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ABSTRACT

Face Anti-Spoofing (FAS) typically depends on a single visual modality when
defending against presentation attacks such as print attacks, screen replays, and
3D masks, resulting in limited generalization across devices, environments, and
attack types. Meanwhile, Multimodal Large Language Models (MLLMs) have
recently achieved breakthroughs in image–text understanding and semantic rea-
soning, suggesting that integrating visual and linguistic co-inference into FAS can
substantially improve both robustness and interpretability. However, the lack of
a high-quality vision–language multimodal dataset has been a critical bottleneck.
To address this, we introduce FaceCoT (Face Chain-of-Thought), the first large-
scale Visual Question Answering (VQA) dataset tailored for FAS. FaceCoT cov-
ers 14 spoofing attack types and enriches model learning with high-quality CoT
VQA annotations. Meanwhile, we develop a caption model refined via Rein-
forcement Learning (RL) to expand the dataset and enhance annotation quality.
Furthermore, we introduce a CoT-Enhanced Progressive Learning (CEPL) strat-
egy to better leverage the CoT data and boost model performance on FAS tasks.
Extensive experiments demonstrate that models trained with FaceCoT and CEPL
outperform state-of-the-art methods on multiple benchmark datasets.

1 INTRODUCTION

Face Anti-Spoofing (FAS) plays a vital role in securing face recognition systems, yet it must contend
with a wide spectrum of sophisticated presentation attacks such as printed photos, screen-based
replay, and 3D masks. The diversity of attack types poses significant challenges to FAS models.
However, most existing approaches (Zhou et al., 2022a; Liao et al., 2023; Sun et al., 2023; Le &
Woo, 2024) rely solely on a single visual modality, which severely limits their generalization across
devices, environments, and attack types, and offers no explicit rationale for their decisions, resulting
in poor interpretability.

Meanwhile, Multimodal Large Language Models (MLLMs) (Chen et al., 2024; Bai et al., 2025)
have achieved remarkable progress in tasks such as image and text understanding, visual question
answering and language reasoning. These models can integrate visual and language information
to perform causal reasoning and semantic interpretation, making them particularly suited to FAS
tasks. Consequently, a multimodal approach of images and text represents a novel solution path
for FAS. Through large-scale pre-training, such models have the potential to overcome the limited
generalization of existing FAS methods. Moreover, their strong visual-to-text alignment capabilities
combined with powerful language reasoning modules can offer clear decision rationale, thereby
significantly enhancing the interpretability of model predictions.

However, this paradigm is hindered by the lack of high-quality image and text multimodal datasets
for FAS. Available public FAS datasets (Guo et al., 2022; Boulkenafet et al., 2017; Yu et al., 2020)
provide only image or video inputs with binary real or fake labels and omit the structured language
information needed for MLLMs training. Using these limited datasets directly for MLLMs training
can lead to overfitting and fail to supply an explicit reasoning chain to enhance interpretability. To
address this gap, we construct a Chain-of-Thought (CoT) annotated FAS dataset, named FaceCoT.
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Figure 1: Example of the FaceCoT, illustrating the six CoT components: caption, facial description,
facial attributes, reasoning, spoofing description, and conclusion.

(a) (b)

Figure 2: (a) The data types in FaceCoT. It comprises 3 major spoofing types and 14 subtypes.
(b) Comparison results with state-of-the-art methods on 11 benchmark FAS datasets. Our method
achieves the highest performance on every evaluation set.

The construction of FaceCoT proceeds in three stages. First, to guide the model to perform human-
like reasoning, which involves inspecting from global context down to local details and deriving a
final judgment, we design a dedicated CoT annotation format tailored to FAS. As shown in Figure 1,
this format comprises six hierarchical levels: caption, facial description, facial attributes, reasoning,
spoofing description, and conclusion. Second, we employ GPT-4o (OpenAI, 2023) to automatically
generate initial CoT annotations. To guarantee data quality and accuracy, we adopt a human-in-
the-loop workflow in which all automatically generated content is rigorously filtered and refined by
expert annotators. The resulting high-quality subset is named FaceCoT-Gold100K. Third, to ex-
pand the dataset’s scale, we train a specialized FAS caption model on FaceCoT-Gold100K. During
this process, we integrate a rule-verifiable Reinforcement Learning (RL) strategy to improve anno-
tation quality and robustness across domains. The optimized model is capable of producing high-
quality CoT annotations even on unseen data, allowing us to generate an additional 982K structured
annotations, termed FaceCoT-Silver982K.

To the best of our knowledge, FaceCoT is the first Visual Question Answering (VQA) dataset specif-
ically designed for FAS, aggregating 1.08M training samples and covering 14 distinct attack types.
The types of attacks included in the dataset are illustrated in Figure 2(a). Its carefully engineered,
structured and hierarchical CoT annotation format not only ensures logical consistency and inter-
pretability but also provides a natural learning pathway for downstream reasoning models. More-
over, we adopt a hybrid annotation workflow that combines GPT-4o–driven automatic generation
with expert manual refinement, which further guarantees data quality and reliability. Finally, the
integration of an RL–based strategy during the dataset expansion phase enhances cross-domain an-
notation accuracy and robustness, supplying the multimodal FAS community with unprecedentedly
large-scale, high-quality training resources.
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The FaceCoT dataset provides a unique resource for training MLLMs. However, if trained in an end-
to-end manner, the model is forced to learn CoT reasoning and classification at the same time, which
leads to task interference and prevents the reasoning objective from fully converging. As a result,
the model cannot fully exploit the fine-grained visual cues embedded in the CoT annotations. To
address this, we propose a CoT-Enhanced Progressive Learning (CEPL) strategy, consisting of two
stages: (1) Visual Enhancement Pre-training, we perform full-parameter Supervised Fine-Tuning
(SFT) of the model using CoT data, thereby focusing the vision encoder on extracting fine-grained,
spoof-relevant facial features; (2) Multi-task Joint Training, we inherit the vision encoder from the
first stage, reset the connector and language decoder to their original pretrained weights, and fine-
tune both the connector and decoder using LoRA modules. We then jointly train on CoT annotations
and binary labels with a multi-task loss, ensuring that the model retains deep reasoning capabilities
while rapidly adapting to the classification task.

Overall, the contributions of this paper are as follows:

• Proposing and releasing the FaceCoT dataset. To address the lack of VQA data in mul-
timodal FAS, we introduce FaceCoT, the first VQA dataset designed specifically for FAS.
It covers 14 attack types and comprises 1.08M samples. Each entry contains a structured
visual CoT question-answering process, which guides models from image understanding
to logical judgment, thereby improving detection accuracy and enhancing generalization.

• Proposing a CoT-Enhanced Progressive Learning method. To fully leverage CoT data
for FAS detection, we develop a CoT-Enhanced Progressive Learning approach that bal-
ances CoT reasoning and binary classification. This strategy significantly improves model
performance on both reasoning and classification tasks.

• Performance. Extensive experiments on FAS benchmarks demonstrate the value of our
dataset and the effectiveness of our method. As shown in Figure 2(b), our approach outper-
forms state-of-the-art methods, achieving an average AUC improvement of 4.06% and an
HTER reduction of 5.00%.

2 RELATED WORK

Face Anti-Spoofing (FAS) FAS is a key technology for protecting face recognition (Deng et al.,
2019) systems from presentation attacks. FAS focuses on detecting these fraudulent attacks to ensure
that the faces recognized by the system are genuine live faces. Early FAS methods primarily rely on
handcrafted low-level feature extraction techniques, such as LBP (Boulkenafet et al., 2015), SIFT
(Patel et al., 2016), and others. With advancements in deep learning, many FAS methods (Liu et al.,
2019; Shao et al., 2019) begin using models like CNNs and ViT to train classifiers. FAS methods
(Yu et al., 2021; Zhang et al., 2021) gradually introduce multimodal learning, combining features
from different types of data (e.g., RGB, IR, depth) to improve model performance. These methods
achieve good results in intra-dataset scenarios but struggle with generalization to unseen attack types
from out-of-domain data. As a result, Domain Adaptation (DA) (Deb et al., 2023; Cai et al., 2024)
and Domain Generalization (DG) (Deb et al., 2023; Guo et al., 2025) approaches are developed.
DA minimizes the distribution gap between the source and target domains by utilizing unlabeled
target data. However, in practice, collecting unlabeled target data is challenging. DG learns broadly
applicable features from multiple source domains, enabling good predictions in the target domain.
However, due to the diversity of attack types and data collection methods, it is difficult to find a
universal feature space for fake faces, leading to insufficient generalization. Additionally, these
methods lack interpretability, making it challenging to understand the decision-making process of
the model, which is crucial in high-stakes applications like security systems.

Chain-of-Thought (CoT) in Multimodal Large Language Models (MLLMs) In MLLMs, CoT
is a method for solving complex problems through a series of intermediate reasoning steps, provid-
ing an interpretable reasoning path for the model when answering questions. Recent research (Wei
et al., 2022; Wang et al., 2022b) has shown that the CoT prompting method significantly enhances
the reasoning abilities of large language models in reasoning tasks. Consequently, researchers have
attempted to apply CoT in MLLMs. Some researchers define their own reasoning stages. For exam-
ple, LLaVA-CoT (Xu et al., 2024) proposes a method combining CoT with MLLMs by designing a
‘summary-caption-reasoning-conclusion’ reasoning process to enhance the model’s reasoning abil-
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Figure 3: This diagram illustrates the entire process of data annotation and expansion for the Face-
CoT dataset. (a) Data Annotation: This step shows the annotation process of FaceCoT-Gold100K.
(b) Data Expansion: This phase shows the annotation process of FaceCoT-Silver982K. (c) RL in
FaceCoT: This part shows the RL in the training of the FAS caption model.

ity. Other researchers have explored allowing models to autonomously design the reasoning stages,
such as PS-CoT (Li et al., 2025), which enables large language models to generate task-solving
plans before generating reasoning evidence. CoT-PT (Ge et al., 2023) adopts a hierarchical reason-
ing approach, moving from abstract concepts to specific ones. BDoG (Zheng et al., 2024) employs a
unique approach using three agents who repeatedly debate to implicitly form a reasoning graph that
explores and aggregates various thoughts. However, in the field of FAS, such advanced CoT-based
reasoning strategies have not yet been fully explored or applied.

3 THE FACECOT DATASET

In this section, we introduce the FaceCoT dataset, comprising FaceCoT-Gold100K and FaceCoT-
Silver982K, and detail the entire construction process. Figure 3 provides an overview of the pipeline.
Subsection 3.1 describes how we collect and curate our raw data to form FaceCoT-Gold100K. Sub-
section 3.2 provides a detailed explanation of how we design the CoT structure for FAS and use
GPT-4o for data annotation. Subsection 3.3 presents the training of our FAS caption model, which
is based on FaceCoT-Gold100K under an SFT augmented by RL, and how we then apply it to anno-
tate the complete raw dataset, yielding the larger FaceCoT-Silver982K dataset.

3.1 DATA COLLECTION

Data source To construct the FaceCoT dataset, our objective is to gather images with large scale,
broad attack coverage, and strong demographic diversity to support reliable FAS. We therefore select
images that represent both genuine faces and diverse spoofing types, ensuring inclusion of main-
stream 2D and 3D presentation attacks under varied conditions. Following these criteria, we collect
images from two major FAS datasets: CelebA-Spoof (Zhang et al., 2020), which provides 625K
images from 10K subjects with genuine faces and 10 spoofing types, and Wild-FAS (WFAS) (Wang
et al., 2023), which contributes 1.38M images (853K spoofed and 529K genuine) from a large
number of subjects and 14 attack types captured in unconstrained real-world environments. This
combination enables FaceCoT to achieve both high diversity and strong realism.

Data selection for FaceCoT-Gold100K In this work, we carefully select samples from the
CelebA-Spoof and WFAS datasets to ensure coverage of a broad spectrum of attack types and chal-
lenging scenarios. To address this, we divide the selected samples into four main categories: live,
replay, print, and mask. First, to ensure data balance across categories, we initially set a target of
25K samples per category. Second, to maximize data diversity, we draw all live-face images ex-
clusively from WFAS, since it is collected under unconstrained conditions and thus contains varied
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real-world scenes. For each spoofing category, we exhaustively gather multiple attack styles: for
example, print attacks include seven subtypes (e.g., A4, photo, upper body, poster, etc.). In terms
of sample selection, we adhered to the principle of data balance, aiming to ensure that each subtype
contains an approximately equal number of samples. Screen-replay and mask attacks are selected
following the same balanced, subtype-level sampling principle.

3.2 DATA ANNOTATION

CoT structure Humans typically judge authenticity of images by following a hierarchical “global-
to-local” reasoning path: they first assess the overall scene, then focus on facial details and attributes,
and finally draw a conclusion through logical analysis. To emulate this process, we partition our CoT
annotations into six modules, enabling the model to perform human-like detection reasoning:

1. Caption: First, the model is asked to provide a caption of the entire image. This helps
the model understand the global and environmental context of the image and capture more
macroscopic spoofing features.

2. Facial Description: This part focuses the model’s attention on the facial region and re-
quires a description of the facial features. The face is the most easily simulated area in
spoofing attacks, so this section helps the model concentrate on potential spoofing regions.

3. Facial Attributes: Further, the model is asked to describe various facial attributes, includ-
ing facial features, textures, and expressions. By describing these attributes, the model’s
ability to perceive fine-grained details is enhanced.

4. Reasoning: Based on the multi-scale information obtained from the first three parts, this
section combines both global and local information for a comprehensive analysis to deter-
mine whether spoofing behavior exists in the image.

5. Spoofing Description: Based on the reasoning process, this section describes the spoof-
ing features and the spoofing method in the image. This not only improves the detection
accuracy but also increases the interpretability of the model.

6. Conclusion: This section is the final summary of all the reasoning conducted previously.

Based on the above design approach, we further standardize the annotation format of FaceCoT
data, adopting the following structure: <Caption></Caption>, <Facial Description></Facial
Description>, <Facial Attributes></Facial Attributes>, <Reasoning></Reasoning>,
<Spoofing Description></Spoofing Description>, <Conclusion></Conclusion>, thus pro-
viding the model with clear and structured input, which helps improve the accuracy and stability of
multimodal reasoning (as shown in Figure 1).

GPT-4o annotation After designing the CoT format for the answers, we employ GPT-4o (Ope-
nAI, 2023) to conduct the annotation process. During annotation, for different spoofing types, we
provide corresponding hints (e.g., classification standards such as ”photographing a poster consti-
tutes spoofing.”) to prevent the model from identifying features but failing to properly control the
decision boundaries.

Hard case handing After completing the initial annotation, we compare the extracted labels (ob-
tained via regular expressions) with the original ground-truth labels. A total of 98,976 samples are
correctly annotated. For those incorrectly annotated, we perform a second round of annotation using
GPT-4o. Samples that remain incorrectly labeled after this second attempt are marked as hard cases,
resulting in 581 such instances. For these head cases, professional annotators perform cleaning. The
annotators review the original labels, locate the corresponding stages, and correct any deficiencies.
Finally, they reassemble a logically coherent CoT text. The detailed hard case cleaning process is
provided in the Appendix A.2.

3.3 DATA EXPANSION

FAS caption model with Reinforcement Learning Although we assembled a diverse FaceCoT-
Gold100K, it still falls short of covering every attack type in real-world FAS scenarios. Expanding
the dataset with GPT-4o plus human annotation would be costly and hard to scale. Therefore, we
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Figure 4: Our proposed CoT-Enhanced Progressive Learning framework consists of two stages: (a)
Visual Enhancement Pre-training fine-tunes on CoT annotations to strengthen visual perception and
representation; (b) Multi-task Joint Training, which inherits the vision encoder learned in Stage-1
and jointly optimizes both CoT generation and binary classification.

train a caption model to address this issue. We first train a caption model on FaceCoT-Gold100K
via SFT, but find that its auto-generated CoT annotations on unseen images suffer from two issues:
semantic errors and format errors. To fix this, we adopt a verified reinforcement fine-tuning scheme
inspired by VRFT (Liu et al., 2025), designing rewards for both accuracy and format compliance.
Specifically, an accuracy reward gives 1 if <Conclusion> matches the image’s ground-truth label
and 0 otherwise, while a format reward checks whether the output follows the FaceCoT template.
This RL step markedly improves annotation correctness and offers a scalable path to enlarging Face-
CoT. The details of the RL procedure are provided in the Appendix B.1.

Caption model annotation We apply the trained caption model to annotate the training splits of
CelebA-Spoof and WFAS. Annotation accuracy is measured by (1) regular-expression checks for
template compliance and (2) consistency between the generated <Conclusion> tag and the ground-
truth label. With standard SFT, we achieve an accuracy of 88%, whereas reinforcement fine-tuning
raises this figure to 99.6%. We ultimately create FaceCoT-Silver982K, an additional 982K high-
quality FAS CoT annotations.

4 METHODOLOGY

In FAS tasks, the ability to discern fine-grained facial details is critical to model performance. The
FaceCoT dataset provides rich fine-grained visual descriptions of facial features, which can effec-
tively guide the learning of a powerful visual encoder. However, adopting a single-stage training
strategy typically results in a suboptimal visual encoder. This is because the model is required to
learn both reasoning and classification tasks simultaneously, and the faster convergence of the classi-
fication objective often leads to insufficient optimization of the reasoning component. Consequently,
the model cannot fully leverage the fine-grained visual cues in the CoT annotations, preventing the
visual encoder from capturing critical spoofing artifacts and thereby capping overall performance.
To fully leverage CoT data, we propose a CoT-Enhanced Progressive Learning (CEPL) strategy. As
shown in Figure 4, CEPL consists of two stages: (1) Visual Enhancement Pre-training, we fine-tune
exclusively on CoT annotations, which uses language-guided supervision to sharpen the vision en-
coder’s sensitivity to subtle facial features; (2) Multi-task Joint Training, we jointly optimize CoT
reasoning and spoof classification to achieve synergy between visual understanding and logical in-
ference.

4.1 VISUAL ENHANCEMENT PRE-TRAINING

The goal of this stage is to harness FaceCoT data to enrich the vision encoder’s representation of
fine-grained facial features, thereby improving cross-modal understanding and laying a solid visual
foundation for subsequent Multi-task Joint Training. To this end, we perform full-parameter SFT
on CoT data, feeding each image to the model and supervising it with its associated reasoning text.
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Table 1: Comparison of evaluation metrics against state-of-the-art methods on 11 benchmark FAS
datasets. All baselines are trained on CelebA-Spoof; “Ours-CelebA” is trained on the CelebA-Spoof
dataset annotated by the FAS caption model, “Ours-100K” on FaceCoT-Gold100K, and “Ours-All”
on the full FaceCoT dataset.

Methods CASIA-MFSD CASIA-SURF-3DMask HKBU-MARs-V1+ HiFiMask
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

ViTAF (Huang et al., 2022) 3.11 99.48 6.18 98.40 49.29 57.28 37.30 67.10
ViT-B (Radford et al., 2021) 0.70 99.86 24.89 84.26 45.08 62.28 37.33 67.35
ViT-L (Radford et al., 2021) 0.93 99.95 23.54 84.22 33.33 73.88 32.81 72.58
FLIP (Srivatsan et al., 2023) 4.88 98.48 8.83 96.93 17.25 88.31 28.32 76.50
I-FAS (Zhang et al., 2025) 1.11 99.88 6.18 98.40 18.64 88.77 28.23 77.17
Ours-CelebA 0.00 100.00 6.21 98.73 6.96 99.41 28.68 79.74
Ours-100K 0.00 100.00 1.33 99.79 11.74 96.37 18.63 88.52
Ours-All 0.00 100.00 0.40 99.98 7.34 98.39 15.93 91.30

Methods MSU-MFSD OULU-NPU Replay-Attack Rose-Youtu
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

ViTAF (Huang et al., 2022) 12.86 93.14 26.73 81.28 12.38 95.73 69.34 74.22
ViT-B (Radford et al., 2021) 16.67 89.89 28.53 78.59 24.80 84.47 82.69 63.22
ViT-L (Radford et al., 2021) 20.87 85.65 29.42 78.07 16.58 92.00 80.47 71.69
FLIP (Srivatsan et al., 2023) 19.37 89.98 20.57 87.30 25.67 81.37 80.73 73.60
I-FAS (Zhang et al., 2025) 5.63 98.73 14.86 91.68 9.15 95.12 5.52 98.48
Ours-CelebA 8.33 98.29 9.47 96.01 9.87 96.84 2.45 99.66
Ours-100K 4.58 99.56 12.70 92.99 7.37 97.07 5.51 98.57
Ours-All 5.00 99.35 5.86 97.72 12.75 95.53 4.56 99.12

Methods SIW SIW-M-V2 WMCA Avg.
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

ViTAF (Huang et al., 2022) 14.74 92.51 26.72 80.70 29.88 77.14 23.85 82.82
ViT-B (Radford et al., 2021) 9.13 96.24 22.60 84.59 34.72 73.10 23.48 82.98
ViT-L (Radford et al., 2021) 9.03 96.56 17.26 90.37 34.39 75.13 21.08 85.61
FLIP (Srivatsan et al., 2023) 11.01 95.40 25.95 80.78 19.36 88.73 18.73 87.90
I-FAS (Zhang et al., 2025) 4.02 98.34 10.89 95.02 20.07 89.17 11.30 93.71
Ours-CelebA 0.79 99.98 9.85 96.29 11.51 95.12 8.56 96.37
Ours-100K 0.03 99.97 9.50 95.93 12.77 93.66 7.65 96.59
Ours-All 0.48 99.96 6.81 97.61 10.16 96.52 6.30 97.77

This process drives precise semantic alignment between visual features and language descriptions,
enabling the vision encoder to fully exploit subtle facial cues. As a result, the encoder becomes
highly sensitive to spoofing artifacts, providing robust support for the joint optimization that follows.

4.2 MULTI-TASK JOINT TRAINING

The objective of this stage is to achieve synergistic enhancement of reasoning and classification ca-
pabilities. To this end, we employ a joint training strategy over both CoT reasoning and binary clas-
sification tasks. During model initialization, we retain the vision encoder from Visual Enhancement
Pre-training to preserve its fine-grained facial representations, while restoring all other modules to
their original pretrained weights. We then apply LoRA (Hu et al., 2022) modules to the LLM for
targeted fine-tuning. Training proceeds on a combined dataset of CoT-annotated samples and binary
labels, guiding the network to balance cross-modal reasoning with accurate spoofing detection. Af-
ter this stage, the model not only reliably distinguishes real from spoofing faces but also produces
coherent CoT explanations for its decisions.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets To validate the robustness and generalization of our data, we use FaceCoT as the source
domain and perform cross-domain testing on 11 other datasets as target domains. These datasets
include MSU-MFSD (Wen et al., 2015), CASIA-MFSD (Zhang et al., 2012), Idiap Replay Attack
(Chingovska et al., 2012), OULU-NPU (Boulkenafet et al., 2017), SIW (Liu et al., 2018b), Rose-
Youtu (Li et al., 2018), HKBU-MARs-V1+ (Liu et al., 2018a), WMCA (George et al., 2019), SIW-
M-V2 (Guo et al., 2022), CASIA-SURF-3DMask (Yu et al., 2020), and HiFiMask (Liu et al., 2022a).
For a fair comparison with previous methods (Zhang et al., 2025), we also replicate their training
setup by using only the annotated CelebA-Spoof (Zhang et al., 2020) subset as the source domain
while testing on the same 11 benchmarks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablation study of the CoT-Enhanced Progressive Learn-
ing (CEPL) method. Stage-1: Vision Encoder Pretraining (VEP),
Stage-2: Multi-task Joint Training (MJT), Stage-3: Reinforce-
ment Learning (RL). Includes comparisons with single-stage MJT
and CEPL variants with/without RL.

Methods Stage-1 Stage-2 Stage-3 Results
HTER(%) AUC(%)

Single-stage - MJT - 8.84 95.91
CEPL + RL VEP MJT RL 7.80 96.82
CEPL (Ours) VEP MJT - 7.65 96.59

Table 3: Ablation study on
CoT data, with comparison
to a setup using only bi-
nary label data of FaceCoT-
Gold100K.

Data type Results
HTER(%) AUC(%)

Label 9.07 95.05
Label + CoT 7.65 96.59

Implement details We resize all images to 448 × 448 × 3 with RGB channels. We choose
MiniCPMV-2.6-8B (Yao et al., 2024) as the backbone VLM for its lightweight multimodal archi-
tectureand strong cross-modal fusion capabilities across diverse scenarios; results with alternative
backbone VLMs are provided in Appendix C.3. These characteristics make it particularly well-
suited to the core demands of FAS tasks, where effective integration of multimodal features is es-
sential. We employ the AdamW optimizer with an initial learning rate of 1e-6 and a weight decay
of 0.1. Training is conducted for up to 10 epochs with a global batch size of 256, distributed across
8 NVIDIA A100 GPUs. To ensure robustness, we run all experiments with three different random
seeds and report the averaged results. As in previous works (Zhang et al., 2025; Srivatsan et al.,
2023; Huang et al., 2022), we use Half Total Error Rate (HTER) and Area Under the Receiver
Operating Characteristic Curve (AUC) as evaluation metrics.

5.2 RESULTS ANALYSIS

Analyzing the results in Table 1, we can draw three conclusions: (1) Overall performance gain:
Training on FaceCoT-All yields an average AUC increase of 4.06% and an HTER reduction of
5.00% over the previous state-of-the-art methods, and it achieves the best score on every evaluation
set. (2) Cross-domain generalization: HKBU-MARs-V1+ and HiFiMask include spoofing types
absent from the source data(e.g., transparent, plaster, and resin masks). Despite this severe distri-
bution shift, our approach surpasses the previous best AUC by roughly 10% on HKBU-MARs-V1+
and 14% on HiFiMask, demonstrating strong robustness to unseen attack modalities. (3) Single-
source comparison: When training is restricted to CelebA-Spoof alone, the model still outperforms
the previous state-of-the-art methods: average HTER drops a further 2.74% and AUC rises 2.66%,
again securing the top scores on HKBU-MARs-V1+ and Rose-Youtu. This confirms that the CoT
annotations and the CEPL training strategy remain effective even under limited-source settings.

6 ABLATION STUDY

In this section, we systematically evaluate each major contribution of our framework. All ablation
studies are trained on the FaceCoT-Gold100K subset to ensure a consistent comparison baseline.

Ablation study on the CoT-Enhanced Progressive Learning (CEPL) To validate the soundness
of our proposed CEPL method, we perform two ablation studies: (i) To validate the effectiveness of
the proposed CEPL method, we compare it with the single-stage Multi-task Joint Training method.
(ii) Meanwhile, we further extend the CEPL framework by applying RL (Liu et al., 2025) after the
second stage, in order to investigate whether RL can bring additional performance gains. As shown
in Table 2, we make two key observations: (1) We find that the CEPL method outperforms single-
stage training with an increase of 0.68% in AUC and a decrease of 1.19% in HTER. This indicates
that stage-wise optimization helps the model better capture the knowledge transfer relationship be-
tween different tasks, effectively reducing task interference and improving overall performance. (2)
The performance metrics after applying RL are similar to the original method. We hypothesize
that in scenarios with limited SFT data, initializing the model with a small amount of SFT and ap-
plying RL to unlabeled data can significantly improve performance compared to relying solely on
SFT. However, in our study, the model has already undergone extensive SFT with a large amount of
high-quality data, resulting in strong baseline performance, so the marginal gains from applying RL
afterward are notably reduced.
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Figure 5: The figure shows the outputs of different FAS methods: (a) Traditional binary classifica-
tion method; (b) Other MLLMs (Zhang et al., 2025) can answer classifications and provide simple
descriptions; (c) Our method can not only answer classification questions, but also provide system-
atic reasoning analysis.

Ablation study on FaceCoT To validate the effectiveness of the CoT data that we construct dur-
ing training, we design an ablation experiment at a resolution of 448× 448, comparing single-stage
training using only binary-labeled data against training with CoT data under the CEPL framework.
The experimental results are shown in Table 3. It can be seen that the model trained with CoT data
achieves an HTER of 7.65% and an AUC of 96.59%, both outperforming the model trained without
CoT annotations. This result indicates that CoT data provides the model with richer intermediate
process information, helping the model better understand complex tasks and significantly enhanc-
ing its generalization ability and robustness. Moreover, Figure 5 illustrates that the CoT-trained
model not only makes more accurate classification but also exposes its full CoT, especially on attack
samples, providing interpretable rationales that further strengthen its cross-domain reliability. This
combined evaluation confirms both the performance and interpretability benefits of our constructed
CoT dataset.

Table 4: Ablation study
on resolution, comparing in-
put sizes of 224×224 and
448×448.

Resolution Results
HTER(%) AUC(%)

224 × 224 11.28 94.05
448 × 448 8.84 95.91

Ablation study on resolution Capturing fine-grained visual fea-
tures is critical for FAS detection, and higher input resolution typ-
ically provides richer local texture information, thereby enhancing
the model’s visual representation capacity. To systematically as-
sess the impact of input resolution on model performance, we de-
sign a comparative experiment with different resolutions, keeping
all other settings consistent. Specifically, we set the input resolu-
tions to 224 × 224 and 448 × 448, respectively, and compare the
performance of the single-stage trained model at both resolutions.
The experimental results are shown in Table 4. From the results,
it can be seen that when the resolution is 224 × 224, the model’s
performance on all metrics is slightly lower than at the 448 × 448 resolution. This suggests that a
higher resolution helps the model capture richer detailed features, further enhancing performance.

7 CONCLUSIONS

We introduce FaceCoT, the first large-scale VQA benchmark dataset for FAS with 1.08 million
detailed CoT annotations that cover a wide spectrum of attack types. The dataset begins with 100K
high-quality samples, then is expanded to 1.08 million using a reinforcement learning-enhanced
caption model. Additionally, we propose a CEPL method that achieves effective synergy between
semantic guidance and attack type discrimination. Extensive experiments confirm both the value of
the FaceCoT and the effectiveness of our method, delivering an average AUC improvement of 4.06%
over current state-of-the-art approaches. We believe that the open-source release of the FaceCoT
dataset not only provides a valuable resource for the research community but also lays a solid data
foundation and methodological reference for building stronger and more trustworthy FAS systems.

9
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8 ETHICS STATEMENT

In designing FaceCoT, attention was paid to fairness, bias mitigation, and data privacy, ensuring
that the dataset not only enhances interpretability and generalization in Face Anti-Spoofing (FAS),
but also adheres to responsible research principles. To address these potential concerns, this section
outlines our efforts in three dimensions: dataset fairness, language model bias mitigation, and data
privacy protection.

8.1 DATASET BIAS AND FAIRNESS

The original FAS datasets(e.g., CelebA-Spoof (Zhang et al., 2020) and WFAS (Wang et al., 2023))
used in our work were not explicitly designed with fairness auditing or demographic balance in
mind. The goal of FaceCoT, however, is to introduce a reasoning-based multimodal framework that
improves interpretability and generalization in FAS models. This also provides a structured avenue
for detecting and mitigating bias through Chain-of-Thought (CoT) rationales. To align FaceCoT
with responsible research practices and address potential fairness concerns, we incorporated the
following safeguards during our data collection and annotation process:

• No New Image Data Introduced: All FaceCoT annotations are derived exclusively from
publicly available FAS datasets. We did not collect or distribute any new images, and the
released dataset contains only annotations indexed to existing data.

• Bias-Aware Annotation Pipeline: (1) Prompt Design: CoT generation prompts were care-
fully crafted to steer the model toward spoof-specific visual cues (e.g., reflection artifacts
and cutting marks), while explicitly excluding references to race, gender, age, or iden-
tity. (2) Human-in-the-Loop Filtering: Expert annotators reviewed all FaceCoT-Gold100K
outputs and were instructed to remove any content with identity-based or stereotypical lan-
guage. (3) Random Auditing: Manual sampling and inspection of 5,000 annotations from
FaceCoT-Silver982K revealed no evidence of demographic bias or stereotype leakage. (4)
Model Validation Across Subgroups: Models trained with FaceCoT demonstrated balanced
performance across evaluation datasets, including with respect to skin tone and gender,
indicating no observable subgroup bias attributable to the annotations. As shown in the
outputs across various evaluation datasets in our Appendix F, the model focused on spoof-
ing features related to FAS rather than attributes such as age, gender, or skin tone.

8.2 USE OF GPT-4O AND MITIGATION OF LANGUAGE MODEL BIAS

Large foundation models such as GPT-4o may introduce bias. To mitigate such risks, we employed
several safeguards:

• Constrained Use: GPT-4o was used solely to generate CoT explanations under strict
prompt constraints and was never involved in classification or decision-making tasks.

• Annotation Safeguards: (1) FaceCoT-Gold100K annotations were reviewed and refined
by human experts to eliminate any inappropriate or biased language. (2) For FaceCoT-
Silver982K, we employed a reward model trained to optimize spoof-specific consistency
and rule-based constraints rather than open-ended language fluency, reducing the likelihood
of inherited bias.

8.3 DATA PRIVACY AND CONSENT

FaceCoT also respects individual privacy and consent, particularly when using publicly sourced
visual data. While the datasets employed (e.g., WFAS) are released under academic or Creative
Commons licenses, we designed the release to be cautious and transparent:

• No Image Redistribution: The FaceCoT release contains only annotations and metadata;
no image data is redistributed or exposed.

• Transparent Documentation: The final dataset release will include: (1) explicit docu-
mentation of all source datasets and their associated licenses; (2) clear usage guidelines
requiring downstream users to adhere to original dataset terms and ethical standards.
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9 REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our work, we provide in the supplementary materials the code used
for GPT-4o annotation. Detailed descriptions of our experimental settings, including dataset prepa-
ration, hyperparameter configurations, and evaluation protocols, are provided in Section 5.1. In
addition, our evaluation detail is elaborated in Appendix B.3. The proposed CEPL algorithm
is clearly described in Section 4, and the reward design and implementation details for rein-
forcement learning are provided in Appendix B.1. The training and reinforcement learning im-
plementations will be released in a subsequent open-source release. Together, these materials
will allow researchers to reproduce the results reported in our paper. Furthermore, we will also
make our FaceCoT dataset publicly available to the research community. For the purpose of
anonymous review, the dataset has been temporarily hosted at https://kaggle.com/datasets/
40f3d0c3d030fe87c055e3f0658125e817b59026efd314afe741adf2362074e7.
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A FACECOT DATASET: ADDITIONAL DETAILS

A.1 GPT-4O ANNOTATION DETAILS

Figure 6 illustrates our Chain-of-Thought (CoT) annotation details using GPT-4o (OpenAI, 2023).
To guide GPT-4o to generate accurate, detailed, and correctly formatted responses in a human-like
reasoning style, we structure the input into five components—image, system prompt, question, hint,
and label—which are concatenated and submitted to the GPT-4o API for annotation.

Figure 6: Details of the GPT-4o–based CoT annotation pipeline, with inputs concatenated from five
components: image, system prompt, question, hint, and label.

To ensure the consistency and accuracy of our CoT annotations, we apply the following prompt de-
sign strategies. First, we explicitly define the model’s role as an “examiner” in the system prompt,
thereby guiding it to engage in rigorous reasoning from an evaluator’s perspective and enhanc-
ing both the discriminative power and standardization of its outputs. Second, to enforce structural
consistency, we impose an output framework composed of six core modules—caption, facial de-
scription, facial attributes, reasoning, spoofing description, and conclusion. Finally, to guarantee
accuracy, we require the model’s final conclusion to match the standard answer exactly, using this
alignment as a key criterion for valid automated annotations. Embedding these requirements at
the prompt level effectively codifies the model’s reasoning logic and output format, significantly
improving result uniformity and batch-processing scalability, while ensuring transparency at every
step of the annotation workflow.

System Prompt

In a face anti-spoofing detection system, a person has submitted an image
for inspection. Now please assume the role of the examiner and respond to the
question. I need you to strictly follow the format containing six specific
parts: caption, facical description, facial attributes, reasoning,
spoofing description, and conclusion. It is crucial that you adhere exactly
to the outlined structure, and that the final answer in conclusion matches
the standard correct answer exactly. Further explanation: In caption,
provide a holistic description of the image. In facial description, focus
on describing the facial features of the person in the image. In facial
attributes, list the facial attributes. In reasoning, perform step-by-step
logical reasoning based on the image description, facial description,
and facial attributes. In spoofing description, describe the spoofing
method and highlight the critical spoofing characteristics in detail.
In conclusion, give the final answer \Yes" or \No" that must match the
standard answer exactly. Format as follows: <Caption> [Holistic description
of the image] </Caption> <Facial Description> [Detailed description of
the person’s facial features] </Facial Description> <Facial Attributes>
[Describe facial attributes: "eyes": ..., "mouth": ...etc.] </Facial
Attributes> <Reasoning> [Step-by-step logical reasoning based on the above]
</Reasoning> <Spoofing Description> [Details of the spoofing method: ...]
</Spoofing Description> <Conclusion> [Answer \Yes" or \No" matching the
standard answer exactly] </Conclusion> Please carefully apply this format
to analyze the given image and answer the related question.
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Furthermore, to prevent the model from detecting spoofing-related features without being able to
establish clear decision boundaries (example of such ambiguous case is illustrated in Figure 7), we
provide tailored hints for samples of different spoofing types to guide the model toward correct
reasoning and conclusions, as presented in Table 5. For spoofing types that the model can readily
distinguish, no hints are provided.

Figure 7: Example of a decision-boundary failure: the model correctly detects newspaper features
but does not classify the image as spoofing (top). After adding a hint (bottom), the model refines
its reasoning and accurately identifies the image as a spoof, demonstrating improved CoT guidance
with better decision boundaries.

Table 5: Hints provided for each category; other categories are straightforward and do not require
additional hints

Types Hints
Photo Photographing a printed photo constitutes spoofing.
Newspaper Photographing a newspaper page constitutes spoofing.
Poster Photographing a poster constitutes spoofing.
Album Photographing an album page constitutes spoofing.
A4 Photographing an A4-printed image constitutes spoofing.
Facial print Photographing a facial photo constitutes spoofing.
Upper body Photographing a printed upper-body image constitutes spoofing.
Phone Photographing a phone screen constitutes spoofing.
Pad Photographing a tablet display constitutes spoofing.
PC Photographing a computer screen constitutes spoofing.
Else -
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A.2 HARD CASE HANDLING

In the main text, we describe that, following GPT-4o annotation, we apply a regular expression to
extract the result within the "<Conclusion>...</Conclusion>" tag and cross-check it against the
original label; if the match fails, this annotation is regarded as failed. Samples that could not be
correctly labeled after two annotation rounds are designated as “hard cases,” resulting in a total of
581 instances. These hard cases are then corrected by human experts. Figure 8 illustrates one such
example: experts first verify whether the conclusion is correct, then diagnose why the reasoning and
spoofing description are inaccurate; if the reasoning is flawed, they replace it with a correct step-by-
step rationale; if the visual feature description is inconsistent, they refine it and iteratively update
the subsequent reasoning. Through this expert review and correction process, we ultimately obtain
the complete, high-quality FaceCoT-Gold100K dataset. Similarly, samples in the data expansion
that fail to be correctly annotated by our caption model are also reviewed and corrected by human
experts, leading to the construction of the complete FaceCoT-Silver982K dataset.

Figure 8: Illustration of hard case handling. The top shows the initial failed annotation, while the
bottom presents the revised version by human experts. The subject wears a mask with a clearly
visible boundary at the forehead, which is incorporated into the revised annotation.

(a) (b)

Figure 9: (a) The data types in FaceCoT-Silver982K. (b) The data types in FaceCoT-Gold100K.
Both of them comprise 3 major spoofing types and 14 subtypes.
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A.3 STATISTICS

Our FaceCoT dataset comprises two subsets—FaceCoT-Gold100K and FaceCoT-Silver982K—and
encompasses living faces alongside 14 distinct spoofing attack types. Here, we present the relative
proportions of types across the two datasets in Figure 9 and report the exact sample counts for every
category in both subsets in Table 6. Examples of each attack category are illustrated in Figure 10.
For the annotation of FaceCoT-Gold100K, we used the GPT-4o API, incurring an average cost of
approximately $0.01 per image. To enable large-scale annotation at lower cost, we further trained
a caption model via SFT and RL, which required 8 NVIDIA A100 GPUs for about one day, and
subsequently employed this model to annotate FaceCoT-Silver982K at a total cost of roughly 288
GPU-hours. Finally, in the human refinement stage, six annotators manually cleaned and verified
samples from both subsets over a period of three days.

Table 6: Sample counts per category in the FaceCoT-Gold100K and FaceCoT-Silver982K subsets

Types FaceCoT-Gold100K FaceCoT-Silver982K
Photo 5,000 138,373
Newspaper 3,000 14,425
Poster 5,000 72,079
Album 3,000 56,490
A4 3,000 31,776
Facial print 3,000 33,647
Upper body 3,000 30,167
Phone 10,000 66,434
Pad 10,000 48,516
PC 5,000 31,072
3D mask 12,768 52,637
Region mask 10,579 33,285
Garagekit 1,488 4,505
Adultdull 165 1,454
Living 25,000 367,608
Total 100,000 982,468

Figure 10: Representative examples of all 14 spoofing attack categories and living faces in the
FaceCoT dataset.
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B METHODOLOGY DETAILS

B.1 REINFORCEMENT LEARNING IN TRAINING CAPTION MODEL

Reward functions We design a dual-reward scheme targeting both semantic accuracy and output
format compliance:

• Semantic accuracy reward: Inspired by the "<Conclusion>...</Conclusion>" struc-
ture in FaceCoT, we apply a regular expression to extract the conclusion from the model’s
generated output and compare it to the ground-truth label. A match yields a reward of 1;
otherwise, 0.

• Format compliance reward: We verify whether the model’s output follows the prescribed
FaceCoT template. If the structural format is correct, the reward is 1; otherwise, 0.

This dual-reward scheme simultaneously enforces correct annotation content and adherence to the
FaceCoT formatting guidelines.

Training strategy We initialize the policy model with a version pre-trained via SFT. Given an in-
put image and its associated task prompt, the policy model generates a CoT response. Each response
is scored according to the dual-reward functions above, and the resulting reward signal is used to
update the policy via RL. To stabilize training, we employ the SFT model as a fixed reference: we
compute the KL divergence between the policy’s output distribution and that of the reference model,
using it as a penalty term to prevent the policy from drifting too far from its initial semantic space.
This balance preserves output reliability while enabling effective exploration.

Training data To enhance the caption model’s annotation capability and task adaptability on un-
seen data, we directly use the unlabeled images from the target annotation corpus as input during
the RL stage. This construction endows the caption model with strong task-specific adaptation.

Accuracy evaluation We first randomly sample 2,000 instances from the dataset that have not
been annotated to construct a test set for evaluation. Then, we use two models to perform au-
tomatic annotation on this test set: one trained solely with SFT, and the other further optimized
with RL based on the SFT model. From the generated outputs, we extract the result within the
"<Conclusion>...</Conclusion>" tags and compare them with the original labels of the sam-
ples. If the two labels match exactly, the annotation is considered correct; otherwise, it is considered
incorrect. The final annotation accuracy is calculated using the following formula:

Accuracy =
Count(conclusion = label)

Count(conclusion = label) + Count(conclusion ̸= label)
(1)

B.2 REINFORCEMENT LEARNING IN COT-ENHANCED PROGRESSIVE LEARNING (CEPL)

Motivation After the two-stage training with CEPL, the model has demonstrated remarkable anti-
spoofing performance on the FAS task. Building upon the success of RL in the caption model, we
further investigate its applicability in this component to boost FAS performance while preserving
the model’s existing capabilities.

Details Specifically, after completing the two-stage training with CEPL, we introduce a third stage
of RL. In this stage, we augment the original multi-task loss, which consists of CoT reasoning and
classification supervision, with an additional RL objective driven by our dual-reward functions for
semantic accuracy and format compliance. The RL procedure follows the same policy-optimization
paradigm described previously, with one key difference: no new data is incorporated. Instead, we
directly reuse the image–text pairs employed during the second stage. This design tests whether
strategic optimization of output structure and semantics, without any additional training examples,
can still yield significant performance gains.
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B.3 DETAILS FOR EVALUATION METRICS

Since standard FAS metrics such as AUC and HTER require continuous confidence scores rather
than binary predictions, we adapt the output of VLMs to provide probabilistic scores. Specifically:

1. Deterministic decoding. To ensure output consistency and avoid randomness from beam
search, we set the generation beam number to 1.

2. Token-level logits extraction. Instead of directly treating textual outputs (e.g., yes vs. no)
as hard labels, we extract token-level logits from the first generated token. In particular, we
identify the token IDs corresponding to ’Yes’ and ’No.’

3. Probability computation. We compute the softmax probability over the two logits, ob-
taining the confidence that a sample is real:

preal =
exp(ℓNo)

exp(ℓNo) + exp(ℓYes)
, (2)

where ℓYes and ℓNo denote the logits of the “Yes” and “No” tokens, respectively.

The resulting probability preal is then used to calculate AUC and HTER following standard defini-
tions in the FAS literature. This procedure allows us to fairly evaluate LLM-based classifiers under
conventional spoofing metrics.

C EXPERIMENTS

C.1 CROSS-DOMAIN GENERALIZATION UNDER WIDELY ADOPTED PROTOCOL

In the FAS literature, a widely adopted evaluation protocol is the leave-one-out cross-domain testing
on four benchmarks: OULU-NPU (O) (Boulkenafet et al., 2017), CASIA-MFSD (C) (Zhang et al.,
2012), Idiap Replay-Attack (I) (Chingovska et al., 2012), and MSU-MFSD (M) (Wen et al., 2015).
However, the performance under this protocol has already saturated (with AUC exceeding 99%),
making it less discriminative for assessing fine-grained improvements. Therefore, in the main text
we focus on a more challenging and generalization-oriented one-to-eleven protocol, which better
highlights the advantages of our method. Nevertheless, to further demonstrate the robustness of
our approach, we also report results under the widely used leave-one-out protocol. Specifically,
we first apply our FAS caption model to generate CoT annotations for the training splits of the
O, C, M, and I datasets. Based on these annotated datasets, we then perform four cross-dataset
evaluations following the standard protocols. For example, the protocol OCI→M denotes that the
model is trained on OULU-NPU, CASIA-MFSD, and Idiap Replay-Attack, and tested on MSU-
MFSD. Similarly, OMI→C, OCM→I, and ICM→O are defined in the same manner. As shown
in Table 7, our method outperforms previous state-of-the-art methods, achieving the best average
HTER and AUC. These results confirm the effectiveness of our approach in improving generalization
in FAS.

Table 7: Cross-dataset evaluation results under widely used cross-domain protocol.

Method O&C&I→M O&M&I→C O&C&M→I I&C&M→O Avg.
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

FGHV (Liu et al., 2022b) 9.17 96.92 12.47 93.47 16.29 90.11 13.58 93.55 12.88 93.51
GDA (Zhou et al., 2022b) 9.20 98.00 12.20 93.00 10.00 96.00 14.40 92.60 11.45 94.90
PatchNet (Wang et al., 2022a) 7.10 98.46 11.33 94.58 13.40 95.67 11.82 95.07 10.91 95.95
SSAN (Wang et al., 2022c) 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63 9.82 96.46
IADG (Zhou et al., 2023) 5.41 98.19 8.70 96.40 10.62 94.50 8.86 97.14 8.40 96.56
UDG-FAS (Liu et al., 2023) 5.95 98.47 9.82 96.76 5.86 98.62 10.97 95.36 8.15 97.30
TTDG (Zhou et al., 2024) 4.16 98.48 7.59 98.18 9.62 98.18 10.00 96.15 7.84 97.75
SA-FAS (Sun et al., 2023) 5.95 96.55 8.78 95.37 6.58 97.54 10.00 96.23 7.83 96.42
DIVT-M (Liao et al., 2023) 2.86 99.14 8.67 96.92 3.71 99.29 13.06 94.04 7.08 97.35
GAC-FAS (Le & Woo, 2024) 5.00 97.56 8.20 95.16 4.29 98.87 8.60 97.16 6.52 97.19
FLIP (Srivatsan et al., 2023) 4.95 98.11 0.54 99.98 4.25 99.07 2.31 99.63 3.01 99.20
CFPL (Liu et al., 2024) 1.43 99.28 2.56 99.10 5.43 98.41 2.50 99.42 2.98 99.05
I-FAS (Zhang et al., 2025) 0.32 99.88 0.04 99.99 3.22 98.48 1.74 99.66 1.33 99.50
Ours 0.42 99.92 0.00 100.00 1.00 99.83 2.81 99.63 1.06 99.85
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C.2 FINE-GRAINED ANALYSIS ON SPOOF TYPE ROBUSTNESS

To examine whether FaceCoT introduces bias toward certain spoof types, we conduct a fine-grained
analysis on the Rose-Youtu (Li et al., 2018), which contains seven representative spoofing attack
types. We report the per-type detection accuracy before and after fine-tuning with FaceCoT. As
shown in Table 8, our approach achieves consistent improvements across all attack categories. These
results indicate that FaceCoT provides more comprehensive semantic supervision and enhances gen-
eral spoof detection capability, rather than overfitting to the dominant categories in the training set.

Table 8: Performance comparison across different spoof types in the Rose-Youtu test set before and
after SFT with FaceCoT.

Cheat Type Meaning Number Acc. (Zero-shot) Acc. (After SFT) Change
Mc Mask: Cut eyes & mouth 202 100.00% 100.00% –
Mf Mask: Full face 100 74.00% 100.00% +26.00%
Mu Mask: Upper part cut 198 93.43% 100.00% +6.57%
Pq Printed paper (quivering) 200 0.00% 95.50% +95.50%
Ps Printed paper (still) 200 0.00% 68.00% +68.00%
Vl Video (Lenovo LCD) 201 0.00% 96.02% +96.02%
Vm Video (Mac LCD) 199 0.00% 71.36% +71.36%

C.3 COMPARISON OF ZERO-SHOT AND COT-TRAINED MODELS

To assess the effectiveness of our supervised CoT training, we first establish a zero-shot baseline,
where large vision-language models are directly prompted with natural language to classify real ver-
sus spoof images without any fine-tuning. To further validate the robustness of our approach, we also
conduct the same experiment with Qwen2.5-VL (Bai et al., 2025), a recent advanced multimodal
VLM. As shown in Table 9, both VLMs perform worse than the SOTA method I-FAS (Zhang et al.,
2025) under the zero-shot setting. After applying our CoT-based fine-tuning, we observe consistent
and substantial gains on both models: MiniCPMV achieves a reduction of 11.61% in HTER and an
improvement of 10.45% in AUC, while Qwen2.5-VL shows similar improvements (HTER reduced
by 10.28% and AUC improved by 11.97%). These results demonstrate that our FaceCoT dataset
and CEPL framework provide stable and significant benefits across different VLM architectures,
enabling stronger discriminative ability and cross-domain generalization than relying on zero-shot
reasoning alone.

Table 9: Comparison between zero-shot baselines and our supervised CoT method across different
backbone VLM models.

Method Average HTER (%) Average AUC (%)
I-FAS (Zhang et al., 2025) 11.31 93.71
Zero-shot(Qwen2.5-VL-7B (Bai et al., 2025)) 19.60 83.75
Zero-shot(MiniCPMV-2.6-8B (Yao et al., 2024)) 17.91 87.32
Ours(Qwen2.5-VL-7B (Bai et al., 2025)) 9.32 (↓10.28) 95.72 (↑11.97)
Ours(MiniCPMV-2.6-8B) 6.30 (↓11.61) 97.77 (↑10.45)

C.4 THE EFFECT OF REINFORCEMENT LEARNING ON COT ANNOTATION QUALITY

By introducing RL into the training of the caption model, the annotation accuracy is effectively
improved. Although this metric demonstrates the effectiveness of RL in enhancing conclusion la-
bel accuracy, relying solely on conclusion accuracy is not sufficient to fully evaluate the semantic
quality of the generated annotations. To further verify the advantages of RL-generated CoT annota-
tions in terms of linguistic coherence and logical consistency, we design an experiment in which we
treat two sets of generated CoT annotations—those produced by a model trained solely via Super-
vised Fine-Tuning (SFT) and those produced by an SFT-trained model further refined with RL—as
separate training sets under our proposed CoT-Enhanced Progressive Learning (CEPL) framework.
The comparative results, reported in Table 10, demonstrate the tangible benefits of RL on CoT data
quality: RL not only enhances annotation accuracy, but also significantly improves the consistency,
coherence, and semantic reliability of the generated CoT explanations.
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Table 10: The effect of Reinforcement Learn-
ing (RL) on CoT annotation quality: Supervised
Fine-Tuning (SFT) versus SFT with RL

Training methods Results
HTER(%) AUC(%)

SFT 8.00 96.97
SFT + RL 6.87 97.27

Table 11: Ablation study on CoT data at a reso-
lution of 224× 224, with comparison to a setup
using only binary label data.

Data type Results
HTER(%) AUC(%)

Label 17.07 90.42
Label + CoT 11.28 94.05

C.5 THE EFFECT OF FACECOT UNDER LOW-RESOLUTION

In the ablation study presented in the main text, we evaluate the impact of FaceCoT data using an
input resolution of 448× 448. Given that most existing FAS methods (Zhang et al., 2025; Srivatsan
et al., 2023; Huang et al., 2022) conduct experiments at a resolution of 224 × 224, we perform an
ablation study at this resolution to verify the effectiveness of our CoT data under low-resolution
settings. We compare a single-stage training regime using only label classification data against a
single-stage joint training regime incorporating CoT data. As shown in Table 11, the model trained
with CoT data achieves a 6.70% reduction in HTER and a 4.61% increase in AUC. These findings
can be summarized as follows: (1) The relative gain at 224× 224 (–5.79% HTER, +3.63% AUC) is
substantially larger than at 448 × 448 (–1.42% HTER, +1.54% AUC), demonstrating that our CoT
annotations help the model recover fine-grained facial cues that are otherwise lost at lower reso-
lutions. (2) Even when applied in a simple single-stage joint training regime, the CoT-augmented
model already outperforms current state-of-the-art methods, demonstrating its superior generaliza-
tion and robustness conferred by CoT data training.

D USAGE OF LLMS

In this work, Large Language Models (LLMs) were employed as auxiliary tools in two aspects:

• Manuscript Refinement: LLMs were used to assist in language polishing and grammar
checking after the human authors had completed the technical writing. The scientific con-
tent, experiment design, and analysis were fully conducted by the authors.

• Annotation of FaceCoT-Gold100K: GPT-4o was used to generate Chain-of-Thought
(CoT) annotations. Specifically, we carefully designed prompts to guide the model to-
ward describing spoof-related visual cues (e.g., reflection artifacts, cutting marks), rather
than allowing free-form generation. The model outputs were subsequently reviewed and
refined by human experts to ensure accuracy, fairness, and domain relevance.

E LIMITATION AND FEATURE WORK

We have included as many spoofing types as practically possible in FaceCoT to ensure broad cover-
age. Some uncommon real-world variations in devices or environments are inevitably not captured,
which we leave for future extension. Furthermore, while our work primarily emphasizes the utility
of FaceCoT for model training and performance gains on downstream FAS tasks, we acknowledge
that its potential as a standardized benchmark for evaluation has not been fully explored. In particu-
lar, since FaceCoT provides reasoning chains, it can serve as a valuable resource to assess not only
predictive accuracy but also the interpretability and coherence of model outputs. We leave a more
systematic investigation of FaceCoT’s role in model evaluation and benchmarking as an important
direction for future work.

F DEMONSTRATION OF RESULT INTERPRETABILITY

F.1 DEMONSTRATION OF REAL FACE

Since FAS is inherently a binary classification problem, explaining why a face is real is as important
as explaining why a face is spoof. To this end, we present a representative real face case (Fig 11)
to illustrate how the model perceives authenticity. Rather than relying solely on the absence of
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spoofing cues, the model proactively identifies positive evidence, including natural and proportionate
facial structure, realistic skin texture consistent with illumination, and coherence between facial
appearance and the surrounding environment. This unified reasoning pipeline ensures that both
real and spoof faces are explained under the same framework, with real cases supported by explicit
authenticity cues.

Figure 11: An interpretable result case on a real face

F.2 DEMONSTRATION OF ELEVEN BENCHMARK DATASET

In this section, we present examples of our model’s interpretable outputs on eleven benchmark
datasets, including MSU-MFSD Wen et al. (2015), CASIA-MFSD Zhang et al. (2012), Idiap Replay
Attack Chingovska et al. (2012), OULU-NPU Boulkenafet et al. (2017), SIW Liu et al. (2018b),
Rose-Youtu Li et al. (2018), HKBU-MARs-V1+ Liu et al. (2018a), WMCA George et al. (2019),
SIW-M-V2 Guo et al. (2022), CASIA-SURF-3DMask Yu et al. (2020), and HiFiMask Liu et al.
(2022a).

(a) An interpretable result case on CASIA-MFSD

Figure 12: Interpretable CoT outputs on eleven benchmarks
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(b) An interpretable result case on CASIA-SURF-3DMask

(c) An interpretable result case on HKBU-MARs-V1+

(d) An interpretable result case on HiFiMask

Figure 12: Interpretable CoT outputs on eleven benchmarks
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(e) An interpretable result case on MSU-MFSD

(f) An interpretable result case on OULU-NPU

(g) An interpretable result case on Replay Attack

Figure 12: Interpretable CoT outputs on eleven benchmarks
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(h) An interpretable result case on Rose-Youtu

(i) An interpretable result case on SiW

(j) An interpretable result case on SiW-M-V2

Figure 12: Interpretable CoT outputs on eleven benchmarks
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(k) An interpretable result case on WMCA

Figure 12: Interpretable CoT outputs on eleven benchmarks
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