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ABSTRACT

Retrosynthesis planning is a fundamental challenge in chemistry which aims at de-
signing multi-step reaction pathways from commercially available starting mate-
rials to a target molecule. Each step in multi-step retrosynthesis planning requires
accurate prediction of possible precursor molecules given the target molecule and
confidence estimates to guide heuristic search algorithms. We model single-step
retrosynthesis as a distribution learning problem in a discrete state space. First, we
introduce the Markov Bridge Model, a generative framework aimed to approxi-
mate the dependency between two intractable discrete distributions accessible via
a finite sample of coupled data points. Our framework is based on the concept of a
Markov bridge, a Markov process pinned at its endpoints. Unlike diffusion-based
methods, our Markov Bridge Model does not need a tractable noise distribution as
a sampling proxy and directly operates on the input product molecules as samples
from the intractable prior distribution. We then address the retrosynthesis planning
problem with our novel framework and introduce RetroBridge, a template-free ret-
rosynthesis modeling approach that achieves state-of-the-art results on standard
evaluation benchmarks.

1 INTRODUCTION

Computational and machine learning methods for de novo drug design show great promise as more
cost-effective alternatives to experimental high-throughput screening approaches (Thomas et al.,
2023) to propose molecules with desirable properties. While in silico results suggest high predicted
target binding affinities and other favorable properties of the generated molecules, limited emphasis
has so far been placed on their synthesizability (Stanley & Segler, 2023). For laboratory testing,
synthetic pathways need to be developed for the newly designed molecules, which is an extremely
challenging and time-consuming task.

Retrosynthesis planning (Corey, 1991; Strieth-Kalthoff et al., 2020; Tu et al., 2023) tools ad-
dress this challenge by proposing reaction steps or entire pathways that can be validated and op-
timized in the lab. Single-step retrosynthesis models predict precursor molecules for a given target
molecule (Segler & Waller, 2017; Coley et al., 2017; Liu et al., 2017; Strieth-Kalthoff et al., 2020;
Tu et al., 2023). Applying these methods recursively allows to decompose the initial molecule in
progressively simpler intermediates and eventually reach available starting molecules (Segler et al.,
2018).

While most works have used a discriminative formulation for retrosynthesis modeling (Strieth-
Kalthoff et al., 2020; Tu et al., 2023; Jiang et al., 2022), we propose to view the task as a conditional
distribution learning problem, as shown in Figure 1. This approach has several advantages, including
the ability to model uncertainty and to generate new and diverse retrosynthetic pathways. Further-
more, and most importantly, the probabilistic formulation reflects the fact that the same product
molecule can often be synthesized with different sets of reactants and reagents.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) and other modern score-based and
flow-based generative methods (Rezende & Mohamed, 2015; Song et al., 2020; Lipman et al., 2022;
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Figure 1: Markov bridges between the distribution of products and distribution of reactants.

Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023) may seem like good candidates for ret-
rosynthesis modeling. However, as we show in this work, such models do not fit naturally to the
formulation of the problem, as they are designed to approximate a single intractable data distribu-
tion. To do so, one typically samples initial noise from a simple prior distribution and then maps it to
a data point that follows a complex target distribution. In contrast, we aim to learn the dependency
between two intractable distributions rather than one intractable distribution itself. While this can be
achieved by conditioning the sampling process on the relevant context and keep sampling from the
prior noise, we show here that such use of the original unconditional generative idea is suboptimal
for approximating the dependency between two discrete distributions.

In this work, we propose RetroBridge, a template-free probabilistic method for single-step retrosyn-
thesis modeling. As shown in Figure 1, we model the dependency between the spaces of prod-
ucts and reactants as a stochastic process that is constrained to start and to end at specific data
points. To this end, we introduce the Markov Bridge Model, a generative model that learns the
dependency between two intractable discrete distributions through the finite sample of coupled data
points. Taking a product molecule as input, our method models the trajectories of Markov bridges
starting at the given product and ending at data points following the distribution of reactants. To
score reactant graphs sampled in this way, we leverage the probabilistic nature of RetroBridge
and measure its uncertainty at each sample. We demonstrate that RetroBridge achieves compet-
itive results on standard retrosynthesis modeling benchmarks. Besides, we compare RetroBridge
with the state-of-the-art graph diffusion model DiGress (Vignac et al., 2022), and demonstrate
quantitatively and qualitatively that the proposed Markov Bridge Model is better suited to tasks
where two intractable discrete distributions need to be mapped. Our source code is available at
https://github.com/igashov/RetroBridge.

To summarise, the main contributions of this work are the following:

• We introduce the Markov Bridge Model to approximate the probabilistic dependency be-
tween two intractable discrete distributions accessible via a finite sample of coupled data
points.

• We demonstrate the superiority of the proposed formulation over diffusion models in the
context of learning the dependency between two intractable discrete distributions.

• We propose RetroBridge, the first Markov Bridge Model for retrosynthesis modeling.
RetroBridge is a template-free single-step retrosynthesis prediction method that achieves
state-of-the-art results on standard benchmarks.

2 RELATED WORK

Diffusion Models Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) form a class
of powerful and effective score-based generative methods that have recently achieved promising
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results in many different domains including protein design (Watson et al., 2023), small molecule
generation (Hoogeboom et al., 2022; Igashov et al., 2022; Schneuing et al., 2022), molecular dock-
ing (Corso et al., 2022), and sampling of transition state molecular structures (Duan et al., 2023;
Kim et al., 2023). While most models are designed for the continuous data domain, a few methods
were proposed to operate on discrete data (Hoogeboom et al., 2021; Johnson et al., 2021; Austin
et al., 2021; Yang et al., 2023) and, in particular, on discrete graphs (Vignac et al., 2022). To the best
of our knowledge, however, no diffusion models have been applied to modeling chemical reactions
and recovering retrosynthetic pathways.

Schrödinger Bridge Problem Given two distributions and a reference stochastic process between
them, solving the Schrödinger bridge (SB) problem (Schrödinger, 1932; Léonard, 2013) amounts to
finding a process closest to the reference in terms of Kullback-Leibler divergence on path spaces.
While most recent methods employ the SB formalism in the context of unconditional generative
modeling (Vargas et al., 2021; Wang et al., 2021; De Bortoli et al., 2021; Chen et al., 2021; Bunne
et al., 2023; Liu et al., 2022), a few works aimed to approximate the reference stochastic process
through training on coupled samples from two continuous distributions (Holdijk et al., 2022; Som-
nath et al., 2023). To the best of our knowledge, there are no methods operating on categorical
distributions, which is the subject of the present work.

Retrosynthesis Modeling Recent retrosynthesis prediction methods can be divided into two main
groups: template-based and template-free methods (Jiang et al., 2022). While template-based meth-
ods depend on predefined sets of specific reaction templates or leaving groups, template-free meth-
ods are less restricted and therefore are able to explore new reaction pathways. Two common data
representations used for retrosynthesis prediction are symbolic representations SMILES (Weininger,
1988) and molecular graphs. A variety of language models have been recently proposed (Liu et al.,
2017; Zheng et al., 2019; Sun et al., 2021; Tetko et al., 2020) to operate on SMILES, some of
which (Jiang et al., 2023; Zhong et al., 2022) were additionally pre-trained on larger datasets. Due
to the nature of the sequence-to-sequence translation problem, all these methods are template-free.
Among the existing graph-based methods (Segler & Waller, 2017), the most recent template-based
ones are GLN (Dai et al., 2019), GraphRetro (Somnath et al., 2021) and LocalRetro (Chen & Jung,
2021), and template-free approaches are G2G (Shi et al., 2020) and MEGAN (Sacha et al., 2021).
Template-free methods GTA (Seo et al., 2021), Graph2SMILES (Tu & Coley, 2022) and Retro-
former (Wan et al., 2022) leverage both graph and SMILES representations. In this work, we pro-
pose a novel template-free graph-based method.

3 RETROBRIDGE

We frame the retrosynthesis prediction task as a generative problem of modeling a stochastic pro-
cess between two discrete-valued distributions of products pX and reactants pY . These distributions
are intractable and are represented by a finite collection of D coupled samples {(xi,yi)}Di=1, where
xi ∼ pX (xi) is a product molecule and yi ∼ pY(yi) is a corresponding set of reactant molecules.
While products and reactants follow distributions pX and pY respectively, there is a dependency
between these variables that can be expressed in the form of the joint distribution pX ,Y such that∫
pX ,Y(x,y)dx = pY(y) and

∫
pX ,Y(x,y)dy = pX (x). The joint distribution pX ,Y is also in-

tractable and accessible only through the discrete sample of coupled data points {(xi,yi)}Di=1.

First, we introduce the Markov Bridge Model, a general framework for learning the dependency
between two intractable discrete-valued distributions. Next, we discuss a special case where random
variables are molecular graphs. Upon this formulation, we introduce RetroBride, a Markov Bridge
Model for single-step retrosynthesis modeling. Finally, we explain a simple but rather effective way
of scoring RetroBridge samples based on the statistical uncertainty of the model.

3.1 MARKOV BRIDGE MODEL

We model the dependency between two discrete spaces X and Y by a Markov bridge (Fitzsimmons
et al., 1992; Çetin & Danilova, 2016), which is a Markov process pinned to specific data points in
the beginning and in the end. For a pair of samples (x,y) ∼ pX ,Y(x,y) and a sequence of time
steps t = 0, 1, . . . , T , we define the corresponding Markov bridge as a sequence of random variables
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Figure 2: The process of changing atom types along the trajectory of the Markov bridge. The
trajectory starts at time step t = 0 with the product molecule and several disconnected “dummy”
atoms that will be included in the final reactant molecule. The probability of sampling the target
atom type increases as t grows. Five circles filled with different colors represent these probabilities.
To make the illustration less bulky, we omitted a part of the product molecule and one of two reactant
molecules.

(zt)
T
t=0, that starts at x, i.e., z0 = x, and satisfies the Markov property,

p(zt|z0, z1, . . . ,zt−1,y) = p(zt|zt−1,y). (1)
To pin the process at the data point y, we introduce an additional requirement,

p(zT = y|zT−1,y) = 1. (2)

Assuming that both distributions pX and pY are categorical with a finite sample space {1, . . . ,K},
we can represent data points as K-dimensional one-hot vectors: x,y, zt ∈ RK . To model a Markov
bridge defined by equations (1-2), similar to Austin et al. (2021), we introduce a sequence of transi-
tion matrices Q0,Q1, . . . ,QT−1 ∈ RK×K , defined as

Qt := Qt(y) = αtIK + (1− αt)y1
⊤
K , (3)

where IK is a K ×K identity matrix, 1K is a K-dimensional all-one vector, and αt is a schedule
parameter transitioning from α0 = 1 to αT−1 = 0. Transition probabilities (1) can be written as
follows,

p(zt+1|zt,y) = Cat (zt+1;Qtzt) , (4)
where Cat(· ;p) is a categorical distribution with probabilities given by p. We note that setting
αT−1 = 0 ensures the requirement (2).

Using the finite set of coupled samples {(xi,yi)}Di=1 ∼ pX ,Y , our goal is to learn a Markov bridge
(1-2) to be able to sample y when only x is available. To do this, we replace y with an approximation
ŷ computed with a neural network φθ:

ŷ = φθ(zt, t), (5)
and define an approximated transition kernel,

qθ(zt+1|zt) = Cat (zt+1;Qt(ŷ)zt) . (6)

We train φθ by maximizing a lower bound of log-likelihood log qθ(y|x). As shown in Appendix
A.1, it has the following closed-form expression,

log qθ(y|x) ≥ −T · Et∼U(0,...,T−1)Ezt∼p(zt|x,y)DKL (p(zt+1|zt,y)∥qθ(zt+1|zt)) . (7)

For any x ∈ X ,y ∈ Y , and t = 1, . . . , T , sampling of zt can be effectively performed using a
cumulative product matrix Qt = QtQt−1...Q0. As shown in Appendix A.2, the cumulative matrix
Qt can be written in closed form,

Qt = αtIK + (1− αt)y1
⊤
K , (8)

where αt =
∏t

s=0 αs. Therefore, p(zt+1|z0, zT ) can be written as follows,

p(zt+1|z0, zT ) = Cat
(
zt+1;Qtz0

)
. (9)

To sample a data point y ≡ zT starting from a given z0 ≡ x ∼ pX (x), one iteratively predicts
ŷ = φθ(zt, t) and then derives zt+1 ∼ qθ(zt+1|zt) = Cat (zt+1;Qt(ŷ)zt) for t = 0, . . . , T − 1.
Training and sampling procedures of the Markov Bridge Model are provided in Algorithms 1 and 2
respectively.
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Algorithm 1 Training of the Markov Bridge Model
Input: coupled sample (x,y) ∼ pX ,Y , neural network φθ

t ∼ U(0, . . . , T − 1), zt ∼ Cat
(
zt;Qt−1x

)
▷ Sample time step and intermediate state

ŷ ← φθ(zt, t) ▷ Output of φθ is a vector of probabilities
p(zt+1|zt,y)← Cat (zt+1;Qt(y)zt) ▷ Reference transition distribution
qθ(zt+1|zt)← Cat (zt+1;Qt(ŷ)zt) ▷ Approximated transition distribution
Minimize DKL (p(zt+1|zt,y)∥qθ(zt+1|zt))

Algorithm 2 Sampling
Input: starting point x ∼ pX , neural network φθ

z0 ← x
for t in 0, ..., T − 1:

ŷ ← φθ(zt, t) ▷ Output of φθ is a vector of probabilities
qθ(zt+1|zt)← Cat (zt+1;Qt(ŷ)zt) ▷ Approximated transition distribution
zt+1 ∼ qθ(zt+1|zt)

Return zT

3.2 RETROBRIDGE: MARKOV BRIDGE MODEL FOR RETROSYNTHESIS PLANNING

In our setup, each data point is a molecular graph with nodes representing atoms and edges cor-
responding to covalent bonds. We represent the molecular graph with a matrix of node features
H ∈ RN×Ka which are, for instance, one-hot encoded atom types, and a tensor of edge features
E ∈ RN×N×Ke , which can be one-hot encoded bond types.

In the scope of our probabilistic framework, we consider such a molecular graph representation
as a collection of independent categorical random variables. More formally, we denote product
and reactants data points x and y as tuples of the corresponding node and edge feature tensors:
x = [Hx,Ex] and y = [Hy,Ey]. For such complex data points, we modify the definitions of
transition matrices and probabilities accordingly:

[QH
t ]j = αtIKa + (1− αt)1Ka [Hy]j , p(Ht+1|Ht,Hy) = Cat

(
Ht+1;HtQ

H
t

)
, (10)

[QE
t ]j,k = αtIKe + (1− αt)1Ke [Ey]j,k, p(Et+1|Et,Ey) = Cat

(
Et+1;EtQ

E
t

)
, (11)

where [H]j ∈ R1×Ka is the j-th row of the feature matrix H (i.e. transposed feature vector of the
j-th node), and [E]j,k ∈ R1×Ke is the transposed feature vector of the edge between j-th and k-th
nodes.

Because some atoms present in the reactant molecules can be absent in the corresponding product
molecule, we add “dummy” nodes to the initial graph of the product. As shown in Figure 2, some
“dummy” nodes are transformed into atoms of reactant molecules. In our experiments, we always
add 10 “dummy” nodes to the initial product graphs.

3.3 CONFIDENCE AND SCORING

It is important to have a reliable scoring method that selects the most relevant sets of reactants out
of all generated samples. In order to rank RetroBridge samples, we benefit from the probabilistic
nature of the model and utilize its confidence in the generated samples as a scoring function. We
estimate the confidence of the model by computing the likelihood qθ(y|x) of a set of reactants y

for an input product molecule x. For a set of M samples {z(i)
T }Mi=1 generated by RetroBridge for

an input product x, we compute the likelihood-based confidence score for the set of reactants y as
follows,

qθ(y|x) = Ey′∼qθ(·|x)1{y
′ = y} ≈ 1

M

M∑
i=1

1{z(i)
T = y}. (12)
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4 RESULTS

4.1 EXPERIMENTAL SETUP

Dataset For all the experiments we use the USPTO-50k dataset (Schneider et al., 2016) which
includes 50k reactions found in the US patent literature. We use standard train/validation/test splits
provided by Dai et al. (2019). Somnath et al. (2021) report that the dataset contains a shortcut in
that the product atom with atom-mapping 1 is part of the edit in almost 75% of the cases. Even
though our model does not depend on the order of graph nodes, we utilize the dataset version with
canonical SMILES provided by Somnath et al. (2021). Besides, we randomly permute graph nodes
once SMILES are read and converted to graphs.

Baselines We compare RetroBridge with template-based methods GLN (Dai et al., 2019), Local-
Retro (Chen & Jung, 2021), and GraphRetro (Somnath et al., 2021), and template-free methods
MEGAN (Sacha et al., 2021), G2G (Shi et al., 2020), Augmented Transformer Tetko et al. (2020),
SCROP (Zheng et al., 2019), Tied Transformer (Tetko et al., 2020), GTA (Seo et al., 2021), Du-
alTF (Sun et al., 2021), Graph2SMILES (Tu & Coley, 2022) and Retroformer (Wan et al., 2022).
We obtained GLN predictions using the publicly available code and model weights1 and used the
latest LocalRetro predictions provided by its authors. Additionally, MEGAN was originally trained
and evaluated on random data splits, so we retrained and evaluated it ourselves. Finally, we compare
RetroBridge with the state-of-the-art discrete graph diffusion model DiGress Vignac et al. (2022)
and a template-free baseline based on a graph transformer architecture (Dwivedi & Bresson, 2020;
Vignac et al., 2022).

Evaluation For each input product, we sample 100 reactant sets and report top-k exact match
accuracy (k = 1, 3, 5, 10) which is measured as the proportion of input products for which the
method managed to produce the correct set of reactants in its top-k samples. Subsequently, for top-
k samples produced for every input product, we run the forward reaction prediction model Molecular
Transformer (Schwaller et al., 2019) and report round-trip accuracy and coverage (Schwaller et al.,
2020). Round-trip accuracy is the percentage of correctly predicted reactants among all predictions,
where reactants are considered correct either if they match the ground truth or if they lead back to
the input product. Round-trip coverage, on the other hand, measures if there is at least one correct
prediction in the top-k according to the definition above. These metrics reflect the fact that one
product can be mapped to multiple different valid sets of reactants, as shown in Figure 1.

4.2 NEURAL NETWORK

We use a graph transformer network (Dwivedi & Bresson, 2020; Vignac et al., 2022) to approxi-
mate the final state of the Markov bridge process. We represent molecules as fully-connected graphs
where node features are one-hot encoded atom types (sixteen atom types and additional “dummy”
type) and edge features are covalent bond types (three bond types and additional “none” type). Sim-
ilarly to Vignac et al. (2022) we compute several graph-related node and global features that include
number of cycles and spectral graph features. Details on the network architecture, hyperparameters
and training process are provided in Appendix A.3.

4.3 RETROSYNTHESIS MODELING

Here we report top-k and round-trip accuracy for RetroBridge and other state-of-the-art methods
on the USPTO-50k test set. Table 1 provides exact match accuracy results, and Table 2 reports
round-trip accuracy computed using Molecular Transformer (Schwaller et al., 2019).

For completeness, we compared exact match accuracy results of RetroBridge with both template-
free and template-based methods. However, template-free modeling is a more challenging task, and
RetroBridge is template-free, therefore we primarily focus on the latter group of methods. As shown
in Table 1, RetroBridge performs on par with the state of the art in top-1 accuracy and, most im-
portantly, outperforms other template-free methods in all other top-k accuracy metrics, in particular

1Note that the top-k exact match accuracies differ from the one originally reported values because we
deduplicate outputs for our evaluation.
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Table 1: Top-k accuracy (exact match) on the USPTO-50k test dataset. The best performing
template-based (TB) and template-free (TF) methods are highlighted in bold.

Model k = 1 k = 3 k = 5 k = 10

T
B

GLN (Dai et al., 2019) 52.5 74.7 81.2 87.9
GraphRetro (Somnath et al., 2021) 53.7 68.3 72.2 75.5
LocalRetro (Chen & Jung, 2021) 52.6 76.0 84.4 90.6

T
F

SCROP (Zheng et al., 2019) 43.7 60.0 65.2 68.7
G2G (Shi et al., 2020) 48.9 67.6 72.5 75.5
Aug. Transformer (Tetko et al., 2020) 48.3 — 73.4 77.4
DualTFaug (Sun et al., 2021) 53.6 70.7 74.6 77.0
MEGAN (Sacha et al., 2021) 48.0 70.9 78.1 85.4
Tied Transformer (Kim et al., 2021) 47.1 67.1 73.1 76.3
GTAaug (Seo et al., 2021) 51.1 67.6 74.8 81.6
Graph2SMILES (Tu & Coley, 2022) 52.9 66.5 70.0 72.9
Retroformeraug (Wan et al., 2022) 52.9 68.2 72.5 76.4
RetroBridge (ours) 50.8 74.1 80.6 85.6

Table 2: Top-k round-trip coverage and accuracy on the USPTO-50k test dataset. The best perform-
ing template-based (TB) and template-free (TF) methods are highlighted in bold.

Coverage Accuracy

Model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

T
B GLN (Dai et al., 2019) 82.5 92.0 94.0 82.5 71.0 66.2

LocalRetro (Chen & Jung, 2021) 82.1 92.3 94.7 82.1 71.0 66.7

T
F

MEGAN (Sacha et al., 2021) 78.1 88.6 91.3 78.1 67.3 61.7
Graph2SMILES (Tu & Coley, 2022) — — — 76.7 56.0 46.4
Retroformeraug (Wan et al., 2022) — — — 78.6 71.8 67.1
RetroBridge (ours) 85.1 95.7 97.1 85.1 73.6 67.8

highly optimized transformer-based models. We emphasize that performance in top-5 accuracy is
the most relevant metric as this number is the closest to the typically expected or desired breadth
of the multi-step retrosynthesis planning tree (Maziarz et al., 2023). Hence, as shown in Table 3,
our model was optimized for top-5 accuracy. Additional baseline methods and more information on
their technical aspects are provided in Table 4.

Because exact match accuracy cannot reflect the complete picture of dependencies between spaces
of products and reactants, we additionally measure round-trip results using an orthogonal method
for forward reaction prediction. We evaluate predictions of the template-based methods GLN (Dai
et al., 2019) and LocalRetro (Chen & Jung, 2021), and template-free methods Graph2SMILES (Tu
& Coley, 2022) and Retroformer (Wan et al., 2022) as well as the retrained version of template-
free MEGAN (Sacha et al., 2021) ourselves for comparison. The results are reported in Table 2.
RetroBridge clearly outperforms the template-free baseline and, in spite of a much higher difficulty
of the template-free setup, even achieves higher round-trip coverage and accuracy values than state-
of-the-art template-based methods. These results support our hypothesis that retrosynthesis should
be modeled in a probabilistic framework considering the absence of a unique set of reactants for a
given initial product molecule.

4.4 ADDITIONAL EXPERIMENTS

In this section, we compare RetroBridge with the naı̈ve adaptation of DiGress (Vignac et al., 2022)
for retrosynthesis prediction, which can be considered the most comparable diffusion-based method
for this task, and with a graph transformer network that predicts reactants in a one-shot fashion.
Furthermore, we study the effect of adding an input product molecule as context to the neural net-
work φθ at each sampling step. More precisely, for models with no context we use the formulation
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Table 3: Additional experiments: top-k accuracy on the USPTO-50k validation set.

Model k = 1 k = 3 k = 5 k = 10 k = 50

DiGress (context) 47.32 68.56 73.93 78.45 80.88
RetroBridge-CE (no context) 48.71 66.84 72.33 76.08 79.38
RetroBridge-CE (context) 50.74 71.50 76.58 79.50 80.58
RetroBridge-VLB (no context) 47.42 69.46 75.21 79.40 83.82
RetroBridge-VLB (context) 48.92 73.04 79.44 83.74 86.31

(5), while models with context compute predictions as ŷ = φθ(zt,x, t). Finally, we try a simpler
cross-entropy (CE) loss function, as used in DiGress, that directly compares approximated reactants
with the ground-truth,

LCE(θ) = T · Et∼U(0,...,T−1)Ezt,zT∼pCrossEntropy(zT , φθ(zt, t)). (13)

In all experiments we use the same neural network architectures and sets of hyperparameters. We
perform our evaluation on the USPTO-50k validation set and report top-k accuracy of the generated
samples in Table 3.

First of all, we observe that iterative sampling as performed by diffusion models or the Markov
Bridge Model is essential for solving the problem of mapping between two graph distributions. Our
one-shot graph transformer model trained for a comparable amount of time does not manage to
recover any of the reactants. Indeed, it is an extremely challenging task as even a single incorrectly
predicted bond or atom type is detrimental for the accuracy metric. To the best of our knowledge,
all one-shot graph-based models proposed for retrosynthesis prediction fall into the category of
template-based methods. In this case, the networks do not predict the entire set of reactants right
away, but instead aim to solve much simpler tasks such as prediction of graph edits. To obtain the
final set of reactants, graph edit predictions should be further processed by an additional block that
typically relies on the predefined reaction templates or leaving group dictionaries.

Next, we compare RetroBridge with DiGress to demonstrate that the Markov bridge formulation is
more suitable than diffusion models when two discrete graph distributions are to be mapped. As
shown in Table 3, RetroBridge outperforms DiGress with context in all metrics. We note that if
we do not pass the context, DiGress predictably does not manage to recover any reactants. This
result illustrates that the Markov bridge framework captures the underlying structure of the task
much more naturally than diffusion models. A diffusion model maps sampled noise to the reactants
having access to the input product molecule only through the additional context while the Markov
bridge model starts each sampling trajectory with a product molecule from the intractable distribu-
tion pX (x) =

∫
pX ,Y(x,y)dy.

Finally, we demonstrate that the variational lower bound loss (7) works better than a simplified cross-
entropy loss (13) proposed by Vignac et al. (2022). Ultimately, we find it beneficial to include the
input product as context at each sampling step. Unlike the diffusion approach, however, RetroBridge
achieves reasonable accuracy values even without additional context as large parts of the product
structure are retained throughout the sampling trajectory.

4.5 EXAMPLES

Figure 3 shows three examples of reactions we randomly selected from the USPTO-50k test set. For
each of these examples, we provide top-3 RetroBridge samples and the corresponding confidence
scores. In all three cases our model managed to recover the correct set of reactants. In the first case,
RetroBridge predicts the correct reactants with a high confidence. In this case, the gap between the
scores of the first and the second prediction is remarkably high (0.66 vs 0.12). In both other cases,
the model is not as confident in the answer. This uncertainty is reflected in the scores: top-1 samples
(which are not correct) have scores 0.18 and 0.38 respectively (cf. 0.17 and 0.2 for the correct ones).
More examples are provided in Figure 6.
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Figure 3: Examples of modeled reactants. We selected three random inputs from the test set and for
each of them we provide the top-3 RetroBridge predictions along with their confidence scores. Two
check marks indicate that sampled reactants are the same as the ground truth, and one check mark
means that reactants are different, but Molecular Transformer (Schwaller et al., 2019) predicts the
product molecule used as input.

5 CONCLUSION

In this work, we introduce the Markov Bridge Model, a new generative framework for tasks that in-
volve learning dependencies between two intractable discrete-valued distributions. We furthermore
apply the new methodology to the retrosynthesis prediction problem, which is an important chal-
lenge in medicinal chemistry and drug discovery. Our template-free method, RetroBridge, achieves
state-of-the-art results on common evaluation benchmarks. Importantly, our experiments show that
choosing a suitable probabilistic modeling framework positively affects the performance on this task
compared to the straightforward adaptation of diffusion models.

In order to make RetroBridge more applicable in practice, our future work aims to address several
limitations present in RetroBridge and also common to other similar retrosynthesis modeling meth-
ods. First, despite its constraints, template-based planning might still be preferred by many chemists
as it is more likely to adhere to established sets of reactants, reagents and reaction types. Therefore,
guiding the generation process towards a specific set of compounds is a potential improvement that
will make our method more useful in practice. Second, chemical reactions are heavily dependent
on experimental conditions and additional reagents. Like most related methods, RetroBridge does
not directly predict such conditions, nor does it provide explicit information about the required re-
action type, but could be adapted towards this setup. While suggesting entire lab protocols seems
out-of-reach with current methods, conditioning the generation process on this additional context
could already make our method more applicable to real world scenarios. Finally, most pharmaceu-
tically relevant reaction pathways consist of several steps. Therefore, future work will also assess
RetroBridge’s performance in a multi-step setting by combining it with existing multi-step planning
algorithms.

While this work is focused on the retrosynthesis modeling task, we note that application of Markov
Bridge Models is not limited to this problem. The proposed framework can be used in many other
settings where two discrete distributions accessible via a finite sample of coupled data points need to
be mapped. Such applications include but are not limited to image-to-image translation, inpainting,
text translation and design of protein binders. We leave exploration of Markov Bridge Models in the
scope of these and other possible challenges for future work.
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A APPENDIX

A.1 VARIATIONAL LOWER BOUND

The log-likelihood of reactants y ≡ zT given product x ≡ z0 can be written as follows,
log qθ(y|x) = log qθ(zT |z0) (14)

= log

∫
dz1:T−1qθ(z1:T |z0) (15)

= log

∫
dz1:T−1

T∏
t=1

qθ(zt|zt−1) (16)

= log

∫
dz1:T−1

p(z1:T |z0, zT )
p(z1:T |z0, zT )

T∏
t=1

qθ(zt|zt−1) (17)

= log

∫
dz1:T−1p(z1:T |z0, zT )

T∏
t=1

qθ(zt|zt−1)

p(zt|zt−1, zT )
. (18)

Using Jensen’s inequality (JI) and the fact that p(z1:T |z0, zT ) = p(z1:T−1|z0, zT ) (∗) we can derive
a lower bound of this log-likelihood,

log qθ(y|x)
JI
≥

∫
dz1:T−1p(z1:T |z0, zT ) log

T∏
t=1

qθ(zt|zt−1)

p(zt|zt−1, zT )
(19)

(∗)
=

∫
dz1:T−1p(z1:T−1|z0, zT ) log

T∏
t=1

qθ(zt|zt−1)

p(zt|zt−1, zT )
(20)

=

T∑
t=1

∫
dz1:T−1p(z1:T−1|z0, zT ) log

qθ(zt|zt−1)

p(zt|zt−1, zT )
(21)

= L1(z0, zT ) +

T∑
t=2

Lt(z0, zT ). (22)

Here, the first term L1 can be written as follows,

L1(z0, zT ) =

∫
dz1p(z1|z0, zT ) log

qθ(z1|z0)
p(z1|z0, zT )

= −DKL (p(z1|z0, zT )∥qθ(z1|z0)) . (23)

Using Bayes’ rule (BR) and the Markov propery (MP) of the Markov bridge p, we can derive a
similar expression for all intermediate terms Lt,

Lt(z0, zT ) =

∫
dzt−1dztp(zt−1, zt|z0, zT ) log

qθ(zt|zt−1)

p(zt|zt−1, zT )
(24)

BR
=

∫
dzt−1dztp(zt−1|z0, zT )p(zt|zt−1, z0, zT ) log

qθ(zt|zt−1)

p(zt|zt−1, zT )
(25)

MP
=

∫
dzt−1dztp(zt−1|z0, zT )p(zt|zt−1, zT ) log

qθ(zt|zt−1)

p(zt|zt−1, zT )
(26)

= −
∫

dzt−1p(zt−1|z0, zT )DKL (p(zt|zt−1, zT )∥qθ(zt|zt−1)) . (27)

We combine L1 and Lt to obtain the final expression for the variational lower bound of the log-
likelihood:

log qθ(y|x) ≥ −
T∑

t=1

Ezt−1∼p(zt−1|x,y)DKL (p(zt|zt−1,y)∥qθ(zt|zt−1)) (28)

= −
T−1∑
t=0

Ezt∼p(zt|x,y)DKL (p(zt+1|zt,y)∥qθ(zt+1|zt)) . (29)
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Finally, we obtain the form provided in (7) by replacing the sum over all T terms with its unbiased
estimator,

log qθ(y|x) ≥ −T · Et∼U(0,...,T−1)Ezt∼p(zt|x,y)DKL (p(zt+1|zt,y)∥qθ(zt+1|zt)) . (30)

A.2 CUMULATIVE TRANSITION MATRIX Q̄t

A proof by induction. For t = 0, by definition, Q0 = Q0 and α0 = α0.

Assume that for t > 0 Equation 8 holds, i.e. Qt = αtIK + (1− αt)y1
⊤
K and αt =

∏t
s=0 αs.

Then for t+ 1 we have

Qt+1 = Qt+1Qt (31)

=
[
αt+1IK + (1− αt+1)y1

⊤
K

] [
αtIK + (1− αt)y1

⊤
K

]
(32)

= αt+1αtIK + (αt+1 − αt+1αt + αt − αt+1αt)y1
⊤
K (33)

+ (1− αt+1 − αt + αt+1αt)y1
⊤
Ky1⊤

K . (34)

Note that y1⊤
Ky1⊤

K = y1⊤
K and αt+1αt = αt+1. Therefore, we get

Qt+1 = αt+1IK + (αt+1 − αt+1 + αt − αt+1 + 1− αt+1 − αt + αt+1)y1
⊤
K (35)

= αt+1IK + (1− αt+1)y1
⊤
K . (36)

A.3 IMPLEMENTATION DETAILS

A.3.1 NOISE SCHEDULE

In all experiments, we use the cosine schedule (Nichol & Dhariwal, 2021)

αt = cos

(
0.5π

t/T + s

1 + s

)2

(37)

with s = 0.008 and number of time steps T = 500.

A.3.2 ADDITIONAL FEATURES

We represent molecules as fully-connected graphs where node features are one-hot encoded atom
types (sixteen atom types and additional “dummy” type) and edge features are covalent bond types
(three bond types and additional “none” type). Besides, we use a global graph feature y which
includes the normalized time step: y = t/T . Similarly to Vignac et al. (2022) we compute additional
node features. For completeness, we provide the description of these features as in (Vignac et al.,
2022) below.

Cycles Rings of different sizes are crucial features of many bioactive molecules but graph neural
networks are unable to detect them (Chen et al., 2020). We therefore add both global cycle counts
yk, that capture the overall number of cycles in the graph, as well as local cycle counts Hk, that
measure how many cycles each node belongs to. These quantities are computed for k-cycles up to
size k = 5 and k = 6 for local and global counts, respectively. As proposed by Vignac et al. (2022)2,

2We use a corrected equation for H5.
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we use the following equations that can be efficiently computed on GPUs

H3 =
1

2
diag(A3)

H4 =
1

2

(
diag(A4)− d⊙ (d− 1n)−Ad

)
H5 =

1

2

(
diag(A5)− 2Td− 2d diag(A3)−Adiag(A3) + 5 diag(A3)

)
y3 =

1

3
H⊤

3 1n

y4 =
1

4
H⊤

4 1n

y5 =
1

5
H⊤

5 1n

y6 =Tr(A6)− 3Tr(A3 ⊙A3) + 9∥A(A2 ⊙A2)∥F − 6 diag(A2)⊤ diag(A4)

+ 6Tr(A4)− 4Tr(A3) + 4Tr(A2A2 ⊙A2) + 3∥A3∥F − 12Tr(A2 ⊙A2) + 4Tr(A2)

where A ∈ Rn×n is the adjacency matrix and d ∈ Rn the node degree vector. Matrix T = A⊙A2

indicates how many triangles each nodes shares with every other node.

Spectral features Again following (Vignac et al., 2022), we include spectral features based on the
eigenvalues and eigenvectors of the graph Laplacian. We use the multiplicity of eigenvalue 0 and
the first five nonzero eigenvalues as graph-level features, and an indicator of the largest connected
component (approximated based on the eigenvectors corresponding to zero eigenvalues) as well as
two eigenvectors corresponding to the first nonzero eigenvalues as node-level features.

Molecular features We also tried adding the molecular weight as a graph-level feature and each
atom’s valency as node-level features, following (Vignac et al., 2022). Models trained with these
features were used everywhere except experiments reported in Tables 1 and 2. Later on, we found
out that removing these features improves the performance on the validation set. Therefore, the final
model from Tables 1 and 2 does not use molecular features.

A.3.3 NEURAL NETWORK ARCHITECTURE

We use a graph transformer network (Dwivedi & Bresson, 2020; Vignac et al., 2022) to approximate
the final state of the Markov bridge process. The architecture of the network is provided in Figure
4A. First, node, edge and global features are passed through an encoder which is implemented as an
MLP. Next, the encoded features are processed by a sequence of Graph Transformer Layers (GTL).
As shown in Figure 4B, GTL first updates node features using self-attention and combines its output
with edge features via FiLM (Perez et al., 2018):

FiLM(X1,X2) = X1W1 + (X1W2)⊙X2 +W2, (38)

where W1 and W2 are learnable parameters. Then, edge features are updated using attention scores
and global features. To update the global features, GTL combines encoded global features and node
and edge features aggregated with PNA:

PNA(X) = concat(max(X),min(X),mean(X), std(X))W , (39)

where W is a learnable parameter.

Finally, to obtain the final graph representation, updated node and edge features are passed through
the decoder which is implemented as an MLP.

A.3.4 TRAINING

We train our models on a single GPU Tesla V100-PCIE-32GB using AdamW optimizer (Loshchilov
& Hutter, 2017) with learning rate 0.0002 and batch size 64. We trained models for up to 800 epochs
(which takes 72 hours) and then selected the best checkpoints based on top-5 accuracy (that was
computed on a subset of the USPTO-50k validation set).
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Figure 4: Architecture of the network that approximates the final state of the Markov bridge pro-
cess (A) and scheme of the Graph Transformer Layer (B).

A.3.5 SAMPLING

To establish the dependency between the model performance and the number of sampling steps
T , we sampled reactants for the validation set (50 per input) using different numbers of steps
T = 500/250/100/50 (with the same model trained for T = 500). As shown in Figure 5A, the
results do not significantly change with up to x2 speed improvement. The performance starts de-
grading dramatically after only 5-fold reduction of the number of time steps.

We additionally analysed the dependency of the performance on the number of samples. The statis-
tical nature of the scoring method suggests that the performance should strongly correlate with the
number of samples. However, as shown in Figure 5B, even for 5-fold reduction of the number of
samples RetroBridge achieves competitive performance.

Despite the huge success and the wide applicability of diffusion models and similar score-based
generative methods, a known bottleneck of such algorithms is sampling. We also cannot avoid
iterative sampling and hence the inference procedure requires hundreds of forward passes. Our
model reported in Table 1 takes about 1.3 seconds to sample reactants. For comparison, it takes
0.0064 and 0.0065 seconds for MEGAN and GLN respectively. We however note that 1 second
for sampling a set of reactants for a given product is a completely feasible time for applications of
models like ours. In particular, this speed does not prevent the use of our method as a component of
a multistep retrosynthesis planning pipeline.
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Figure 5: (A) Dependency of the RetroBridge performance on the number of sampling steps. Exper-
iment performed on the RetroBrdige with CE loss on the validation set with 50 samples per product.
(B) Dependency of the RetroBridge performance on the number of samples. Experiment performed
on the RetroBrdige with VLB loss on the test set with 500 sampling steps.

Table 4: Top-k accuracy (exact match) on the USPTO-50k test dataset and classification of meth-
ods. TB: template-based; TF: template-free; G: graph-based; S: SMILES-based; FP: molecular
fingerprints; PT: pre-trained on larger datasets. Horizontal lines separate methods that had access to
significantly more training data (pre-trained) or operate on a limited vocabulary (template-based).
The best performing methods in each category are highlighted in bold.

Top-k accuracy Classification

Model k = 1 k = 3 k = 5 k = 10 Templ. Data PT

RSMILES Zhong et al. (2022) 56.3 79.2 86.2 91.0 TF S ✓
PMSR (Jiang et al., 2023) 62.0 78.4 82.9 86.8 TF S ✓

Retrosym Coley et al. (2017) 37.3 54.7 63.3 74.1 TB FP ✗
GLN (Dai et al., 2019) 52.5 74.7 81.2 87.9 TB G ✗
GraphRetro (Somnath et al., 2021) 53.7 68.3 72.2 75.5 TB G ✗
LocalRetro (Chen & Jung, 2021) 52.6 76.0 84.4 90.6 TB G ✗

SCROP (Zheng et al., 2019) 43.7 60.0 65.2 68.7 TF S ✗
G2G (Shi et al., 2020) 48.9 67.6 72.5 75.5 TF G ✗
Aug. Transformer (Tetko et al., 2020) 48.3 — 73.4 77.4 TF S ✗
DualTFaug (Sun et al., 2021) 53.6 70.7 74.6 77.0 TF S ✗
MEGAN (Sacha et al., 2021) 48.0 70.9 78.1 85.4 TF G ✗
Tied Transformer (Kim et al., 2021) 47.1 67.1 73.1 76.3 TF S ✗
GTAaug (Seo et al., 2021) 51.1 67.6 74.8 81.6 TF G/S ✗
Graph2SMILES (Tu & Coley, 2022) 52.9 66.5 70.0 72.9 TF G/S ✗
Retroformeraug (Wan et al., 2022) 52.9 68.2 72.5 76.4 TF G/S ✗
RetroBridge (ours) 50.8 74.1 80.6 85.6 TF G ✗

A.4 EXTENDED RESULTS

In Table 4, we provide an extended version of the exact-match results from Table 1 including addi-
tional models and methodological details.

A.5 FORWARD REACTION PREDICTION

We additionally trained and evaluated two models for forward reaction prediction using USPTO-
50k and USPTO-MIT datasets. We used the same hyperparameters as in other experiments. As
shown in Table 5, our models (ForwardBridge) demonstrate comparable performance with other
state-of-the-art methods. However, we stress that the probabilistic formulation is less applicable to
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the forward reaction prediction task, and under certain assumptions this problem can be considered
as completely deterministic. Therefore, we leave the study of capabilities of the Markov Bridge
Model in the context of forward reaction prediction out of the scope of this work.

Table 5: Top-k accuracy for forward reaction prediction.

Dataset Model k = 1 k = 3 k = 5

USPTO-50k ForwardBridge (ours) 89.9 93.9 94.0

USPTO-MIT
ForwardBridge (ours) 81.6 88.5 89.8
MEGAN 86.3 92.4 94.0
Mol. Transformer 88.7 93.1 94.2

score=0.66 (correct)

score=0.12

score=0.07

score=0.38

score=0.2 (correct)

score=0.02

score=0.18

score=0.17

score=0.17 (correct)

score=0.52 score=0.06 score=0.03

score=0.63 score=0.04 score=0.03

score=0.46 score=0.19 score=0.13

score=0.97 score=0.01 score=0.01

score=0.1

score=0.99 score=0.01

score=0.43 score=0.4

score=0.49 score=0.23 score=0.07

score=0.98

score=0.66 score=0.18 score=0.07

score=0.01score=0.01

score=0.58 score=0.26 score=0.12

Input product Sample 1 Sample 2 Sample 3 True reactants

✔✔ ✔ ✔

✔ ✔ ✔

✔✔ ✔

✔✔ ✔ ✔

✔✔

✔ ✔✔

✔ ✔ ✔✔

✔✔ ✔

✔✔ ✔ ✔

✔ ✔

Figure 6: Examples of modeled reactants. We selected 10 random inputs from the USPTO-50k test
set and for each of them we provide the top-3 RetroBridge predictions along with their confidence
scores. Two check marks indicate that sampled reactants are the same as the ground truth, and one
check mark means that reactants are different, but Molecular Transformer (Schwaller et al., 2019)
predicts the product molecule used as input.
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