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Abstract

Sampling from a complex distribution π and approximating its intractable nor-
malizing constant Z are challenging problems. In this paper, a novel family of
importance samplers (IS) and Markov chain Monte Carlo (MCMC) samplers is de-
rived. Given an invertible map T, these schemes combine (with weights) elements
from the forward and backward Orbits through points sampled from a proposal
distribution ρ. The map T does not leave the target π invariant, hence the name
NEO, standing for Non-Equilibrium Orbits. NEO-IS provides unbiased estimators
of the normalizing constant and self-normalized IS estimators of expectations under
π while NEO-MCMC combines multiple NEO-IS estimates of the normalizing
constant and an iterated sampling-importance resampling mechanism to sample
from π. For T chosen as a discrete-time integrator of a conformal Hamiltonian
system, NEO-IS achieves state-of-the art performance on difficult benchmarks
and NEO-MCMC is able to explore highly multimodal targets. Additionally, we
provide detailed theoretical results for both methods. In particular, we show that
NEO-MCMC is uniformly geometrically ergodic and establish explicit mixing
time estimates under mild conditions.
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1 Introduction

Consider a target distribution of the form π(x) ∝ ρ(x)L(x) where ρ is a probability density function
(pdf) on Rd and L is a nonnegative function. Typically, in a Bayesian setting, π is a posterior
distribution associated with a prior distribution ρ and a likelihood function L. Another situation
of interest is generative modeling where π is the distribution implicitly defined by a Generative
Adversarial Networks (GAN) discriminator-generator pair where ρ is the distribution of the generator
and L is derived from the discriminator [31, 6]. In a Variational Auto Encoder (VAE) context
[14, 5], π could be the true posterior distribution, ρ the approximate posterior distribution output
by the encoder and L an importance weight between the true posterior and approximate posterior
distributions. We are interested in this paper in sampling from π and approximating its intractable
normalizing constant Z =

∫
ρ(x)L(x)dx. These problems arise in many applications in statistics,

molecular dynamics or machine learning, and remain challenging.

Many approaches to compute normalizing constants are based on Importance Sampling (IS) - see
[1, 2] and the references therein - and its variations, among others, Annealed Importance Sampling
(AIS) [19, 34, 10] and Sequential Monte Carlo (SMC) [9]. More recently, Neural IS has also become
very popular in machine learning; see e.g. [11, 18, 21, 22, 32, 33]. Neural IS is an adaptive IS which
relies on an importance function obtained by applying a normalizing flow to a reference distribution.
The parameters of this normalizing flow are chosen by minimizing a divergence between the proposal
and the target (such as the Kullback–Leibler [18] or the χ2-divergence [1]). Recent work on the
subject proposes to add stochastic moves in order to enhance the performance of the normalizing
flows [33].

More recently, the Non-Equilibrium IS (NEIS) method has been introduced by [23] as an alternative
to these approaches. Similar to Neural IS, NEIS consists in transporting samples {Xi}Ni=1 from a
reference distribution using a family of deterministic mappings. For NEIS, this family is chosen to
be an homogeneous differential flow (φt)t∈R. In contrast to Neural IS, for any i ∈ [N ], the sample
Xi is propagated both forward and backward in time along the orbits associated with (φt)t∈R until
stopping conditions are met. Moreover, the resulting estimator of the normalizing constant is obtained
by computing weighted averages of the whole orbit (φt(X

i))t∈[τ+,i,τ−,i], where τ+,i, τ−,i are the
resulting stopping times, and not only the endpoints φτ+,i(X

i), φτ−,i(X
i). In [23], the authors

provide an application of NEIS with (φt)t∈R associated with a conformal Hamiltonian dynamics,
and reports impressive numerical results on difficult normalizing constants estimation problems, in
particular for high-dimensional multimodal distributions.

We propose in this work NEO-IS which alleviates the shortcomings of NEIS. Similar to NEIS,
samples are drawn from a reference distribution, typically set to ρ, and are propagated under the
forward and backward orbits of a discrete-time dynamical system associated with an invertible
transform T. An estimator of the normalizing constant is obtained by reweighting all the points on
the whole orbits using the IS rule. Contrary to NEIS, the NEO-IS estimator of Z is unbiased under
assumptions that are mild and easy to verify. It is more flexible than NEIS because it does not rely on
the accuracy of the discretization of a continuous-time dynamical system.

We then show how it is possible to leverage the unbiased estimator of Z defined by NEO-IS to obtain
NEO-MCMC, a novel massively parallel MCMC algorithm to sample from π. In a nutshell, NEO-
MCMC relies on parallel walkers which each estimates the normalizing constant but are allowed to
interact through a resampling mechanism.

Our contributions can be summarized as follows.

(i) We present a novel class of IS estimators of the normalizing constant Z referred to as
NEO-IS. More broadly, a small modification of this algorithm also allows us to estimate
integrals with respect to π. Both finite sample and asymptotic guarantees are provided for
these two methodologies.

(ii) We develop a new massively parallel MCMC method, NEO-MCMC. NEO-MCMC com-
bines NEO-IS unbiased estimator of the normalizing constant with iterated sampling-
importance resampling methods. We prove that it is π-reversible and ergodic under very
general conditions. We derive also conditions which imply that NEO-MCMC is uniformly
geometrically ergodic (with an explicit expression of the mixing time).
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(iii) We illustrate our findings using numerical benchmarks which show that both NEO-IS and
NEO-MCMC outperform state-of-the-art (SOTA) methods in difficult settings.

2 NEO-IS algorithm

In this section, we derive the NEO-IS algorithm. The two key ingredients for this algorithm are (1) the
reference distribution ρ and (2) a transformation T assumed to be a C1-diffeomorphism with inverse
T−1. Write, for k ∈ N∗ = N\{0}, Tk = T ◦Tk−1, T0 = Idd and similarly T−k = T−1 ◦T−(k−1).
For any k ∈ Z, denote by ρk : Rd → R+ the pushforward of ρ by Tk, defined for x ∈ Rd by
ρk(x) = ρ(T−k(x))JT−k(x), where JΦ(x) ∈ R+ is the absolute value of the Jacobian determinant
of Φ : Rd → Rd evaluated at x. In line with multiple importance sampling à la Owen and Zhou [20],
we introduce the proposal density

ρT(x) = Ω−1
∑

k∈Z
$kρk(x) , (1)

where {$k}k∈Z is a nonnegative sequence and Ω =
∑
k∈Z$k. Note that we assume in the sequel

that the support of the weight sequence defined as {k ∈ Z : $k 6= 0} is finite. Thus, the mixture
distribution in (1) is a finite mixture. Given x ∈ Rd, ρT(x) is a function of the forward and backward
orbit of T through x.

For any nonnegative function f , the definition of ρT implies that
∫
f(y)ρT(y)dy =

Ω−1
∫ ∑

k∈Z$kf(Tk(x))ρ(x)dx. Assuming that $0 > 0, the ratio ρ(x)/ρT(x) ≤ $−1
0 Ω <∞ is

bounded. We can therefore apply the IS principle which allows to write the identity∫
f(x)ρ(x)dx =

∫ (
f(y)

ρ(y)

ρT(y)

)
ρT(y)dy =

∫ ∑
k∈Z

f(Tk(x))wk(x)ρ(x)dx , (2)

where the weights are given by (see Appendix A.2 for a detailed derivation),

wk(x) = $kρ(Tk(x))/{ΩρT(Tk(x))} = $kρ−k(x)
/∑

i∈Z
$k+iρi(x) . (3)

We assume in the sequel that $0 > 0. In particular, note that under this condition, the weights wk
are also upper bounded uniformly in x: for any x ∈ Rd, wk(x) ≤ $k/$0. Equations (2) and (3)
suggest to estimate the integral

∫
f(x)ρ(x)dx by INEO

$,N (f) = N−1
∑N
i=1

∑
k∈Z wk(Xi)f(Tk(Xi))

where {Xi}Ni=1 are i.i.d. samples from the proposal ρ, which is denoted by X1:N iid∼ ρ.

Algorithm 1 NEO-IS Sampler

1. Sample X1:N iid∼ ρ for i ∈ [N ].
2. For i ∈ [N ], compute the path (Tj(Xi))j∈Z and
weights (wj(X

i))j∈Z.

3. INEO
$,N (f) = N−1

∑N
i=1

∑
k∈Z wk(Xi)f(Tk(Xi)).

This estimator is obtained by a
weighted combination of the ele-
ments of the independent forward and
backward orbits {Tk(Xi)}k∈Z with
X1:N iid∼ ρ. This estimator is referred
to as NEO-IS. Choosing f ≡ L pro-
vides the NEO-IS estimator of the nor-
malizing constant of π:

Ẑ
$

Xi =
∑
k∈Z L(Tk(Xi))wk(Xi) , Ẑ

$

X1:N = N−1
∑N
i=1 Ẑ

$

Xi . (4)

We now study the performance of the NEO-IS estimator. The following two quantities play a
fundamental role in the analysis:

E$T = EX∼ρ
[(∑

k∈Z wk(X)L(Tk(X))/Z
)2]

,M$
T = supx∈Rd

∑
k∈Z wk(x)L(Tk(x))/Z . (5)

Theorem 1. Ẑ
$

X1:N is an unbiased estimator of Z. If E$T < ∞, then, E[|Ẑ
$

X1:N /Z−1|2] =

N−1(E$T − 1). If M$
T <∞, then, for any δ ∈ (0, 1), with probability 1− δ,

√
N
∣∣∣Ẑ$X1:N /Z−1

∣∣∣ ≤
M$

T

√
log(2/δ)/2.

The (elementary) proof is postponed to Appendix A.3. E$T plays the role of the second-order
moment of the importance weights EX∼ρ[L2(X)] which is key to the performance of IS algorithms
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[1, 2]. In addition, since the NEO-IS estimator Ẑ
$

X1:N is unbiased, the Cauchy–Schwarz inequality
implies that EX∼ρ

[(∑
k∈Z wk(X)L(Tk(X)))2

]
≥ Z2 and hence that E$T ≥ 1. Note that if

‖L‖∞ = supx∈Rd L(x) < ∞, then since the weights are uniformly bounded by Ω$−1
0 , we have

M$
T ≤ ‖L‖∞Ω$−1

0 /Z.

Using the NEO-IS estimate Ẑ
$

X1:N of the normalizing constant, we can construct a self-normalized IS
estimate of

∫
f(x)π(x)dx:

JNEO
$,N (f) = N−1

N∑
i=1

Ẑ
$

Xi

Ẑ
$

X1:N

∑
k∈Z

L(Tk(Xi))wk(Xi)

Ẑ
$

Xi

f(Tk(Xi)) , (6)

referred to as NEO-SNIS estimator. This expression may seem unnecessarily compli-
cated but highlights the hierarchical structure of the estimator. We combine estimators
(Ẑ
$

Xi)
−1
∑
k∈Z L(Tk(Xi))wk(Xi)f(Tk(Xi)) evaluated on the forward and backward orbits

through the points {Xi}Ni=1 using the normalized weights {Ẑ
$

Xi/Ẑ
$

X1:N }Ni=1. Although the NEO-IS
estimator is unbiased, the NEO-SNIS is in general biased. However, for bounded functions, both the
bias and the variance of the NEO-SNIS estimator are O(N−1), with constants proportional to E$T .
For g a π-integrable function, we set π(g) =

∫
g(x)π(x)dx.

Theorem 2. Assume that E$T <∞. Then, for any function g satisfying supx∈Rd |g(x)| ≤ 1 on Rd,
and N ∈ N

E
X1:N iid∼ρ

[
|JNEO
$,N (g)− π(g)|2

]
≤ 4 ·N−1E$T , (7)∣∣∣E

X1:N iid∼ρ

[
JNEO
$,N (g)− π(g)

]∣∣∣ ≤ 2 ·N−1E$T . (8)

If M$
T <∞, then for δ ∈ (0, 1], with probability at least 1− δ,

√
N |JNEO

$,N (g)− π(g)| ≤ ‖g‖∞M$
T

√
32 log(4/δ) . (9)

The proof is postponed to Appendix A.4. These results extend to NEO-SNIS estimators the results
known for self-normalized IS estimators; see e.g., [1, 2] and the references therein. The upper
bounds stated in this result suggest it is good practice to keep E$T /N small in order to obtain sensible
approximations. For two pdfs p and q on Rd, denote by Dχ2(p, q) =

∫
{p(x)/q(x)− 1}2q(x)dx the

χ2-divergence between p and q.
Lemma 3. For any nonnegative sequence ($k)k∈Z, we have E$T ≤ Dχ2(π‖ρT) + 1.

The proof is postponed to Appendix A.5. Lemma 3 suggests that accurate sampling requires N to
scale linearly with the χ2-divergence between the target π and the extended proposal ρT.

Remark 1. We can extend NEO to non homogeneous flows, replacing the family {Tk : k ∈ Z} with
a collection of mappings {Tk : k ∈ Z}. This would allow us to consider further flexible classes of
transformations such as normalizing flows; see e.g. [21]. The χ2-divergence Dχ2(π‖ρT) provides a
natural criterion for learning the transformation. We leave this extension to future work.

Conformal Hamiltonian transform The efficiency of NEO relies heavily on the choice of T.
Intuitively, a sensible choice of T requires that (i) E$T is small, i.e. ρT should be close to π by
Lemma 3 (see (5)), (ii) the inverse T−1 and the Jacobian of T are easy to compute. Following [23],
we use for T a discretization of a conformal Hamiltonian dynamics. Assume that U(·) = − log π(·) is
continuously differentiable. We consider the augmented distribution π̃(q, p) ∝ exp{−U(q)−K(p)}
on R2d, where q is the position, p is the momentum, and K(p) = pTM−1p/2 is the kinetic energy,
with M a positive definite mass matrix. By construction, the marginal distribution of the momentum
under π̃ is the target pdf π(q) =

∫
π̃(q, p)dp. The conformal Hamiltonian ODE associated with π̃ is

defined by

dqt/dt = ∇pH(qt, pt) = M−1pt , (10)
dpt/dt = −∇qH(qt, pt)− γpt = −∇U(qt)− γpt ,

where H(q, p) = U(q) +K(p), and γ > 0 is a damping constant. Any solution (qt, pt)t≥0 of (10)
satisfies setting Ht = H(qt, pt), dHt/dt = −γpTt M−1pt ≤ 0. Hence, all orbits converge to fixed
points that satisfy∇U(q) = 0 and p = 0; see e.g. [12, 17].
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Figure 1: Left: E
1[K]

Th
(K) − 1 vs EIS(K) − 1 (red) in log10-scale as a function of the length of

trajectories K (the lower the better). Second left to right: Four examples of orbits with the same
random seed for different values of γ (from left to right, γ = 0.1, 1, 2).

In the applications below, we consider the conformal version of the symplectic Euler (SE) method of
(10), see [12]. This integrator can be constructed as a splitting of the two conformal and conservative
parts of the system (10). When composing a dissipative with a symplectic operator, we set for all
(q, p) ∈ R2d, Th(q, p) = (q + hM−1{e−hγp − h∇U(q)}, e−hγp − h∇U(q)), where h > 0 is a
discretization stepsize. This transformation can be connected with classical momentum optimization
schemes, see [12, Section 4]. By [12, Section 3], for any h > 0 Th is a C1-diffeomorphism on
R2d with Jacobian given by JTh(q, p) = e−γhd. In addition, its inverse is T−1

h (q, p) = (q −
hM−1p, eγh{p+ h∇U(q − hM−1p)}). Therefore, the weight (3) of the NEO estimator is given by

wk(q, p) =
$kρ̃(Tkh(q, p))e−γkhd∑

j∈Z$k+j ρ̃(T−jh (q, p))eγjhd
,

where ρ̃(q, p) ∝ ρ(q)e−K(p). Figure 1 displays for different values of γ on a log-scale the bound
E
1[0:K]

Th
− 1 appearing in Theorem 1 as a function of K, here we use the sequence of weights

($k)k∈Z = (1[0:K](k))k∈Z (i.e. only the K + 1 first elements of the forward orbits are used and
are equally weighted). For comparison, we also present on the same plot the bounds achieved by
averaging K + 1 independent IS estimates, EIS(K)− 1 = (K + 1)−1EX∼ρ[L(X)2]. Interestingly,
Figure 1 shows that there is a trade-off in the choice of γ which controls the exploration of the state
space by the Hamiltonian dynamics since the higher γ, the faster the orbits converge towards the
modes. This fast convergence prevents a “good” exploration of the space; e.g. E

1[0:K]

Th
is smaller for

γ = 1.0 than for γ = 2.0 when K > 7.

3 NEO-MCMC algorithm

We now derive an MCMC method to sample from π based on the NEO-IS estimator. A natural idea
consists in adapting the Sampling Importance Resampling procedure (SIR) (see for example [24, 27])
to the NEO framework.

The SIR method to sample JNEO
$,N (see (6)) consists of 4 steps.

(SIR-1) Draw independently X1:N iid∼ ρ and compute the associated forward and backward orbits
{Tk(Xi)}k∈Z of the point.
(SIR-2) Compute the normalizing constants associated with each orbit {Ẑ

$

Xi}Ni=1.
(SIR-3) Sample an orbit index IN ∈ [N ] with probability {Ẑ

$

Xi/
∑N
j=1 Ẑ

$

Xj}Ni=1.
(SIR-4) Draw the iteration index KN on the IN -th orbit with probability
{L(Tk(XIN ))wk(XIN )/Ẑ

$

XIN }k∈Z.

The resulting draw is denoted by UN = TK
N

(XIN ). By construction, for any bounded function
f , we get that E

[
f(UN )

∣∣X1:N , IN
]

= {Ẑ
$

XIN }−1
∑
k∈Z wk(XIN )L(Tk(XIN )) which implies

E
[
f(UN )

∣∣X1:N
]

= JNEO
$,N (f) (see (6)). Using Theorem 2, we therefore obtain |E[f(UN )] −∫

f(z)π(z)dz| ≤ 101/2‖f‖∞E$T N−1, showing that the law of the random variable µN = Law(UN )
converges in total variation to π as N →∞,

‖µN − π‖TV = sup
‖f‖∞≤1

|µN (f)− π(f)| ≤ 101/2E$T N
−1 . (11)

5



Algorithm 2 NEO-MCMC Sampler
At step n ∈ N∗, given the conditioning orbit point
Yn−1.
Step 1: Update the conditioning point

1. Set X1
n = Yn−1 and for any i ∈

{2, . . . , N}, sample Xi
n

iid∼ ρ.
2. Sample the orbit index In with probability

proportional to (Ẑ
$

Xin
)i∈[N ], (4).

3. Set Yn = XIn
n .

Step 2: Output a sample
4. Sample index Kn with probability propor-

tional to {wk(Yn)L(Tk(Yn))/Ẑ
$

Yn}k∈Z
5. Output Un = TKn(Yn).

Based on [3], we now derive the NEO-
MCMC procedure, which in a nutshell con-
sists in iterating the SIR procedure while
keeping a conditioning point (or equiva-
lently, orbit); see Appendix C. The conver-
gence of NEO-MCMC does not rely on
letting N →∞: the NEO-MCMC works
as soon as N ≥ 2, although as we will
see below the mixing time decreases as N
increases.

This procedure is summarized in Algo-
rithm 2. The NEO-MCMC procedure is
an iterated algorithm which produces a
sequence {(Yn, Un)}n∈N of points in Rd.
The n-th iteration of the NEO-MCMC al-
gorithm consists in two main steps: 1) up-
dating the conditioning point Yn−1 → Yn
2) sampling Un by selecting a point in the orbit {Tk(Yn)}k∈Z of the conditioning point. Com-
pared to SIR, only the generation of the points (step (SIR-1)) is modified: we set X1

n = Yn−1 (the
conditioning point), and then draw X2:N

n
iid∼ ρ.

The sequence {Yn}n∈N defined by Algorithm 2 is a Markov chain: P (Yn ∈ A |Y0:n−1) =
P (Yn ∈ A |Yn−1) = P (Yn,A) where

P (y,A) =

∫
δy(dx1)

N∏
j=2

ρ(xj)dxj
N∑
i=1

Ẑ
$

xi∑N
j=1 Ẑ

$

xj

1A(xi) , y ∈ Rd ,A ∈ B(Rd) . (12)

Note that this Markov kernel describes the way, at stage n + 1, the conditioning point Yn+1 is
selected given Yn, which depends only on the estimator of the normalizing constants associated
with each orbit, but not on the sample Un selected on the conditioning orbit. In addition, given the
conditioning point Yn at the n-th iteration, the conditional distribution of the output sample Un is
P
(
Un ∈ B | In, X1:N

n

)
= P (Un ∈ B |Yn) = Q(Yn,B) where

Q(y,B) =
∑
k∈Z

wk(y)L(Tk(y))

Ẑ
$

y

1B(Tk(y)) , y ∈ Rd ,B ∈ B(Rd) . (13)

With these notations, if the Markov chain is started at Y0 = y, then for any n ∈ N, the law of
the n-th conditioning point is P (Yn ∈ A |Y0 = y) = Pn(y,A) and the law of the n-th sample is
P (Un ∈ B |Y0) = PnQ(y,B). Define π̃ the pdf given for y ∈ Rd by

π̃(y) =
ρ(y)

Z

∑
k∈Z

wk(y)L(Tk(y)) =
ρ(y)Ẑ

$

y

Z
. (14)

The following theorem shows that, for any initial condition y ∈ Rd, the distribution of the variable
Yn converges in total variation to π̃ and that the distribution of Un converges to π.
Theorem 4. The Markov kernel P is reversible with respect to the distribution π̃, ergodic and
Harris positive, i.e., for all y ∈ Rd, limn→∞ ‖Pn(y, ·) − π̃‖TV = 0. In addition, π = π̃Q
and limn→∞ ‖PnQ(y, ·) − π‖TV = 0. Moreover, for any bounded function g and any y ∈ Rd,
limn→∞ n−1

∑n−1
i=0 g(Ui) = π(g), P-almost surely, where {Ui}i∈N is defined in Algorithm 2 with

Y0 = y.

The proof is postponed to Appendix A.6.
Remark 2. We may provide another sampling procedure of {Yn}n∈N. Define the pdf on the
extended space [N ]× RdN by π̌(i, x1:N ) = N−1π̃(xi)

∏N
j=1,j 6=i ρ(xj). Consider a Gibbs sampler

targeting π̌ consisting in (a) sampling X1:N\{In−1}
n |(In−1, Xn−1) ∼

∏
j 6=In−1

ρ(xj), (b) sampling

In|X1:N
n ∼ Cat({Ẑ

$

Xin
/
∑N
j=1 Ẑ

$

Xjn
}Ni=1 and (c) set Yn = XIn

n . This algorithm is a Gibbs sampler
on π̌ and we easily verify that the distribution of {Yn}n∈N is the same as Algorithm 2.
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The next theorem provides non asymptotic quantitative bounds on the convergence in total variation.
The main interest of NEO-MCMC algorithm is motivated empirically from observed behaviour:
the mixing time of the corresponding Markov chain improves as N increases. This behaviour is
quantified theoretically in the next theorem. Moreover, this improvement is obtained with little extra
computational overhead, since sampling N points from the proposal distribution ρ, computing the
forward and backward orbits of the points and evaluating the normalizing constants {Ẑ

$

Xin
}Ni=1 can

be performed in parallel.
Theorem 5. Assume thatM$

T <∞, see (5). Set εN = (N − 1)/(2M$
T +N − 2) and κN = 1−εN .

Then, for any y ∈ Rd and k ∈ N, ‖P k(y, ·)− π̃‖TV ≤ κkN and ‖P kQ(y, ·)− π‖TV ≤ κkN .

Instead of sampling the new points X2:N
n independently from ρ (Step 1 in Algorithm 2), it is

possible to draw the proposals X1:N
n conditional to the current point Yn−1; see [29, 8, 26, 25] for

related works. Following [25], we use a reversible Markov kernel with respect to the proposal ρ,
i.e., such that ρ(x)m(x, x′) = ρ(x′)m(x′, x), assuming for simplicity that this kernel has density
m(x, x′). If ρ = N(0, σ2 Idd) , an appropriate choice is an autoregressive kernel m(x, x′) =
N(x′;αx, σ2(1− α2) Idd). More generally, we can use a Metropolis–Hastings kernel with invariant
distribution ρ. In this case, r1(x1, x1:N\{1}) =

∏N
j=2m(xj−1, xj) and for each i ∈ [2 : N ],

ri(x
i, x1:N\{i}) =

i−1∏
j=1

m(xj+1, xj)

N∏
j=i+1

m(xj−1, xj) . (15)

Since m is reversible with respect to ρ, for all i, j ∈ [N ], ρ(xi)ri(x
i, x1:N\{i}) =

ρ(xj)rj(x
j , x1:N\{j}) where ri(xi;x1:N\{i}) defines the the conditional distribution of X1:N\{i}

given Xi = xi. The only modification in Algorithm 2 is Step 1, which is replaced by: Draw
Un ∈ [N ] uniformly, set XUn

n = Yn−1 and sample X1:N\{Un}
n ∼ rUn(XUn

n , ·). The validity of this
procedure is established in Appendix A.6.

4 Continuous-time version of NEO and NEIS

The NEO framework can be thought of as an extension of NEIS introduced in [23]. NEIS focuses on
normalizing constant estimation and should be therefore compared with NEO-IS. In [23], the authors
do not consider possible extensions of these ideas to sampling problems. We consider here how
NEO could be adapted to continuous-time dynamical system. Proofs of the statements and detailed
technical conditions are postponed to Appendix B.

Consider the Ordinary Differential Equation (ODE) ẋt = b(xt) , where b : Rd → Rd is a smooth
vector field. Denote by (φt)t∈R the flow of this ODE (assumed to be well-behaved). Under appropriate
regularity condition Jφt(x) = exp(

∫ t
0
∇ · b(φs(x))ds); see Lemma S5. Let $ : R → R+ be a

nonnegative smooth function with finite support, with Ωc =
∫∞
−∞$(t)dt. The continuous-time

counterpart of the proposal distribution (1) is ρc
T(x) = (Ωc)−1

∫∞
−∞$(t)ρ(φ−t(x))Jφ−t(x)dt,

which is a continuous mixture of the pushforward of the proposal ρ by the flow of (φs)s∈R. Assuming
for simplicity that ρ(x) > 0 for all x ∈ Rd, then ρc

T(x) > 0 for all x ∈ Rd, and using again the IS
formula, for any nonnegative function f ,∫

f(x)ρ(x)dx =

∫
f(x)

ρ(x)

ρc
T(x)

ρc
T(x)dx =

∫ [∫ ∞
−∞

wc
t (x)f(φt(x))dt

]
ρ(x)dx, (16)

wc
t (x) = $(t)ρ(φt(x))Jφt(x)

/∫ ∞
−∞

$(s+ t)ρ(φs(x))Jφs(x)ds . (17)

These relations are the continuous-time counterparts of (2). Eqs. (16)-(17) define a version of NEIS
[23], with a finite support weight function $; see Appendices B.2 and B.3 for weight functions
with infinite support. This identity is of theoretical interest but must be discretized to obtain a
computationally tractable estimator. For h > 0, denote by Th an integrator with stepsize h > 0 of
the ODE ẋ = b(x). We may construct NEO-IS and NEO-SNIS estimators based on the transform
T ← Th and weights $k ← $(kh). We might show that for any bounded function f and for
any x ∈ Rd, limh↓0

∑
k∈Z wk(x)f(Tkh(x)) =

∫∞
−∞ wc

t (x)f(φt(x))dt, where we omitted here the
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dependency in h of wk. Therefore, taking h ↓ 0+, the NEO-IS converges to the continuous-version
(16)-(17). There is however an important difference between NEO and the NEIS method in [23]
which stems from the way (16)-(17) are discretized. Compared to NEIS, NEO-IS using T← Th and
weights $k ← $(kh) is unbiased for any stepsize h > 0. NEIS uses an approach inspired by the
nested-sampling approach, which amounts to discretizing the integral in (16) also in the state-variable
x; see [28, 7]. This discretization is biased which prevents the use of this approach to develop MCMC
sampling algorithm; see Appendix B.

5 Experiments and Applications

Normalizing constant estimation The performance of NEO-IS is assessed on different normaliz-
ing constant estimation benchmarks; see [13]. We focus on two challenging examples. Additional
experiments and discussion on hyperparameter choice are given in the supplementary material, see
Appendix D.1.

(1) Mixture of Gaussian (MG25): π(x) = P−1
∑P
i=1 N(x;µi,j , Dd), where d ∈ {10, 20, 45},

Dd = diag(0.01, 0.01, 0.1, . . . , 0.1) and µi,j = [i, j, 0, . . . , 0]T with i, j ∈ {−2, . . . , 2}.

(2) Funnel distribution (Fun) π(x) = N(x1; 0, a2)
∏d
i=1 N(xi; 0, e2bx1) with d ∈ {10, 20, 45},

a = 1, and b = 0.5. In both case, the proposal is ρ = N(0, σ2
ρ Idd) with σ2

ρ = 5.

The NEO-IS estimator is compared with (i) the IS estimator using the proposal ρ, (ii) the Adaptive
Importance Sampling (AIS) estimator of [30], (iii) Stochastic Normalizing Flows (SNF)1 and (iv) the
Neural Importance Sampling (NIS)2. For NEO-IS, we use $k = 1[K](k) with K = 10 (ten steps
on the forward orbit), and conformal Hamiltonian dynamics γ = 1, M = 5 · Idd for dimensions
d = {10, 20}, and γ = 2.5 for d = 45 (where γ is the damping factor, M the mass matrix, h is
the stepsize of the integrator). The parameters of AIS are set to obtain a complexity comparable
to NEO-IS; see Appendix D.1. For NIS, we use the default parameters and for SNF we used the
same architectures as in [33]. In Fun, we set γ = 0.2, K = 10, M = 5 · Idd, and h = 0.3. The
IS estimator was based on 5 · 105 samples, and NIS, NEO-IS and AIS were computed with 5 · 104

samples. Figure 2 shows that NEO-IS consistently outperforms the competing methods.
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Figure 2: Boxplots of 500 independent estimations of the normalizing constant in dimension
d = {10, 20, 45} (from left to right) for MG25 (top) and Fun (bottom). The true value is given by the
red line. The figure displays the median (solid lines), the interquartile range, and the mean (dashed
lines) over the 500 runs.

1Implementation available at https://github.com/noegroup/stochastic_normalizing_flows.
2Implementation available at https://github.com/ndeutschmann/zunis.
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Sampling NEO-MCMC is assessed for the distributions (MG25) (d = 40) and Fun (d = 20).
NEO-MCMC sampler is compared with (i) the No-U-Turn Sampler - Pyro library [4] - and (ii) i-SIR
algorithm [25]. The proposal distribution is ρ = N(0, σ2

ρ Idd) with σ2
ρ = 5. Dependent proposals are

used (see (15)) with m(x, x′) = N(x′;αx, σ2
ρ(1− α2) Idd) with α = 0.99. For NUTS, the default

parameters are used. For i-SIR, we use the same number of proposals N = 10, proposal distribution
and dependent proposal as for NEO-MCMC. To perform a fair comparison, we use the same clock
time for all three algorithms. The number of iterations for correlated i-SIR, NEO-MCMC, and
NUTS are n = 4 · 106, n = 4 · 105, and n = 5 · 105, respectively. Figure 3 displays the empirical
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Figure 3: Empirical 2-D histogram of the samples of different algorithms targeting MG25 (top) and Fun
(bottom). Left to right: samples from the target distribution, correlated i-SIR, NUTS, NEO-MCMC.

two-dimensional histograms of the two first coordinates of samples from the ground truth, i-SIR,
NUTS and NEO-MCMC sampler. It is worthwhile to note that NEO-MCMC algorithm performs
much better for MG25 which is a very challenging distribution, even for SOTA algorithm such as
NUTS, which struggles to cross energy barriers between modes. For Fun, NEO-MCMC performs
favourably with respect to NUTS, which is well adapted for this type of distributions.

Block Gibbs Inpainting with Deep Generative models and NEO-MCMC We apply NEO-
MCMC to the task of sampling the posterior of a deep latent variable model. To be consistent with the
rest of the paper, we use non-standard notation here with x being the latent variable and z the obser-
vation. More precisely, we assume that x ∼ N(0, Idd) and a conditional distribution p(z | x) which
generates an image z = (z1, . . . , zD) ∈ RD. Given a family of parametric decoders {x 7→ pθ(z | x),
θ ∈ Θ}, and a training set D = {zi}Mi=1, training involves finding the MLE θ∗ = arg maxθ∈Θ pθ(D).
As pθ(z) =

∫
pθ(z | x)p(x)dx, the likelihood is intractable and to alleviate this problem, [14] pro-

posed to train jointly an approximate posterior qφ(x|z) that maximizes a tractable lower-bound on the
log-likelihood: ELBO(z, θ, φ) = EX∼qφ(·|z)[log pθ(z,X)/qφ(X|z)] ≤ pθ(z), where qφ(x | z) is a
tractable conditional distribution with parameters φ ∈ Φ. It is assumed in the sequel that conditional
to the latent variable x, the coordinates are independent, i.e. pθ(z | x) =

∏D
i=1 pθ(z

i|x).

Note that it is possible to train VAE with the NEO algorithm, using the unbiased estimate of the
normalizing constant to construct an ELBO. This approach is described in the supplement Appendix E.
We do not focus on this approach here and assume that the VAE has been trained and we are only
interested in the sampling problem. In our experiment, we use a VAE trained on CelebA dataset
3 [16]. We consider the Block Gibbs inpainting task introduced in [15, Section 5.2.2]. Given an
image z, denote by [zt, zb] the top and the bottom half pixels. Assume only zt? is observed, then
we are interested in in-painting the bottom of an image by the posterior distribution of zb given
zt?. This is achieved using Block Gibbs sampling. A two-stage Gibbs sampler amounts to (a)
sampling pθ∗(x|zt, zb) and (b) sampling pθ∗(zb|x, zt) = pθ∗(z

b|x) (since zb and zt are independent
conditional on x). Given zk = (zt?, z

b
k), we sample at each step xk ∼ pθ∗(x | zk) and then

3Publicly available online, see https://github.com/YannDubs/disentangling-vae/tree/master/
results/betaH_celeba
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Figure 4: Two examples for the Gibbs inpainting task for CelebA dataset. From top to bottom (twice)
: i-SIR, HMC and NEO-MCMC: From left to right, original image, blurred image to reconstruct, and
output every 5 iterations of the Markov chain. Last line: a forward orbit used in NEO-MCMC for the
second example.

zbk+1 ∼ pθ∗(z
b | xk). We then set zk+1 = (zt∗, z

b
k+1). Stage (b) is elementary but stage (a) is

challenging. We use an MCMC-within-Gibbs scheme using different samplers. We use the following
decomposition of pθ∗(x | z) ∝ ρ(x)L(x) for ρ(x) ∝ qβφ∗(x | z) and L(x) = pθ∗(x, z)/q

β
φ∗(x | z)

with β ∈ (0, 1). It is possible to sample from ρ(x) as qφ∗(x | z) is Gaussian. In our experiments
with CelebA and the chosen trained VAE, we have x ∈ R10 (recall that x is our latent variable here),
z ∈ R12288, and use β = 0.1. We then compare i-SIR, HMC and NEO-MCMC sampler in stage (a),
with the same computational complexity (N = 10, K = 12, γ = 0.2 for NEO-MCMC, N = 120 for
i-SIR, and HMC is run with K = 20 leap-frog steps). Again, NEO-MCMC and i-SIR use dependent
proposals, with m a Random Walk Metropolis kernel with stepsize 0.1. For each algorithm, 10
steps are performed. Figure 4 displays the evolution of the resulting Markov chains. The samples
clearly illustrate that NEO-MCMC mixes better than i-SIR and HMC. More details and examples are
presented in the supplementary.

6 Conclusion

In this paper, we have proposed a new family of algorithms, NEO, for computing normalizing
constants and sampling from complex distributions. This methodology comes with asymptotic and
non-asymptotic convergence guarantees. For normalizing constant estimation, NEO-IS compares
favorably to state-of-the-art algorithms on difficult benchmarks. NEO-MCMC is also able to sample
some complex distributions: it is particularly well-adapted to sampling multimodal distributions,
thanks to its proposal mechanism which avoids being trapped in local modes. There are numerous
potential extensions to this work. For example, it would be interesting to consider deterministic
transformations other than conformal Hamiltonian dynamics integrators. These transformations could
be trained, as for Neural IS, using a variation lower bound. It would also be interesting to further
investigate the influence of the mixture weights {$k}k∈Z on the efficiency of NEO.

Broader impact: Sampling from complex target distributions and computing their normalizing
constants has numerous applications. Our work proposes novel methods to address such problems
and has thus potential applications in many areas. This work does not present any foreseeable societal
consequence.
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