
Logical Story Representations via FrameNet + Semantic Parsing

Anonymous ACL submission

Abstract

We present a means of obtaining rich semantic001
representations of stories by combining neu-002
ral FrameNet identification, a formal logic-003
based semantic parser, and a hierarchical event004
schema representation. The final schematic005
representation of the story abstracts constants006
to variables, preserving their types and rela-007
tionships to other individuals in the story. All008
identified FrameNet frames are incorporated as009
temporally bound “episodes” and related to one010
another in time. The semantic role information011
from the frames is also incorporated into the012
final schema’s type constraints. We describe013
this system as well as its possible applications014
to question answering and open-domain event015
schema learning.016

1 Introduction017

Story understanding requires deep, non-textual rep-018

resentations of textual information. The human019

brain, neural language models, and formal logic en-020

gines all transduce textual input into some other for-021

mat in order to perform semantic tasks on that input.022

While formal logical representations of language023

admit more reliable and explainable inference pro-024

cedures on text than, for example, the vector repre-025

sentations used by transformers, they suffer from026

characteristic brittleness when attempting to parse027

the true logical meaning of text: paraphrases and028

idioms stymie the logical capture of true semantics029

at best, and actively lead to incorrect understanding030

at worst.031

The FrameNet project (Baker et al., 1998) at-032

tempts to provide a taxonomy of event “frames”033

(sometimes also called “schemas” or “scripts”), in-034

cluding their actors and objects, that one might ob-035

serve in the real world, and thus in texts discussing036

the real world. These frames are not tied to any one037

means of expression: many different constructions,038

e.g. “she wolfed down the meal” and “she ate her039

EPI-SCHEMA ((?X_C (COMPOSITE-SCHEMA.PR ?X_D)) ** ?E)

:ROLES

!R1  (?X_A FRIEND.N)

!R2  (?X_A (PERTAIN-TO ?X_B))

!R3  (?X_B AGENT.N)

!R4  (?X_C MOM.N)

!R5  (?X_C (PERTAIN-TO ?X_B))

!R6  (?X_C MOTION-THEME.N)

!R7  (?X_C INGESTION-INGESTOR.N)

!R8  (?X_D HOUSE.N)

!R9  (?X_D (PERTAIN-TO ?X_A))

!R10 (?X_D MOTION-GOAL.N)

!R11 (?X_E FOOD.N)

!R12 (?X_E INGESTION-INGESTIBLES.N)

:STEPS

?E1 (?X_C MOTION-GO.1.V ?X_D)

?E2 (?X_C INGESTION-EAT.2.V ?X_E)

:EPISODE-RELATIONS

!W2 (?E1 BEFORE ?E2)

Figure 1: An example of an Episodic Logic schema
representing the story “Jenny’s mom went to her friend’s
house. She ate food there.” Noun predicates taken from
single story tokens, e.g. FRIEND.N, are color-coded
with their variables. Noun and verb predicates obtained
from FrameNet matches are underlined, and prefixed
with the name of the FrameNet frame before the hyphen.
Additional information on the syntax and semantics of
the schema is given by Lawley et al. (2021).
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(MOM.SK PERTAIN-TO JENNY)
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(HOUSE.SK PERTAIN-TO FRIEND.SK)
(MOM.SK ((ADV-A (TO.P HOUSE.SK)) GO.V)

MOTION “went” 
  THEME “Jenny’s mom”
  GOAL  “her friend’s house”
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MOTION “went” -> GO.V
  THEME “mom” -> MOM.SK
  GOAL  “house” -> HOUSE.SK

“Jenny’s mom went 
to her friend’s 

house.”

Figure 2: The architecture of the system. Raw story text is fed along two tracks: the logical-semantic parsing track,
shown along the top, and the FrameNet parsing track, shown along the bottom. The FrameNet text spans are reduced
to direct object tokens and correlated with logical individuals in the ELF parse via token index matching.

food”, can express the same frame, e.g. “ingestion”.040

These frames are constructed manually, however,041

rather than learned automatically from texts, and042

are defined in terms of natural language rather than043

a more manipulable representation. FrameNet pars-044

ing of text generally consists of the mapping of045

spans of text to FrameNet roles; these text spans,046

being natural language, are difficult to manipulate047

programmatically and draw inferences from.048

In this paper, we present a means of producing049

expressive, semantically manipulable, formal log-050

ical “schema” representations of stories using a051

state-of-the-art FrameNet parsing system, LOME052

(Xia et al., 2021), as a jumping-off point. By aug-053

menting FrameNet parses with logical semantic054

representations of the text, we obtain schema-like055

story representations that mitigate both the brittle-056

ness inherent to literal semantic parsing and the dif-057

ficulty of manipulation inherent to natural language058

frames. We also discuss the potential application059

of these representations to the task of automatically060

acquiring event schema knowledge from natural061

text corpora.062

2 Semantic Representation063

The semantic representation we provide is based on064

Episodic Logic (EL) (Hwang and Schubert, 1993),065

a formal logical representation of language that066

enables efficient inference while maintaining a sur-067

face resemblance to the English language. One068

feature of EL that is well suited to story represen-069

tation is its characterizing operator, **, as seen in070

the example in Figure 2, which relates an Episodic071

Logic Formula (ELF) to an episode. Informally, 072

(ϕ ** E) means that E is “an episode of” some 073

formula ϕ. These episodes, characterized by formu- 074

las derived from sentences, have temporal bounds, 075

and can be related to each other in time using re- 076

lations derived from the Allen Interval Algebra 077

(Allen, 1983). Episodes are first-class citizens in 078

Episodic Logic, and may be used as arguments to 079

predicates, such as in the temporal relation formula 080

(E1 BEFORE E2). 081

ELFs, like those seen in the schema in Fig- 082

ure 1, often have predicates derived from nouns 083

or verbs. For example, the schema ELF (?X_A 084

FRIEND.N) asserts that the variable ?X_A sat- 085

isfies the predicate FRIEND.N, and the ELF 086

(?X_C MOTION-GO.1.V ?X_D) can be read 087

as a subject-verb-object verb phrase, where the ar- 088

guments to the verb predicate, MOTION-GO.1.V, 089

are the variables ?X_C and ?X_D. 090

2.1 EL Schemas 091

To represent frames identified by the FrameNet 092

parser, as well as the story as a whole, we use 093

the schema system built atop EL by Lawley et al. 094

(2021). An example schema, produced by the 095

system presented in this paper, is shown in Fig- 096

ure 1. This schema format allows declaration 097

of entity types, and of relationships between en- 098

tities, via EL propositions in the Roles sec- 099

tion. The Steps section contains ELFs, and 100

their characterizing episodes, for the schema’s con- 101

stituent events. These episodes are related in the 102

Episode-relations section, and the entire 103
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schema may itself be embedded by the ELF for-104

mula known as its header, visible at the top of the105

schema, and characterizing an episode itself.106

The EL schema framework we use allows for107

other section types, such as goals, preconditions,108

and postconditions, and was designed as part of109

a larger schema acquisition project. In this work,110

however, we primarily make use of the Roles,111

Steps, and Episode-relations sections for112

frame and story representation.113

3 Architecture114

Our system’s architecture, illustrated in Figure 2,115

is divided into two main information pipelines: the116

EL track, responsible for semantic parsing, and the117

FrameNet track, responsible for frame identifica-118

tion and span selection. The information from both119

of these pipelines is unified into a final schematic120

representation at the end using token indices from121

the input text.122

3.1 EL Track123

To produce an EL semantic parse of the story, we124

first perform span mapping on the input text us-125

ing the AllenNLP coreference resolver (Gardner126

et al., 2017). Co-referring token indices are saved,127

and story sentences are then converted into ELFs128

by first parsing them into ULF—an underspecified129

variant of EL (Kim and Schubert, 2019)—and then130

processing the ULFs into full ELFs by converting131

grammatical tense information into temporal rela-132

tions and scoping quantifiers. More information133

on the ELF parser can be found in (Lawley et al.,134

2021).135

Coreference resolution on the ELFs is performed136

by cross-referencing the token index clusters with137

token index tags placed on individuals in the EL138

parse. Co-referring individuals in the EL parse are139

then combined into one individual and substitutions140

are made throughout the parse.141

3.2 FrameNet Track142

To identify basic behavioral frames invoked by the143

raw text, we make use of the LOME information144

extraction system (Xia et al., 2021). LOME out-145

puts invoked frames, and text spans that fill frame146

roles, as CONCRETE data files. Once we extract147

the invoked frames and text spans, we perform a148

syntactic dependency parse on the input text using149

spaCy (Honnibal and Montani, 2017) and identify150

the first token in each span with a NSUBJ, DOBJ,151

or POBJ tag. This allows any span of text contain- 152

ing tokens for multiple individuals, e.g. her friend’s 153

house, to be reduced to, e.g., house, which will be 154

the token used to identify the logical individual in 155

the EL parse during the alignment phase. 156

3.3 Token Index Alignment and Schema 157

Formation 158

To represent the identified FrameNet frames as EL 159

formulas, the text spans that fill the semantic roles 160

for each frame must first be bound to logical in- 161

dividuals. After the dependency parser identifies 162

the token to cross-reference with the EL parse, the 163

noun predicate with the same token index is re- 164

trieved from the EL parse, and the individual satis- 165

fying that predicate is identified as the bound value 166

for the frame role. 167

The verb that invoked the frame is identified in a 168

similar fashion, and a schema is created with that 169

verb’s formula from the EL parse as its header, and 170

with the names of the FrameNet semantic roles ap- 171

plied to the relevant individuals as semantic types 172

in the new schema’s Roles section. When mul- 173

tiple frames are converted to schemas in this way, 174

they may all be embedded together in a composite 175

schema, such as the one shown in Figure 1, with 176

their header formulas as steps and with each of 177

their inner type constraints shown in the composite 178

schema’s Roles section for clarity. This compos- 179

ite schema forms our final semantic representation 180

of the story. 181

4 Discussion 182

The goal of our representation, and of semantic 183

story representations in general, is to enable a vari- 184

ety of reasoning tasks. We discuss two interesting 185

potential applications of this representation here: 186

question answering and event schema acquisition. 187

4.1 Applications 188

4.1.1 Question Answering 189

Episodic Logic has been used for question answer- 190

ing (Morbini and Schubert, 2009), as has its un- 191

derspecified variant, ULF (Platonov et al., 2020). 192

EL formulas can be unified with one another, bind- 193

ing variables in one formula to constants or vari- 194

ables in another. Many questions about events 195

or types can be formulated as EL propositions 196

with variables to be bound to potential answers. 197

For example, to answer the question of whose 198

house the mom went to in the story represented 199
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in Figure 1, we could create the question for-200

mulas with new variables for the house and its201

owner: (?X_C MOTION-GO.1.V ?house)202

and (?house (PERTAIN-TO ?who)). The203

only valid unification of these formulas with the204

story binds the house ?X_D to ?house and the205

friend ?X_A to ?who. Identifying FrameNet206

frames when parsing the question into EL would207

allow many different phrasings of the same core208

frame of motion to receive the same answer, e.g.,209

“whose house did the mom run off to?”.210

This form of question answering may also be211

used for semantic information retrieval based on212

multiple separate type, relational, and event oc-213

currence constraints, for example, finding sets of214

stories where a person buys something edible at a215

store.216

4.1.2 Schema Learning217

When information about stereotypical situations is218

packaged up into event schemas, those schemas219

may be partially matched to new stories, and in-220

ferences may then be drawn from the unmatched221

pieces of those schemas: upon observing some-222

one sitting down at a restaurant, for example, you223

might infer that they would then receive a menu,224

or that the restaurant probably serves food that225

they like. Automatic acquisition of a large and226

diverse corpus of event schemas has been pursued227

for decades, and researchers have employed sym-228

bolic (Mooney, 1988; Lebowitz, 1980) as well as229

statistical (Chambers and Jurafsky, 2008; Pichotta230

and Mooney, 2016) techniques.231

The event schema syntax we use, taken from232

(Lawley et al., 2021), was conceived as part of233

a system for learning rich, logical event schemas234

from texts by using a set of simple behavioral pro-235

toschemas—concepts children are familiar with,236

like asking for assistance with a task or eating food237

to alleviate hunger—to bootstrap the acquisition238

of more complex schemas. We believe that our239

conversion of identified FrameNet frames to canon-240

icalized logical formulas could aid this process:241

many FrameNet frames resemble simple behav-242

ioral protoschemas, and a mapping between them243

could greatly enhance the linguistic coverage of244

protoschemas.245

4.2 Limitations246

While our system produces useful representations,247

extant Episodic Logic parsing software, especially248

ULF parsing, is still somewhat error-prone. Work249

on EL parsing is ongoing, and notably includes an 250

application of the cache transition parsing system 251

developed by Peng et al. (2018) to ULF parsing 252

(Kim, 2019), which is the initial step in converting 253

English text into a logical form. 254

We also note that we do not leverage the full 255

schema syntax of Lawley et al. (2021), and in par- 256

ticular have not added stated goals, preconditions, 257

and postconditions from FrameNet frames into the 258

relevant sections from that schema system. This 259

is due, in large part, to the lack of availability of 260

those particular semantic roles in current FrameNet 261

parses. 262

Finally, we note that our system was devel- 263

oped using only stories from the ROCstory corpus 264

(Mostafazadeh et al., 2016), and that grammati- 265

cally and conceptually complex texts may require 266

additional parsing techniques, better parser perfor- 267

mance, a larger initial corpus of learned schemas 268

instead of hand-created frames, or any subset of 269

these. 270

5 Conclusion 271

We have presented a system for obtaining rich, for- 272

mal logic-based, schema-like representations of 273

stories from text by combining the frame identi- 274

fication power of LOME and FrameNet with the 275

semantic representation power of Episodic Logic 276

schemas. We showed that these representations 277

normalize language into propositions based on se- 278

mantic frames; model type, relational, and tempo- 279

ral constraints; and allow for hierarchical nesting 280

of situations. Finally, we discussed their potential 281

application, in future work, to tasks that neither 282

FrameNet nor EL parsing alone is trivially capable 283

of, such as paraphrase-resistant question answering, 284

information retrieval, and automatic acquisition of 285

event schemas from text. 286
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