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Abstract

Histopathological images are generally considered as the golden standard for clinical di-
agnosis and cancer grading. Accurate segmentation of cells/nuclei from histopathological
images is a critical step to obtain reliable morphological information for quantitative analy-
sis. However, cell/nuclei segmentation relies heavily on well-annotated datasets, which are
extremely labor-intensive, time-consuming, and expensive in practical applications. Mean-
while, one might want to fine-tune pretrained models on certain target datasets. But it is
always difficult to collect enough target training images for proper fine-tuning. Therefore,
there is a need for methods that can transfer learned information from one domain to an-
other without additional target annotations. In this paper, we propose a novel framework
for cell segmentation on the unlabeled images through the unsupervised domain adaptation
with self-ensembling. It is achieved by applying generative adversarial networks (GANs) for
the unsupervised domain adaptation of cell segmentation crossing different tissues. Images
in the source and target domain can be differentiated through the learned discriminator.
Meanwhile, we present a self-ensembling model to consider the source and the target do-
main together as a semi-supervised segmentation task to reduce the differences of outputs.
Additionally, we introduce conditional random field (CRF) as post-processing to preserve
the local consistency on the outputs. We validate our framework with unsupervised do-
main adaptation on three public cell segmentation datasets captured from different types
of tissues, which achieved superior performance in comparison with state-of-the-art.
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Figure 1: The pipeline of our proposed UDA method for histopathological cell segmentation.

1. Introduction

The field of computer-aided digital pathology plays an important role in diagnosis and
treatment. In pathological images, it is self-evident that the importance of cell is almost
second to none as it is the basic component of creatures. As it always takes doctors a large
amount of time, labor, and fund to do segmentation manually, a critical need for more
accurate, robust, and low-cost nuclei segmentation methods come into being.

Nowadays, cell segmentation in histopathology images has been extensively studied with
a variety of deep learning methods. Inspired by the advance of Fully Convolutional Networks
(FCN) (Long and et al., 2015), there is a variety of deep learning methods proposed in the
segmentation field like U-Net (Ronneberger and et al., 2015) and DeepLab (Chen and
et al., 2017). For example, Chen and et al. (2016) proposed a deep contour-aware network
(DCAN) to establish better segmentation by a multi-task learning framework that learns
not only probability maps but also clear contours. However, well-annotated datasets for
cell segmentation are extremely limited in clinical diagnosis. And unsupervised domain
adaptation comes to researcher’s vision as it can reduce manual annotation works and
tackle generalization problems among data collected from different clinical sites or different
modalities. Liu and et al. (2020) proposed a method based on Cycada (Hoffman and et al.,
2018) which adds a task re-weighting mechanism along with a nuclei inpainting mechanism
to make the framework perform better on data from different organs. Haq and et al.
(2020) proposed a framework based on GAN (Goodfellow and et al., 2014) along with a
reconstruction network to do segmentation on unlabeled data from different organs.

Despite the above methods have already taken cross domain problems into consideration,
there are still multiple challenges in this field. Firstly, current methods may lack robustness
and stable performance when segmenting cross-domain cells. This limitation is critical
for cell segmentation tasks, where the annotations are hard to obtain. Secondly, existing
works only consider the domain adaptation within the same tissue, which cannot be widely
applicable in clinical diagnosis.
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Taking the challenges above into account, this paper proposes a novel framework for
cross-domain cell segmentation. Particularly, as presented in Fig. 1, we first apply a semi-
supervised method with self-ensembling. The framework can extract features from the
source domain with data augmentation to improve the segmentation performance. Then
the unsupervised domain adaptation can effectively transfer cell segmentation results across
different tissues or segmentation using different staining methods. The contribution of this
paper can be summarized in three aspects: 1) we develop a new framework that contains
semi-supervised segmentation with domain adaptation on the target domain; 2) we intro-
duce a semi-supervised framework to do data augmentation in the feature extraction part
and a CRF (Boykov and et al., 2004) module in the post-processing part to improve the
robustness of the cell segmentation; 3) extensive and comprehensive experiments are carried
out on three datasets from different tissues to demonstrate the effectiveness of our proposed
methods.

2. Methodology

Semi-supervised Segmentation: Formally, in the cell segmentation problem, the histopa-
thological image patches from the datasets are input X of size H×W ×3. Then, we want to
predict the segmentation output Ŷ of size H ×W × 1. In the source domain, we also have
binary masks with pixel-wise ground-truth label Y of size H ×W × 1 in our framework.

The segmentation network takes images X as input and uses the segmentation predic-
tions Ŷ of the same width and height as output, i.e., Ŷ = S(X). We train S to generate
the predictions Ŷs through a semi-supervised segmentation method while using the Ys as
the ground-truth input of the source domain. As for the target domain, there is no label
for segmentation in the unsupervised domain adaptation problem. And the GAN method
sometimes may not be able to obtain enough information from the features in the segmen-
tation network. Therefore, we use the entropy minimization loss to control the weight of
the labeled examples, increase the confidence of the segmentation output, and make the
model more stable. In practice, the dice-coefficient loss and the entropy minimization loss
are more effective than the normally used binary cross-entropy loss. So we use both the
dice-coefficient loss and the entropy minimization loss as our segmentation loss:

Ldice =1− 2.Y ′s .Ŷ
′
s

Y ′s + Ŷ ′s
(1)

Lem = − 1

H ∗W

H∑
h=0

W∑
w=0

Ŷs log(Ŷs) (2)

where Y ′s and Ŷ ′s are flatten Ys and Ŷs respectively.
In practice, the images from the source and the target domain may differ a lot in

staining result, clarity, and direction. Therefore, the data augmentation and the robustness
should be taken into consideration. Accordingly, we apply a self-ensembling method by
using rotate transformation in a generalized form. And we optimize the consistency loss
with a teacher model, which shares its weights with the student model. The key point in
the teacher-student learning-based semi-supervised segmentation network is the smoothness
assumption. For example, data points close to each other in the image space are more likely
to be close in the label space. To be specific, the semi-supervised segmentation tasks can
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be learned by optimizing a mean square error loss:

Lmse = ||Ŷs,π − Ŷs||2 (3)

where Ŷs,π is the prediction of the source image which goes through the transformation-
consistent regularization named π.

In above, the target data goes through the model twice to get two predictions under
different perturbations. The model assumes a dual role as a teacher and as a student. As
a student, it learns a fully-supervised segmentation network. As a teacher, it generates
targets to be used by itself as a student for learning through optimizing the mean square
error loss. By doing so, the self-ensembling method is applied to the segmentation model
to make the performance more stable, which may work better in the diagnosis.

The overall segmentation loss function is then defined as:

Lseg = Lem + λLmse + Ldice (4)

where Lem, Ldice and Lmse are supervised term (the former two) and regularization term.
As Lem and Ldice have similar importance, we set the weights of them at 1. As for Lmse, we
use a time-dependent warming up function λ as a weighting factor. This weighting function
is a Gaussian ramp-up curve that slowly drop down as:

λ = k ∗ e||e−E|| (5)

where E denotes the training epoch, k scales the maximum value of the weighting function,
and e defines the peak. In our experiments, we empirically set k to 1.0 and e to 30.

Training S with the annotated source data teaches S to make accurate predictions. At
this stage, the segmentation network may not generate correct predictions for target images
as there are discrepancies between the source and the target. Therefore, the S needs to
generate target domain predictions closer to the source domain predictions by making the
distribution of target predictions Ŷt closer to Ŷs. We define the adversarial loss as:

Ladv(Xt) = − 1

H ′ ×W ′
∑
h′,w′

log(D(Ŷt)) (6)

where Ŷt = S(Xt), and H ′ and W ′ are the height and width of discriminator output D(Ŷt).
This adversarial loss helps S to fool the discriminator so that it could consider Ŷt as a source
domain segmentation prediction.

This semi-supervised network can be treated as the generator of a GAN (Goodfellow and
et al., 2014). And to make the predictions closer to each other, we also need a discriminator.
Discriminator: We introduce a discriminator D into the framework. It can take the
predictions as its input and distinguish whether the input comes from the source domain
or the target domain. To train D, we use a cross-entropy loss as:

Ldis(Ŷ ) = − 1

H ′ ×W ′
∑
h′,w′

z · log(D(Ŷ )) +(1− z) · log(D(Ŷ )) (7)

where z=0 when D takes target domain prediction as input, and z=1 when input comes
from source domain.
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Moreover, it is possible that these target predictions are not well-correlated with the
target input image. A network for reconstructing images from the predictions to a similar
appearance as input can ensure the correlation between the input and the prediction.
Reconstructor: We use a Reconstruction network R in our framework and consider the
segmentation network S as an encoder and the Reconstruction network R as a decoder
to reconstruct original images from predictions. It takes the predictions Ŷt as inputs and
produce the reconstructed image as the output R(Ŷt). We calculate the reconstruction loss
as:

Lrecons(Xt) =
1

H ×W × C
∑
h,w,c

(Xt −R(Ŷt)
2
) (8)

where R(Ŷt) is the output of the Reconstructor for input Ŷt, and H, W, C are the height,
width, and number of channels of the input image Xt.

Overall, we optimize the following total loss when training our framework:

L(XS , Xt) = Lseg(XS) + λadvLadv(Xt) + λrecons Lrecons(Xt) + Ldis(Ŷ ) (9)

where the λadv and λrecons are the weights to balance above losses.
At this point, our results have learned information from both the labeled source domain

and the unlabeled target domain. Because neighbouring voxels share substantial spatial
context, the segmentation results produced by the CNN are smooth. However, local min-
imization training and noise may still result in some spurious outputs, like small isolated
regions or holes in the predictions, which result from the lack of regional spatial information.
Accordingly, we employ a fully connected conditional random field (Krähenbühl and et al.,
2011) as a post-processing step to achieve more structured predictions and constrain the
spatial consistency of the results. For an input image X and its segmentation prediction Ŷ ,
the Gibbs energy in the CRF model is given by:

E
(
Ŷ
)

=
∑
i

ψu

(
Ŷi

)
+
∑
ij,i6=j

ψp

(
Ŷi, Ŷj

)
(10)

E
(
Ŷ
)

=
∑
i

ψu

(
Ŷi

)
+
∑
ij,i6=j

ψp

(
Ŷi, Ŷj

)
(11)

the unary potential is the negative log-likelihood ψu

(
Ŷi

)
= −logP (Ŷi|X), where P (Ŷi|X)

is the model’s output for pixel i. The pairwise potentials in our model have the form:

ψp

(
Ŷi, Ŷj

)
= µ

(
Ŷi, Ŷj

) K∑
m=1

w(m)k(m) (fi, fj) (12)

where k(m) is Gaussain kernel k(m)(fi, fj) = exp(−1
2(fi − fj)TΛ(m)(fi − fj)). The vectors

fi and fj are feature vectors for pixels i and j in an arbitrary feature space, w(m) are linear
combination weights, µ is a label compatibility function. Each kernel k(m) is characterized
by a symmetric, positive-definite precision matrix Λ(m), which defines its shape.

The contrast-sensitive two-kernel potentials are used for our image segmentation and
labeling, consisting of the appearance kernel and the smoothness kernel. They are defined
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Table 1: Segmentation results of four compared methods and our framework.
Source Domain TNBC TCIA

Target Domain KIRC TCIA KIRC TNBC

Iou Dice Iou Dice Iou Dice Iou Dice
DA ADV (Dong and et al., 2018) 0.3276 0.4911 0.4480 0.6082 0.2914 0.4484 0.4078 0.5712
CBST (Zou and et al., 2018) 0.3031 0.4627 0.4015 0.5638 0.2853 0.4413 0.3901 0.5547
CellSegUDA (Haq and et al., 2020) 0.5487 0.7039 0.5802 0.7188 0.5539 0.7067 0.4109 0.6078
Our frameworkwithoutCRF 0.551 0.7023 0.5689 0.7233 0.5566 0.718 0.4023 0.6051
Our frameworkwithoutEMloss 0.5523 0.7025 0.5661 0.7211 0.5665 0.7251 0.4271 0.6295
Our frameworkwithoutself−ensembling 0.5607 0.7189 0.5791 0.7301 0.5653 0.7233 0.4308 0.6246
Our framework 0.5683 0.7234 0.6049 0.7413 0.5737 0.7261 0.5263 0.6796

in terms of the color vectors Ii and Ij and positions pi and pj :

k(fi, fj) = w(1)exp(−|pi − pj |
2

2Θ2
α

− |Ii − Ij |
2

2Θ2
β

) + w(2)exp(−|pi − pj |
2

2Θ2
γ

) (13)

the appearance kernel means that nearby pixels which have similar color are likely to be
in the same class. The degrees of nearness and similarity are controlled by parameters Θα

and Θβ. The smoothness kernel removes small regions that isolated with big ones. Finally,
the weights w(1) and w(2) define the relative strength of the two factors.

3. Experiment

Datasets: There are three datasets used in our experiments. Irshad and et al. (2014)
released the KIRC dataset which consists of 463 images of 400×400 pixel size from Kidney
Renal Clear cell carcinoma (KIRC). Naylor and et al. (2018) released the TNBC dataset
that consists of 50 images of 512×512 pixel size from Triple Negative Breast Cancer Cell
(TNBC). Hou and et al. (2020) released the TCIA dataset that consists of 1356 images
of 256×256 pixel size from 14 different cancer types. We use 97 images from Stomach
adenocarcinoma (STAD) among the dataset to maintain the images from one dataset come
from one tissue. All the datasets are extracted at 40× magnification and come from whole
slide images (WSI).
Settings: We use U-Net (Ronneberger and et al., 2015) as our backbone. We use 80% of
the images for training, 10% for validation and 10% for evaluation. During the training,
we employ Adam optimizer (Kingma and et al., 2014) to optimize the losses with learning
rates of 0.0001, 0.001, and 0.001 used in the segmentation network, discriminator, and
reconstructor respectively. We use 0.001 and 0.01 as λadv and λrecons respectively and train
in total 500 epochs. All experiments are carried out by using Pytorch on a Linux system
with 2 RTX 2080Ti and take about 14 GB memory of the graphic cards for 12 hours.
Results: In our experiment, we use TNBC (Naylor and et al., 2018) and TCIA (Hou and
et al., 2020) datasets as the source domain respectively and the other two datasets as the
target domain respectively. Besides, our proposed method is compared with 3 recently
proposed related methods. The first one is DA-ADV, a UDA method based on the GAN
method which also uses a discriminator like ours and proposed by Dong and et al. (2018).
The second one is CBST, another UDA method proposed by Zou and et al. (2018). This
is a popular classbalanced self-training framework by generating pseudo labels, which is
a different method to transfer the domain from ours. The third one is CellSegUDA, an
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Figure 2: The visualization results of target domain for segmentation from TNBC to KIRC.

unsupervised adversarial domain adaptation method proposed by Haq and et al. (2020).
This method is based on the GAN method and achieved excellent performance on cell
segmentation tasks. We also perform ablation experiments to validate the effectiveness of
each component in our framework.

To evaluate the segmentation accuracy of the nuclei instances, we use both the Dice and
IoU metrics as our validation metrics. As shown in Table 1, compared with the former three
baseline methods, our framework’s performance has a significant improvement under both
the IOU and the Dice metrics. Since the self-ensembling method can enhance the robustness
and the GAN network can benefit from it, our framework works better in comparison
with the other three methods. And in ablation experiments, with individual components
removed, the performance of the framework falls, which proves that every component could
contribute to the performance of the framework. And Figure 2 shows the visualization of
segmentation results of our framework and 3 compared methods, which indicates that there
are significant improvements in our framework. In the results of the target domain, our
framework works better than other methods and get a more accurate segmentation result,
which benefits from the self-ensembling method and the CRF post-processing step.

4. Conclusions

In this paper, we propose a novel unsupervised domain adaptation method for the cell
segmentation across different tissues. The method is based on the GAN framework and
suitable for the segmentation of whole-slide images from different tissues. We improve the
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segmentation performance by introducing a teacher-student learning-based semi-supervised
segmentation network, which could help with the data augmentation and to overcome the
problem of low robustness. Meanwhile, we use the conditional random field method as
our post-processing step to achieve more structured predictions and constrain the spatial
consistency of the results. Based on this work, we may apply self-supervised methods in
this field and study how to make the domain adaptation more accurate in the future.
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