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ABSTRACT

Reinforcement Learning with Verifiable Reward (RLVR) has equipped large lan-
guage models (LLMs) with the capability of reasoning over complicated logical
problems through policy optimization. However, conventional methods require
complete annotation of the entire dataset and allocate computation uniformly over
all samples. We articulate the lottery sample hypothesis in policy optimization of
LLMs: a large training set contains a small subset that, when trained alone, yields
performance comparable to that of the full dataset. This paper therefore explores
the following question: How can we identify these lottery-winning samples from
the original dataset without access to answers? Unlike prior efforts that analyze
the effect of different samples in the training set with complete annotation, this
paper focuses on the unsupervised discovery of critical instances for LLM reason-
ing and proposes a novel framework termed Complementary Conformal Selection
(CONST). Specifically, CONST evaluates the importance of samples by consider-
ing two complementary components: procedural volatility and outcome volatility.
Procedural volatility measures the potential variations during the LLM’s reason-
ing process, while outcome volatility captures inconsistencies in the final answer.
Subsequently, conformal prediction is used to obtain a prediction set whose car-
dinality serves as the criterion for selecting the lottery-winning samples for anno-
tation. We also provide a theoretical analysis, showing that CONST can effectively
approximate the optimal policy. Extensive experiments on various LLMs across
different datasets demonstrate the effectiveness of CONST. The code is available at
https://anonymous.4open.science/r/CONST-359D.

1 INTRODUCTION

Reinforcement learning (RL) has recently become an essential tool for post-training of large lan-
guage models (LLMs) (Anil et al., 2023; OpenAl, 2024; 2025; Guo et al., 2025; Du et al., 2025). Pol-
icy optimization algorithms (Schulman et al., 2017; Shao et al., 2024) have significantly enhanced
the logical reasoning capabilities of LLMs (DeepMind, 2024; Wang et al., 2025a; Ren et al., 2025).
For logical problems, directly verifiable answers provide straightforward rewards for reinforcement
learning, enabling effective outcome supervision of LLMs. This approach, known as reinforcement
learning with verifiable reward (RLVR) (Gao et al., 2024; Lambert et al., 2024), is commonly im-
plemented using algorithms such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024)
and its variants (Liu et al., 2025d; Chen et al., 2025; Pang & Jin, 2025; Zhang et al., 2025b).

Despite the significant improvement, conventional approaches (Hao et al., 2025; Wu et al., 2025;
Di et al., 2025) demand full annotation over the entire dataset for verification, and often allocate
computation resources uniformly across the full dataset. Nevertheless, some recent studies in RLVR
of LLMs (Chen et al., 2025; Wang et al., 2025c; Vanlioglu, 2025) and many prior works on the more
general field of data subset selection and valuation (Paul et al., 2021; Das et al., 2021b; Guo et al.,
2022; Das et al., 2024) suggest that the instances in the training set are not equally important, and
that training on a small subset may also lead to satisfactory results (Wang et al., 2025¢c). Based on
these findings, we articulate the lottery sample hypothesis in RLVR of LLMs:

A large training set for RLVR on LLMs contains a small subset that, when
trained alone, can achieve performance comparable to that of the full dataset.
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Figure 1: Conventional approaches require tedious full annotation over the entire dataset and allocate
computation resources uniformly across the training set. By comparison, this work selects lottery-
winning samples from the training set in an unsupervised manner, and then optimizes the model
using these critical instances only, achieving comparable performance.

With this hypothesis, it is possible to break conventional approaches from two aspects (as illustrated
in Figure 1): (i) full annotation of the dataset is no longer required, and ground truth answers of sev-
eral lottery-winning samples are sufficient; (ii) computation can be concentrated on several critical
instances. Therefore, this paper explores a central question of this new paradigm:

How can we find the critical instances (the lottery-winning samples) for RLVR
on LLMs from the original training set without annotation?

To answer this question, this paper proposes a novel framework named Complementary Conformal
Selection (CONST) for the unsupervised discovery of critical instances in the training set. CONST
evaluates the value of each instance from two complementary perspectives: procedural volatility
and outcome volatility. Procedural volatility assesses potential variations in reasoning chains by ex-
amining how different segments of reasoning affect the final answer. Outcome volatility measures
inconsistencies in the final answers produced by different reasoning paths. Both yield multisets (i.e.,
sets that allow duplicating elements) of results, which are then merged and fed into a conformal pre-
diction module. The conformal prediction produces a prediction set, whose cardinality is used as the
criterion for selecting lottery-winning samples. A theoretical analysis is also provided demonstrat-
ing that CONST can effectively approximate the optimal policy. We conduct extensive experiments
across datasets with various LLMs, showing that CONST outperforms various baselines and enables
comparable performance with < 0.5% of the samples. Our contribution is summarized as follows:

@ New Perspective: We present a probabilistic perspective for the unsupervised identification of
critical instances in the full dataset for further annotation and RLVR optimization on LLMs, en-
abling an annotation-minimal, data-efficient and performance-competitive optimization procedure
compared with training on the entire fully annotated dataset.

@ Novel Methodology with Theoretical Analysis: We propose CONST, a probabilistic approach
based on conformal prediction that considers both procedural volatility and outcome volatility in
LLM reasoning, to select lottery-winning samples for annotation and optimization. Notably, we
provide a rigorous theoretical analysis of CONST demonstrating that it can effectively approximate
the optimal policy parameter setup under the lottery sample hypothesis.

® Empirical Validation: We conduct extensive experiments across four mathematical datasets on
various LLMs against competing baselines, showing that CONST is (1) annotation-efficient,
achieving similar performance to the full dataset with < 0.5% of the annotation, (2) high-
performing, outperforming competitive baselines by 10.97% on average, and (3) model-
agnostic, showing consistent improvement across three different architectures.

2 PRELIMINARIES

Problem Definition. Given a training set of questions Q@ = {X;, Xo,..., Xy} from the in-
put space X, conventional approaches first annotate the dataset with ground truth answers A =
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Figure 2: The overall framework of the proposed CONST. CONST selects critical samples via confor-
mal prediction based on both procedural volatility and outcome volatility. The selected samples are
then annotated with ground truth answers for standard RLVR optimization on LLMs.

{Y1,Ys,..., YN} in the output space ), and then optimize the original LLM (i.e., the policy) 7
with RL algorithms (e.g., GRPO), i.e., 7t = ®(mo, Q,.A), where 71" is the policy optimized with
full data annotation and ®(-, -, -) is the optimization process of RLVR. Our goal is to find a subset
of Q with budget b, i.e., @' C Q and |Q’| = b, and then annotate the selected data with answers A4’
so that the optimized policy 7" = ® (7, @', A’) achieves comparable performance to 7%,

Reinforcement Learning with Verifiable Reward. During the training process of reinforcement
learning with verifiable reward, the LLM generates a list of n outputs {O1,0,,...,0,} for a
question X, and the outputs are verified against the ground truth answer Y to obtain the rewards
71,T2,...,T s, Where correct answers receive 1 and incorrect ones 0. In the widely adopted group
relative policy optimization (Shao et al., 2024; Liu et al., 2025¢; Guo et al., 2025), the advantage
function of each output O; is computed as:

r; — mean({r;}7_,)
std({r; }?:1)

With this, the GRPO optimization objective can be formulated as follows:
L s (. [ m(0:i]X) . ( 7(04]X)
L =Eo,nmy | —— ——— L, clip| —— %, 1—¢,1 ,
GRPO O~y l " ; <m1n (we/(OiX)m clip 7r9/(0i|X) e, l+e|a; @)
+ BDkw(mel|m0),

(D

a; =

where 7y is the current policy, 7y is the old policy, and 7 is the reference policy.

Conformal Prediction. Conformal prediction (CP) (Vovk et al., 2005; Papadopoulos et al., 2007;
Angelopoulos et al., 2023; Barber et al., 2023; Su et al., 2024) is a model-agnostic solution to obtain
prediction sets (or intervals in regression tasks) that are mathematically guaranteed to cover the
ground truth answer with high probabilities. Concretely, given an input from &, a prediction from
Y and the prediction model 7(Y'|X), a scoring function f™ : X x Y — R is defined to quantify
the disagreement between the input and the predicted answer. The scoring function is applied to a
calibration set D! = {(X¢ Y )}™ | which is independently and identically distributed as the
dataset under consideration, to obtain the calibration scores f”(Xfal, Yfal),i =1,2,...,m. Fora
given confidence level 1 — «, a threshold p can be determined by taking the W quantile
of these scores. For a given input X € X, and the predefined error rate «, the conformal prediction
set is guaranteed to cover the correct answer with a probability of 1 — «, defined as follows:

leoc(X) = {Y | fﬂ-(Xa Y) S p} (3)
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3 THE PROPOSED CONST

3.1 FRAMEWORK OVERVIEW

The overall idea of this work is to first select the critical instances Q' from the training set of ques-
tions Q using the proposed Complementary Conformal Prediction (CONST), then annotate these crit-
ical instances with answers A’, and finally optimize the LLM using off-the-shelf RLVR algorithms
such as GRPO. The proposed CONST evaluates the importance of each instance X € Q from two
perspectives: procedural volatility and outcome volatility. Procedural volatility measures how the
final answer to the input question changes when the reasoning paths are truncated at different stages,
while outcome volatility captures the inconsistencies in the final answers produced by different rea-
soning paths. Conformal prediction is then used to obtain a prediction set for each instance, and the
cardinality of these sets serves as the criterion for selecting the critical instances. We illustrate the
overall framework in Figure 2.

3.2 PROCEDURAL VOLATILITY

Questions important for policy optimization are expected to induce reasoning trajectories of sig-
nificant complexity, as straightforward thinking chains are less likely to substantially enhance the
model’s logical reasoning abilities. Therefore, we propose measuring the volatility in the reasoning
process by truncating the thinking chains at different stages and prompting the LLM to provide the
final answers directly. Simple and straightforward reasoning paths are more likely to yield consistent
answers, whereas complex, intricate ones are more likely to exhibit volatility.

Specifically, given a question X € Q, we first deterministically sample an output, denoted as O =
[t1,t9, ..., tL; }A’] = mp(O|X), where t1,ts,...,t;, are tokens of the reasoning path and Y is the
predicted answer typically enclosed in special formats like \box{}. We truncate the reasoning path
at different stages to obtain a set of truncated reasoning trajectories, defined as follows:

T(X)Z{[tl,tg,...,fr%ﬂ‘i=1,2,...,np}, 4)

where n p is the number of stages. Subsequently, we query the LLM with these truncated trajectories
and ask the model to directly output a single final answer for each truncated trajectory without rea-
soning. Formally, we obtain a multiset (bag) ' for each sample X € Q through response truncation
and LLM re-querying:

BY(X) = {Y = mo(Y|X,7) | 7 € T(X)}}. (5)

3.3 OUTCOME VOLATILITY

In addition to procedural volatility, we also consider variations in the final answers. During pol-
icy optimization, diverse answers to a question induce gradients from multiple directions, helping
the model avoid pitfalls from different sources. To quantify this diversity, we introduce outcome
volatility, which evaluates the inconsistencies in the final answers (outcomes) produced by different
possible reasoning trajectories sampled from the policy.

In particular, given the original policy (the LLM before RLVR training) 7 and a question X € Q
under consideration, we directly sample no outputs from the policy to obtain a multiset, i.e.,

BO(X)={{¥i]i=1,2,...,n0,Y; ~ mo(Y|X)}}. ©)

3.4 CONFORMAL PREDICTION

Procedural volatility and outcome volatility generate multisets for each instance, encompassing the
possible answers of LLMs. We are now concerned with how many of these answers are likely to
be the correct answer. To address this, we employ conformal prediction (Vovk et al., 2005; Su
et al., 2024) as a theoretically grounded solution. The overall procedures of computing conformal

'Different from sets, multisets (bags) allow repetition of elements, with each element associated with a
count of its appearance. For convenience, we use | - | to denote the size of the multiset, defined as the sum of
the counts of all elements, and & to denote the union of multisets, where the counts of each element are added.
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Algorithm 1: The execution pipeline of CONST

Input: The set of questions Q, the original policy o, the calibration set D = { (X, V) }m,
Initialize CalScoreList and SizeList asempty lists
for iteration 7 <— 1 to m do // Calibrate the scoring function
Calculate the score f™ (X5, Y') with Eq. 9 and append it to CalScoreList
end
Find the WM quantile of CalScoreList asp
for iteration 7 <— 1 to N do // Obtain the conformal prediction sets
Calculate the multiset of possible answers 3(X;) according to Eq. 5 and Eq. 6
Calculate the score f™ (X, EA/;) for each V; € B(X;) with Eq. 9
Obtain the prediction set C1 o (X)) with pusing Eq. 10 and append the size of it to SizeList
end
Cluster Q into b groups Q1, Qa,..., Qs
Select the question with the largest size from each group to form @’  // Select critical samples
Annotate Q' with ground truth answers A4’ // Annotate several samples
Optimize 7o with Q" and A’ to obtain the optimized model 7© // Optimize the policy using RL
return 77 as the optimized model

prediction sets have been discussed in Section 2, and in the following, we will present the design of
the scoring function f and how the prediction sets C; (X ), X € Q are obtained.

As discussed in Section 2, the scoring function f™(X,Y) € R is designed to quantify the dis-
agreement between the input question X and the final answer Y. In other words, when the model
mo(Y'|X) is certain that Y is the correct answer given the input X, f™ (X, Y") will be low, and vice
versa. Conformal prediction does not require the scoring function to have theoretical guarantees of
the measurement of certainty, although a good measurement is preferred. For each input question
X € Qand a predicted answer Y € B(X) = BF(X) w B°(X), we compute the scoring function
by comparing Y with other elements in B (X). Specifically, as consistent predictions are a natural
sign of certainty (Wang et al., 2022), we use the negative frequency of YinB (X), ie.,

~

countpg(x)(Y)

INe(X, }7) = —fTGQ(?§B(X)) == B(X)|

)

where count(x(-) returns the number of elements in the multiset. Nevertheless, using negative
frequency alone as the scoring function may cause the scores to be concentrated on certain values,
and therefore, entropy is used for fine-grained measurement, defined as follows:

5 _ HB(X)) _ — Dyresesxy frea(Y's B(X)) log freq(Y"; B(X))
fenl(X,Y) - log\B(X)\ - log\B(X)\ y

where set(+) returns the non-repeating elements in the multiset. Finally, the negative frequency and
entropic scores are combined to obtain the final scoring function:

X, Y) = (X, V) + A (X, V), )

where ) is a hyperparameter balancing the two terms. With the scoring function, we then calibrate it
with a calibration set as described in Section 2 to obtain the threshold p. Note that when computing
the calibration scores, if the correct answer Y does not appear in the final multiset B(X$"), we set
the score f(X§, V) to +oc. Thus, we obtain the conformal prediction set for each X € Q as:

®)

Ci-a(X) = {Y €set(B(X)) | f(X,Y) < p}. (10)

3.5 MODEL OPTIMIZATION

The size of the conformal prediction set naturally measures how many of the answers that the model
considers likely to be correct. A larger size indicates richer and more effective optimization sig-
nals associated with the correct answer during model training. Therefore, we use the size of the
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conformal prediction set as the criterion for selecting critical samples. Additionally, to encourage

sample diversity, we cluster the set of questions Q into b groups Q1, Qo, ..., Qp before selecting
the samples from each group. Formally, the selection process can be written as follows:
Q’z{argmax|CAla(X) |i:172,...7b}. 11
XeQ;

With the selected set of questions Q' C Q, we annotate this small subset to obtain its ground truth
answers .A’. Finally, we use the standard RLVR algorithm (i.e., GRPO), as described in Section 2, to
optimize the model 7o with Q' and A’ to obtain ¥ as our final model. A summary of the execution
pipeline of the proposed CONST is presented in Algorithm 1.

3.6 THEORETICAL ANALYSIS

Here, we aim to provide a theoretical understanding of our proposed CONST under the lottery sam-
ple hypothesis. Before going into the details, we first review the basic notions of ergodic Markov
decision processes and mixing time (Puterman, 1990).

Definition 3.1. A Markov decision process M = (S, A, P,r,v) is ergodic if the induced Markov
chain under any stationary policy admits a unique stationary distribution p~.. Moreover, the under-
lying Markov chain of an ergodic MDP is said to mix in time t,,;(€) if

. 2 >0: Pr(Y; € AlYy = s) — A <
i (€) 2 min{t > 0 s max (max(Pr(Y; € AJYp = 5) ~ poc(A)]) < o},

where (Yo, Y1 ...,Y;...) denotes an induced Markov chain under any stationary policy and € > 0.
Remark 3.1. When € < 1/2, choosing a different € only changes the mixing time up to a constant
factor (Levin & Peres, 2017) and so one often fixes € = 1/4 and simply writes t iz = tmiz(1/4).

With the concept of ergodic MDP, we next establish a generalization bound for our proposed CONST
under the lottery sample hypothesis. Before doing so, we first introduce some frequently used no-
tations. Specifically, since CONST only utilizes a subset of training instances @' C Q to optimize
policy 7y where |Q’| = b. So, for any subset S C Q, we define the empirical GRPO loss on S as
follows:

25 m9(0i|X) (me(05X) ,
Lo = 775 XZSZ (Fooee o Fo Lo 1 <)o) $Dalmll)

where a; = % is the advantage calculated based on relative rewards. With this
J

symbol, we then present the approximation assumption about the chosen subset Q’, that is to say,
Assumption 3.1 (Lottery Sample Hypothesis) Subset Q' is said to be an e-approximation of the full

training set Q = {X1, Xo,..., XN} if HVﬁGRPO(H) — VLo (0|2 < € holds for any parameter
vector 0 where the symbol || - Hg denotes la norm and € > 0.

Next, we make some standard assumptions in optimization theory (Li et al., 2018; Yue et al., 2023).
Assumption 3.2 (Smoothness). The objective L, (0) is L-smooth, that is, £Lp,(0) is differen-
tiable and there exists a constant L > 0 such that HVﬁgRPO(x) - VﬁgRPO(y) ll2 < Lijz — yl|2-
Assumption 3.3 (Polyak-tf.ojasiewicz Condition) There exists a constant p > 0 such that
2p (ﬁng(@) - ﬁgRPO(ggRPO)) < ||V£GRP0( )13 where O¢gpo = arg min, LgRPO(Q)-

Furthermore, we suppose, at line 14 of Algorithm 1, the policy parameter vector 6 is updated by stan-

dard gradient descent, i.e., 0511 29, — %VLA(%;PO(G), where L denotes the smoothness parameter.
With all these preparations, we can have the following generalization theorem:

Theorem 3.1 (Proof is deferred to Appendix A). Under Assumption 3.1-3.3, if the underlying MDP
M £ (S, A, P,r,7) is ergodic with mixed time t,,;, and the gradient VE?RPO(G) is bounded, i.e.,
HVEGRPO( )2 < G, then the following inequality holds with probability greater than 1 — ¢, that is,

EGRPO(ek) _EGRPO(H*) < 472(]:6*]%) +O(\/tmzzUR(1]V_nn)ln(6) + N;r(ll((g ,7))

2G €2
1— k+1[,Q 0 a A
+( L) GRPO( o) + M€+2Ma
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where §* £ argming Lorpo(0), R(Far) is the Rademacher complexity of the group-relative loss
Sfunction space Fggr, N denotes the size of full training set Q, n is size of outputs for each question
and o% is an upper bound of variance of the return {r;}7_,, i.e., Varg,(r;) < 0%, V.

Remark 3.2. Note that Rademacher complexity serves as a measure of the policy network’s capacity
to fit the training data, reflecting the richness of the function class it can represent. As a result, under
the Lottery Sample Hypothesis, Theorem 3.1 implies that with sufficiently large question dataset and
verified rewards, our proposed CONST can effectively approximate the optimal policy parameter 6*.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation. During model training, we use the BigMath-sub dataset, a randomly
selected subset containing 2048 instances of the BigMath dataset (Albalak et al., 2025). During the
test phase, we use four mathematical reasoning datasets widely adopted in RLVR evaluation, i.e.,
AMC 23 (problems & solutions, 2023), MinervaMath (Lewkowycz et al., 2022), OlympiadBench
(He et al., 2024), and MATH500 (Hendrycks et al., 2021c; Lightman et al., 2023), with details
deferred to Appendix B.1. In the experiments, we report the avg@256 accuracy metric for the
smaller AMC23 dataset, and avg@32 for other datasets following prior works (Zuo et al., 2025;
Wang et al., 2025c). To reduce randomness in instance selection, we repeat the algorithms three
times and report the average result. More details can be found in Appendix B.2.

Baselines. We compare the proposed CONST against various baselines, i.e., (1) NoFinetuning, which
uses the original model for inference, (2) RandSelect, which annotates randomly selected instances
for training, (3) active learning algorithms, including EntSampling (Settles, 1995), BADGE (Ash
etal., 2020), and CEC (Safaei & Patel, 2025), and (4) reasoning-specific selection strategies, includ-
ing SCF (Wang et al., 2022) and EWS (Beygelzimer et al., 2009). More details about the baseline
methods can be found in Appendix B.3 and Appendix C.3.

Implementation Details. We adopt LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024),
DeepSeek-R1-Distill-Qwen-1.5B (Guo et al.,, 2025), Qwen2.5-Math-1.5B, and
Qwen?2.5-Math-7B (Yang et al., 2024) for RLVR training. For the calibration set, we use 1024
instances randomly selected from BigMath (ensuring no overlap with BigMath-sub), and to justify
the robustness of CONST to the choice of the calibration set, MMLU (Hendrycks et al., 2021a;b)
is used as an alternative. For procedural volatility, we set the number of stages np to 20, and for
outcome volatility, we set np to 20. In conformal prediction, we set the error rate « to 0.1 and A
to 0.02. For the budget of annotation, we report the results of 4 and 8 instances. For the clustering
step, we use Sentence-BERT (Reimers & Gurevych, 2019) to obtain the embeddings of the input
queries, and use the K-means algorithm to obtain the clusters. The number of clusters is set to b,
which is the budget of annotation. For the RLVR optimization hyperparameter setup, we generally
follow the training configuration of Wang et al. (2025c). By default, we set the maximum number
of tokens to 8192 in training and 3072 in inference, the learning rate to 1 x 1076, the weight decay
to 0.01, the hyperparameter of 3 in GRPO (Eq. 2) to 1 x 1073, the batch size to 64, and 8 gradient
updates for each rollout. We train the model for at most 500 iterations and evaluate the model every
20 iterations. During training, we duplicate the samples to occupy a single batch. We use the VERL
framework (Sheng et al., 2024) for RLVR training and inference. For the computation hardware, we
use 4 NVIDIA H800 for both training and inference.

4.2 PERFORMANCE COMPARISON

We compare the proposed CONST with various baselines across different LLM architectures on four
mathematical reasoning datasets with varying budget sizes, and report the avg@32 (avg@256)
metric in Table 1. According to the results, we make several observations (Obs.) listed as fol-
lows: Obs.® CONST significantly improves vanilla models across various scenarios, outperform-
ing baselines. For example, using only 8 critical instances, CONST significantly improves vanilla
LLaMA-3.1-8B-Instruct by40.71%, DeepSeek-R1-Distill—-Qwen-1.5B by 70.65%,
and Qwen?2.5-Math-1.5B by 76.76%, surpassing competitive active learning baselines not de-
signed for reinforcement learning on LLMs (e.g., BADGE and CEC). Obs.® Training on critical
instances discovered by CONST achieves comparable results to training on the full dataset. The
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Table 1: Performance comparison with various baselines and training on the full dataset under the
avg@32 (avg@256 for AMC23) metric. We mark the best in bold and runner-ups with underline.

Datasets AMC23 MinervaMath OlympiadBench MATHS00 AVG
Budget 4 8 4 8 4 8 4 8 4 8
LLaMA-3.1-8B-Instruct

NoFinetuning 18.03 14.37 12.28 35.79 20.12
RandSelect 19.48 18.34 16.77 18.05 13.54 13.87 39.02 39.03 22.20 22.32
EntSampling 20.42 19.70 16.66 18.12 13.43 13.14 37.29 36.33 21.95 21.82
BADGE 19.34 20.02 20.25 19.28 13.27 13.81 41.72 42.68 23.95 23.65
CEC 20.25 21.24 16.66 18.50 13.05 15.02 38.03 42.97 21.79 2443
CONST (ours) 20.62 24.27 21.68 24.19 16.83 17.61 43.46 47.17 25.65 28.31
FullDataset 24.30 20.99 18.23 48.58 28.03
DeepSeek-R1-Distill-Qwen-1.5B

NoFinetuning 30.94 14.17 17.68 50.03 28.21
RandSelect 40.96 54.55 19.28 23.31 25.02 33.68 64.29 72.96 37.39 46.13
EntSampling 54.91 54.88 22.23 22.55 32.68 32.98 71.79 71.97 45.40 45.60
BADGE 42.84 50.13 21.39 23.20 27.62 30.76 67.73 71.04 39.90 43.78
CEC 49.75 51.46 21.88 22.14 30.50 31.50 69.96 71.44 43.02 44.14
CONST (ours) 55.84 59.16 23.17 23.66 33.66 34.90 73.61 74.84 46.57 48.14
FullDataset 60.27 24.55 36.30 75.49 49.15
Qwen2.5-Math-1.5B

NoFinetuning 31.74 9.47 21.72 36.23 24.79
RandSelect 44.66 46.88 15.19 21.35 30.94 30.46 64.32 65.74 38.78 41.11
EntSampling 40.64 42.43 17.69 20.62 27.24 27.32 59.79 62.26 36.34 38.16
BADGE 44.61 46.73 19.91 20.97 28.87 29.54 63.69 64.88 39.27 40.53
CEC 42.42 45.32 13.67 21.24 28.00 30.88 59.11 68.87 35.80 41.58
CONST (ours) 47.19 48.42 20.01 24.54 32.05 32.75 67.68 69.58 41.73 43.82
FullDataset 49.13 24.30 33.33 70.88 44.41
Qwen2.5-Math-7B

NoFinetuning 56.04 33.90 37.28 81.03 52.06
RandSelect 57.05 57.48 35.26 3591 38.29 38.77 81.58 81.90 53.05 53.52
EntSampling 56.95 57.87 35.36 35.37 38.46 38.63 81.88 81.89 53.16 53.44
BADGE 54.36 56.76 34.12 35.08 37.63 38.92 80.81 82.25 51.73 53.25
CEC 56.03 58.28 34.73 35.21 38.41 39.18 81.70 82.16 52.72 53.71
CONST (ours) 58.21 59.05 35.83 36.97 39.56 40.19 82.94 83.55 54.14 54.94
FullDataset 58.70 36.66 41.04 83.61 55.00

results in Table | demonstrate that with less than 0.5% of the samples selected by CONST in an unsu-
pervised manner, we can achieve very similar performance on average: less than 1.09% difference
in terms of avg@k accuracy for budget 8. This confirms the value of these lottery-winning samples
and our method that discovers them without access to ground truth answers.

4.3 ABLATION STUDIES

We then investigate how the different com-

Table 2: Ablation study of CONST with the budget of 8.
ponents or mechanisms in CONST affect

the final performance. In particular, we de- ~ Variants AMC23 M]\l/?:tr[:’ ¢ O]é)églcrﬁdd Ms?)?)H G
sign six variants of CONST, denoted as V1 =~ "v1 20.87 16.89 13.76 40.53 23.01
to V6. VI removes conformal prediction V2 22.03 21.37 15.18 43.60 25.54
and randomly selects instances from each V3 19.98 1764 1479 4079 23.30
cluster. V2 skips clustering and chooses Xg ;g'gg 5(5)(2)? igéé ii'gé ;g'gg
s.amples with the largest conf(?rmal pred}c- o STE 1634 D 4016 2304
tion sets. V3 uses entropy in Eq. 8 in- N 2419 76l 717 2831

stead of conformal prediction sets to se-

lect instances in each cluster. V4 explores alternative configurations in Eq. 11 by clustering
instances into b/2 groups and selecting the top 2 items with the highest conformal prediction
sets. V5 removes procedural volatility, and V6 removes outcome volatility. We perform experi-
ments on LLaMA-3.1-8B-Instruct with the budget of 8, and the results in terms of avg@32
(avg@256) are shown in Table 2, from which we have the following observations: Obs.® All
components or mechanisms in CONST contribute to the final performance. As shown in the
table, removing any of the proposed techniques consistently decreases accuracy across datasets,
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Figure 3: Left: performance under different numbers of stages (np). Middle: performance under
different numbers of samples (no). Right: robustness to different choices of the calibration set.

demonstrating the effectiveness of conformal prediction, procedural/outcome volatility, and clus-
tering. Obs.@® Conformal prediction plays an important role. The results show that replacing
conformal prediction with alternatives such as random selection or entropy selection leads to severe
performance degradation (i.e., 5% drop in terms of absolute accuracy).

4.4 FURTHER ANALYSIS

Performance under Different Hyperparameters. We then show the model’s performance (in
terms of avg@32/avg@256) under different hyperparameters: the number of stages (i.e., np) in
procedural volatility (Eq. 4) and the number of samples (i.e., no) in outcome volatility (Eq. 6). The
experimental results on LLaMA-3.1-8B-Instruct are shown in Figure 3 (Left and Middle).
From the results, we observe that: Obs.® Both np and no achieve best performance at 20. The
number of stages np controls the granularity of procedural volatility: when the granularity is too
coarse (small nps), it may be difficult to capture the twists and turns in the reasoning trajectories;
when the granularity is small (large n ps), it may frequently interrupt the logic fragments. On the
other hand, no controls the balance of procedural volatility and outcome volatility in the multiset
B(X), which affects the scoring function and thus conformal prediction sets.

Robustness to Different Choice of Calibration Sets. CONST requires a calibration set, and there-
fore, we also investigate the method’s robustness under different choices of the calibration sets.
Specifically, we adopt three sets: (1) BM Calib-1, which is the original one; (2) BM Calib-2, which
is also sampled from the BigMath dataset with no overlap with the training set; (3) MMLU, which
contains mathematical questions from the MMLU dataset. The results on LLaMA are presented
in Figure 3 (Right), and we observe that: Obs.® The proposed method is robust to the choice
of calibration sets. Using a calibration set with identical distributions to the training set (i.e., BM
Calib-1 and BM Calib-2) yields similar high accuracy on average. When using a calibration set with
a different distribution (i.e., MMLU), there is a slight decrease, but the difference is marginal on
average, showing that CONST is robust to the different choices of the calibration set. The results also
indicate that it is possible to use existing datasets that are already annotated (e.g., MMLU) as the
calibration set to avoid the need to annotate the calibration set.

Preliminary Results on Active Loops. Table 3: Performance comparison with the budget of 8
We further explore the potential of CONST  petween the initial round (CONST-1) and the subsequent

in an active loop. Specifically, we use active learning round (CONST-2).
the LLaMA-3.1-8B-Instruct model Minerva Olympiad MATH

fine-tuned in the initial round (CONST-1)  Round AMC2SEE Tath Bench 500 G
as the updated policy, and re-evaluated the =~ coNsT-1 ~ 24.27 24.19 17.61 47.17 28.31
remaining unlabeled instances in the train- ~_CONST-2  25.29 27.31 18.73 51.24 30.64
ing set to select a new batch of samples

with the same budget of b = 8. The model was then further optimized, starting from the checkpoint
of the previous round (denoted as CONST-2). The performance comparison are shown in Table 3.
As we can see from the results, the iterative selection and optimization using CONST yields consis-
tent performance gains across all datasets, raising the average accuracy from 28.31% to 30.64%.
This suggests that: Obs.@ As the policy evolves, CONST can effectively re-identify critical in-
stances, achieving continuous improvement. The proposed CONST can perform better with more
computation and even surpassing the baseline that trains on the full dataset.
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5 RELATED WORKS

Reinforcement Learning for LLM Reasoning. Reinforcement learning (Sutton et al., 1999;
Havrilla et al., 2024a; Wen et al., 2024; Liu et al., 2025a) has significantly enhanced the reason-
ing capabilities of LLMs via rewards from verifiable answers (Shao et al., 2024; Mroueh, 2025;
Wen et al., 2025) or reward models (Dong et al., 2024; Setlur et al., 2024; Rita et al., 2024; Qu et al.,
2025). Early efforts (Sprueill et al., 2023; Deng et al., 2024; Wang et al., 2024) mainly focus on su-
pervising the LLMs’ reasoning process, often involving the value functions (Havrilla et al., 2024b;
Zhai et al., 2025; Yuan et al., 2025; Zhang et al., 2025a). More recently, outcome supervision,
with the reward obtained from verifiable ground truth answers, has received increasing attention
(Shao et al., 2024; Liu et al., 2025b; Su et al., 2025; Liu et al., 2025¢), due to its simplicity and the
immunity from reward hacking (Gao et al., 2024; Fu et al., 2025; Miao et al., 2025).

Conformal Prediction. Conformal prediction (Vovk et al., 2005; Tibshirani et al., 2019; An-
gelopoulos et al., 2023; Straitouri et al., 2023; Kiyani et al., 2024a; Gibbs et al., 2025) is a model-
agnostic and distribution-free solution of uncertainty quantification (Stracuzzi et al., 2017; Wang
et al., 2019; Psaros et al., 2023), with solid mathematical foundations (Fontana et al., 2023; An-
gelopoulos et al., 2024). It generates prediction sets that contain the ground truth answer under a
predefined error rate. While most prior efforts focus on conformal prediction with smaller classi-
fication or regression models (Correia et al., 2024; Jeary et al., 2024; Cresswell et al., 2024; Zhou
et al., 2025), its adoption in natural language processing (Campos et al., 2024), and particularly
LLMs (Cherian et al., 2024; Kiyani et al., 2024b; Su et al., 2024; Mohri & Hashimoto, 2024; Wang
et al., 2025b; Chankaev & Ilyushin, 2025), has received increasing attention. Compared to these
prior works, this paper uses conformal prediction to guide the selection of critical samples.

Active Learning. Active learning (Cohn et al., 1994; 1996; Baram et al., 2004; Castro et al.,
2008; Ren et al., 2021) aims to optimize deep learning models with limited annotation efforts. It is
particularly useful when the ground truth answers can only be obtained with relatively high costs
(Konyushkova et al., 2017; Yuan et al., 2023; Xiao et al., 2023; Chen et al., 2024). With the success
of LLMs, efforts have been made in both LLM for active learning, which uses LLMs for active an-
notation (Margatina et al., 2023; Melo et al., 2024; Li et al., 2024; Kholodna et al., 2024; Ceravolo
et al., 2024; Astorga et al., 2024; Xia et al., 2025), and active learning for LLMs, which adopts active
learning for optimizing LLMs (Muldrew et al., 2024; Sun et al., 2024; Zhang et al., 2024a; Hiibotter
et al., 2024; Zhang et al., 2024b). In this paper, we explore active learning to optimize the reasoning
capability of LLMs with a data-efficient and performance-competitive reasoning framework.

Data Selection and Valuation. Data selection and valuation (Das et al., 2020; Paul et al., 2021;
Killamsetty et al., 2021; Guo et al., 2022; Wang & Jia, 2023; Das et al., 2024; Ebiele et al., 2025)
aim to find the most valuable data in the training set to save computational resources. For example,
Paul et al. (Paul et al., 2021) use the loss function and its gradients to select important examples
very early in training. Guo et al. (Guo et al., 2022) provide a comprehensive code library in addition
to extensive evaluation for data subset selection and valuation. Das et al. (Das et al., 2024) propose
CheckSelect, a flexible, accurate, robust, and efficient method for extracting the high-value subsets.
Nevertheless, many works on data subset selection and valuation assume complete annotation of the
training set by computing the loss function or its gradients (Paul et al., 2021; Wang & Jia, 2023;
Das et al., 2024), and conducted primarily in the domain of vision (Das et al., 2020; 2021a; Paul
et al., 2021). By comparison, this work proposes CONST that aims to find important training data
(the critical instances) without the annotation, and only annotate the important instances to achieve
annotation-efficient RLVR optimization of LLMs.

6 CONCLUSION

This paper investigates an important question: how can we identify the lottery-winning samples
from the original dataset without access to answers, thereby enabling an annotation-minimal, data-
efficient and performance-competitive alternative for optimizing the reasoning capability of LLMs.
Through the design of our novel CONST framework, a probabilistic method grounded in the mathe-
matical foundation of conformal prediction and incorporating complementary considerations of pro-
cedural and outcome volatility, we demonstrate that the unsupervised discovery of critical instances
in full datasets can achieve comparable performance with significantly less annotation efforts.
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A PROOF OF THEOREM 3.1

In this section, we prove our Theorem 3.1 in two steps. At first, in subsection A.l, we analyze
the convergence of standard gradient descent, i.e., 041 29, — nVEngO(O), where 7 denotes the

step size and LA(%/{PO(H) represents the empirical GRPO loss function utilized by our CONST method.
Subsequently, in Subsection A.2, we establish the generalization upper bound between the expected

return J(0) £ E, ., [R(7)] and the empirical return, i.e., — £ po-

A.1 CONVERGENCE OF GRADIENT DESCENT

Lemma A.l. Under Assumption 3.1-3.3, if the gradient v"j(%epo(e) is bounded, i.e.,
|VLEwpo(0)]l2 < G, then the Gradient Descent algorithm with a constant step-size I that is,

1_ 4o
Or-+1 £ Or — ZV‘C(?RPO(G),

has a linear convergence rate. We have

R R . TN 2G €2
ﬁ(Q;RPO(ak) - E(Q;RPO(QGRPO) <(1- Z)kﬁgRPO(QO) + 76 + 2’
where 0ppo 2 arg ming £, (6).

Proof. According to the L-smoothness (Lan, 2020), we have that

R A « L
L&po(Or11) < Lo (0k) + (VLErpo (1), Okr1 — Ok) + §||9k+1 —0kll3

~ 1 ~ A/ 1 A0/
= L&wo(0r) — E<v£gRPO<9k)7 VLo (0)) + EHV‘CC?RPO(HIC)”;
where the final equality follows from 61 £ 6 — 2V LS 00(6).
Next, we show that
(VL po(0k), VL po (0)) = (VL0 (01), VL po (0)) + (VL po (0k), VL po () — VL po (0))
GRPO\YE /5 GRPO GRPO\YE /5 GRPO GRPO\YE /5 GRPO GRPO
2 ||V£(91RP0(91€)H% - HVL(%RPO(ek”'?||V‘C’(?RPO(9) - vz(%zpo(e)H? > HVCC?RPO<(9/€)||§ —€G,
where the final inequality from the Assumption 3.1 and boundedness. Moreover,
IV Lkpo (013
= ||VEGQRP0(9k)“§ + 2<VEGQRP0(9k)» Vﬁgkpo(ek) - VﬁgRPO(9)> + ||V£gkpo(ek) - VﬁgRPO(ek)”g
< ||V[:(%RPO(91€)H§ +2Ge + €%,
where the final inequality from the Assumption 3.1 and boundedness.

As a result, we have that

A A 1 A 2G €2
ﬁgRPO(ekJrl) < ‘C(%Rpo(ek) - ﬁ”v£gRPO(9k)”§ + 76 + ﬁ
¢ Hoa A . 2G €2
aS EgRPo(e’“) - f(ﬁgkpo(ek) - £8RPO(0GRPO)) + 76 + By
where the final inequality follows from Assumption 3.3.
Finally, we have
£ (?RPO(H’“H) - E(?RPO(%RPO)
K A A * 2G 62
<(1- Z)(‘CgRPO(Hk) - ‘C(Q}RPO(QGRPO)) Tt a1
<...
H 2G 62 k [
<(1- z)k+1(£§RPO(90) — L& po(Oirro)) + (Fe+ 1) ;O(l ~ Ly

M A A *
<(1- E)kH (EgRPO(QO) - ﬁéQ;Rpo(HGRPo)) + 76 +
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where the final inequality follows from Z;::O(l -8y <

=~

A.2 GENERALIZATON OF GRPO

Lemma A.2. If the underlying MDP M £ (S, A, P, r,) is ergodic with mixed time t,,,;,, then we
can show that, for any ¢ € (0, 1), with probability 1 — 0, the following inequality holds, that is,

tmiwajzz(l - %)ln(%) + ln(%)
Nn Nn(1—7)

sup |L&rpo(0) — Larro(9)] < 2R(Far) + (9(\/ );

where © denotes the parameter space, R(Fgr) is the Rademacher complexity of the group-relative

loss function space Fgr, N denotes the size of full training set Q, n is size of outputs for each

question and %, is an upper bound of variance of the return {r;}_,, i.e., Vary,(r;) < 0%,V € ©.

Proof. At first, we introduce a theorem from Tolstikhin & Seldin (2013), that is,

Theorem A.l1 (Lemma 1 in Tolstikhin & Seldin (2013)). For any function f, : H x (X X

V)" — R and for any distribution Py over H, such that P; is independent of dataset S =
[(z1,91), ..., (T, yn)], with probability greater than 1 — & over a random draw of S, for all distri-
butions Py over H simultaneously:

1 7
En~r|fa(h, $)] < KL(P2|P) +1n(5) + In (Ethl [Egr pn [ B:S >]]), (12)

where S ~ D" represent a n-size independent dataset S drawn from data space D.

Then, we set fn(0,Q) = |ﬁgRPO(9) — Lgreo(f)| and investigate the expectation
Eq [e*IN(#:Q~Eclfn(9.QD] for any fixed § € © and A > 0. From the classic Bernstein-type
self-bounding inequality(e.g. Theorem 2.1. in Fan & Shao (2025)), we can have that

A2V
);

B [N 0,2 -Ealfn(0,2D)] < exp(— 2V
Q[ ] — Xp(Q(l—An]gA)

A~ ~ . 2 ~ A .
where V' = Zjvzl E [(ﬁGQRPO(F)) - Ecg;l;;g (9)) ] LEpo(0) — Ec%gg (0)| < A deterministically

for any j € [N] and ﬁg,}]fg (0) represent the leave-one-question-out loss.

-1
In standard MDP, we usually use the discount return such that we could infer that A = (’)(%)
where -y is the discount parameter (Puterman, 1990) . Moreover, from the variance conversion for
2 1
minOr(1=7)

mixing ergodic MDP (Levin & Peres, 2017), we also can show that V' < L o

From Eq.12, we can have that
Eop, [A(fN (0, Q) — Eg[fn (0, Q)])]
)+ In (E9~P1 [Eg [e/\(fN(H,Q)—EQ[fN(&Q)])]})
Ntmiwog(1— )
2Nn(1 — X1 —~)"1/3)°

< KL(P,|P1) + In(

SO

1
1)
Let P, = P, we thus can show that

< KL(P|P1) +1In(<2) +

Eo-p,[|L&kpo(0) — Lorro(8)]]

. In(1) Amizog(1— 1)
< Eonp, [EQ“‘C(%RPO(Q) — Lareo(0)[]] + ,\(S + 2Nn(1 — )\1(?/1 —7)71/3)
111(%) )\tmizo—%{(l - %)

N TaNn(l—A1—7)1/3)

< Eg[sug |L&kpo(0) — Larpo(0)]] +
S

where the final inequality follows from \ﬁngO(H) — Lgrro(0)| < supgeeo |138RPO(9) — Lgrro(0)].
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Like the structure of the proof of Theorem 3 of Tolstikhin & Seldin (2013), we can investi-

gate the function g(\) £ m()\%) + QN;\f("l"f)\(T(,lv)ilﬁ) 73)

2anog(l) . (177)—1)\* o
tnti'n,o'?{(l*%)(zlﬁ*ﬂ*) and $* = “—%—— such that g(\*) =

where A € (0,25). The minimum

of g(\) often occurs at \* =

o2 (1— 1) In(L a(l
(9(\/%mc %‘(]1\,”")1 () 4 NL((I“_)V)). As a result, we have that

EQNPQ [|£GQRPO(9) - £GRPO (9) |]

tmizo k(1 — 2)In(3) In(%)
Nn Nn(l—7)

< EQ[Sug |L&po(0) — Larro(0)[] + O(\/ ).

€
Furthermore, from the classical symmetrization lemma in statistical learning theory (Shalev-
Shwartz & Ben-David, 2014; Mitzenmacher & Upfal, 2017), we have that Eg [supgeg |L£Spo (6) —
Lerro(0)|] < 2R(Fgr) where R(Fer) is the Rademacher complexity of the group-relative loss
function space Fgg. Therefore, we have that

02(1— 1yjn(L (1
Eor,l|£8o(®) — Lorwo(®)]] < 2R (Fr) + OM R ey

).
Finally, due to the randomness of P, over ©, we get the result of lemma A.2. O

With the results of Lemma A.1 and Lemma A.2, we also prove Theorem 3.1, that is,
Larpo (01) — Loreo(07)
= Larpo(0k) — LGpo(0k) + Lo (0k) — Lo (0) + Lpo(07) — Larro(67)
<2 Sgg |£(Q}RPO(0) — Lareo(0)| + ﬁgRPO(ek) - ﬁgRPo(eéRPo)

2 2

[ 20 tmiz0h(1 — %)ln(%) ln(%) 2G €
< _ =
< AR(Far) + (1= 7)" Lirro(00) +O(\/ N TN T 2#)

where the first inequality comes from 0zp, = arg min, ﬁgRPO(H) and 6* £ argminy Lgrpo(6).
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B DETAILS OF THE EXPERIMENTAL SETUP

B.1 MORE DETAILS ABOUT THE DATASET

Our experimental evaluation is conducted on several widely recognized mathematical reasoning
benchmarks. For model training, we utilize a subset of the BigMath dataset, while for the calibration
of our scoring function, we use instances from both BigMath and MMLU. For the test phase, our
evaluation spans four distinct datasets to ensure a comprehensive assessment of performance. Below,
we provide a detailed description of each dataset.

« BigMath-sub. For the training phase of our experiments, we use BigMath-sub, which is a ran-
domly selected subset containing 2048 instances from the large-scale BigMath dataset (Albalak
et al., 2025). BigMath is a high-quality dataset specifically curated for reinforcement learning in
large language models on mathematical tasks.

* MMLU. The Massive Multitask Language Understanding (MMLU) dataset (Hendrycks et al.,
2021a;b) is a comprehensive benchmark designed to measure knowledge acquired during pre-
training by evaluating models across a wide range of subjects. In our experiments, it serves as
an alternative calibration set to justify the robustness of our method against the choice of cal-
ibration data. To maintain relevance to our mathematical reasoning task, we utilize a specific
subset of MMLU, comprising five math-related subjects: abstract algebra, college mathematics,
elementary mathematics, high school mathematics, and high school statistics.

¢ AMC23. The American Mathematics Competitions (AMC) dataset (problems & solutions, 2023)
is a collection of challenging problems from the official mathematics competitions for middle
and high school students in the United States. These problems require a deep understanding of
mathematical concepts and strong problem-solving skills.

¢ MinervaMath. This dataset (Lewkowycz et al., 2022) is a benchmark focused on quantitative
reasoning, containing problems that require step-by-step logical inference. The problems are
sourced from various STEM disciplines and are designed to test the model’s ability to perform
complex, multi-step calculations and reasoning.

* OlympiadBench. This is a highly challenging benchmark consisting of problems from interna-
tional science and mathematics Olympiads (He et al., 2024). The dataset is designed to push the
limits of LLM reasoning capabilities, as the problems often require creative and non-standard
approaches to solve.

* MATHS00. The MATH dataset (Hendrycks et al., 2021c; Lightman et al., 2023) is a widely
adopted benchmark for mathematical problem-solving, composed of 12,500 problems from high
school math competitions. The problems are categorized by difficulty and subject, covering topics
such as algebra, geometry, number theory, and more. We use a 500-instance subset for our
evaluation.

B.2 MORE DETAILS ABOUT THE EVALUATION METRICS

In the experiments, we use the avg@k accuracy metric for evaluating the performance. This metric
is formally defined as follows. Given an input X and the ground truth answer Y, the model predicts

a total of k answers, i.e., Y7, Ys, ..., Y}, and the metric can be computed as:

R
F Y, =Y
avglk = % (13)

where 1 is the indicator function. In the evaluation, we consider the size of the datasets when

deciding k: for the smaller dataset of AMC23, we set k to 256, whereas for larger datasets of
MinervaMath, OlympiadBench, and MATHS500, we set & to 32.

B.3 MORE DETAILS ABOUT THE BASELINE METHODS
We compare the proposed CONST against various baselines. These methods are grouped into three

categories: a non-finetuning baseline, a random selection baseline, and several active learning algo-
rithms. A detailed description of each baseline is provided below.
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* NoFinetuning. This baseline directly uses the original large language model for inference with-
out any fine-tuning. It serves as a fundamental benchmark to evaluate the performance improve-
ment brought by different instance selection and training strategies.

¢ RandSelect. This is a simple yet crucial baseline where a subset of instances is randomly selected
from the entire training set for annotation and subsequent model optimization. This method helps
to gauge the effectiveness of more sophisticated active learning strategies against a naive selection
approach.

* EntSampling. As a classic uncertainty-based active learning method, Entropy Sampling (Settles,
1995) selects instances for which the model has the highest predictive entropy. Our implemen-
tation adapts this principle for generative LLMs. For each instance, we first generate a multiset
of potential answers by sampling the model’s output n,, times. The entropy is then calculated
based on the frequency distribution of the unique answers within this multiset. This procedure
directly mirrors the Outcome Volatility component of our proposed CONST method, ensuring a
fair comparison.

* BADGE. Deep Batch Active learning by Diverse, Uncertain Gradient Lower Bounds (BADGE)
(Ash et al., 2020) is a state-of-the-art active learning strategy that selects a batch of samples that
are both uncertain and diverse. It computes a hypothetical gradient embedding for each unlabeled
sample with respect to the parameters of the final layer. The magnitude of this gradient represents
the model’s uncertainty. To ensure diversity, it then uses k-MEANS++ seeding on these gradient
embeddings to select a batch of points that are far from each other in the gradient space.

* CEC. Calibrated Entropy-weighted Clustering (CEC) (Safaei & Patel, 2025) is an active learning
framework designed for vision-language models that selects informative samples by leveraging
both self-uncertainty and neighbor-aware uncertainty. The method first calibrates the predictive
entropy to counteract the known miscalibration issue in large pre-trained models. It then com-
bines this calibrated self-uncertainty with the uncertainty of neighboring samples to obtain a more
reliable score. Finally, CEC employs an uncertainty-weighted clustering approach to ensure di-
verse sample selection from various regions of the feature space. For our LLM-based tasks, we
apply its core mechanisms directly to the language model’s final-layer embeddings.
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C CASE STUDY

In this section, we present three case studies to qualitatively demonstrate the effectiveness of our
proposed CONST method. For each case, we show the question, the response from the original
LLM (Before Training), and the response from the LLM fine-tuned on critical instances selected
by CONST (After Training). An analysis is provided to highlight the specific improvements in the
model’s reasoning capabilities.

C.1 EXAMPLE

Example 1: Question

Given that the sum of the distances from any point inside a regular tetrahedron with edge length a to
its four faces is a constant value, find this value.

Example 1: Before Training (Original Model)

To find the constant value of the sum of the distances from any point inside a regular tetrahedron to its
four faces, we can use the following steps:

1. Consider a regular tetrahedron with edge length a.

2. Let P be any point inside the tetrahedron. We want to find the sum of the distances from P
to the four faces.

3. The sum of the distances can be expressed as di1 + dz + d3 + da.

4. We can use the fact that the sum of the distances from a point inside a tetrahedron to its four
faces is equal to the height of the tetrahedron multiplied by 3.

5. The height of a regular tetrahedron with edge length a can be found using the formula h =
ave
=

6. Therefore, the sum of the distances is 3h = 3 - % = av/6.

The final answer is: | aV/6 |.

Step 1: Understanding the Problem. We are given a regular tetrahedron with edge length a. The
problem asks for the constant value that is the sum of the distances from any point inside the
tetrahedron to its four faces.

Step 2: Identifying Key Geometric Properties. A regular tetrahedron has four equilateral triangular
faces. A key result (a generalization of Viviani’s theorem) states that for any interior point,
the sum of the distances to the four faces is a constant, equal to the tetrahedron’s height.

Step 3: Considering the Centroid. The distance d from the centroid to each face can be calculated
using the formula d = “T‘ég.

Step 4: Calculating the Height and Summing the Distances. Since there are four faces, the sum
of the distances from the centroid (or any point inside the tetrahedron) to the four faces is
4d =4 x B0 = oS

12 3
Step 5: Conclusion. Therefore, the constant value that is the sum of the distances from any point

inside the regular tetrahedron to its four faces is “Tﬁ.

V6

The final answer is: ?a

Analysis: The original model makes a fundamental error in geometric reasoning, incorrectly stating
that the sum of distances is three times the height (Step 4). This conceptual mistake leads directly to a
wrong final answer. After fine-tuning, the model demonstrates a complete conceptual and procedural
correction. It correctly identifies the key geometric principle: the sum of the distances is equal to
the height of the tetrahedron (Step 2). Furthermore, it executes a sound, step-by-step calculation
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to correctly derive the height’s value as “Tﬁ and provides the correct final answer. This successful
transformation from a flawed understanding to a fully correct solution showcases the effectiveness
of the training sample selected by CONST.

Example 2: Question

A school selects 50 students from all 500 senior students for a study situation questionnaire survey.
The 500 students are numbered from 1 to 500. The interval number k = % = 10, which means one
student is selected out of every 10 students. A number is randomly selected from 1 to 10, and if the

number 6 is selected, the numbers that should be taken from 125 to 140 are ______.

Example 2: Before Training (Original Model)

To find the numbers that should be taken from 125 to 140, we need to determine which numbers in this
range correspond to the interval of 10.

Since the interval number k = 10, we can divide the range 125 to 140 into intervals of 10.

The problem states that if the number 6 is selected, the numbers that should be taken from 125 to 140
are ______. This means that we need to select every 10th number starting from 125.

So, the numbers that should be taken from 125 to 140 are: 125, 135.

The final answer is: | 125,135 |.

Step 1: Understand the selection process. The school is using systematic sampling. One student is
chosen from every 10 students.

Step 2: Determine the selection pattern. A random start from 1 to 10 was chosen, and it was 6. This
means the selected students will be those numbered 6, 16, 26, 36, and so on. The general form
for a selected student’s number is 10n + 6 for some integer n. > 0.

Step 3: Identify the relevant range of students. We are interested in the numbers that should be
taken from 125 to 140.

Step 4: Apply the selection pattern to the relevant range. We need to find numbers of the form
10n + 6 that fall between 125 and 140.
 If n = 11, the number is 10(11) + 6 = 116 (too low).
 If n = 12, the number is 10(12) + 6 = 126 (in the range).
e If n = 13, the number is 10(13) + 6 = 136 (in the range).
o If n = 14, the number is 10(14) + 6 = 146 (too high).
Step 5: List the selected numbers in the range 125 to 140. The selected numbers are 126 and 136.

The final answer is: | 126 and 136

Analysis: The original model completely misunderstands the concept of systematic sampling; it
ignores the provided random start (6) and incorrectly assumes the selection begins at the start of
the local range (125), leading to a wrong answer. In sharp contrast, the model after fine-tuning
demonstrates a perfect understanding of the procedure. It correctly identifies the general form of
the selected numbers (10n + 6) and flawlessly applies this rule to the specified range to find the two
correct numbers, 126 and 136. This case illustrates a clear and complete correction from flawed
logic to precise procedural execution, with both the reasoning and the final answer being correct.

Example 3: Question

Given that the sequence {b,} is an arithmetic sequence with the first term as -34 and a common
difference of 1, and the sequence {an} satisfies an41 — an = 2" (n € N*), and a1 = bsz, then the

maximum value of the sequence { b } K

On
an
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Given that {b, } is an arithmetic sequence with the first term as -34 and a common difference of 1, we
can write the formula for b, as: b, = —34+4+ (n —1) -1 = —-33 +n.

Given that a,,+1 — an = 2", we can write the formula for a.,, as: a, = a1 + 22;11 2k — gy +2"—2.
Since a1 = bs7, we can substitute n = 37 into the formula for by, to find a1: a1 = bsy = —33+ 37 =
4.S0,an, =4+2" —2=2+2".
Now, we can find the value of Z—'ﬂb =

—33+n

242n *

To find the maximum value of the sequence, we can try different values of n: n = 5, ;—ig; n =6, %%7.
We can see that the value of n that makes the denominator close to the numerator is not an integer. We
can try the value of n = 3: *1—?(’)0 = —3. ... [The model continues to plug in values without a clear
strategy and fails to find the maximum.]

Step 1: Determine the general term of the arithmetic sequence {b,, }. Given by = —34 and com-
mon difference d = 1, the general termis: b, = b1+ (n—1)d = =34+ (n—1)(1) = n—35.

Step 2: Determine the general term of the sequence {a,, }. We are given the recurrence a,+1—an =
2". The general term a,, can be found by telescoping sum: a, = a1 + Zz;ll (ar+1 —ax) =
a1 + S_pZ; 2", This is a geometric series sum: > p_; 2F = 2(2"* — 1) = 2" — 2. So,
an =ay + 2" — 2.

Step 3: Find the value of a,. We are given a1 = bs7. Using our formula for b,,: a1 = 37 — 35 = 2.

Step 4: Finalize the formula for a,,. Substituting a; = 2 into the expression from Step 2: a, =
(2)+2"—2=2"

Step 5: Find the ratio %. The sequence we want to maximize is { %52° }.

Step 6: Determine the maximum value. Let f(n) = "2_,?5. The denominator grows much faster
than the numerator. For n < 35, the value is negative. For n = 35, the value is 0. For
n > 35, the value is positive and will eventually decrease towards 0. The maximum value
will occur for a small n > 36. Let’s check n = 36: f(36) = 2555 = 5. Let’s check
n =37 f(37) = 2522 = F#- = 335. Let’s check n = 38: f(38) = 2553% = ;35 Since

2% < 2% = 2%, the value decreases after n = 37. The maximum value is 2%

1

The final answer is: 536

Analysis: This multi-step problem requires correctly deriving formulas for two sequences before
optimizing their ratio. The original model makes errors in deriving both b,, (off-by-one) and a,,,
making the rest of the problem unsolvable. After training, the model flawlessly executes the setup
phase: it correctly derives b, = n — 35 and a,, = 2". This mastery of the prerequisite steps is a
significant improvement. It then correctly analyzes the behavior of the resulting function "2’,135 and,
by testing points near the transition from negative to positive, finds the correct maximum value. The
ability to correctly formulate the problem is the critical learned skill here.

C.2 ANALYSIS OF PROCEDURAL VOLATILITY FOR A CRITICAL INSTANCE

To further illustrate how our proposed CONST method identifies critical instances, we present a de-
tailed analysis of the procedural volatility for a Stratified Sampling problem. This process involves
truncating the model’s reasoning process at various stages and extracting an answer from each partial
thought process. The analysis demonstrates how the model’s path to the correct answer is unstable,
with its intermediate conclusions fluctuating significantly. This volatility highlights a fragile grasp
of the multi-step procedure, which makes this sample a high-value critical instance for fine-tuning.
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Procedural Volatility Analysis

Full Reasoning Process:

To find the number of sophomores, we first need to find the total number of students
in the school. We know that there are 450 freshmen and 250 seniors, but we don’t
know the total number of students (n). However, we can use the information about
the stratified random sampling to find the number of sophomores. In stratified
random sampling, the sample is divided into subgroups based on the population
characteristics (in this case, grade level). The number of students in each subgroup
is proportional to the number of students in that subgroup in the population. Let’s
denote the number of sophomores as x. The total number of students in the sample
is 60, and the number of freshmen in the sample is 27. We can set up a proportion
to represent the ratio of freshmen in the sample to the total number of freshmen in
the population: 27/60 = 450/n We can cross-multiply and solve for n: 27n = 60 *
450 = 27n = 27000 = n = 1000. Now that we know the total number of students
(n = 1000), we can find the number of sophomores. The total number of students
is the sum of freshmen, sophomores, and seniors: 1000 = 450 + x + 250. Subtract
700 from both sides: 300 = x. So, the number of sophomores is 300.

Analysis of Truncated Processes:
* Stage 1 (25% of Process)

— Truncated Reasoning: “To find the number of sophomores, we first need to find the total num-
ber of students in the school. We know that there are 450 freshmen and 250 seniors... we can
use the information about the stratified random sampling... In”

- Extracted Answer: \boxed{173}

* Stage 2 (50% of Process)

— Truncated Reasoning: “...the sample is divided into subgroups... The number of students in
each subgroup is proportional to the number of students in that subgroup in the population.
Let’s denote the number of sophomores as x. The total number of students in the sample is 60,”

- Extracted Answer: \boxed{73}

* Stage 3 (75% of Process)
— Truncated Reasoning: “...We can set up a proportion... 27/60 = 450/n. We can cross-multiply
and solve for n: 27n = 60 * 450 = 27n = 27000 = n = 27000 / 27~
— Extracted Answer: \boxed{1000}

* Stage 4 (100% of Process)

— Truncated Reasoning: “...n = 1000. Now that we know the total number of students... we can
find the number of sophomores... 1000 = 450 + x + 250. Subtract 700 from both sides: 300 =
X. So, the number of sophomores is 300.”

— Extracted Answer: \boxed{300}

Analysis. The model’s reasoning process exhibits high procedural volatility. The extracted answer
fluctuates from a hallucination (173), to another incorrect guess (73), to a correct intermediate
result mistaken for the final answer (1000), before finally reaching the correct solution (300). This
unstable path, despite culminating in a correct answer, reveals a fragile and non-robust understanding
of the multi-step problem-solving procedure. This makes the instance a quintessential “critical” or
high-value sample for corrective fine-tuning, as it exposes a weakness that simpler, more direct
problems would miss.

C.3 PROMPT TEMPLATE

Our framework utilizes several prompt templates tailored for different tasks, including guiding the
model’s reasoning process and standardizing its final output for evaluation. The core templates used
in our experiments are detailed below.
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1. Main Instruction Prompt for Mathematical Reasoning

This template is appended to every mathematical problem to instruct the model to generate a detailed,
step-by-step solution. The final prompt sent to the model is a concatenation of a system prompt, the
question, and this instruction.

You are a helpful assistant. You are asked to solve the following
question. <gquestion>

Let’s think step by step and output the final answer within
\boxed{}.

2. Answer Extraction Prompts

After the model generates a free-form reasoning trace, we use a dedicated extraction prompt to parse
the trace and isolate only the final answer. This ensures a standardized format for automated evaluation.

For General Problems:

You are an expert mathematician and a precise answer extractor.
Your task is to analyze the provided mathematical reasoning and
extract only the final numerical answer. Do not provide any
explanation or preamble. Your final output should ONLY be the
answer enclosed in a \boxed{}.

For MMLU Multiple-Choice Questions:

You are a precise answer extractor. Your task is to analyze the
provided reasoning for a single-choice question and determine
the correct option.

Your final output must be ONLY the letter of the correct option
(e.g., A, B, C, or D) enclosed in a \boxed{}.

3. MMLU-Specific Instruction Prompt

For the MMLU calibration set, which uses a multiple-choice format, a specialized instruction prompt
is used to guide the model’s response.

You will be presented with a single-choice question. Please
analyze the question and the provided options to determine the
single correct answer.

Your final response should be ONLY the letter of the correct
option (e.g., A, B, C, or D) enclosed in a \boxed{}. For
example, if the correct option is B, your response must be
\boxed{B}.

D ADDITIONAL EXPERIMENTS

D.1 DIFFERENT SIZES OF CALIBRATION SETS

In this part, we present the model’s performance under different sizes of the calibration set (i.e.,
m). We conduct experiments using LLaMA-3.1-8B-Instruct with a fixed annotation budget
of b = 8. We vary the size m from 256 to 1024, and the results are shown in Table 4. As can be seen
from the table, the performance generally improves as the size m increases. Specifically, increasing
m from 256 to 1024 leads to a consistent improvement across all datasets. This observation aligns
with the intuition that a larger calibration set D! provides a more accurate estimation of the scoring
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Table 4: Model’s performance under different sizes of the calibration set (i.e., m). The best results
are marked in bold.

Datasets AMC23 MinervaMath OlympiadBench MATHS00 AVG
m = 256 22.19 20.54 13.88 42.85 24.87
m = 512 23.87 22.87 16.73 45.59 27.27
m = 1024 (default) 24.27 24.19 17.61 47.17 28.31

Table 5: Performance comparison on undergraduate-level STEM problems (OCWCourses) using
LLaMA-3.1-8B-Instruct with a budget of 8. We report the avg@32 accuracy. The best
results are marked in bold and runner-ups with underline.

Methods Astronomy Solid Chem. Dynamics AVG
NoFinetuning 7.5 15.5 26.9 16.63
EntSampling 94 11.3 11.5 10.73
CEC 3.8 10.3 26.9 13.67
CONST (ours) 11.3 17.5 38.5 2243

function’s distribution, thereby enhancing the quality of the generated prediction sets él_a(X ).
Therefore, we set m = 1024 in our main experiments to ensure robust performance.

D.2 RESULTS ON SCIENTIFIC PROBLEMS

To evaluate the effectiveness of CONST in scientific domains, we analyze performance on the OCW-
Courses (Lewkowycz et al., 2022) subsets. We report the results of LLaMA-3.1-8B-Instruct
with a budget of b = 8 across three representative science courses: Introduction to Astronomy, Solid
State Chemistry, and Dynamics and Control. As shown in Table 5, CONST demonstrates substan-
tial improvements over the base model (NoFinetuning) and significantly outperforms other active
learning baselines. Notably, classic uncertainty-based methods like EntSampling perform poorly in
these hard domains (average accuracy drops to 10.73%), likely because high entropy in these tasks
correlates with total model confusion rather than learnable uncertainty. In contrast, CONST achieves
the highest performance across all three subjects, with an average accuracy of 22.43%, providing a
relative improvement of 34.9% over the original model (16.63%), showing that CONST better identi-
fies critical instances. While there may be linguistic noise generated by the model in these domains,
CONST is less affected and still outperforms baselines.

D.3 ADDITIONAL BASELINES

To further validate the effectiveness of our proposed framework, we compare CONST with two addi-
tional baseline methods on LLaMA-3.1-8B-Instruct with a budget of 8:

* SCF (Self-Consistency Filtering) (Wang et al., 2022): This method evaluates the uncertainty of
each instance based on the disagreement among the model’s outputs. Specifically, SCF calculates
the frequency of the majority answer and selects instances with low self-consistency scores (i.e.,
high reasoning variance), assuming these instances lie on the decision boundary.

* EWS (Entropy-Weighted Sampling) (Beygelzimer et al., 2009): Instead of deterministically se-
lecting the instances with the highest variance, EWS samples instances probabilistically, where
the probability of selection is proportional to the predictive entropy.

The results are presented in Table 6. The results show that while SCF and EWS achieve competitive
performance (25.87% and 22.14% on average, respectively), surpassing the NoFinetuning baseline,
the proposed CONST performs better compared to these baselines across all datasets, achieving an
average accuracy of 28.31%. These results further demonstrate the superiority of our selection
criterion based on conformal prediction considering both procedural and outcome volatility.
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Table 6: Performance comparison with additional baselines on LLaMA~-3.1-8B-Instruct with
a budget of 8. We report the avg@32 (avg@256 for AMC23) accuracy. The best results are marked
in bold.

Methods AMC23 MinervaMath OlympiadBench MATHS00 AVG
SCF 22.83 21.63 16.36 42.64 25.87
EWS 21.38 16.14 13.71 37.31 22.14
CONST (ours) 24.27 24.19 17.61 47.17 28.31

Table 7: Performance comparison between the likelihood-based baseline (LogProb) and CONST us-
ing LLaMA-3.1-8B-Instruct with a budget of 8. We report the avg@32 (avg@256 for
AMC?23) accuracy. The best results are marked in bold.

Methods AMC23 MinervaMath OlympiadBench MATHS500 AVG
LogProb 22.53 23.38 15.23 46.19 26.83
CONST (ours) 24.27 24.19 17.61 47.17 28.31

D.4 ADDITIONAL EXPERIMENTS ON THE SCORING FUNCTION

We also perform ablation studies on the scoring function in conformal prediction. Specifically, we
use the model’s intrinsic output likelihood as the scoring function:

fm(X.Y) = ~log P(Y,0|X), (14)

where Y is the final answer and O is the reasoning trajectory. Note that we also incorporate O since
the final answer is often obvious given the reasoning trajectory. The performance comparison is pre-
sented in Table 7. We observe that while using log-probability achieves decent performance (26.83%
average accuracy), it consistently underperforms CONST across all datasets. Specifically, CONST
surpasses this alternative design by 1.48% on average, with notable margins on OlympiadBench
(+2.38%) and AMC23 (+1.74%). A possible explanation for this result is that the log-probability
is prone to linguistic noise (e.g., linguistic unpredictability, rare vocabulary, or stylistic variations),
while the proposed method better reflect logical uncertainty. For example, a model might be sur-
prised” by a token simply because it is an uncommon phrasing, even if the reasoning logic is sound.
In contrast, our proposed CONST relies on both procedural volatility and outcome volatility, which
abstract away from token-level noise to capture higher-level inconsistencies in the reasoning process
and the final answer.

D.5 DIFFERENT CLUSTERING CONFIGURATIONS

We also provide ablation studies of alternative configurations of clustering, where we compare b =
8 clusters, 1 instance in each cluster” (default configuration) and ”b/2 = 4 clusters, 2 instances in
each” (alternative configuration). As can be seen from the results in Table 8, the default configuration
is slightly better than the alternative.

D.6 PASS RATES OF ANSWER SETS

We also conduct a detailed analysis on the pass rates of the generated prediction sets.
Specifically, for each test question, we: (i) generate N = 40 candidate answers using
DeepSeek-R1-Distill-Qwen-1.5B onthe MATHS500 dataset, (iz) filter them using the scor-
ing function and the threshold p derived from the calibration set (with size m = 100), and (¢¢7) mea-
sure the pass rate of the final answer set. We compare CONST against two baselines: Self-Consistency
and Entropy-based Selection. We set the target error rate &« = 0.2, implying a target coverage of
80%. The results are presented in Table 9. Note that the average set size of conformal prediction
is k = 3.53. Since both Self-Consistency and Entropy-Based Selection cannot naturally decide the
sizes of the candidate sets for each test question, we fix the size of the candidate sets of these two
methods to both £ = 3 and k = 4, for a fair comparison. As can be seen from the results, conformal
prediction increases the pass rate of the candidate sets. Conformal prediction can dynamically de-
cide the size of the candidate sets for each question: easy questions will have smaller candidate sets
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Table 8: Performance comparison under different clustering configurations of CONST using
LLaMA-3.1-8B-Instruct with a budget of 8. We report the avg@32 (avg@256 for AMC23)
accuracy. The best results are marked in bold.

Methods AMC23 MinervaMath OlympiadBench MATHS00 AVG
alternative 22.97 25.02 17.11 4531 27.60
default 24.27 24.19 17.61 47.17 28.31

to ensure high probabilities of covering the ground truth answer, and hard questions will have larger
ones. In this paper, we use the size of the conformal prediction sets to guide sample selection.

Table 9: Pass rate comparison of the candidate sets generated by different selection strategies on
MATHS500. We use DeepSeek—-R1-Distill-Qwen-1.5B with N = 40 and o = 0.2. The
best results are marked in bold.

Methods Pass Rate
Self-Consistency (k = 3) 76.75%
Entropy-Based Selection (k = 3) 76.50%
Self-Consistency (k = 4) 78.50%
Entropy-Based Selection (k = 4) 77.75%
Conformal Prediction (ours, & = 3.53) 80.75%
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