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ABSTRACT

Multimodal large language models (MLLMs) are increasingly developed to meet
diverse deployment needs, varying in scale and computational demand. While
recent research has focused on building MLLMs from Small Language Models
(SLMs), these efforts remain limited in flexibility and are still data- and compute-
intensive. In this paper, we present the first comprehensive study on flexibly
compressing and recovering existing MLLMs in a data-efficient manner. Hence,
we address a critical gap in the literature by empirically analyzing best prac-
tices for adapting to specific hardware or resource limitations. Our study inves-
tigates pruning and knowledge distillation techniques, examining their impact on
downstream performance across various model compression strategies, including
pruning paradigms, recovery training schemes, and data requirements. Key find-
ings reveal that widthwise pruning is particularly effective in resource-constrained
scenarios. For smaller compression ratios, finetuning the multimodal projector
alone can restore most performance, while combining finetuning with hidden state
knowledge distillation proves most effective across all compression levels. No-
tably, we demonstrate efficient model downsizing using as little as 5% of the orig-
inal dataset for moderate compression. Our analysis suggests best practices for
compressing MLLMs for resource-efficient deployment. With our best practices,
Bunny-v1.0-3B retains over 95% of its original performance, while LLaVA-v1.5-
7B maintains more than 97%, with compression ratios below 30%.

1 INTRODUCTION

State-of-the-art multimodal large language models (MLLMs) (Liu et al., 2023; Chu et al., 2023;
Chen et al., 2024b) based on Large Language Models (LLMs) require substantial resources. For
instance, the LLaVA family (Liu et al., 2023) includes models with parameter counts ranging from 7
to 34 billion. Even those designed to be more memory-efficient, such as Bunny-v1.0-3B (He et al.,
2024), still require significant storage, with 3 billion parameters. Reducing the size of these models
without compromising performance is crucial for adapting them to diverse deployment scenarios
with varying resource constraints.

Despite the growing need for efficient MLLMs, most existing research has focused on building
MLLMs on SLMs (Zhu et al., 2024a; He et al., 2024; Chu et al., 2023). While these approaches
successfully reduce the overall model size, their flexibility is constrained by the fixed size of the
underlying SLM. Furthermore, training an SLM from scratch to meet desired specifications is com-
putationally expensive (Chu et al., 2023). Meanwhile, efforts to compress multimodal models have
largely focused on task-specific tuning (Wang et al., 2023; Shi et al., 2023). To the best of our
knowledge, no previous work has investigated general-purpose model compression for MLLMs.

In this work, we aim to uncover the key practices for obtaining effective and compressed MLLMs.
We evaluate several techniques designed for compressing LLMs on MLLMs and investigate how
different design choices for performance recovery affect the downstream performance of the com-
pressed MLLMs. Our comprehensive empirical study explores several key dimensions: the pruning
paradigms applied, the objectives used to restore initial performance, and the amount of data required
for effective recovery. Specifically, we examine two MLLMs: a large-scale model (LLaVA-v1.5-7B
(Liu et al., 2024)) and a model already optimized for efficiency (Bunny-v1.0-3B (He et al., 2024)).
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Figure 1: Overview of our best practices for MLLM compression. After evaluating two pruning
strategies—widthwise and layerwise pruning—and multiple recovery strategies, we propose distinct
compression approaches for MLLMs. The decision flow highlights the scenarios for applying each
method, depending on resource availability and compression ratio requirements. For each approach,
we display the resulting compressed model performance across a range of compression ratios (0-
60%) on a set of multimodal benchmarks. The spider plots illustrate the retained performance across
different tasks, demonstrating each strategy’s effectiveness at various compression levels.

We assess their performance on visual question answering (Hudson & Manning, 2019; Lu et al.,
2022) and instruction-following tasks (Li et al., 2023; Yin et al., 2023).

Given that the LLM contains the majority of the parameters (95% for LLaVA-v1.5-7B, 86% for
Bunny-v1.0-3B), we compress it by applying two distinct pruning strategies: layerwise pruning,
which removes entire transformer layers, and widthwise pruning, which reduces the number of
attention heads and MLP hidden dimensions. We then evaluate different strategies to recover the
potential performance loss: supervised finetuning, knowledge distillation from the original model
using Kullback-Leibler divergence or reversed Kullback-Leibler divergence on the logits distribution
or L2 loss on the intermediate features. Finally, we investigate how to combine these losses and their
effectiveness w.r.t. the amount of available training data.

Our systematic evaluation across different compression ratios led to different key findings:

• Widthwise pruning is more effective in low-resource scenarios as it produces an efficient
model even without recovery training.

• With recovery training, layerwise pruning is better for small ratios, while widthwise
pruning usually outperforms it at larger ones (greater than 40%).

• Finetuning only the multimodal projector is sufficient at small compression ratios,
where pruning has a minimal impact on the language model itself but destroys the multi-
modal alignment.

• The best recovery strategy is supervised finetuning coupled with intermediate repre-
sentation distillation, consistently achieving the the highest performance across all com-
pression ratios.

• The higher the pruning ratio, the higher the amount of data needed for recovering the
performance. While with small ratios (less than 50%) even 5% of the data might suffice,
this quantity increases for larger ones.

We highlight our key findings in Figure 1. These findings consitute a set of best practices that
practitioners can follow when compressing MLLMs and researchers can consider for developing ef-
fective pruning strategies. To ease their exploitation and future studies, we will release our codebase,
benchmark as well as the compressed model checkpoints upon acceptance.
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2 RELATED WORK

Pruning. Unstructured pruning (Dong et al., 2017; Frankle & Carbin, 2019; Lee et al., 2020; Park
et al., 2020; Sanh et al., 2020b; Farina et al., 2024) removes individual weights or neurons. While
such approaches can achieve strong compression rates with minimal accuracy trade-offs, they usu-
ally require specialized hardware or software for effective acceleration. Structured pruning (Ding
et al., 2019; Li et al., 2017; Liu et al., 2021; You et al., 2019) eliminates entire groups of parameters
to reduce both the model’s size and its computational overhead. Semi-structured pruning offers a
middle ground between structured and unstructured methods by selectively pruning certain model
parts. In the context of LLMs, Fang et al. (2023) and Ma et al. (2023) have successfully applied
structured pruning, achieving significant sparsity with minimal performance degradation. Xia et al.
(2024) targets transformer layers and demonstrates that some layers can be pruned more aggres-
sively without compromising accuracy. Meanwhile, Dery et al. (2024) propose a dynamic pruning
strategy that adjusts pruning throughout the training process. In this work, we focus on structure
pruning as well as the recovery strategies for MLLMs.

Further Compression Methods. In addition to pruning, techniques like quantization and low-rank
factorization are also widely used for model compression. Quantization (Bai et al., 2021; Yao et al.,
2022; Zafrir et al., 2019) reduces model size and computational cost by lowering the precision of
model parameters, enabling efficient inference with minimal performance loss. Low-rank factoriza-
tion (Hsu et al., 2022; Hu et al., 2021b; Lan et al., 2020; Ashkboos et al., 2024) compresses models
by approximating large weight matrices through the product of smaller matrices, effectively reduc-
ing the number of parameters while maintaining most of the model’s capacity. While these methods
can offer significant compression, we focus on pruning techniques, which allow for more granular
control over the architecture by directly targeting and removing redundant components.

Knowledge distillation (KD) (Hinton et al., 2015) is a standard method for compressing LLMs by
transferring knowledge from a large teacher model to a smaller student model (Gou et al., 2021;
Sanh et al., 2020a). In NLP classification settings, KD is often applied by having the student model
replicate the teacher’s output distribution (Liang et al., 2021; Song et al., 2020; Zhang et al., 2023),
hidden states Jiao et al. (2020); Sun et al. (2019), or attention patterns (Wang et al., 2020; 2021),
allowing the student to learn from the teacher’s internal representations effectively. For text gener-
ation tasks, Xu et al. (2024) provides a comprehensive survey of the role of knowledge distillation
in language models. Hsieh et al. (2023) introduce multi-stage distillation, transferring intermediate
representations to help the student model capture more detailed features. Gu et al. (2023) propose to
replace the forward Kullback-Leibler divergence with a reverse Kullback-Leibler divergence to pre-
vent the student model from overestimating the low-probability regions of the teacher distribution.

Efficient MLLMs. Recent studies (Jin et al., 2024; Zhu et al., 2024b; Lin et al., 2024; Wei et al.,
2024) have explored Multimodal Small Language Models (MSLMs). Models such as LLaVA-Phi
(Zhu et al., 2024b) utilize pretrained small language models to lower computational costs, while
MobileVLM (Chu et al., 2023) concentrates on projector designs to enhance MSLM performance.
The Bunny model (He et al., 2024) explores the effects of training data size on performace. Al-
though these approaches reduce model size, they are constrained by the fixed dimansions of the
base SLM. Our study specifically addresses methods for customizing the size of existing MLLMs
through structured pruning and recovery strategies.

While most multimodal structured compression efforts, such as EfficientVLM (Wang et al., 2023)
and UPOP (Shi et al., 2023), focus on task-specific tuning for tasks like visual question answer-
ing and image captioning, general-purpose model compression for MLLMs remains underexplored.
Our work addresses this gap by investigating structured pruning techniques and recovery strategies
applicable across a variety of multimodal tasks. Unlike previous approaches optimizing models for
specific tasks, our study provides general-purpose compression guidelines for MLLMs.

3 METHODOLOGY

This section outlines our approach to compressing MLLMs. We first introduce two pruning strate-
gies: layerwise and widthwise pruning. We then describe methods to recover model performance
through supervised finetuning and knowledge distillation.
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Notation. Given a triplet X = {xv,xp,xr}, the objective of an MLLM mθ, parameterized by
θ = {ψ, ϕ,W}, is to generate a response xr based on an input image xv and a text prompt xp, such
that mθ(xv,xp) = xr. The MLLM typically consists of a vision encoder gψ(·), an LLM fϕ(·), and
a multimodal projector W aligning the two modalities. The prompt xp is tokenized into Tp, while
the vision encoder processes the image xv to extract visual features, which are then converted into
language embedding tokens Tv via the multimodal projector:

Tv = W · gψ(xv) and fϕ(Tv ⊙Tp) = xr. (1)

The concatenated visual tokens Tv and prompt tokens Tp are fed into the LLM’s M layers, produc-
ing hidden states {Hi ∈ RT×d}Mi=1, where T is the number of tokens and d is the hidden dimension.
Finally, the probabilities pmθ

(xr|xv,xp, τ) are computed by passing the final hidden state through
the classification head with softmax temperature τ .

3.1 PRUNING

Pruning seeks to reduce the number of parameters in a model, thus decreasing its computational
cost. In MLLMs, the majority of parameters θ are concentrated in the LLM fϕ, so downsizing it can
significantly reduce the overall computational burden. The LLM is typically structured along two
main dimensions: depth and width. Depth refers to the number of stacked transformer layers, while
width pertains to the internal structure of each layer, including the multi-head attention mechanism
and the multi-layer perceptron (MLP). In this paper, we explore two pruning strategies to reduce
the parameter count in LLMs: layerwise pruning, which removes entire transformer layers, and
widthwise pruning, which eliminates the least important components within each layer.

To determine which layers or components to prune, we draw a small subset of n samples from
the the original visual instruct-tuning dataset as the calibration dataset D = {xjv,xjp,xjr}nj=1. The
importance of each layer or component is assessed, and those with the lowest importance are pruned.

3.1.1 LAYERWISE PRUNING

Empirical research (Fan et al., 2019; Sajjad et al., 2023) has shown that large transformer models
often contain redundant layers, allowing several to be removed with minimal impact on accuracy.
To identify and remove these redundant layers, we use the Block Influence (BI) score (Men et al.,
2024), which quantifies the importance of layer i through the cosine distance between input Hi and
output hidden states Hi+1. The key assumption is that layers that cause larger changes in hidden
states have a greater influence on model performance. The BI score of layer i is then calculated by

BIi(D) = 1− EX∼D,t

[
HT
i,tHi+1,t

∥Hi,t∥2∥Hi+1,t∥2

]
, (2)

where Hi,t represents the tth row of Hi. After calculating the BI scores, the layers are ranked by
importance, and those with the lowest scores are pruned.

3.1.2 WIDTHWISE PRUNING

Previous research has shown that transformer layers also exhibit width redundancy, meaning that
only a subset of attention heads (Voita et al., 2019; Michel et al., 2019) or MLP dimensions (Mc-
Carley et al., 2019; Hudson & Manning, 2019) are critical for model performance. To address this,
we apply dependency-based structural pruning, which removes redundant widthwise components
while minimizing the impact on the model’s performance. Specifically, we first identify groups of
interdependent structures and then prune entire groups based on their collective importance.

Following the methods of Fang et al. (2023) and Ma et al. (2023), we begin by constructing depen-
dency relationships within each LLM layer. LetNi andNj represent two neurons in the layer, where
In(Ni) and Out(Ni) represent the neurons connected to Ni as inputs and outputs, respectively. The
dependency of neuron Nj on Ni is defined as:

Nj ∈ Out(Ni) ∩ NumIn(Nj) = 1, or Nj ∈ In(Ni) ∩ NumOut(Nj) = 1, (3)

where NumIn(Ni) refers to the number of nodes connected to Ni as inputs and NumOut(Nj) is the
number of nodes connected to Nj as outputs. If neuron Ni is pruned, all its dependent neurons Nj

4
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must also be pruned. This process results in a set of dependency graphs G = {wki }Mi=1, where M is
the number of structures in the graph and wki represents the kth weight parameter within a structure.

Once the dependency graphs are constructed, we assess their importance at the group level, since
all weights within a graph must be pruned together. Group importance is evaluated by comparing
the vision-language modeling loss LCE(mθ(xv,xq),xr) on the calibration dataset, both with and
without the weight. To efficiently approximate the importance, we apply a Taylor expansion using
gradient information. The importance function is given by:

Iwk
i
(X) = |LCE(X,mθ)− LCE(X,m

wk
i =0

θ )| ≈
∣∣∣∣∂LCE(X,mθ)

∂wki
wki

∣∣∣∣ . (4)

We then prune the graphs with the lowest group importance IG :

IG(D) = EX∼D

[∑M
i

∑
k Iwk

i
(X)

]
. (5)

3.2 RECOVERY TRAINING

Pruning a large multimodal language model results in performance degradation, affecting both lan-
guage modeling and cross-modality alignment. To mitigate this, we investigate two recovery training
methods: supervised finetuning (Sec. 3.2.1) and knowledge distillation (Sec. 3.2.2). We consider
the orginal teacher model mT

θ , the pruned student model mS
θ′ , and a recovery dataset D.

3.2.1 RECOVERY TRAINING WITH SUPERVISED FINETUNING

A simple yet effective approach to recovery training is supervised finetuning on the original dataset.
This method helps counteract performance degradation by allowing the model to adapt its parame-
ters to the modified architecture while taking advantage of the detailed annotations in the original
dataset. Here, we first focus on training only the multimodal projector to realign the vision and lan-
guage spaces. Second, we jointly finetune both the projector and the language model while keeping
the vision encoder fixed, as finetuning the vision encoder does not improve performance (Karam-
cheti et al., 2024). We use the cross-entropy loss for supervised finetuning, denoted as

Lsft(mS
θ′ ,D) = EX∼D[LCE(mS

θ′(xv,xp),xr)]. (6)

3.2.2 RECOVERY TRAINING WITH KNOWLEDGE DISTILLATION

Knowledge distillation (KD) is a method used to transfer knowledge from a large, well-trained model
(the teacher) to a smaller or pruned model (the student) (Hinton et al., 2015). This approach allows
the pruned model to regain lost performance by mimicking the decision-making process of the more
capable teacher. In our setup, the uncompressed model acts as the teacher, while the pruned model
serves as the student. We explore two main strategies, logits-based KD and hidden state based KD,
evaluating different loss functions and their trade-offs.

Logits-based KD focuses on aligning the output probability distributions of the pruned model with
those of the teacher model. The logits-based KD loss is defined as

Llogits(mS
θ′ ,m

T
θ ,D) = EX∼D

[
LKD(pmT

θ
(xr|xv,xp, τ), pmS

θ′
(xr|xv,xp, τ))

]
. (7)

We leverage two distinct KD losses to evaluate the differences between these logit distributions.
Given the teacher distribution pθ and the student distribution qθ′ , the standard KD objective mini-
mizes the approximated forward Kullback–Leibler (KL) divergence between these two distributions,
denoted as LKD(pθ, qθ′) = DKL(pθ∥qθ′). This approach encourages the student distribution to
match all the modes of the teacher distribution.

However, minimizing forward KL can lead qθ to assign excessively high probabilities to areas where
p has little or no probability mass (Malinin & Gales, 2019). In contrast, Reversed Kullback–Leibler
divergence (RKL) minimizes LKD(pθ, qθ′) = DKL(qθ′∥pθ), encouraging qθ′ to focus on the major
modes of pθ while assigning low probabilities to its less significant regions. This helps the student
model avoid learning unnecessary long-tail variations of the teacher distribution and instead focus
on generating more accurate responses (Gu et al., 2023; Holtzman et al., 2019).
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Hidden State Matching involves aligning the pruned model’s intermediate representations (hidden

states) H
mS

θ′
i with the teacher model’s HmT

θ
i . The corresponding loss for a layer i can be defined as

Lmatch(mS
θ′ ,m

T
θ ,D) = EX∼D

[
Lfeat(H

mS
θ′

i ,H
mT

θ
i )

]
, (8)

where Lfeat refers to a feature matching loss. Both Yang et al. (2024) and Popp et al. (2024)
suggest that applying a feature-based L2 distillation loss improves the student model’s performance,
particularly for pre-trained vision-language models. Consequently, we employ L2 loss as the feature
matching loss Lfeat = ∥ · − · ∥22.

The total loss for recovery training is computed as:

L(mS
θ,m

T
θ ,D) = αLsft(mS

θ′ ,D) + βLlogits(mS
θ′ ,m

T
θ ,D) + γLmatch(mS

θ′ ,m
T
θ ,D) (9)

where α, β, and γ are the coefficients that balance the contributions of the different loss components.

4 EXPERIMENTS

In this section, we first introduce our experimental setup and then demonstrate the main findings on
model pruning (Sec. 4.1) and performance recovery (Sec. 4.2, Sec. 4.3). Finally, we highlight the
findings on recovery training using only a small fraction of data (Sec. 4.4).

Experimental setup. We evaluate pruning and knowledge distillation strategies on both a large-
scale MLLM model (LLaVA-v1.5-7B (LLaVA) (Liu et al., 2024)) and a smaller-scale MLLM model
(Bunny-v1.0-3B (Bunny) (He et al., 2024)). LLaVA is built upon Vicuna-v1.5 (Chiang et al., 2023)
with 6.7 billion parameters, and Bunny is based upon Phi-2 (Javaheripi et al., 2023) with 2.8 billion
parameters. We provide a detailed overview of the model architectures in Appendix A. For both
models, we exclusively use their visual instruction tuning datasets: LLaVA-v1-5-mix665k (Liu et al.,
2024) for LLaVA and Bunny-695K (He et al., 2024) for Bunny. During pruning, we randomly
select 10 samples as the calibration dataset to compute layer importance. For recovery training,
we experiment with various portions of the original dataset (i.e. 5%, 10%, 20%, and 100%) for
finetuning and knowledge distillation. We set the distillation temperature to 2.0 for logits-based
distillation and use the final layer representation for hidden state matching (see Appendix B).

We evaluate the pruned and recovery-trained models on visual question-answering tasks using GQA
(Hudson & Manning, 2019) and SQA-I (Lu et al., 2022), as well as instruction-following tasks
with POPE (Li et al., 2023), MME-Cognition, MME-Perception (Yin et al., 2023) and MMMU
(Yue et al., 2024). To ensure consistency, we use the lmms-eval suite (Bo et al., 2024) for all
evaluations. For clearer comparisons, we calculate the relative performance as a percentage of the
original (uncompressed) model’s performance on each benchmark.

4.1 THE EFFECT OF PRUNING ON THE MODEL PERFORMANCE AND RESOURCES USAGE

In this section, we begin by exploring the techniques to obtain the best pruned model. We then
examine the resulting reductions in memory usage and computational requirements.

Comparison of Pruning Techniques. As illustrated in Figure 2 (blue lines), for both the Bunny
and LLaVA model, widthwise pruning consistently outperforms layerwise pruning in terms of model
performance after pruning without recovery training. Specifically, for small compression ratios,
such as 15%, the Bunny model retains 95% of its performance, while LLaVA retains 93% (see Ap-
pendix C for full results). In resource-constrained scenarios, widthwise pruning without recovery
training offers an efficient strategy when a small compression ratio is required. However, as the com-
pression ratio increases, both widthwise and layerwise pruned models show significant performance
degradation. Overall, widthwise pruning better preserves the model’s structure and information flow,
allowing it to keep performance with minimal adjustments, especially at lower compression ratios.

The impact of the pruning method on model performance after finetuning both the projector and
the LLM is also illustrated in Figure 2 (green lines). For smaller compression ratios (less than
40%), layerwise pruning offers a slight advantage over widthwise pruning, while widthwise pruning
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Figure 2: Comparison of pruning and finetuning strategies on two MLLMs, Bunny and LLaVA. The
plot shows the average relative performance under three scenarios: pruning only, pruning followed
by finetuning the projector, and pruning followed by finetuning both the projector and the LLM.
For smaller compression ratios, finetuning only the projector effectively recovers performance. For
larger compression ratios, finetuning the projector and the LLM leads to better recovery, indicating
the need for broader adjustments as more parameters are pruned.

delivers better overall performance for larger compression ratios (greater than 40%). This suggests
that finetuning plays a crucial role in reconstructing inter-layer connections and reoptimizing layer
components.

Best Practice for MMLM Pruning. Widthwise pruning generally proves more effective than layer-
wise pruning in obtaining the best pruned model. A widthwise pruned model can often be deployed
without recovery training when targeting a small compression ratio (less than 20%). Regarding
post-finetuning performance, layerwise pruning shows a slight advantage at compression ratios be-
low 30%, whereas widthwise pruning performs marginally better at higher compression ratios.

Table 1: Memory requirements (Mem.) and
FLOPS for the Bunny and LLaVA models at var-
ious compression ratios. The models are pruned
widthwise. The evaluation is performed in infer-
ence mode, where each model is provided with an
image and a prompt containing 50 tokens.

Ratio Bunny LLaVA
Mem. (MiB) FLOPS (T) Mem. (MiB) FLOPS (T)

0% 6,167 4.77 13,546 9.57
15% 5,380 4.14 11,530 8.21
30% 4,597 3.50 9,548 6.89
45% 3,770 2.84 7,470 5.49
60% 2,992 2.20 5,435 4.17

From compression ratio to resource usage.
Table 1 provides an overview of how different
compression ratios impact memory usage and
FLOPS for both the Bunny and LLaVA mod-
els compressed via widthwise pruning. Mem-
ory consumption refers to the allocated GPU
memory, while FLOPS are measured using the
Calflops codebase1. The results demonstrate
that higher compression ratios consistently lead
to both memory and compute reductions. For
example, at a 30% compression ratio, we ob-
serve a memory reduction of 25% for Bunny
and 28% for LLaVA, with a corresponding de-
crease in FLOPS of 27% for both models. These reductions continue to scale with larger com-
pression ratios; at a 60% compression ratio, memory usage and FLOPS decrease by 50-60%. We
observe similar results for layerwise pruning (see Appendix D). This indicates that the achieved
compressions directly translate into improvements in memory efficiency and computational cost.

4.2 SUPERVISED FINETUNING FOR PERFORMANCE RECOVERY AFTER PRUNING

Compressing the LLM can impair its language modeling capabilities. Additionally, whether pruning
the LLM decoder would disrupt the alignment between vision and language remains underexplored.
To explore these issues, we experiment with two approaches: finetuning only the multimodal projec-
tor and jointly finetuning both the projector and the LLM. Following the previous research (Karam-
cheti et al., 2024), which shows that training the vision encoder may degrade overall model perfor-
mance, we keep the vision encoder frozen in both setups. To facilitate fast recovery, we employ the
low-rank approximation, LoRA (Hu et al., 2021a), while finetuning the LLM.

Finetuning the multimodal projector. As shown in Figure 2 (orange lines), finetuning the mul-
timodal projector significantly restores performance. At lower compression ratios (less than 20%),
finetuning only the projector achieves results comparable to jointly finetuning the LLM. For both

1Caflops codebase: https://github.com/MrYxJ/calculate-flops.pytorch
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Figure 3: Comparison of different distillation recovery strategies (KL loss, RKL loss, L2 loss, and
their combinations) for Bunny and LlaVA models pruned with widthwise pruning. The plot shows
the relative performance improvement of each strategy over standard finetuning across various com-
pression ratios. The results demonstrate that distillation helps recover more performance than fine-
tuning alone, with the L2 loss component consistently leading to the largest performance gains.

Bunny and LLaVA, finetuning the projector retains at least 95% of the performance at a compres-
sion ratio of 15%. As the compression ratio increases, the loss of language modeling ability becomes
more pronounced, making projector-only finetuning insufficient to recover the model’s performance
fully. Nevertheless, even at a compression ratio of 60%, only finetuning the multimodal projector
can still recover 60 to 80% of the performance by realigning the vision and language inputs. This
shows that pruning specific LLM structures in the MLLM can both damage the language modeling
ability and introduce modality misalignment, making the model incapable of comprehending vision.

Finetuning both the projector and the LLM. While a significant portion of the recovered per-
formance is due to realigning the visual and textual inputs, we observe consistent gains from addi-
tionally finetuning the pruned LLM (green lines in Figure 2), especially at higher compression ratios
(greater than 40%). This indicates that the pruned model not only suffers from modality misalign-
ment but also experiences a decline in its language modeling capabilities. We can partly restore these
lost capabilities by finetuning the LLM. At a compression ratio of 40%, finetuning both the projector
and the LLM restores more than 80% of the original model’s performance. Even at a compression
ratio of 60%, finetuning recovers close to 80% of the model’s original performance.

Best Practice for Supervised Finetuning. When a small compression ratio of around 15% is
required, finetuning the multimodal projector alone is typically sufficient to recover most of the
model’s performance. For higher compression ratios (greater than 40%), incorporating finetuning of
the LLM yields additional performance improvements.

4.3 KNOWLEDGE DISTILLATION FOR PERFORMANCE RECOVERY AFTER PRUNING

Table 2: Comparison of distillation strategies with
and without finetuning for the Bunny model com-
pressed via layerwise pruning. Finetuning helps
stabilize performance and prevents model col-
lapse, especially at higher compression ratios.

Bunny
Ratio FT L2 L2+FT RKL RKL+FT

15% 96.30% 95.51% 99.59% 96.88% 98.70%
30% 94.33% 88.13% 95.03% 92.21% 93.81%
45% 86.70% 56.96% 90.19% 82.57% 88.50%
60% 69.38% 47.61% 72.62% 12.61% 69.85%

This section investigates the impact of com-
bining knowledge distillation with finetuning.
We perform ablation studies by adjusting the
weights of each loss component to evaluate
their individual contributions (see 3.2.2). Ad-
ditional ablation results are in the Appendix E.

As shown in Table 2 for the Bunny model com-
pressed with layerwise pruning, we compare a
logit-based approach (RKL) and a hidden state
matching strategy (L2), both with and without a
finetuning loss component. The results demon-
strate that incorporating a supervised finetuning loss significantly enhances and stabilizes distilla-
tion performance. For example, when applying only the distillation loss, the L2 and RKL methods
can recover 85% of the original performance at a compression ratio of 30%. However, for higher
compression ratios, adding the finetuning loss becomes critical in preventing model collapse. At
a compression ratio of 60%, combining the finetuning loss with distillation dramatically improves
performance—L2 distillation increases from 47.61% to 72.62% and RKL distillation from 12.61%
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Figure 4: Comparison of recovery performance using different percentages of training data (100%,
20%, 10%, and 5%) for finetuning and distillation after pruning across Bunny and Llava models. For
smaller compression ratios, even a small percentage of the training data (as low as 5%) is sufficient
to recover most of the original performance. However, as the compression ratio increases, more
training data is required to achieve higher recovery performance.

to 69.85%. This pattern is consistently observed across all models and compression techniques
evaluated. While knowledge distillation alone can partially recover performance after pruning, its
effectiveness is limited without the integration of finetuning.

Figure 3 compares various distillation strategies based on their relative improvement over finetuning
alone when widthiwse pruning is applied (see Appendix F for further results on layerwise pruning).
Our results indicate that applying the L2 loss to align the hidden states of the student and teacher
in the final layer yields the best performance, or at least matches other methods. Unlike logit-
based approaches, which require the student to replicate the teacher’s output distribution, the L2 loss
method enables the student to better capture the teacher’s feature representations directly, leading to
enhanced performance. Additionally, we observe that RKL generally outperforms KL across most
compression ratios, a result consistent with the findings of Gu et al. (2024).

Best Practice for Knowledge Distillation. Knowledge distillation, particularly when combined with
finetuning and using L2 loss to map the intermediate states, delivers the most effective performance
recovery after pruning across all compression ratios.

4.4 DATA EFFICIENT RECOVERY

In this section, we investigate the feasibility of performing recovery training using only a small
fraction of the available data. Figure 4 shows the models’ performance after recovery training with
different portions of the original dataset relative to training with the full 100%. Both models undergo
widthwise pruning and recovery training incorporating RKL and L2 loss functions. Remarkably, for

Table 3: Performance of the best compressed models. The size is the number of total parameters of
the model, while the ratio, short for compression ratio, indicates the proportion of remaining LLM
parameters compared to the pre-pruning state. When the compression ratio (Ratio) is below 40%,
we apply depthwise pruning. For ratios above 40%, we use widthwise pruning. During the recovery
phase, we employ supervised finetuning combined with L2 loss to match the hidden states. For both
Bunny and LLaVA, 95% performance is retained if the compression ratio is smaller than 40%.

Method Size Ratio MMMU GQA SQA MME-C MME-P POPE AVG AVG-%
Bunny-v1.0-3B

3.2B 0% 34.10 54.72 70.70 289.30 1487.71 87.82 59.65 100.00%
Depth+FT+L2 2.8B 15% 33.00 54.56 70.00 304.29 1457.06 87.97 59.40 99.59%
Depth+FT+L2 2.5B 30% 32.30 53.08 68.12 252.50 1349.91 87.53 56.68 95.03%
Width+FT+L2 2.0B 45% 29.10 52.31 63.06 244.64 1281.66 87.09 54.37 91.15%
Width+FT+L2 1.6B 60% 28.10 48.72 53.20 216.07 1115.33 86.73 49.92 83.69%

LLaVA-v1.5-7B
7.0B 0% 35.10 61.98 68.67 363.21 1511.33 86.99 62.28 100.00%

Depth+FT+L2 6.3B 15% 36.40 61.20 68.42 337.86 1442.35 86.94 61.22 98.29%
Depth+FT+L2 5.5B 30% 36.00 60.34 68.82 318.57 1496.60 85.98 60.96 97.88%
Width+FT+L2 3.8B 45% 30.80 57.74 52.90 215.00 1191.17 85.74 52.27 83.92%
Width+FT+L2 2.8B 60% 27.70 52.32 46.26 211.79 1085.97 84.06 48.52 77.90%
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compression ratios below 50%, using just 5% of the original data is sufficient to achieve over 95%
of the performance compared to using the full dataset. However, as the compression ratio increases,
the amount of data required for effective recovery training also grows. For a compression ratio of
60%, the relative performance drops below 90% for LLaVA and diminishes even further to below
70% for Bunny. Nevertheless, using only a small portion of the training data appears to be a valid
option, significantly lowering the required time and cost for compressing and finetuning MLLMs.

Best Practice for Data Efficient Recovery. At small to medium compression ratios less than 50%,
using just 5% of the dataset is enough to achieve performance comparable to full data training.
However, for compression ratios greater than 50%, full data training becomes necessary to recover
performance effectively.

4.5 MODEL COMPRESSION RESULTS FOLLOWING OUR BEST PRACTICES

In this section, we summarize our key findings as a set of best practices and highlight model per-
formance achieved by following them. Based on the empirical results from the previous section, we
outline the following best practices for compressing MLLMs:

Best Practices for MLLM Compression and Recovery
• Widthwise pruning is more effective in low-resource settings, yielding an efficient model

even without the need for recovery training.
• With recovery training, layerwise pruning excels for smaller compression ratios (below

40%), while widthwise pruning performs better at higher ratios (above 40%).
• For small compression ratios, fine-tuning just the multimodal projector is often sufficient

to restore performance, with minimal impact from pruning.
• For recovery training, combining finetuning with knowledge distillation of the intermedi-

ate representations using L2 loss consistently achieves the highest performance across all
compression ratios.

• Data efficiency can be significantly boosted, requiring only 5% of the original data to match
full-data training results, though full datasets are still needed for high compression ratios.

These guidelines provide insights for researchers aiming to develop new techniques for deploying
MLLMs, enabling more effective model customization for specific deployment needs.

To illustrate the performance at different compression ratios, Table 3 offers a detailed comparison
of results for both Bunny and LLaVA across various multimodal benchmarks. The results show
that, with compression ratios below 30%, Bunny retains over 95% of its original performance, while
LLaVA maintains more than 97%. Even at higher compression ratios, up to 60%, our best practices
preserve an average performance of 83% for Bunny and 78% for LLaVA. These findings underscore
the feasibility of compressing MLLMs without incurring significant performance degradation. We
provide qualitative results for the compressed models in Appendix G. Additionally, other compres-
sion techniques, such as quantization, could be layered on top of the current framework to further
reduce inference time and memory usage, see Appendix H. We also include InternVL (Chen et al.,
2024a) in Appendix I to show our best practices generalize to other model.

5 CONCLUSION

In this work, we investigated efficient compression techniques for MLLMs, focusing on two key
pruning strategies: width and layerwise. Our study assessed the impact of these strategies on model
performance, both before and after recovery training, across various compression ratios. We further
explored recovery methods such as supervised finetuning and knowledge distillation to address per-
formance degradation caused by pruning. We formulate our findings as best practices, which offer
practical guidelines for optimizing MLLMs, enabling a balance between model size, performance,
and data efficiency to meet specific deployment resource constraints. Due to computational con-
straints, in this work we focused on two representative pruning techniques on two different models.
Future work could extend these best practices to include a broader range of pruning techniques and
models to further refine these strategies.
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. All pruning and recov-
ery strategies are thoroughly detailed in Section 3. Section 4 provides a comprehensive overview of
the experimental setup, with additional details included in the Supplementary Material. Upon pub-
lication, we will release the source code for pruning, recovery training, and the compressed model
checkpoints, allowing researchers to replicate and extend our work. For evaluation, we used a widely
adopted evaluation suite, which is publicly available and cited in our paper, ensuring a consistent
and transparent benchmarking process.
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A MODEL ARCHITECTURE OF LLAVA AND BUNNY

Table 4 outlines the architectures of the Bunny and LLaVA models. LLaVA-v1.5-7B employs CLIP-
ViT-L (Radford et al., 2021) as the vision encoder and Vicuna-v1.5 Chiang et al., 2023 as the lan-
guage decoder, while Bunny-v1.0-3B utilizes SigLIP-SO (Zhai et al., 2023) as the vision encoder
and Phi-2 (Javaheripi et al., 2023) as the language decoder. Both models leverage MLP layers to
align the vision and language modalities.

Model Parameters Vision Encoder Multimodal Projector Language Decoder
LLaVA-v1.5-7B 7.0B CLIP-ViT-L (0.3B) mlp2x-gelu (0.01B) Vicuna-v1.5 (6.7B)
Bunny-v1.0-3B 3.2B SigLIP-SO (0.4B) mlp2x-gelu (0.02B) Phi-2 (2.8B)

Table 4: Architecture details of the uncompressed models. We present the number of parameters,
along with the vision encoder, multimodal projector and the language decoder of the models in-
cluded in our study.

B IMPLEMENTATION DETAILS OF HIDDEN STATE MATCHING

To determine which LLM layers’ hidden states to map between the pruned and unpruned models,
we explore three options: matching the last layer, the last two, and the last three layers. Table 5
shows that matching only the last layer’s hidden state yields the best performance.

Ratio Layer-1 Layer-1,2 Layer-1,2,3
12.8% 95.34% 95.17% 96.25%
25.5% 91.02% 90.48% 90.97%
39.0% 87.08% 86.12% 84.84%
51.8% 75.25% 72.56% 72.87%

Table 5: Results for recovering widthwise pruned Bunny with hidden state mapping. We compare
the relative performance for mapping the last layer (layer-1), the last two layers (layer-1,2), and the
last three layers (layer-1,2,3). By only mapping the last LLM layer the best performance is achieved.

C MORE RESULTS FOR PRUNING

Table 6 presents the model performance for widthwise and layerwise pruning. For both of the
Bunny and LLaVA models, widthwise pruning consistently outperforms layerwise pruning. This
performance gap widens as the compression ratio increases, with widthwise pruning showing a
more significant advantage at higher compression ratios.

D MORE RESULTS ON MODEL EFFICIENCY

For the models pruned by layerwise method, we also assess their memory consumption as FLOPs.
Memory consumption refers to the allocated GPU memory, while FLOPS are measured using the
Calflops codebase2. The results in Table 7 show the same trend as widthwise pruning, indicating
that the achieved compressions directly translate into improvements in memory efficiency and com-
putational cost for both widthwise and layerwise pruning.

E KNOWLEDGE DISTILLATION WITH AND WITHOUT FINETUNING

Figure 5 and Figure 6 compare logits-based knowledge distillation (represented by RKL) and hidden
state matching-based knowledge distillation (represented by L2 loss), with and without supervised
fine-tuning, following widthwise and layerwise pruning, respectively. While knowledge distillation

2Caflops codebase: https://github.com/MrYxJ/calculate-flops.pytorch
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Method Size PruneRatio MMMU GQA SQA MME-C MME-P POPE AVG AVG-%
LLaVA-v1.5-7B 7.0B 35.10 61.98 68.67 363.21 1511.33 86.99 62.28 100.00%

Width-wise 6.3B 15% 32.40 59.34 63.21 268.93 1432.47 86.57 57.79 92.79%
5.5B 30% 31.00 52.59 54.29 253.21 1174.93 86.29 52.43 84.17%
4.8B 45% 27.60 20.86 12.10 70.00 347.45 45.96 22.11 35.49%
4.0B 60% 23.30 0.43 0.40 2.14 19.24 3.94 4.88 7.84%

Depth-wise 6.3B 15% 31.80 42.77 55.23 202.14 701.83 86.38 46.09 74.00%
5.5B 30% 32.70 42.18 59.64 210.71 921.88 78.69 47.61 76.43%
4.8B 45% 26.90 14.39 3.82 132.86 616.63 51.69 24.04 38.60%
4.0B 60% 25.80 0.00 0.00 0.00 0.00 0.00 4.30 6.90%

Bunny-v1 0-3B 3.2B 34.10 54.72 70.70 289.30 1487.71 87.82 59.65 100.00%

Width-wise 2.8B 15% 30.90 51.83 65.64 242.50 1207.85 87.94 54.50 95.48%
2.5B 30% 28.40 45.65 55.73 199.64 807.95 87.13 47.04 87.57%
2.0B 45% 25.70 37.92 3.42 200.00 618.25 83.12 34.35 60.66%
1.6B 60% 24.80 6.12 0.00 141.07 293.23 2.34 10.93 13.52%

Depth-wise 2.8B 15% 33.80 29.42 69.66 271.43 1456.41 87.91 54.59 91.52%
2.5B 30% 29.00 24.77 28.76 272.86 1273.34 86.50 44.47 74.55%
2.0B 45% 23.90 16.85 3.47 191.43 867.37 80.09 31.94 53.54%
1.6B 60% 26.60 0.02 17.15 0.71 55.92 0.02 7.78 13.04%

Table 6: Pruning results for LLaVA-v1.5-7B and Bunny-v1-3B. Size is the number of total parame-
ters of the model, while the compression ratio (Ratio) indicates the proportion of remaining language
model parameters compared to the pre-pruning state. For both models, width-wise pruning results
in better performance without finetuning compared to depth-wise pruning.

Ratio Bunny LLaVA
Mem. (MiB) FLOPS (T) Mem. (MiB) FLOPS (T)

0% 6,167 4.77 13,546 9.57
15% 5,411 4.16 11,604 8.03
30% 4,659 3.56 9,664 6.92
45% 3,907 2.95 7,724 5.55
60% 3,006 2.22 5,496 3.9

Table 7: Memory requirements (Mem.) and FLOPS for the Bunny and LLaVA models at various
compression ratios. The models are pruned layerwise. The evaluation is performed in inference
mode, where each model is provided with an image and a prompt containing 50 tokens.

alone helps in recovering performance post-pruning, it remains less effective than supervised fine-
tuning. However, when combined with supervised fine-tuning, it results in superior performance.
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Figure 5: Comparison of L2 and RKL distillation strategies with and without additional fine-tuning
loss for Bunny and Llava models compressed by widthwise pruning. The plot shows performance
differences relative to standard fine-tuning across varying compression ratios.
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Figure 6: Comparison of L2 and RKL distillation strategies with and without additional fine-tuning
loss for Bunny and Llava models compressed by layerwise pruning. The plot shows performance
differences relative to standard fine-tuning across varying compression ratios.

F KNOWLEDGE DISTILLATION STRATEGIES COMPARISON AFTER LAYERWISE
PRUNING

Figure 7 compares various distillation strategies based on their relative improvement over finetun-
ing alone after layerwise pruning. Similar to the results after widthwise pruning, applying hidden
states matching yields the best performance, or at least matches other methods. The trend that RKL
generally outperforms KL is also observed here.
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Figure 7: Comparison of different distillation recovery strategies (KL loss, RKL loss, L2 loss, and
their combinations) for Bunny and LlaVA models pruned with layerwise pruning. The plot shows
the relative performance improvement of each strategy over standard fine-tuning across various com-
pression ratios. The results demonstrate that distillation helps recover more performance than fine-
tuning alone, with the L2 loss component consistently leading to the largest performance gains,
particularly at higher compression ratios.

G QUALITATIVE RESULTS OF THE COMPRESSED MODELS

Table 8 shows the qualitative results of the compressed LLaVA models. After compression, the
models demonstrate a strong ability to comprehend visual inputs and generate detailed textual out-
puts.

H PRUNING VS. QUANTIZATION

The table includes results for LLaVA-6B and LLaVA-5B, where the former is layerwise pruned and
recovery trained, and the latter is widthwise pruned and recovery trained. Our findings indicate
that combining structured pruning with quantization provides a balanced approach: it significantly
reduces memory usage while mitigating the latency overhead associated with quantization alone.
This synergy leverages the strengths of both methods, offering an effective strategy for compressing
large models while maintaining performance and efficiency.
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Model Response

Prompt: A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite answers to the
user’s questions. USER: < image > What is funny in the image?

LLaVA-6.3B The image is funny because it features a dog wearing a Renaissance-
style dress and a bandana, posing as if it’s posing for a painting. This
is humorous because it is a playful and unconventional representation
of a dog, which is not something you would typically see in a painting
or a Renaissance-style dress. The dog’s pose and attire create a sense
of humor and absurdity, making the image entertaining and amusing to
viewers.

LLaVA-5.5B The image is funny because it features a dog dressed up in a human-like
attire, wearing a long black dress and a hat. This unusual and amusing
scene is not something you would typically see in real life, as dogs don’t
wear clothes or accessories like humans. The dog’s expression and the
way it is posing for the picture further contribute to the comic effect of
the image. The image captures the viewer’s attention and sparks a sense
of humor due to the unexpected and imaginative representation of a dog
dressed like a human.

LLaVA-3.8B The image is funny because it features a dog dressed in a human-like
dress, posing in a pose as if it were a person. The dog appears to be
dressed in a dress, which is a humorous and unexpected scene, as dogs
are not typically dressed like humans. The dog’s pose and the overall
scene create a sense of humor and playfulness, making the image a
delightful and entertaining piece.

Table 8: Qualitative analysis of compressed LLaVA models with respect to the image. We feed the
compressed LLaVA models the image paired with a prompt to generate a response. The compressed
LLaVA models are able to understand the visual inputs and output reasonable texts.

I GENERALIZABILITY OF THE BEST PRACTICES

We also explored the impact of recovery training, specifically finetuning the multimodal projector
and the language model, as well as the importance of incorporating knowledge distillation. These
results, shown in Table 11, confirm that finetuning only the multimodal projector is sufficient at
small compression ratios, as pruning minimally impacts the language model but disrupts multi-
modal alignment. For InternVL, finetuning the projector alone recovers 96.9% of the performance
at a 15% compression ratio, compared to 97.8% when both the projector and the language model are
finetuned. At a 30% compression ratio, projector-only finetuning recovers 75.1% while finetuning
both components recovers 86.6%. Furthermore, combining supervised finetuning with intermediate
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Model Memory(MiB) Ratio MMMU GQA SQA MME-C MME-P POPE AVG Latency

LLaVA-7B 13546 35.10 61.98 68.67 363.21 1511.33 86.99 62.28 105ms ± 1.5ms
LLaVA–7B.int8() 7518 35.2 61.87 68.22 350.71 1508.41 86.54 61.85 398ms ± 1.31ms
LLaVA-6B 11604 15% 35.40 61.17 68.07 328.57 1454.20 86.51 60.82 95 ms ± 8.1 ms
LLaVA-6B.int8() 6473 15% 35.40 61.17 68.07 328.57 1454.20 86.51 60.82 125 ms ± 937 µs
LLaVA-5B 9548 30% 31.80 60.71 60.54 252.50 1407.08 86.68 56.94 80.7 ms ± 634 µs
LLaVA-5B.int8() 5389 30% 31.6 60.65 60.09 263.57 1410.28 86.78 57.10 141 ms ± 2.4 ms

Table 9: Pruning and Quantization comparison on LLaVA-v1.5-7B.

Model Size Ratio MMMU GQA SQA MME-C MME-P POPE AVG AVG-%
InternVL-Chat-4B-V1-5 4B 43.20 62.57 93.30 547.50 1,596.71 88.00 72.56 100%
Layerwise 3.5B 15% 42.70 54.43 92.96 527.86 1,534.37 88.09 70.15 96.68%
Widthwise 3.5B 15% 43.60 56.35 93.12 510.10 1,588.30 87.96 70.70 97.44%

Table 10: Comparison of different pruning techniques on the model InternVL-Chat-4B.

representation distillation consistently achieves the highest performance across all compression ra-
tios. For InternVL, this approach recovers 98.2% of performance at 15% compression and 87.2% at
30%, underscoring its effectiveness.

Overall, the results from InternVL demonstrate that our best practices generalize effectively to dif-
ferent model architectures, confirming their applicability and robustness.

Model Size Ratio MMMU GQA SQA MME-C MME-P POPE AVG AVG-%
Mini-InternVL-Chat-4B-V1-5 4B - 43.20 62.57 93.30 547.50 1,596.71 88.00 72.56 100%
SFT mm only 3.5B 15% 42.70 54.43 92.96 527.86 1,534.37 88.09 70.15 96.68%
SFT mm + LLM 3.5B 15% 43.10 56.34 93.36 524.64 1,585.83 88.10 70.96 97.80%
SFT+KD mm + LLM 3.5B 15% 43.30 56.17 93.41 539.64 1,582.58 87.89 71.23 98.16%
SFT mm only 3B 30% 33.30 27.39 62.82 197.14 845.60 73.20 43.94 60.56%
SFT mm + LLM 3B 30% 34.40 53.46 76.80 432.27 1,438.28 86.57 62.86 86.64%
SFT+KD mm + LLM 3B 30% 36.20 53.77 76.60 448.21 1,410.88 86.60 63.29 87.23%

Table 11: Comparison of recovery training only multimodal projector (mm) and large language
model on Mini-InternVL-Chat-4B-V1-5 after layerwise pruning with different recovery strategies,
i.e., supervised finetuning (SFT) and knowledge distillation (KD) on intermediate representations.
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