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Abstract001

Traditional fixed test datasets fall short in eval-002
uating the open-ended capabilities of foun-003
dation models. To address this, we propose004
ONEBench (OpeN-Ended Benchmarking), a005
new paradigm that consolidates individual eval-006
uation datasets into a unified, ever-expanding007
sample pool. ONEBench enables custom008
benchmarks for specific capabilities while009
reusing and aggregating samples, mitigating010
overfitting and dataset bias for broader capabil-011
ity assessment. It reframes model evaluation as012
selecting and aggregating sample-level tests.013

Transitioning from task-specific benchmarks014
to ONEBench introduces two challenges: het-015
erogeneity (aggregating diverse metrics) and016
incompleteness (comparing models tested on017
different data subsets). To address these,018
we propose an aggregation algorithm that en-019
sures identifiability (asymptotically recovering020
ground-truth scores) and rapid convergence, en-021
abling accurate model comparisons with rela-022
tively little data. On homogenous datasets, our023
algorithm produces rankings that highly corre-024
late with average scores. Moreover, it remains025
robust to over 95% missing measurements, re-026
ducing evaluation costs by up to 20×. We in-027
troduce ONEBench-LLM for language mod-028
els and ONEBench-LMM for vision-language029
models, enabling targeted model testing across030
diverse capabilities.031

1 Introduction032

Deep learning has arrived in the post-dataset era1.033

With the rapidly expanding range of zero-shot ca-034

pabilities of foundation models, the focus of evalu-035

ation has moved beyond singular, dataset-specific036

performance measurements that rely on splitting a037

fixed collection of data into training and test sets.038

Instead, foundation models are employed as gen-039

eral knowledge and reasoning engines across a040

wide range of domains. This creates a pressing041

1From a talk by Alexei Efros at ICML 2020

need to characterize their open-ended capabilities 042

using diverse metrics in zero-shot settings (Ge et al., 043

2024). However, static benchmarks, which test 044

generalization on fixed test splits, cannot probe 045

the ever-evolving set of capabilities of foundation 046

models effectively. This raises an important ques- 047

tion: How can benchmarking adapt to measure an 048

open-ended set of capabilities? 049

We propose a solution based on dynamic, 050

sample-level evaluation, which we call ONEBench 051

(OpeN-Ended Benchmarking). In this approach, 052

test sets for particular capabilities are generated 053

ad-hoc from a large pool of individual annotated 054

data samples. These sample-level evaluations act as 055

atomic units of measurement that can be flexibly ag- 056

gregated into an exponential number of configura- 057

tions. Thanks to this flexibility, the sample pool and 058

corresponding annotation metrics can be continu- 059

ously updated to incorporate new evaluations. Ad- 060

ditionally, this approach can reduce dataset bias— 061

systematic quirks in the data arising from its col- 062

lection process (Liu and He, 2024). Finally, by 063

combining samples across test sets, ONEBench 064

captures real-world diversity (Ni et al., 2024). 065

The most important feature of ONEBench is its 066

potential to democratize evaluation. Unlike tradi- 067

tional benchmarks, typically created by individual 068

groups based on their own criteria for data collec- 069

tion and evaluation procedures (Bansal and Maini, 070

2024), ONEBench integrates test sets from multi- 071

ple sources reflecting a wide range of perspectives, 072

use cases, and objectives. This flexibility allows dif- 073

ferent interest groups to collaboratively define their 074

own evaluations by selecting the most appropriate 075

combination of tests that best suit their specific re- 076

quirements. Moreover, the design of ONEBench 077

challenges the dominant approach of chasing sin- 078

gle benchmark scores, which fail to account for the 079

difficulty of individual data instances (Ethayarajh 080

et al., 2022), in favor of a plurality of rankings and 081

a dynamic, granular, multi-faceted evaluation. 082
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    "mmlu_235": {

        "metadata": {

            "source": "cais/mmlu",

            "subject": "us_foreign_policy",

 .         “task”: MCQA

        },

        "question": {

            "text": "Why is there so much uncertainty 
over which states have nuclear weapons?"

        },

        "references": [

            {

                "tags": [],

                "text": "Leaders have incentives to lie"

            },

            {

                "tags": [],

                "text": "If leaders revealed their 
programs, they would be more likely to be 
attacked"

            },

            {

                "tags": [],

                "text": "Leaders will not always grant 
foreign monitors access to their nuclear 
programs"

            },

            {

                "tags": [

                    "correct"

                ],

                "text": "ALL of the above"

            }

        ]

    },
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Figure 1: The ONEBench Framework. Left: ONEBench comprises a set of models, a pool of data samples spanning
multiple test sets, metadata describing models and data samples, and a collection of sample-level measurements.
Right: the user formulates a query to capture the desired model capability, using a mix of structured metadata filters
and semantic search. Selected models are then ranked on a subset of data samples that meet the specified criteria.

Challenges. Building ONEBench requires ad-083

dressing two key challenges: (i) heterogeneity084

and (ii) incompleteness. Heterogeneity arises be-085

cause model evaluations span diverse metric types,086

such as binary (correct/incorrect), numeric (BLEU087

scores), and ordinal (preference rankings), making088

aggregation difficult. Incompleteness occurs when089

models are tested on non-overlapping subsets of090

data, preventing fair and direct comparisons. Tra-091

ditional benchmarks sidestep these issues by using092

a multi-task setup, where all models are evaluated093

on the same samples using a single metric.094

Solution and Theoretical Guarantees. We ad-095

dress these challenges using social choice theory,096

treating data samples as voters expressing prefer-097

ences over models. By converting all measure-098

ments into ordinal rankings, we leverage estab-099

lished principles to robustly aggregate heteroge-100

neous and incomplete data. Our approach assumes101

a random utility model based on the Plackett-Luce102

framework (Plackett, 1975; Luce, 1959), which pro-103

vides guarantees for accurately recovering ground-104

truth utility scores. This approach ensures that our105

model rankings are both theoretically sound and106

practical, with rapid convergence guarantees en-107

abling accurate rankings from limited data.108

Empirical Validation. ONEBench is created109

for two domains: ONEBench-LLM for language110

models and ONEBench-LMM for vision-language111

models. These benchmarks unify evaluations by ag- 112

gregating data from diverse sources, including pref- 113

erence data(arenas) and heterogeneous multi-task 114

leaderboards. Our empirical results demonstrate 115

that the Plackett-Luce model effectively aggregates 116

real-world benchmarks, showing a high correlation 117

with ground-truth score-based rankings over homo- 118

geneous datasets. Notably, this strong correlation 119

persists even when up to 95% of the data is miss- 120

ing, enabling a 20× reduction in evaluation costs 121

with minimal impact on performance. Finally, we 122

compare Plackett-Luce rankings to widely adopted 123

methods such as ELO (Elo, 1967) and Bradley- 124

Terry (Bradley and Terry, 1952), demonstrating 125

superior accuracy and robustness to missing data. 126

Personalized Aggregation. Imagine you are 127

a biochemist seeking an LLM to assist with de- 128

signing experiments related to antibodies. With 129

ONEBench, you can input a query, such as 130

“immunology” or “antibodies” to generate a dy- 131

namically constructed benchmark that ranks mod- 132

els based on their performance in this specific do- 133

main. While the optimal selection of personalized 134

capability sets remains an open research challenge, 135

we present a proof of concept by distinguishing 136

between tasks (e.g., reading comprehension) and 137

concepts (e.g., Clostridium bacteria). By combin- 138

ing structured filters and flexible semantic search, 139

users can define their capability of interest along 140
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these dimensions and conduct targeted evaluations,141

resulting in personalized rankings.142

ONEBench is a democratized, open-source col-143

lection of diverse evaluation samples enriched with144

detailed metadata. Its robust aggregation method145

ranks models across heterogeneous metrics and146

incomplete evaluation data. Users can perform se-147

mantic searches and apply structured query filters148

to dynamically generate benchmarks tailored to149

their needs. They can also contribute new evalua-150

tion samples and model measurements, which are151

instantly aggregated to refine rankings. This frame-152

work enables lifelong aggregation of arbitrary test153

sets with unprecedented flexibility and precision.154

2 ONEBench: Formulation155

2.1 Components156

The goal of ONEBench is to evaluate a set of mod-157

els {mk}Mk=1 using a continuosly expanding pool158

of test data samples D drawn from multiple bench-159

marks {Bk}Bk=1. Each data sample may include160

metadata specifying the capabilities it is testing. To161

handle the diversity of data from different bench-162

marks, we generate sample-level rankings (S) for163

all samples in the test pool. Figure 1 provides a164

schematic overview of ONEBench, with each com-165

ponent described below.166

i) Data Pool. The data pool D = {(xk, yk)}Dk=1167

consists of data samples xk with reference answers168

yk. An example of a data sample is the question169

“What was the dominant strain of flu in 2010? Se-170

lect among four choices." with reference answer171

“H1N1/09". Each instance can also include meta-172

data specifying tested capabilities, for example as173

a list of keywords like temporal Q&A, pandemics,174

history, biology, virology, multiple-choice Q&A.175

ii) Models. The set of models is defined as176

M = {mbase} ∩ {mk}Mk=1, where mbase serves177

as a baseline for evaluating the capabilities of the178

other models. A common choice for mbase is a179

random model. Since the original benchmarks eval-180

uate different sets of models, each benchmark Bk181

considers a subset of models MBk
⊆ M.182

iii) Sample-level Rankings. For each data sam-183

ple (xj , yj) ∈ D, we construct a sample-level184

ranking sj ∈ S over model subset Mj ⊆ MBk
,185

where k denotes the index of the benchmark from186

which the sample (xj , yj) was collected. Crucially,187

these rankings depend only on the evaluation met-188

rics used by each benchmark, abstracting away189

the specifics of those metrics. This abstraction190

is central to our approach, as it enables aggrega- 191

tion across heterogeneous evaluation paradigms 192

and metrics. We provide a more detailed discus- 193

sion in appendix F. 194

iv) Capabilities. To enable selective retrieval of 195

relevant sample-level rankings in B based on user 196

queries, each ranking can be associated with a capa- 197

bility. Defining a comprehensive set of capabilities 198

is itself a research challenge, but we provide a proof 199

of concept by distinguishing between two broad 200

categories: (1) tasks (e.g., question answering, cap- 201

tioning) and (2) concepts (e.g., makeup, geometry). 202

Since capabilities are inherently open-ended, we 203

only tag data samples with task information, while 204

concept-based retrieval is performed dynamically 205

at test time using semantic search. 206

Lifelong Expansion of ONEBench. The data 207

pool D and model set M are stored as tables, 208

while sample-level model evaluations are main- 209

tained as a relational database linking these tables. 210

Expanding ONEBench over time requires augment- 211

ing D, M, and S through the following operations: 212

insertD, insertM, insertS . The first two oper- 213

ations simply add new data samples and models to 214

their respective tables, while insertS registers a 215

new sample-level ranking. 216

2.2 Capability Querying 217

To evaluate a given capability, ONEBench takes a 218

dynamic approach. First, we retrieve (retrieveD) 219

samples that match the query. Then, we aggre- 220

gate (aggregateS,D) the sample-level rankings to 221

produce the overall ranking. 222

Retrieve (retrieveD). Here, the system se- 223

lects relevant data instances based on a user’s query. 224

The query language is flexible and allows retrieving 225

data instances that semantically relate to a specific 226

topic or match certain criteria. The retrieval is 227

implemented through a combination of k-nearest 228

neighbors (kNN) search on dense embeddings us- 229

ing the query as the input and structured queries 230

that take advantage of the unified data schema. 231

Aggregate (AggregateS,D). Measurements 232

over the retrieved subset are combined using the 233

random utility modelling approach (Xia, 2019), 234

defining a joint probability distribution over all 235

measurements(sample rankings sj and model 236

scores γj), given model permutations σj and bi- 237

nary sequence of pairwise performance relations 238

πj (more details can be found in appendix F) as- 239

suming statistical independence: 240
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241

p(s1, . . . , sn∞ |γ1, . . . , γM ) =242

n∞∏
j=1

p(sj = [.](σj ,πj)|γ1, . . . , γM ).243

The Placket-Luce framework assumes the follow-244

ing probability model:245246

p
(
sj = [.](σj ,πj)

)
=247

γσj(1)
mj∑
k=1

γσj(k)︸ ︷︷ ︸
fσj(1)

× · · · ×
γσj(mj−1)

γσj(mj−1) + γσj(mj)︸ ︷︷ ︸
fσj(mj)

,248

249 defining one parameter γk for each model mk250

that determines its performance relative to all other251

models. To aggregate model performances over252

sample rankings, we estimate parameters253

γ̂ = argmax
γ∈Rm

log p(s | γ)254

255 with maximum likelihood estimation(MLE). The256

global ranking follows the permutation σ∞ where257

γ̂σ∞(1) > · · · > γ̂σ∞(m). The ML condition258

uniquely determines all performance parameters259

{γ̂k}Mk=1, as the likelihood function is strictly con-260

cave. The parameters of the Plackett-Luce model261

are identifiable up to an arbitrary additive constant.262

Consistency and asymptotic normality can also be263

shown under certain assumptions about the com-264

parison graph (Han and Xu, 2023). We refer to the265

estimated latent variables {γ̂k}Mk=1 as model scores.266

A model with a higher score likely performs better267

on a randomly picked sample-level task than one268

with a lower score. To fix the additive constant, we269

set the baseline model score γ̂baseline to zero.270

3 ONEBench: Aggregation271

We view aggregating sparse ordinal preferences272

over models through a computational social choice273

lens, where samples are voters, models are candi-274

dates, and the aggregation algorithm is the voting275

mechanism (Brandt et al., 2016). We aggregate276

ordinal comparisons with partial data to produce a277

global ranking and analyze its properties.278

3.1 Theoretical Foundations279

We begin by postulating a ground-truth statistical280

model generating the data, which is converted into281

ordinal comparisons (S)2. Specifically, we use282

2contrasting with Zhang and Hardt (2024), who view aggre-
gation as classical voting, analysing tradeoffs in aggregating
voter preferences rather than uncover an underlying ranking.

a random-utility model (Thurstone, 1927), where 283

model mi is associated with utility distribution Umi . 284

Preferences between models mi and mj are based 285

on comparing sampled utilities, i.e., mi ≺ mj := 286

u(mi) < u(mj), where um ∼ Um. Since com- 287

puting maximum likelihood estimates over gen- 288

eral random-utility models is computationally hard 289

(Xia, 2019), we focus on the Plackett–Luce model 290

(Plackett, 1975; Luce, 1977), the only known ex- 291

ception that allows for tractable MLE. 292

Property 1: Identifiability. We first ask: Are 293

the utility distributions for all models recoverable? 294

The Plackett-Luce model allows identifying the 295

utility distribution (up to an arbitrary additive con- 296

stant) if all models are compared via a directed 297

path (Xia, 2019)3. Consistency and asymptotic nor- 298

mality hold under specific assumptions about the 299

comparison graph (Han and Xu, 2023). 300

Property 2: Sample-Efficient Convergence 301

from Sparse Data. Given that identifiability is 302

asymptotic, we ask: How sample-efficient is the 303

algorithm for recovering the utility distribution? 304

With partial rankings of size k, the MLE is sur- 305

prisingly sample efficient while being minmax- 306

optimal (Maystre and Grossglauser, 2015). Sam- 307

pling k model comparisons from the model set |M| 308

uniformly at random induces an expander graph 309

with high probability, giving guarantees for sample- 310

efficient recovery, with Ω(|M|)/k samples being nec- 311

essary, and Ω(|M| log |M|)/k samples being sufficient. 312

Efficient algorithms like Maystre and Grossglauser 313

(2015) achieve these bounds. Rank-breaking tech- 314

niques, used in our evaluation, offer near-optimal 315

solutions (Soufiani et al., 2014). 316

Property 3: Social Properties. The Plackett- 317

Luce model ensures computational efficiency and 318

recoverability of the underlying ranking. However, 319

to design democratic systems for decision-making, 320

it is essential also to have fair aggregation. Ensur- 321

ing fairness involves trade-offs (Zhang and Hardt, 322

2024), as different notions of fairness often conflict. 323

Moreover, depending on the intended application 324

areas, differing or even opposing preferences may 325

be valid (Arrow, 1950). Plackett-Luce offers “pro- 326

cedural fairness" (List, 2022), satisfying: 327

(i) Anonymity. All voters (samples) are treated 328

equally, ensuring the system does not over-rely on 329

any single vote. Rankings remain unchanged if the 330

input sample set is permuted. 331

(ii) Neutrality. The ranking is invariant to model 332

3Using reference model mbase removes additive ambiguity.
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identities, ensuring fairness among alternatives.333

This means permuting the models similarly per-334

mutes the resulting ranking.335

(iii) Independence from Irrelevant Alternatives.336

The relative ranking of two models is unaffected337

by other alternatives in a given sample, as guaran-338

teed by Luce (1959). This provides grounding for339

incomplete model evaluations.340

3.2 Translating Theory to Practice341

Here, we show that: (i) the Plackett-Luce model342

works well on real-world data, (ii) our aggregation343

method is sample-efficient, and (iii) it handles high344

levels of incompleteness. Below, we describe our345

setup and address these points.346

3.2.1 Setup347

Benchmarks. We conduct experiments using four348

popular benchmarks with established model rank-349

ings based on benchmark-specific average scores:350

HELM (Liang et al., 2023) and Open LLM Leader-351

board (Beeching et al., 2023) for LLMs, and352

VHELM (CRFM, 2024) and LMMs-Eval (Zhang353

et al., 2024c) for LMMs. We define our data pool354

as the sum of all samples in the constituent datasets.355

To test the faithfulness of our aggregation strategy356

we compare the resulting rankings to the original357

leaderboards. These leaderboards evaluate models358

across varied tasks with different metrics, serving359

as good indicators of real-world performance.360

Ground Truth. The current system of benchmark-361

ing involves evaluating models on individual test362

sets and measuring the mean score per model. This363

holds even for benchmarks that combine test sets.364

We consider these scores as the ground truth mea-365

surement and generate a ground truth model rank-366

ing from these scores. Since we aggregate multiple367

measurement metrics, we implement a min-max368

normalization of numeric measurements to bring369

all benchmark samples to the same 0-1 score range.370

Our final ground truth refers to the model rankings371

derived from the mean score across all benchmarks.372

Methods. We evaluate three ranking methods:373

(i) Elo Score (Elo, 1967): A competitive game374

rating system adapted to rank models through pair-375

wise comparisons, adjusting scores based on wins376

or losses to reflect win-rate reliability.377

(ii) LMArena Ranking: A ranking method378

based on the Bradley-Terry model (Bradley and379

Terry, 1952), using a Maximum Likelihood Esti-380

mation (MLE) based on pairwise comparisons with381

an underlying ELO model for rank aggregation.382

Dataset Elo LMArena Ours

HELM 0.35 ± 0.13 0.85 ± 0.00 0.88 ± 0.00
Leaderboard 0.21 ± 0.07 0.97 ± 0.00 0.99 ± 0.00
VHELM 0.63 ± 0.02 0.69 ± 0.00 0.80 ± 0.00
LMMs-Eval 0.33 ± 0.11 0.42 ± 0.00 0.64 ± 0.00

Table 1: Kendall’s τ correlations to ground-truth
ranking for different aggregation algorithms.

(iii) Ours: We leverage the Plackett-Luce 383

model (Maystre and Grossglauser, 2015) to ag- 384

gregate pairwise comparisons using partial rank 385

breaking, speeding up rank estimation. 386

Metrics. We compare the rankings generated by 387

each method to the ground-truth from the leader- 388

boards using Kendall’s τ , a standard correlation 389

metric for rankings. Each method is tested three 390

times and we report the mean and variance. We also 391

check that the top-k models are reliably recovered. 392

3.2.2 Is Plackett-Luce Suitable for 393

Real-World Data? 394

Q1. Is it suitable? We evaluate the Plackett-Luce 395

model on large-scale benchmark data by compar- 396

ing the rankings produced by our aggregation al- 397

gorithm to the leaderboard rankings. As shown 398

in Table 1, we achieve strong alignment with the 399

ground truth rankings. 400

Q2. Is it better than current metrics? In addition 401

to evaluating fit, we also compare our method to 402

popular algorithms like Elo and LMArena. Table 1 403

shows that our algorithm consistently outperforms 404

these methods, demonstrating its superior perfor- 405

mance for large real-world datasets. 406

Q3. Are the top-k models preserved? A key con- 407

cern for practitioners is whether the top models are 408

ranked correctly. Figure 2 shows that our algorithm 409

preserves the ground truth top-10 model rankings. 410

Conclusion. The Plackett-Luce model fits real- 411

world data well, outperforming other methods in 412

both overall Kendall’s τ and top-10 rankings, prov- 413

ing its effectiveness for large-scale benchmarks. 414

The underlying reason is that we avoid using Elo 415

distributions, which rely on assumptions that do not 416

apply to foundation models (Boubdir et al., 2023). 417

3.2.3 Sample Efficiency and Handling 418

Incomplete Rankings 419

Q1. Is Our Algorithm Sample-Efficient? We 420

systematically reduce the number of samples and 421

re-rank the models using various methods, calculat- 422

ing Kendall’s τ for each. Missing data is simulated 423

from 0% to 99%, with 10% intervals until 90%, fol- 424

lowed by 1% increments. As shown in fig. 3, our 425
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Figure 2: Top-10 model ranking changes across different aggregation methods. Plackett-Luce (Ours) shows the
most similarity to the Ground Truth model rankings (GT). However, there is a progressive degradation in ranking
accuracy for LMArena (LMArena) and Elo (ELO).

method maintains stable performance even with up426

to 95% samples missing, demonstrating that it can427

achieve accurate rankings with up to 20x less data428

points than current benchmarks.429

Q2. Can our Algorithm Aggregate Highly430

Sparse Rankings? We assess our method’s ability431

to handle incomplete data by randomly removing a432

fraction of model measurements from each sample433

and re-ranking using the three aggregation meth-434

ods. We simulate data removal from 0% to 99%,435

with increments as before. As shown in fig. 3, our436

method remains effective even when 95% of model437

comparisons are missing, proving it can recover438

accurate rankings with highly sparse data. This is439

crucial for ONEBench, where models cannot be440

expected to be evaluated on the entire data pool.441

Conclusion. Our method is sample efficient and ro-442

bust to sparse input rankings, maintaining accurate443

rankings with 20x fewer data points.444

4 ONEBench: Creation & Capability445

Querying446

In this section, we present the overall system ap-447

plied to ONEBench-LLM and ONEBench-LMM448

and show how to test arbitrary capabilities. Addi-449

tional details can be found in appendix A (capabil-450

ity probing), D (data pool), and E (models).451

4.1 ONEBench-LLM & ONEBench-LMM452

4.1.1 ONEBench-LLM453

Data Pool D. For ONEBench-LLM, we source454

data from the Open LLM Leaderboard, HELM,455

and LMArena.456

Open LLM Leaderboard and HELM aggre- 457

gate several individual benchmarks, such as 458

MMLU (Hendrycks et al., 2021a) and Hel- 459

laSwag (Zellers et al., 2019), while LMArena 460

uses pairwise model comparisons based on user- 461

generated prompts. Metrics include F1-Score, Ex- 462

act Match (EM), and Quasi-Exact Match (QEM), 463

as well as pairwise preferences. 464

Models M. For ONEBench-LLM, we use the 465

100 most downloaded models from Open LLM 466

Leaderboard and all 79 models from HELM (as 467

of v1.9.0), including both proprietary models like 468

GPT-4o (OpenAI, 2024) and open-weights ones 469

like LLaMA-3 (Meta, 2024). 470

4.1.2 ONEBench-LMM 471

Data Pool D. For ONEBench-LMM, data is 472

sourced from VHELM, LMMs-Eval, and WildVi- 473

sionArena. Similar to ONEBench-LLM, VHELM 474

and LMMs-Eval aggregate individual datasets like 475

MMMU (Yue et al., 2024) and VQAv2 (Goyal 476

et al., 2017), while WildVisionArena uses pairwise 477

tests for LMMs through image-based chats. Mea- 478

surements include binary metrics like EM, QEM, 479

and real-valued scores like ROUGE (Lin, 2004). 480

We augment pairwise comparisons from WildVi- 481

sionArena with LLM-as-a-Judge preferences gener- 482

ated using Prometheus-2 (Kim et al., 2024), which 483

correlate highly with human judgments. 484

Models M. For ONEBench-LMM, we use 14 485

models from LMMs-Eval and 25 models from 486

VHELM, including proprietary models like Gemini 487

Pro Vision (Team et al., 2023) and open-weights 488

models like LLaVA (Liu et al., 2023a). 489
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Figure 3: Sample-efficient convergence and robustness to sparsity. Kendall τ between ground-truth ranking
and different ranking methods as random individual data samples are dropped (top) and model measurements are
randomly removed (bottom). Methods typically remain robust to missing data, with Plackett-Luce consistently
achieving higher correlation, even with 95% measurements missing.

4.2 Capability Probing490

Setup. Given a query, the system retrieves rele-491

vant data samples using a combination of seman-492

tic and metadata search. This capability probing493

provides a personalized comparison of foundation494

models. We use two querying mechanisms. (i)495

Semantic search: we perform k-NN lookup in the496

embedding space of all-MiniLM-L6-v2 (Reimers497

and Gurevych, 2019) for language tasks and498

SigLIP-B16 (Zhai et al., 2023) for vision-language499

tasks, using cosine similarity. We retrieve the top500

k samples for a given concept with tuned cut-off501

similarity scores of 0.3 (ONEBench-LLM) and 0.7502

(ONEBench-LMM)503

(ii) Metadata search: we verify that per-sample504

metadata satisfies the constraints defined in the505

query. Some benchmarks, such as MMMU, are506

equipped with detailed metadata, including cate-507

gories like image type (‘diagram’), question type508

(‘multiple-choice’), field, etc., while others are not.509

With these resources, we sample representative510

queries across the data pool and aggregate ordi-511

nal model rankings using the Plackett-Luce model512

to rank models for each query.513

Concepts Tested. We curated a diverse set of514

50 concepts to test the breadth and versatility of515

ONEBench, ranging from domain-specific knowl-516

edge, such as the Coriolis Effect, to broader aca-517

demic disciplines like Neuroscience, and objects518

like the Apple iPad. We show them in fig. 4 and519

appendix A. 520

Insight 1. Are retrieved data samples accurate? 521

To evaluate the quality of the retrieved samples, 522

we report average precision (AP) scores for all con- 523

cepts in appendix A, resulting in a mean AP of 0.85 524

(ONEBench-LLM) and 0.73 (ONEBench-LMM), 525

demonstrating that we can reliably retrieve samples 526

that match the intended capabilities, with scope 527

for improvement. Please refer to the per-concept 528

AP in table 3 for a better indicator of underrepre- 529

sented concepts. Note that the retrieval mechanism 530

is expected to only improve with better retrieval 531

models and larger test sets covering more diverse 532

capabilities.

Metric LLM LMM

Number of concepts 40 50
mAP 0.85 0.73
CMC@1 0.95 0.94
CMC@10 1.00 0.96

Table 2: Capability Probing (Quantitative): Summary
of accuracy and retrieval metrics.

533
Insight 2. Do models perform differently across 534

queries? A key check is verifying whether mod- 535

els perform differently across capability queries. 536

If results are similar regardless of the query, fine- 537

grained querying is less useful, as the top model 538

from a generic leaderboard could be a good can- 539

didate across capabilities, as is common practice. 540

However, we observe in fig. 4 and fig. 5 that differ- 541
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Figure 4: Capability Probing (Qualitative): we provide six sample retrieval results for a set of queries covering a
diverse set of topics and report the top-5 models for each query.

ent models perform well on different domains and542

concepts. This suggests that ONEBench returns543

valid candidate models for arbitrary user queries.544

5 Related Works545

We provide an expanded review in appendix B. Re-546

cent multi-task benchmarks, such as GLUE (Wang547

et al., 2019b), SuperGLUE (Wang et al., 2019a),548

and BigBench (Srivastava et al., 2023), test the549

broad capabilities of foundation models. However,550

these benchmarks use arithmetic mean for task ag-551

gregation (Beeching et al., 2023) which can distort552

rankings (Zhang and Hardt, 2024) and is sensitive553

to outliers (Agarwal et al., 2021) or missing scores554

(Himmi et al., 2023). ONEBench addresses these555

by enabling sample reuse, avoiding task selection556

bias (Dominguez-Olmedo et al., 2024). Inspired557

by social choice theory, ONEBench employs ordi-558

nal rankings and the Plackett-Luce model (Plackett,559

1975) for aggregation, which is robust to irrelevant560

alternatives and outliers. Moreover, ONEBench561

reduces evaluation costs, similar to compressed562

subsets (Polo et al., 2024; Zhao et al., 2024) and563

lifelong benchmarks (Prabhu et al., 2024). Further,564

by flexibly integrating diverse sample and measure-565

ments contributions, we hope ONEBench can be 566

more inclusive than traditional benchmarks dom- 567

inated by well-funded institutions (Pouget et al., 568

2024; Nguyen et al., 2024). 569

6 Conclusions and Open Problems 570

We introduce ONEBench, an open-ended bench- 571

marking framework for foundation models. Our 572

open, democratized benchmarking methodology 573

allows various stakeholders to contribute evalua- 574

tion samples and model measurements with de- 575

tailed metadata. This affords creating customized 576

benchmarks and testing arbitrary capabilities with 577

semantic and structured searches. We provide an 578

aggregation mechanism that is both theoretically 579

grounded and empirically validated to be robust to 580

incomplete data and heterogeneous measurements 581

across evaluations. We demonstrate the utility of 582

ONEBench in two domains: LLMs and LMMs, 583

showing how dynamic probing reveals new in- 584

sights into model performance on specific tasks and 585

concepts. This combination of theoretical rigour, 586

empirical results, and practical flexibility makes 587

ONEBench a valuable tool for comprehensively 588

evaluating foundation models. 589
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7 Limitations590

Our approach, while promising, comes with its591

share of challenges. We highlight three key issues:592

• Effects of Combination. Combining differ-593

ent types of evaluation data into a single rank-594

ing risks oversimplifying important perfor-595

mance differences. We mitigate this by intro-596

ducing flexible querying. Furthermore, con-597

version to pairwise ranking leads to loss of598

information which could hurt aggregation al-599

gorithms due to the data processing inequality600

(Thomas and Joy, 2006, Section 2.8), which601

suggests that an estimation procedure on pro-602

cessed data cannot perform better than esti-603

mating from the original data. However, in604

real-world scenarios pairwise measurements605

perform better, despite information loss (Shah606

et al., 2014).607

• Reliance on Statistical Modeling Assump-608

tions. Our reliance on statistical models like609

Plackett–Luce might make assumptions about610

data distribution that may not always hold, af-611

fecting the reliability of our results. This is612

not specific to our work, but holds for any613

work which makes modeling assumptions,614

and we demonstrate strong empirical perfor-615

mance. However, worst-case risks remain.616

Plackett–Luce based models, being shown to617

not satisfy the following axioms in Nooth-618

igattu et al. (2020):619

N1: Separability. If model a is higher than620

model b in MLE estimate scores in two input621

sets, a must be higher than b in MLE estimate622

scores of their combined set.623

N2: Pairwise Majority Consistency. If pair-624

wise preference order across models are con-625

sistent: a > b, b > c and a > c, then ranking626

should preserve the consistency: a > b > c.627

• Lastly, the dynamic nature of capability query-628

ing and the expanding sample pool, though629

useful, makes it harder to maintain consis-630

tency and can introduce bias during data col-631

lection and aggregation.632

Overall, we believe democratic, open-ended bench-633

marking is an impactful direction to explore, de-634

spite the apparent limitations.635

8 Broad Impacts 636

Our work could have a meaningful impact on effi- 637

cacy of benchmarking for foundation models. With 638

ONEBench, we offer a benchmarking framework 639

that can adapt to different domains, allowing for 640

more inclusive and transparent evaluation practices, 641

empowering researchers and downstream practi- 642

tioners. By making benchmarking more accessible, 643

we hope to encourage fairness, reproducibility, and 644

innovation in how evaluation frameworks are de- 645

signed. In the long run, this approach can help 646

build a deeper understanding of foundation models 647

across both language and vision–language tasks. 648

We do not believe that there are any immediate 649

negative societal consequences as a result of this 650

work, but caution that all findings are preliminary 651

and need additional evaluation before deployment. 652
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A Capability Testing Across Arbitrary Queries1473

A.1 Queries: List and Additional Results1474

Concept ONEBench-LLM AP ONEBench-LMM AP
Common Queries

apple ipad 0.7435 0.1985
architecture 0.7683 0.8981
beach 0.7152 0.5698
biochemistry 0.9778 0.7303
boat 0.7728 0.8829
botany 0.9876 0.7556
bus 0.9035 0.9739
car 0.9140 0.8477
cell(biology) 0.9937 0.5075
china tourism 0.6392 1.0000
cigarette advertisment 0.7249 0.6590
coffee maker 0.8426 0.4057
components of a bridge 0.9222 0.5865
decomposition of benzene(organic chemistry) 0.6745 0.7623
epidemiology 0.9316 0.7991
kirchoffs law(electrical engineering) 0.6572 0.4824
food chain 0.5405 1.0000
game of football 0.8221 1.0000
german shepherd (dog) 0.9359 0.3078
gothic style (architecture) 0.7829 1.0000
law 0.8566 0.4138
literary classics 0.9869 1.0000
macroeconomics 1.0000 0.9570
makeup 1.0000 0.2247
microwave oven 0.7979 1.0000
neuroscience components 0.9844 0.2854
pasta 0.5678 0.2142
perfume 0.5996 0.6355
photosynthesis 0.9848 0.3665
plants 1.0000 0.6488
political diplomacy 0.9529 0.9561
python code 0.8850 0.9444
renaissance painting 0.9270 0.9799
shareholder report 1.0000 0.8317
sheet music 0.8322 0.9750
solar cell battery 0.8853 0.8082
thermodynamics 0.9567 0.8852
united states of america 0.8096 0.8642
vaccines 0.8572 0.3411
volanic eruption 0.7905 0.9229

Queries testing Visual Capabilities
bike leaning against a wall - 0.8271
child playing baseball - 0.9638
coriolis effect - 0.7063
dijkstras shortest path algorithm - 0.9135
empty bridge overlooking the sea - 0.5934
judo wrestling - 0.6092
man in a suit - 0.5611
musical concert - 0.9879
sine wave - 0.4232
woman holding an umbrella - 0.8821

Table 3: Aggregate Average Precision(AP) for ONEBench-LLM and ONEBench-LMM concepts.
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Figure 5: Additional qualitative analysis for ONEBench’s capability probing for selected queries.
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B Extended Related Works1475

Multi-task Benchmarks as Broad Capability Evaluators. Multi-task leaderboards have been the1476

standard for benchmarking foundation models.1477

Examples include GLUE (Wang et al., 2019b), decaNLP (McCann et al., 2018), SuperGLUE (Wang1478

et al., 2019a), BigBench (Srivastava et al., 2023), Dynabench (Kiela et al., 2021), Open LLM Leader-1479

board (Beeching et al., 2023), CLIP-Benchmark (LAION-AI, 2024), ELEVATOR (Li et al., 2022),1480

StableEval (Udandarao et al., 2024a) and DataComp-38 (Gadre et al., 2023), as well as massive multitask1481

benchmarks like XTREME (Siddhant et al., 2020) and ExT5 (Aribandi et al., 2021). However, concerns1482

have arisen regarding the limitations of multi-task benchmarks (Bowman and Dahl, 2021). Issues include1483

saturation and subsequent discarding of samples (Liao et al., 2021; Beyer et al., 2021; Ott et al., 2022;1484

Ethayarajh and Jurafsky, 2020; Xia et al., 2024), susceptibility to dataset selection (Dehghani et al., 2021),1485

obscuring progress by evaluation metrics (Schaeffer et al., 2023; Colombo et al., 2022b), training on test1486

tasks (Udandarao et al., 2024b; Dominguez-Olmedo et al., 2024; Nezhurina et al., 2024; Mirzadeh et al.,1487

2024; Srivastava et al., 2024; Wang et al., 2024a), and data contamination (Elangovan et al., 2021; Magar1488

and Schwartz, 2022; Deng et al., 2023; Golchin and Surdeanu, 2023; Sainz et al., 2024). ONEBench tack-1489

les these challenges by enabling extensive reuse of samples for broader model comparisons, avoiding task1490

selection bias through democratized sourcing of samples, and using ordinal rankings to avoid evaluation1491

minutia. Sample-level evaluation with sparse inputs also allows selective removal of contaminated data1492

for fairer comparisons. Moreover, by supporting over-ended, evolving evaluation, it makes it harder to1493

train on all test tasks, as opposed to fixed leaderboards that are easier to game.1494

On Aggregation across Benchmarks. The dominant approach to benchmarking has traditionally been1495

multi-task benchmarks, where the most common aggregation strategy is the arithmetic mean of scores1496

across individual tasks. However, this approach assumes that the scoring metrics are homogeneous1497

and scaled correctly, and treat tasks of different complexities equally (Mishra and Arunkumar, 2021;1498

Pikuliak and Šimko, 2023). In consequence, simple normalization preprocessing influences the rankings1499

(Colombo et al., 2022a), and makes them nearly entirely dependent on outlier tasks (Agarwal et al., 2021).1500

Simply changing the aggregation method from arithmetic to geometric or harmonic mean can change1501

the ranking (Shavrina and Malykh, 2021). Similarly, including irrelevant alternative models can change1502

statistical significance or even change the ranking entirely (Benavoli et al., 2016; Zhang and Hardt, 2024).1503

Mean-aggregation also has significant failure modes in handling missing scores in benchmarks (Himmi1504

et al., 2023). The benchmarking paradigm is hence shifting towards adopting evaluation principles from1505

other fields, such as non-parametric statistics and social choice theory (Brandt et al., 2016; Rofin et al.,1506

2022). We use ordinal rankings instead of scores, similar to LMArena. However, unlike Arena, we use the1507

pairwise variant of the Plackett-Luce model, which has been shown to have advantages both theoretically1508

and empirically (Peyrard et al., 2021). We benefit from some of its theoretical properties like identifiability,1509

sample-efficient convergence, provable robustness to irrelevant alternatives, non-dominance of outliers1510

and empirical robustness across a wide range of real-world factors which affect ranking. Moreover,1511

we do not aggregate over benchmarks in the first place—our primary proposal is to avoid monolithic1512

benchmarks and consider aggregation on a sample level, needing to tackle incomplete and heterogeneous1513

measurements. We note that several other social-choice theory-based models such as score-based models1514

(Shevchenko et al., 2024) based on the Condorcet-winner criterion (Young, 1988) have been proposed,1515

yet they were primarily applied for aggregation on multi-task benchmarks, whereas a crucial component1516

of our proposal is to break down the benchmark boundaries and aggregate heterogeneous samples.1517

Dynamic Evaluation and Active Testing. Some previous works like (Ji et al., 2021; Kossen et al., 2021,1518

2022; Saranathan et al., 2024; Huang et al., 2024; Zhu et al., 2023) tackle the ‘active testing’ problem,1519

where the goal is to identify small “high-quality” test data-subsets, from a large pool of uncurated1520

evaluation data. These works typically assume that the cost of unlabeled test data acquisition is low1521

whereas the cost of acquiring per-instance labels is high. However, as pointed out by Prabhu et al. (2024),1522

these assumptions are unrealistic for foundation models, as both the acquisition of test data and label1523

annotations can be tedious in general. Hence, in our work, we tackle a broader problem: given a large1524
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testing data pool, how can we curate and query to produce a consistent and targeted set of model rankings? 1525

1526

Efficient Evaluation. As evaluation suites have grown, associated inference costs have also increased. 1527

Recent research has focused on creating compressed subsets of traditional benchmarks to address this issue 1528

(Varshney et al., 2022; Zhao et al., 2024; Perlitz et al., 2024; Kipnis et al., 2024; Pacchiardi et al., 2024). 1529

Popular approaches include subsampling benchmarks to preserve correlations with an external source like 1530

LMArena (Ni et al., 2024), sample clustering to gauge sample difficulty and then sub-sampling (Vivek 1531

et al., 2024), item-response-theory based methods for informatively sampling a subset of samples for 1532

evaluation (Polo et al., 2024), or designing evolving sample-level benchmarks (Prabhu et al., 2024). While 1533

the work of Prabhu et al. (2024) is similar to us in principle, it requires binary metrics as input and does 1534

not handle incomplete input matrices, which is necessary for aggregation over multiple time steps. We 1535

precisely address these limitations by showing efficient evaluation while accommodating incomplete data 1536

and extending it to ordinal ranks. 1537

Democratizing Evaluation. Standard image classification and retrieval benchmarks are collected 1538

from platforms like Flickr, which are predominantly Western-centric (Ananthram et al., 2024; Shankar 1539

et al., 2017). This has raised the important question: “Progress for whom?”, with many seminal works 1540

showcasing large disparities in model performance on concepts (Hemmat et al., 2024), tasks (Hall et al., 1541

2024, 2023b,a), and even input samples (Pouget et al., 2024; Sureddy et al., 2024; Gustafson et al., 2024) 1542

from the Global South. In response, works have developed benchmarks tailored to diverse cultures and 1543

demographics to include their voice in measuring progress (Pistilli et al., 2024; Pouget et al., 2024; Nguyen 1544

et al., 2024; Luccioni and Rolnick, 2023). Further works have tried to create personalized, task-specific 1545

benchmarks for flexibly evaluating models based on user-preferences (Butt et al., 2024; Saxon et al., 1546

2024; Yuan et al., 2024; Li et al., 2024c)— Zhang et al. (2024b) created Task-Me-Anything that enables 1547

users to input specific queries that then get processed to provide model rankings or responses to the 1548

query. However, their system is entirely procedurally generated, thereby not reflecting the real-world 1549

use-cases that models are typically subjected to in practice. Further, they are restricted to the fixed set of 1550

instances in their task generator pool. We take a different approach by creating flexible benchmarks where 1551

individuals, and contributing entities, can add their own samples and preferences collected from both 1552

real-world benchmarks and live model arenas like LM-Arena, thereby providing users with a realistic 1553

overview of model rankings on practical scenarios. Further, during capability testing, users can select 1554

similar preferences, making ONEBench more inclusive than traditional test sets. 1555
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C Open Problems and Future Directions1556

In this section, we highlight some promising directions for improvement below:1557

1. Testing Limits and Scaling Up ONEBench: currently, our prototype comprises less than 100K samples1558

in ONEBench-LLM and under 1M in ONEBench-LMM. These pools can be greatly expanded and1559

diversified by expanding to incorporating all existing LLM and LMM benchmarks. Our retrieval1560

mechanisms are designed to scale efficiently as the test pool grows in size and diversity.1561

2. Exploring Other Aggregation Algorithms: while we use the Plackett-Luce model for aggregating di-1562

verse measurements, there exist other algorithms from computational social choice theory with different1563

trade-offs. A comprehensive evaluation of these alternatives could offer new insight for aggregating1564

model performance.1565

3. Structured Querying and Enhanced Retrieval: One can improve retrieval by better querying mecha-1566

nisms using models like ColBERT (Khattab and Zaharia, 2020) and ColPALI (Faysse et al., 2024),1567

further optimized using DSPy (Khattab et al., 2023). A particularly interesting direction is allowing1568

compositional queries, where users combine multiple queries to test behaviour in foundation models,1569

similar to works like ConceptMix (Wu et al., 2024) and SkillMix (Yu et al., 2023).1570

4. On the Limits of Capability Probing: While we currently allow broad, open-ended inputs to probe1571

capabilities, some are easier to assess than others (Madvil et al., 2023; Li et al., 2024b). As foundation1572

models become more generalizable, a thorough analysis identifying which capabilities can be easily,1573

reliably evaluated, which are possible to evaluate but challenging, and which are in principle impossible1574

to evaluate is needed—this will help improve benchmarking effectiveness.1575
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D Datasets used in ONEBench: Further Details 1576

Maths + Science:    MathVista, AI2D, ScienceQA

Sequential Reasoning:    MEMENTOS

HELM Leaderboard Both VHELM LMMs-Eval Both

Machine Translation:    WMT14

Medical:    MedQA

Open Book QA:    NarrativeQA, OpenbookQA

Search Engine Queries:    NaturalQuestions

General QA:    MMLU, TruthfulQA, ARC

Maths:    GSM8k, Math

Reasoning:    Winogrande, Hellaswag

VQA:    A-OKVQA, Multipanel VQA, OOD-CV-VQA, SketchVQA

            VQAv2, VizWiz, OKVQA, TextVQA, 

Scene Understanding:    GQA

Docs and Infographics:    ChartQA, DocVQA, IconWA, MP-DocVQA

Hate Speech:    Hateful Memes

Captioning:     Flickr30k, COCO, NoCaps, RefCOCO, TextCaps

Multi-Disciplinary:    Crossmodal-360, CMMU, MMVET

                                    LLaVa-in-the-wild, MMBench,

                                    Seedbench, MME

Legal:    Legalbench

Figure 6: Constituent datasets of ONEBench-LLM (left) and OneBench-LMM (right). We provide task type,
metric, and license about each dataset in table 4 and table 5.

Dataset Source Task Size Metric License

Cardinal

LegalBench (Guha et al., 2024) HELM Legal 1K QEM Unknown
MATH (Hendrycks et al., 2021b) HELM Maths 1K QEM MIT
MedQA (Jin et al., 2021) HELM Medical 1K QEM MIT
NarrativeQA (Kočiskỳ et al., 2018) HELM Openbook QA 1K F1 Apache-2.0
NaturalQuestions (Kwiatkowski et al., 2019) HELM Search Engine Queries 1K F1 CC BY-SA 3.0
OpenbookQA (Mihaylov et al., 2018) HELM Openbook QA 1K EM Apache-2.0
WMT 2014 (Bojar et al., 2014) HELM Machine translation 1K BLEU CC-BY-SA-4.0
ARC (Clark et al., 2018) Leaderboard General QA 1.1K EM CC-BY-SA-4.0
HellaSwag (Zellers et al., 2019) Leaderboard Reasoning 10K EM MIT
TruthfulQA (Lin et al., 2022) Leaderboard General QA 817 EM Apache-2.0
Winogrande (Sakaguchi et al., 2021) Leaderboard Reasoning 1.2K EM Apache-2.0
GSM8K (Cobbe et al., 2021) HELM + Leaderboard Maths 1.3K QEM MIT
MMLU (Hendrycks et al., 2021a) HELM + Leaderboard General QA 13.8K EM MIT

Ordinal

Chatbot Arena (Chiang et al., 2024) Chatbot Arena Pairwise Battles 51K - CC BY 4.0

Table 4: Datasets in ONEBench-LLM. A diverse collection of benchmarks testing the abilities of LLMs in
areas such as law, medicine, mathematics, question answering, reasoning and instruction following, as well as the
performance of LLMs in pairwise battles.
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Dataset Source Task Size Metric License

Cardinal

A-OKVQA (Schwenk et al., 2022) VHELM VQA 7.2K QEM Apache-2.0
Bingo (Cui et al., 2023) VHELM Bias+Hallucination 886 ROUGE Unknown
Crossmodal-3600 (Thapliyal et al., 2022) VHELM Captioning 1.5K ROUGE CC BY-SA 4.0
Hateful Memes (Kiela et al., 2020) VHELM Hate Speech 1K QEM Custom(Meta)
Mementos (Wang et al., 2024b) VHELM Sequential Reasoning 945 GPT CC-BY-SA-4.0
MultipanelVQA (Fan et al., 2024) VHELM VQA 200 QEM MIT
OODCV-VQA (Tu et al., 2023) VHELM VQA 1K QEM CC-BY-NC-4.0
PAIRS (Fraser and Kiritchenko, 2024) VHELM Bias 508 QEM Unknown
Sketchy-VQA (Tu et al., 2023) VHELM VQA 1K QEM CC-BY-NC-4.0
AI2D (Kembhavi et al., 2016) LMMs-Eval Maths+Science 3.09K QEM Apache-2.0
IconQA (Lu et al., 2021) LMMs-Eval Docs and Infographics 43K ANLS CC BY-SA 4.0
InfoVQA (Mathew et al., 2022) LMMs-Eval Docs and Infographics 6.1K ANLS Unknown
LLaVA-in-the-Wild (Liu et al., 2023a) LMMs-Eval Multi-disciplinary 60 GPT4 Apache-2.0
ChartQA (Masry et al., 2022) LMMs-Eval Docs and Infographics 2.5K QEM GPL-3.0
CMMMU (Zhang et al., 2024a) LMMs-Eval Multi-disciplinary 900 QEM CC-BY-4.0
DocVQA (Mathew et al., 2021) LMMs-Eval Docs and Infographics 10.5K ANLS Unknown
MMBench (Liu et al., 2023b) LMMs-Eval Multi-disciplinary 24K GPT Apache-2.0
MMVET (Yu et al., 2024) LMMs-Eval Multi-disciplinary 218 GPT Apache-2.0
MP-DocVQA (Tito et al., 2023) LMMs-Eval Docs and Infographics 5.2K QEM MIT
NoCaps (Agrawal et al., 2019) LMMs-Eval Captioning 4.5K ROUGE MIT
OK-VQA (Marino et al., 2019) LMMs-Eval VQA 5.1K ANLS Unknown
RefCOCO (Kazemzadeh et al., 2014; Mao et al., 2016) LMMs-Eval Captioning 38K ROUGE Apache-2.0
ScienceQA (Lu et al., 2022) LMMs-Eval Maths+Science 12.6K EM CC BY-NC-SA 4.0
TextCaps (Sidorov et al., 2020) LMMs-Eval Captioning 3.2K ROUGE CC BY 4.0
TextVQA (Singh et al., 2019) LMMs-Eval VQA 5K EM CC BY 4.0
COCO (Lin et al., 2014) VHELM+LMMs-Eval Captioning 45.5K ROUGE CC-BY-4.0
Flickr30k (Young et al., 2014) VHELM+LMMs-Eval Captioning 31K ROUGE CC-0 Public Domain
GQA(Hudson and Manning, 2019) VHELM+LMMs-Eval Scene Understanding 12.6K QEM CC-BY-4.0
MathVista (Lu et al., 2024a) VHELM+LMMs-Eval Maths+Science 1K QEM/GPT4 CC-BY-SA-4.0
MME (Fu et al., 2023) VHELM+LMMs-Eval Multi-disciplinary 2.4K QEM/C+P Unknown
MMMU (Yue et al., 2024) VHELM+LMMs-Eval Multi-disciplinary 900 QEM CC BY-SA 4.0
POPE (Li et al., 2023b) VHELM+LMMs-Eval Hallucination 9K QEM/EM MIT
SEED-Bench (Li et al., 2023a, 2024a) VHELM+LMMs-Eval Multi-disciplinary 42.5K QEM/EM Apache
VizWiz (Gurari et al., 2018) VHELM+LMMs-Eval VQA 4.3K QEM/EM CC BY 4.0
VQAv2 (Goyal et al., 2017) VHELM+LMMs-Eval VQA 214K QEM/EM CC BY 4.0

Ordinal

Vision Arena (Lu et al., 2024b) - Pairwise Battles 9K - MIT
LMMs-Eval(Prometheus2) (Kim et al., 2024) - Pairwise Battles 610K - MIT

Table 5: Datasets in ONEBench-LMM: a diverse collection of benchmarks testing the abilities of LLMs in tasks
such as general VQA, image captioning, hate speech detection, bias and hallucination understanding, maths and
science, documents and infographics, scene understanding and sequential reasoning as well as the performance of
LMMs in pairwise battles. Additional preference comparisons are sampled randomly from LMMs-Eval, which are
excluded from the cardinal measurement sample pool.
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E Models used in ONEBench:Further Details 1577

In this section, we provide a deeper insight into the models used in the creation of ONEBench. It is 1578

important to note that ONEBench-LLM and ONEBench-LMM have complementary characteristics: 1579

while ONEBench-LLM has fewer data samples Dk, they are evaluated on more models Mk, while 1580

ONEBench-LMM contains (significantly) more data samples but they are evaluated on less models. 1581

E.1 ONEBench-LLM: Open LLM Leaderboard 1582

The Open LLM Leaderboard (Beeching et al., 2023) was created to track progress of LLMs in the 1583

open-source community by evaluating models on the same data samples and setup for more reproducible 1584

results and a trustworthy leaderboard where all open-sourced LLMs could be ranked. 1585

However, due to the abundance of models found on the leaderboard and the lack of adequate documen- 1586

tation, and therefore reliability, of many of these models being evaluated, we rank the models based on 1587

the number of downloads, as a metric of adoption of these models by the community. We provide the total 1588

list of models as an artefact and list the top 100 models below: 1589

1. 01-ai/Yi-34B-200K 1590

2. AI-Sweden-Models/gpt-sw3-126m 1591

3. BioMistral/BioMistral-7B 1592

4. CohereForAI/c4ai-command-r-plus 1593

5. CohereForAI/c4ai-command-r-v01 1594

6. Deci/DeciLM-7B-instruct 1595

7. EleutherAI/llemma_7b 1596

8. EleutherAI/pythia-410m 1597

9. Felladrin/Llama-160M-Chat-v1 1598

10. Felladrin/Llama-68M-Chat-v1 1599

11. FreedomIntelligence/AceGPT-7B 1600

12. GritLM/GritLM-7B 1601

13. Intel/neural-chat-7b-v3-1 1602

14. JackFram/llama-160m 1603

15. Nexusflow/NexusRaven-V2-13B 1604

16. Nexusflow/Starling-LM-7B-beta 1605

17. NousResearch/Hermes-2-Pro-Mistral-7B 1606

18. NousResearch/Meta-Llama-3-8B-Instruct 1607

19. NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO 1608

20. NousResearch/Nous-Hermes-2-SOLAR-10.7B 1609

21. NousResearch/Nous-Hermes-2-Yi-34B 1610

22. OpenPipe/mistral-ft-optimized-1227 1611

23. Qwen/Qwen1.5-0.5B 1612

24. Qwen/Qwen1.5-0.5B-Chat 1613

25. Qwen/Qwen1.5-1.8B 1614

26. Qwen/Qwen1.5-1.8B-Chat 1615

27. Qwen/Qwen1.5-110B-Chat 1616
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28. Qwen/Qwen1.5-14B1617

29. Qwen/Qwen1.5-14B-Chat1618

30. Qwen/Qwen1.5-32B-Chat1619

31. Qwen/Qwen1.5-4B1620

32. Qwen/Qwen1.5-4B-Chat1621

33. Qwen/Qwen1.5-72B-Chat1622

34. Qwen/Qwen1.5-7B1623

35. Qwen/Qwen1.5-7B-Chat1624

36. SeaLLMs/SeaLLM-7B-v21625

37. TinyLlama/TinyLlama-1.1B-Chat-v1.01626

38. TinyLlama/TinyLlama-1.1B-intermediate-step-3T1627

39. VAGOsolutions/SauerkrautLM-Mixtral-8x7B1628

40. abhishekchohan/mistral-7B-forest-dpo1629

41. ahxt/LiteLlama-460M-1T1630

42. ai-forever/mGPT1631

43. alignment-handbook/zephyr-7b-sft-full1632

44. augmxnt/shisa-gamma-7b-v11633

45. bigcode/starcoder2-15b1634

46. bigcode/starcoder2-3b1635

47. bigcode/starcoder2-7b1636

48. cloudyu/Mixtral_7Bx4_MOE_24B1637

49. codellama/CodeLlama-70b-Instruct-hf1638

50. cognitivecomputations/dolphin-2.2.1-mistral-7b1639

51. cognitivecomputations/dolphin-2.6-mistral-7b-dpo1640

52. cognitivecomputations/dolphin-2.9-llama3-8b1641

53. daekeun-ml/phi-2-ko-v0.11642

54. deepseek-ai/deepseek-coder-1.3b-instruct1643

55. deepseek-ai/deepseek-coder-6.7b-base1644

56. deepseek-ai/deepseek-coder-6.7b-instruct1645

57. deepseek-ai/deepseek-coder-7b-instruct-v1.51646

58. deepseek-ai/deepseek-math-7b-base1647

59. deepseek-ai/deepseek-math-7b-instruct1648

60. deepseek-ai/deepseek-math-7b-rl1649

61. google/codegemma-7b-it1650

62. google/gemma-1.1-7b-it1651

63. google/gemma-2b1652

64. google/gemma-2b-it1653

65. google/gemma-7b1654
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66. google/gemma-7b-it 1655

67. google/recurrentgemma-2b-it 1656

68. h2oai/h2o-danube2-1.8b-chat 1657

69. hfl/chinese-alpaca-2-13b 1658

70. ibm/merlinite-7b 1659

71. meta-llama/Meta-Llama-3-70B 1660

72. meta-llama/Meta-Llama-3-70B-Instruct 1661

73. meta-llama/Meta-Llama-3-8B 1662

74. meta-llama/Meta-Llama-3-8B-Instruct 1663

75. meta-math/MetaMath-Mistral-7B 1664

76. microsoft/Orca-2-7b 1665

77. microsoft/phi-2 1666

78. mistral-community/Mistral-7B-v0.2 1667

79. mistral-community/Mixtral-8x22B-v0.1 1668

80. mistralai/Mistral-7B-Instruct-v0.2 1669

81. mistralai/Mixtral-8x22B-Instruct-v0.1 1670

82. mistralai/Mixtral-8x7B-Instruct-v0.1 1671

83. mistralai/Mixtral-8x7B-v0.1 1672

84. openai-community/gpt2 1673

85. openai-community/gpt2-large 1674

86. openchat/openchat-3.5-0106 1675

87. openchat/openchat-3.5-1210 1676

88. openchat/openchat_3.5 1677

89. sarvamai/OpenHathi-7B-Hi-v0.1-Base 1678

90. speakleash/Bielik-7B-Instruct-v0.1 1679

91. speakleash/Bielik-7B-v0.1 1680

92. stabilityai/stablelm-2-1_6b 1681

93. stabilityai/stablelm-2-zephyr-1_6b 1682

94. stabilityai/stablelm-zephyr-3b 1683

95. teknium/OpenHermes-2.5-Mistral-7B 1684

96. tokyotech-llm/Swallow-70b-instruct-hf 1685

97. upstage/SOLAR-10.7B-Instruct-v1.0 1686

98. upstage/SOLAR-10.7B-v1.0 1687

99. wenbopan/Faro-Yi-9B 1688

100. yanolja/EEVE-Korean-Instruct-10.8B-v1.0 1689
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E.2 ONEBench-LLM: HELM1690

Similar to the Open LLM Leaderboard, the goal of HELM was to provide a uniform evaluation of language1691

models over a vast set of data samples (termed as scenarios in Liang et al. (2023)). HELM, however,1692

has a broader scope of models used for evaluation, employing open, limited-access, and closed models.1693

All models currently used in ONEBench-LLM is listed below:1694

1. 01-ai_yi-34b1695

2. 01-ai_yi-6b1696

3. 01-ai_yi-large-preview1697

4. ai21_j2-grande1698

5. ai21_j2-jumbo1699

6. ai21_jamba-1.5-large1700

7. ai21_jamba-1.5-mini1701

8. ai21_jamba-instruct1702

9. AlephAlpha_luminous-base1703

10. AlephAlpha_luminous-extended1704

11. AlephAlpha_luminous-supreme1705

12. allenai_olmo-7b1706

13. anthropic_claude-2.01707

14. anthropic_claude-2.11708

15. anthropic_claude-3-5-sonnet-202406201709

16. anthropic_claude-3-haiku-202403071710

17. anthropic_claude-3-opus-202402291711

18. anthropic_claude-3-sonnet-202402291712

19. anthropic_claude-instant-1.21713

20. anthropic_claude-instant-v11714

21. anthropic_claude-v1.31715

22. cohere_command1716

23. cohere_command-light1717

24. cohere_command-r1718

25. cohere_command-r-plus1719

26. databricks_dbrx-instruct1720

27. deepseek-ai_deepseek-llm-67b-chat1721

28. google_gemini-1.0-pro-0011722

29. google_gemini-1.0-pro-0021723

30. google_gemini-1.5-flash-0011724

31. google_gemini-1.5-pro-0011725

32. google_gemini-1.5-pro-preview-04091726

33. google_gemma-2-9b-it1727

34. google_gemma-2-27b-it1728
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35. google_gemma-7b 1729

36. google_text-bison@001 1730

37. google_text-unicorn@001 1731

38. meta_llama-2-7b 1732

39. meta_llama-2-13b 1733

40. meta_llama-2-70b 1734

41. meta_llama-3-8b 1735

42. meta_llama-3-70b 1736

43. meta_llama-3.1-8b-instruct-turbo 1737

44. meta_llama-3.1-70b-instruct-turbo 1738

45. meta_llama-3.1-405b-instruct-turbo 1739

46. meta_llama-65b 1740

47. microsoft_phi-2 1741

48. microsoft_phi-3-medium-4k-instruct 1742

49. microsoft_phi-3-small-8k-instruct 1743

50. mistralai_mistral-7b-instruct-v0.3 1744

51. mistralai_mistral-7b-v0.1 1745

52. mistralai_mistral-large-2402 1746

53. mistralai_mistral-large-2407 1747

54. mistralai_mistral-medium-2312 1748

55. mistralai_mistral-small-2402 1749

56. mistralai_mixtral-8x7b-32kseqlen 1750

57. mistralai_mixtral-8x22b 1751

58. mistralai_open-mistral-nemo-2407 1752

59. nvidia_nemotron-4-340b-instruct 1753

60. openai_gpt-3.5-turbo-0613 1754

61. openai_gpt-4-0613 1755

62. openai_gpt-4-1106-preview 1756

63. openai_gpt-4-turbo-2024-04-09 1757

64. openai_gpt-4o-2024-05-13 1758

65. openai_gpt-4o-mini-2024-07-18 1759

66. openai_text-davinci-002 1760

67. openai_text-davinci-003 1761

68. qwen_qwen1.5-7b 1762

69. qwen_qwen1.5-14b 1763

70. qwen_qwen1.5-32b 1764

71. qwen_qwen1.5-72b 1765

72. qwen_qwen1.5-110b-chat 1766
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73. qwen_qwen2-72b-instruct1767

74. snowflake_snowflake-arctic-instruct1768

75. tiiuae_falcon-7b1769

76. tiiuae_falcon-40b1770

77. writer_palmyra-x-0041771

78. writer_palmyra-x-v21772

79. writer_palmyra-x-v31773

E.3 ONEBench-LMM: LMMs-Eval1774

LMMs-Eval is the first comprehensive large-scale evaluation benchmark for Large Multimodal models,1775
meant “to promote transparent and reproducible evaluations” (Zhang et al., 2024c). The models supported1776
by LMMs-Eval are primarily open-sourced and the full list of currently used models are listed below:1777

1. idefics2-8b1778

2. internlm-xcomposer2-4khd-7b1779

3. instructblip-vicuna-7b1780

4. instructblip-vicuna-13b1781

5. internVL-Chat-V1-51782

6. llava-13b1783

7. llava-1.6-13b1784

8. llava-1.6-34b1785

9. llava-1.6-mistral-7b1786

10. llava-1.6-vicuna-13b1787

11. llava-1.6-vicuna-7b1788

12. llava-7b1789

13. llava-next-72b1790

14. qwen_vl_chat1791

E.4 ONEBench-LMM: VHELM1792

Finally, ONEBench-LMM comprises VHELM, an extension of HELM for Vision-Language models. The1793

models currently used by us, spanning open, limited-access, and closed models, are as follows:1794

1. anthropic_claude_3_haiku_202403071795

2. anthropic_claude_3_opus_202402291796

3. anthropic_claude_3_sonnet_202402291797

4. google_gemini_1.0_pro_vision_0011798

5. google_gemini_1.5_pro_preview_04091799

6. google_gemini_pro_vision1800

7. google_paligemma_3b_mix_4481801

8. huggingfacem4_idefics2_8b1802

9. huggingfacem4_idefics_80b1803

10. huggingfacem4_idefics_80b_instruct1804

11. huggingfacem4_idefics_9b1805
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12. huggingfacem4_idefics_9b_instruct 1806

13. llava_1.6_mistral_7b 1807

14. llava_1.6_vicuna_13b 1808

15. llava_1.6_vicuna_7b 1809

16. microsoft_llava_1.5_13b_hf 1810

17. microsoft_llava_1.5_7b_hf 1811

18. mistralai_bakllava_v1_hf 1812

19. openai_gpt_4_1106_vision_preview 1813

20. openai_gpt_4_vision_preview 1814

21. openai_gpt_4o_2024_05_13 1815

22. openflamingo_openflamingo_9b_vitl_mpt7b 1816

23. qwen_qwen_vl 1817

24. qwen_qwen_vl_chat 1818

25. writer_palmyra_vision_003 1819
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F Sample-level Rankings: Further Details1820

In our ONEBench formulation, sj ∈ S represents an ordinal ranking over the models Mj for sample1821

(xj , yj) represented by a permutation σj such that fσj(1) ⪰ · · · ⪰ fσj(mj) where mj = |Mj | is the number1822

of models compared in the j-th sample-level ranking. In addition, for each k we distinguish the case1823

fσ(k−1) ≻ fσ(k) if fσ(k−1) performs better than fσ(k) and fσ(k−1) ∼ fσ(k) in case of indistinguishable1824

performance. Thus, each sample-level ranking sj ∈ S can be uniquely determined by a mapping1825

σj : {1, . . . ,mj} → {1, . . . ,m} with σj(k) providing the index of the model in M that is on the k-th1826

place in the ordering for the j-th sample-level ranking and πj ∈ {≻,∼}mj−1 defining the corresponding1827

binary sequence of pairwise performance relations.1828

Ordinal Rankings and Information Loss. Using ordinal measurements leads to information loss, which1829

can impede downstream aggregation algorithms due to the data processing inequality (Thomas and Joy1830

2006, Section 2.8). This principle asserts that any estimation made from processed data cannot outperform1831

estimation based on the original, unprocessed data. However, cardinal measurements frequently suffer1832

from calibration issues, even within a single metric (Shah et al., 2014). Consequently, in practice, ordinal1833

measurements can paradoxically outperform cardinal ones despite the inherent information loss.1834
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