$
$$M_{kv} = \frac{2*2*B*H_1(S+O)}{2}$$

$$=\frac{4BH_1(S+O)}{n}\tag{35}$$

$$M_{mid} = \frac{2 * 3 * B * S * H_1}{n} = \frac{6BSH_1}{n}$$
(36)

987

$$L_{GPU} = \frac{M_{GPU} - \frac{M_w}{n} - M_{mid} - M_{vocab}}{M_{kv}}$$

= $\frac{M_{GPU} - \frac{L(8H_1^2 + 4H_1H_2)}{n} - \frac{6BSH_1}{n} - VH_1}{\frac{4BH_1(S+O)}{n}}$
= $\frac{nM_{GPU} - L(8H_1^2 + 4H_1H_2) - 6BSH_1 - nVH_1}{4BH_1(S+O)}$ (37)

992

993 994

995

- -

E FULL EXPERIMENTS RESULTS

E.1 PERFORMANCE EVALUATION ON VISION TRANSFORMERS

996 FastAttention targets the scenarios where the attention module constitutes a significant portion of 997 the overall computational time during model inference. In particular, attention is not a bottleneck 998 for Vision and Diffusion Transformers, as shown in Table 7. For instance, the attention only takes 999 4% of total times for ViT-B inference. That's why we disregard Vision or Diffusion transformer as 1000 baseline. Despite the fact, we still test the single-operator speedups of FastAttention over the standard attention to illustrate the effectiveness of FastAttention for the attention calculation. We evaluate 1001 FastAttention using DeiT-B model with varying batchsizes. The results are shown in Table 8. Our 1002 FastAttention achieves a speedup ranging from $2.52 \times$ to $7.58 \times$ as the batch size increases from 32 to 1003 1024. However, this improvement has a negligible impact on the end-to-end network speedups. 1004

Table 7: Time complexity and computation breakdown of ViT and DeiT.

Model	QKV projection	Attention	O project	MLP	others
ViT-B/384	22%	11%	7%	59%	1%
ViT-B	24%	4%	8%	63%	1%
DeiT-S	23%	8%	8%	61%	1%
DeiT-Ti	21%	14%	7%	56%	2%

1012 1013 1014

1005

1015 E.2 QUANTIZATION

Our FastAttention is orthogonal to general hardware-agnostic approaches such as quantization, pruning, and distillation. For instance, Table 9 compares FastAttention with FP16 and naive INT8 precisions using PanGu-71B, demonstrating that FastAttention can be used alongside other compression methods to further enhance inference performance. With a batch size of 1 and varying sequence lengths, FastAttention achieves a speedup of approximately 1.2× when used alongside quantization techniques.

1022

1024

1023 E.3 TILING-ALLREDUCE EVALUATION

1025 We conducted additional experiments to further demonstrate the efficiency of the proposed tiling-AllReduce strategy. Specifically, we compared the latency of FastAttention with and without the

1029	Batchsize	Standard attention(ms)	FastAttention(ms)	Speenup
1030	32	1.21	0.48	2.52×
1032	64	3.05	0.66	$4.62 \times$
1033	128	6.14	1.08	$5.68 \times$
1034	256	12.183	1.828	$6.664 \times$
1035	512	24.25	3.52	$6.89 \times$
1036	1024	48.40	6.38	7.58 imes
1037				

Table 8: Single-operator Performance of FastAttention using Deit-B models' dimensions on an Ascend 910B.

Table 9: The performance evaluation of FastAttention using FP16 and INT8

Model	seq_length	Latency(us)-FP16	Latency(us)-INT8	Speedup
PanGu-71B	128	55.01	42.77	1.286×
PanGu-71B	256	58.84	50.99	$1.153 \times$
PanGu-71B	512	56.65	57.4	0.987 imes
PanGu-71B	1K	77.77	62.36	$1.247 \times$
PanGu-71B	2K	113.49	93.43	$1.214 \times$
PanGu-71B	4K	279.94	222.325	$1.26 \times$

tiling-AllReduce strategy. The configuration without the tiling-AllReduce strategy involves the unfused FastAttention kernel (as described in § 4.1), *Linear* operator, and the Allreduce operation. The evaluations were carried out using the PanGu-38B model with varying batch sizes and sequence lengths across 8 Ascend 910B NPUs. we similarly observed that the tiling-AllReduce strategy enabled FastAttention to achieve speedups ranging from $1.2 \times$ to $1.5 \times$. Additionally, we measured runtime performance by varying the sequence length from 1K to 32K while adjusting the batch size to ensure a total token count of 32K. The results, reported in Figure 16, show that the tiling-AllReduce strategy allows FastAttention to achieve up to a $1.53 \times$ speedup, demonstrating significant performance improvements. The experiments demonstrate that our FastAttention achieves significant performance improvements regardless of changes in batch size or sequence length.

Figure 16: The performance evaluation of tiling-AllReduce strategy with 32K tokens.

Figure 17: The performance evaluation of FastAttention with/without tiling-AllReduce strategy on 8 Ascend 910B.