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ABSTRACT

We investigate a challenging task of nighttime optical flow, which suffers from
weakened texture and amplified noise. These degradations weaken discriminative
visual features, thus causing invalid motion feature matching. Typically, existing
methods employ domain adaptation to transfer knowledge from auxiliary domain
to nighttime domain in either input visual space or output motion space. However,
this direct adaptation is ineffective, since there exists a large domain gap due to
the intrinsic heterogeneous nature of the feature representations between auxiliary
and nighttime domains. To overcome this issue, we explore a common-latent space
as the intermediate bridge to reinforce the feature alignment between auxiliary
and nighttime domains. In this work, we exploit two auxiliary daytime and event
domains, and propose a novel common appearance-boundary adaptation framework
for nighttime optical flow. In appearance adaptation, we employ the intrinsic image
decomposition to embed the auxiliary daytime image and the nighttime image into
a reflectance-aligned common space. We discover that motion distributions of the
two reflectance maps are very similar, benefiting us to consistently transfer motion
appearance knowledge from daytime to nighttime domain. In boundary adaptation,
we theoretically derive the motion correlation formula between nighttime image
and accumulated events within a spatiotemporal gradient-aligned common space.
We figure out that the correlation of the two spatiotemporal gradient maps shares
significant discrepancy, benefitting us to contrastively transfer boundary knowledge
from event to nighttime domain. Moreover, appearance adaptation and boundary
adaptation are complementary to each other, since they could jointly transfer
global motion and local boundary knowledge to the nighttime domain. Extensive
experiments have been performed to verify the superiority of the proposed method.

1 INTRODUCTION

Optical flow is to model the dense correspondence between adjacent frames. Existing optical flow
methods (Sun et al., 2018; Teed & Deng, 2020) mainly focus on the natural clean scenes while the
practical yet challenging nighttime optical flow has been less investigated. The main difficulty lies in
the negative influence of the nighttime degradations such as weakened texture and amplified noise.
The degradation factors have unexpectedly violated the brightness constancy assumptions, which
greatly weaken the discriminative visual features, and thus cause invalid motion features matching.

An intuitive solution is to resort to an auxiliary domain as the source domain, and transfer knowledge
from the source domain to the target nighttime domain. The existing nighttime optical flow methods
directly transfer the knowledge in either input visual space or output motion space. For example,
in Fig. 1 (a) (visual space adaptation), Zheng et al. (2020) transformed visual features of source
daytime domain to target nighttime domain via noise model in visual space. In Fig. 1 (b) (motion
space adaptation), Li et al. (2021) used gyroscope data as the source domain to model the background
motion, which assistantly improved motion features of target nighttime domain in motion space.
However, these direct adaptation methods would easily suffer from distribution misalignment issue,

∗Corresponding author.

1



Published as a conference paper at ICLR 2024

(d) Optical flows estimated by (a) (b) (c)

(a) Visual adaptation (c) Common adaptation

Source domain Target domain

Visual space

Motion space

(b) Motion adaptation

Visual space

Motion space

Source domain Target domain

Visual space

Motion space

Visual space

Motion space

Source domain Target domain

Visual space

Motion space

Visual space

Motion space

Common space
AdaptationAdaptation

Mapping Mapping
Adaptation Adaptation

Mapping Mapping

Mapping Mapping

Adaptation Adaptation

MappingMapping

Source domain

Target domain

Visual features

Motion features

Common features

Figure 1: Illustration of three nighttime optical flow paradigms. Visual adaptation and motion
adaptation directly transfer knowledge from source to target domain in input visual space and output
motion space, respectively. However, this direct adaptation is ineffective due to the large domain
gap caused by the intrinsic heterogeneous nature (feature distribution misalignment) of the feature
representations between source and target domains. In contrast, we explore a common-latent space as
the intermediate bridge to reinforce the feature alignment between the two domains. In this work,
we employ daytime and event domains as the source domains, and build the reflectance-aligned and
spatiotemporal gradient-aligned common spaces to transfer knowledge to target nighttime domain.

due to the intrinsic heterogeneous nature (distribution misalignment caused by degradations) of
feature representations between source and target domains. Therefore, selecting an appropriate
auxiliary domain and embedding the auxiliary source domain and target nighttime domain into a
common latent space are highly necessary for effective nighttime optical flow adaptation.

In this work, we explore a common-latent space as the intermediate bridge to mitigate the distribution
misalignment between source domain and target nighttime domain in Fig. 1 (c). We introduce
daytime image data and event camera data as two kinds of auxiliary domains to learn the intrinsic
common spaces that contain the essential multi-source information associated with nighttime data.
On one hand, the daytime image data contains dense visual features, which is definitely beneficial
to effectively capture the global motion appearance. On the other hand, the event camera is an
emerging neuromorphic vision sensor with high dynamic range (Gallego et al., 2019), which is
specifically sensitive to the local motion boundary. Appearance knowledge and boundary knowledge
are complementary to each other and important for nighttime optical flow.

Specifically, we propose a novel appearance-boundary domain adaptation framework for nighttime
optical flow (ABDA-Flow) in Fig. 2. In appearance adaptation, we observe that the auxiliary daytime
data and the nighttime data can be projected into a reflectance-aligned common space via the intrinsic
image decomposition retinex model (Fu et al., 2016). The motion distributions of the two reflectance
maps are very similar in the reflectance-aligned common space. We further map the aligned common
features to their motion spaces, and encourage motion manifolds of both domains to be close to each
other, thus benefitting consistently transferring global motion knowledge from daytime to nighttime
domain. In boundary adaptation, we theoretically derive the motion correlation formula between
paired nighttime frame and accumulated events within a spatiotemporal gradient-aligned common
space. We figure out that the correlation of the two spatiotemporal gradient maps shares significant
discrepancy measured by the Euclidean distance, benefitting us to contrastively transfer boundary
knowledge from event to nighttime domain. Thus, appearance adaptation and boundary adaptation
are perfectly complementary to each other, where the former is to transfer global motion appearance
and the latter is to transfer local motion boundary. Overall, our main contributions are summarized:

• We propose a novel common space appearance-boundary adaptation framework for nighttime
optical flow. To the best of our knowledge, this is the first work that leverages the common space
adaptation learning for tackling the problem of feature representation misalignment in optical flow.

• We construct two common spaces: reflectance-aligned (appearance) common space between
daytime and nighttime domains, and spatiotemporal gradient-aligned (boundary) common space
between nighttime frame and accumulated events. Both appearance and boundary adaption are
complementary to each other with better discriminative feature representations.
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• We conduct extensive experiments on various datasets. Quantitative and qualitative results demon-
strate that ABDA-Flow achieves state-of-the-art performance for nighttime optical flow.

2 RELATED WORK

Optical Flow Estimation. In recent years, CNN-based optical flow methods (Ranjan & Black, 2017;
Ren et al., 2017; Sun et al., 2018; Stone et al., 2021; Teed & Deng, 2020) constructed cost volume
and iterative strategies for optimizing optical flow, while transformer-based methods (Jiang et al.,
2021; Huang et al., 2022; Lu et al., 2023) tokened 4D cost volume and incorporated transformer
into optical flow estimation. However, these approaches usually suffer from extreme less-texture
caused by the low dynamic range of conventional cameras, which weakens discriminative visual
features, thus matching invalid motion features. On the contrary, event camera (Gallego et al., 2019)
is an emerging neuromorphic vision sensor with high dynamic range, which can sense sparse motion
boundary under nighttime scenes. Event-based optical flow methods (Gallego et al., 2018; Zhu et al.,
2018; Paredes-Vallés & de Croon, 2021; Gehrig et al., 2021b) mainly follow frame-based framework,
and train their networks via photometric constancy assumption. In this work, we leverage event
camera to assist conventional camera to improve nighttime optical flow.

Nighttime Optical Flow. An intuitive solution is to perform visual enhancement with subsequent
optical flow estimation. However, existing enhancement methods (Fu et al., 2016; Guo et al., 2016)
are not designed for optical flow, and the possible enhanced results may lose visual features, thus
contributing negatively to motion feature matching. Instead, a few methods have attempted to take an
auxiliary domain to directly transfer knowledge to nighttime domain via domain adaptation in either
input visual space or output motion space, e.g., visual adaptation (Zheng et al., 2020) and motion
adaptation (Li et al., 2021). Zheng et al. (2020) transformed daytime visual features to nighttime
domain via noise model, and then estimated nighttime optical flow. Li et al. (2021) used gyroscope
as the auxiliary domain to model the background motion features for assistantly improving nighttime
motion features, while failed for independent objects. However, this direct adaptation falls short
due to the large domain gap between auxiliary and nighttime domains, e.g., features distribution
misalignment. In this work, we employ daytime domain and event domain as the auxiliary domains,
and explore two common-latent spaces as the intermediate bridges to directionally transfer global
motion and local boundary knowledge to nighttime domain.

Domain Adaptation. Domain adaptation aims to tackle the distribution discrepancy between source
and target domains. Degraded scene understanding can be formulated as a domain adaptation problem,
which focuses on transferring specific knowledge from source clean domain to target degraded domain.
Existing domain adaptation methods under degraded scenes mainly directly transfer knowledge in
visual space (Chen et al., 2021; Gao et al., 2022) or task space (Liu et al., 2021). However, we
discover that there exists a large domain gap due to the intrinsic heterogeneous nature of the feature
representations between clean and degraded domains, limiting these direct adaptation methods. To
overcome this issue, we explore a common-latent space as the intermediate bridge to reinforce feature
alignment. Note that, common space adaptation can be applied for any degraded scene understanding
tasks, and the key is to find the appropriate common space according to the specific task.

3 COMMON APPEARANCE-BOUNDARY ADAPTATION

3.1 OVERALL FRAMEWORK

Nighttime optical flow is formulated as a task of exploring the common-latent space to transfer
knowledge from source auxiliary (e.g., daytime image and event) to target domain (e.g., nighttime
image). To reinforce the feature alignment between source and target domains, we build two common-
latent spaces. In this work, we propose a novel common appearance-boundary adaptation framework
to learn the two intermediate common-latent spaces. As shown in Fig. 2, the whole model structure
looks complicated but is simply modularized into four sub-modules, where two of them are used to
build the common space (e.g., common latent reflectance space and common latent boundary space)
and the other two are used for motion adaptation (motion distribution alignment and motion boundary
contrastive). The common latent reflectance space module and motion distribution alignment module
make up the appearance adaptation to consistently transfer motion appearance knowledge from
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Figure 2: The architecture of the ABDA-Flow mainly contains appearance and boundary adaptation.
In appearance adaptation, we take retinex model to align daytime and nighttime images into the
reflectance-aligned common space. We then map the common features to motion space, and make the
motion distributions between daytime and nighttime domains aligned. In boundary adaptation, we
transform nighttime image and event stream to the spatiotemporal gradient-aligned common space.
We then calculate the correlation statistic between the two spatiotemporal gradient maps to generate
an attention map for guiding the boundary features alignment between nighttime and event domains.

daytime to nighttime domain, while the common latent boundary space module and motion boundary
contrastive module make up the boundary adaptation to transfer local boundary knowledge from
event to nighttime domain. Under this unified framework, the common appearance and boundary
adaptation complement each other, and jointly transfer the dominant knowledge to nighttime domain.

3.2 COMMON APPEARANCE ADAPTATION

Estimating optical flow from nighttime images is difficult since nighttime degradations break the
brightness constancy assumption, which most of optical flow methods rely on. We argue that scene
motion is not affected by illumination, but by the intrinsic appearance of the scene. Therefore, we aim
to explore a common-latent space robust to illumination to associate daytime and nighttime domains.

Common Reflectance Space. Retinex model (Fu et al., 2017; Wu et al., 2022) assumes that a image
can be intrinsically decomposed into illumination L and reflectance R, where reflectance represents
image appearance. Motivated by this, we argue that daytime and nighttime reflectance of the same
scene should be consistent. This makes us naturally consider how different the optical flows obtained
by daytime and nighttime reflectance maps are. To illustrate this, we map daytime and nighttime
images and reflectance maps to the same motion manifold. In Fig. 3, we have a key observation:
motion distributions from daytime and nighttime reflectance maps are similar. This motivates us to
take reflectance as the common-latent space to associate daytime and nighttime domains.

According to the retinex model I = R · L, given the daytime frames [Itd, I
t+1
d ] and the night-

time frames [Itn, I
t+1
n ], we decompose them to obtain the corresponding reflectance maps, namely

[Rt
d, R

t+1
d , Rt

n, R
t+1
n ], where d, n denote the daytime and nighttime. Note that, the retinex archi-

tecture of our framework is similar to Uretinex-net (Wu et al., 2022), which is pre-trained on the
public datasets (Wu et al., 2022) for better initialization. To further make the daytime and nighttime
reflectance maps look similar, we enforce the adversarial loss (Zhu et al., 2017):

Ladv = Ed[logD(Rd)] + En[log(1−D(Rn))], (1)
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Figure 3: Motion distribution of daytime and nighttime domains. Optical flow of nighttime frame
suffers degradation while flow of daytime frame is sharp. Motion distribution of nighttime reflectance
is similar to those of daytime frame and reflectance, but dissimilar to that of nighttime frame. This
motivates us to take reflectance as the common latent space to transfer knowledge.

where D is the discriminator. Then, we employ the motion feature extractor Er of reflectance to
encode the reflectance maps to the cost volume space [cvrd, cv

r
n], where r denotes the reflectance.

Note that, cost volume stores the correlation value between adjacent frames, which is formulated as
cv = (ft)

T · w(ft+1), where f is the visual features, T denotes transpose operator and w is the warp
operator. We further align the cost volumes of daytime and nighttime reflectance maps to guarantee
the consistent motion distribution using K-L divergence with softmax function Φ:

Lkl
cost =

∑
Φ(cvrn) · logΦ(cvrn)

Φ(cvrd)
. (2)

Motion Distribution Alignment. To ensure the daytime→nighttime directional knowledge transfer,
we take the cost volume of the common reflectance-aligned space to associate motion features of
daytime and nighttime domains. We divide the transfer process into two phases: intra-domain motion
alignment which transfers knowledge between visual-based and reflectance-based motion spaces
within the same domain, and inter-domain motion alignment which is the cross-domain knowledge
transfer. We first train the daytime optical flow network with photometric loss (Yu et al., 2016):

Lpho
flow =

∑
ψ(Itd − w(It+1

d ))� (1−O)/
∑

(1−O), (3)
where ψ is a sparse Lp norm (p = 0.4). O is the occlusion mask by checking forward-backward
consistency (Zou et al., 2018), and� is a matrix element-wise multiplication. As for the intra-domain
motion alignment, we enforce the pixel-level cost consistency loss:

Lalign
intra = ||cvd − cvrd||1 + ||cvn − cvrn||1. (4)

After that, we calculate the cost volume discrepancy between visual-based and reflectance-based mo-
tion spaces within the same domain, and use K-L divergence to constrain the distribution discrepancy
between daytime and nighttime domains to achieve the inter-domain motion alignment:

Lalign
inter =

∑
Φ(cvn − cvrn) · logΦ(cvn − cvrn)

Φ(cvd − cvrd)
. (5)

Hence, the common appearance adaptation first transfers the global motion knowledge from daytime
to nighttime in common reflectance space via Lkl

cost, then enforce the pixel-level motion consistency
between reflectance to image in daytime and nighttime individually via Lalign

intra, and finally, transfer
the motion residual between image and reflectance from daytime to nighttime via Lalign

inter , in which it
further diminishes the small motion errors in the nighttime.

3.3 COMMON BOUNDARY ADAPTATION

Appearance adaptation can promise a preliminary result for nighttime optical flow, while limited by
low dynamic range of conventional cameras under nighttime scenes, there exist weakened visual
features, thus matching the inaccurate motion features. This problem cannot be solved by appearance
adaptation alone. According to our investigation, event camera (Gallego et al., 2019) has the advantage
of high dynamic range which promises sensing motion boundary. Therefore, we introduce the event
camera (event domain) to assist the conventional camera in improving the motion boundary. However,
there are two difficulties: spatial alignment and large domain gap between nighttime image and event.

Paired Image and Event. The spatially aligned nighttime image and event can be obtained in two
ways (seeing supplementary for details). First, we have set up a physically coaxial optical system
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Figure 4: Motion correlation statistic between nighttime image and event domains. We use Euclidean
distance to calculate the motion correlation between the nighttime image and accumulated events
within the spatiotemporal gradient common space. The larger the distance is, the larger correlation
discrepancy is, and the more dissimilar the boundaries of the two spatiotemporal gradient maps. This
motivates us to contrastively transfer boundary knowledge to nighttime image domain.

with a beam splitter for the event and image sensor, in which the two modalities are inherently spatial
aligned by the shared light path. Second, we start from the spatial alignment algorithm perspective
by performing a standard stereo rectification, and then fine-tune the registration error by pixel offset
(Tulyakov et al., 2022), which can ensure a reliable paired nighttime image and event.

Common Boundary Space. To explore the common space for the image-event domain gap, we
ideally extend the optical flow basic model (Paredes-Vallés & de Croon, 2021) via Taylor expansion:

I(x, t) = I(x, t) + (
dx

dt

∂I

∂x
+
∂I

∂t
) +O(dx, dt). (6)

where u is estimated motion. We remove the high-order error term O(dx, dt) to approximate Eq. 6:
It = −∇I · U, (7)

where U denotes optical flow estimated by adjacent frames and ∇I is spatial gradient field of the
frame. Note that, optical flow U is firstly pre-trained via appearance adaptation on daytime im-
ages for accuracy since the flow encoders of appearance and boundary adaptation for nighttime
domain are shared. It denotes brightness change along the time dimension, which can be approx-
imated as the accumulated events warped by the optical flow in a certain time window, namely
It = ∆Lev = U ·

∑
ei∈∆tk

piC. And we further transform Eq. 7 as follows:

∆Lev = U ·
∑

ei∈∆tk
piC = −∇I · U, (8)

where −∇I · U and ∆Lev are both the spatiotemporal gradient. ei is the event timestamp, pi is the
event polarity, and C denotes the event trigger threshold. Eq. 8 indicates that the spatiotemporal
gradient of image and event domains are consistent, and can serve as the spatiotemporal gradient-
aligned common space, namely common latent boundary space. When applied for nighttime scenes,
conventional camera suffers from weakened texture, while the event camera still has clear boundaries.
We use Euclidean distance to construct a pixel-wise motion correlation metric formula to measure the
discrepancy between nighttime image and event domains within the common boundary space:

Corr = N(f(∆Lev,−∇I · U)), (9)
where f is correlation metric with Euclidean distance, and N is normalization. In Fig. 4, we further
obtain the correlation statistic distribution via histogram (corresponding to the histogram in Fig. 2),
and figure out that the correlation of the spatiotemporal gradient maps calculated from nighttime
images and accumulated events shares significant discrepancy. This motivates us to utilize the
common boundary space as an intermediate bridge to contrastively transfer boundary knowledge.

Motion Boundary Contrastive. Within the spatiotemporal gradient-aligned common space, the
motion correlation can perceive the degree of nighttime degradation in different regions. Thus,
through MLP and softmax, we take the correlation statistic distribution as a prior to generate a weight
attention map A to classify the motion classes with the cross-entropy loss:

Lcls = −E
∑

i,j∈A

∑K

k=0
I[k=y]log(A(i, j)), (10)

where motion classes contain K manually defined motion features that can reflect different degrees of
degradation, which is determined by the correlation statistical distribution. 0 corresponds to normal
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Table 1: Quantitative results on synthetic (Noise) Dark-KITTI2015 (D-KITTI / ND-KITTI) datasets.

Method DarkFlow-PWC Selflow SMURF ABDA– (KinD++) + AGLLNet + – (KinD++) + AGLLNet +

D-KITTI EPE 7.56 14.22 12.58 11.70 11.36 10.03 8.42 3.47
Fl-all 35.75% 55.87% 48.69% 46.31% 45.88% 44.65% 39.25% 16.13%

ND-KITTI EPE 8.56 18.01 16.75 14.54 13.40 11.95 10.26 4.35
Fl-all 41.28% 65.43% 59.55% 55.26% 54.21% 45.91% 45.60% 23.86%

(a) Nighttime Images (b) SMURF (c) DarkFlow-PWC (d) GMA (e) ABDA-Flow

Figure 5: Visual comparison of optical flows on real nighttime images of DSEC dataset.

motion. y is the pre-classified motion class label, and I[k=y] is an indicator function. Next, we multiply
the cost volume of nighttime image domain and that of event domain with the attention map to acquire
the motion features with category attributes. To get rid of the degraded motion features, we exploit
contrastive learning to pull normal motion features together while push abnormal motion features
away. We argue that motion features sampled from event domain should be accurate as positives
fP ev

k
; motion features whose class index is 0 are the positive samples fPn

j
, and those corresponding

to other classes are the negatives fNn
i

, sampled from nighttime image domain. We align the normal
motion features of nighttime image domain and event domain via contrastive adaptation loss:

Lcontra =
1

N

∑N

k=1

∑N

j=1

exp(fPn
j
· fP ev

k
/τ)

exp(fPn
j
· fP ev

k
/τ) +

∑N
i=1 exp(fNn

i
· fPn

j
/τ)

, (11)

where N denotes the positive/negative sample number, τ is the scale parameter. We then estimate the
nighttime motion Fn and event motion Fev with the aligned features via the motion consistency loss:

Lself
flow =

∑
||Fn − Fev||1 � V/

∑
V, (12)

where V represents the valid motion mask, obtained from the attention map A via threshold segmen-
tation, where the threshold is the probability value corresponding to the motion class 0. Note that, we
also train the event optical flow model with the photometric loss Lpho

flow.

3.4 OPTIMIZATION

Consequently, the total objective for the proposed framework is written as follows:
LABDA = Lpho

flow + λ1Ladv + λ2Lkl
cost + λ3Lalign

intra + λ4Lalign
inter + λ5Lcls + λ6Lcontra + λ7Lself

flow. (13)
The first term is to initialize the daytime optical flow and event optical flow networks, the second
and third terms are to constrain the common reflectance alignment, the fourth and fifth terms are to
transfer global motion knowledge from daytime to nighttime domain, and the intention of the sixth
term is to generate the attention map using the correlation statistic distribution within the common
boundary space, the last two terms aim to transfer the local boundary knowledge from event to
nighttime image domain. [λ1, ..., λ7] are the weights that control the importance of the related losses.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. We conduct extensive experiments on synthetic and real datasets. The synthetic dataset
is synthesized by the noise model (Zheng et al., 2020) on KITTI2015 (Menze & Geiger, 2015),
named as (noise) Dark-KITTI2015. The real datasets include the public datasets (e.g., Dark-GOF and
Dark-DSEC) and the proposed low light frame-event (LLFE) dataset. Dark-GOF and Dark-DSEC are
the nighttime parts of GOF (Li et al., 2021) and DSEC (Gehrig et al., 2021a). LLFE covers various
nighttime illumination conditions. Note that, Dark-DSEC and LLFE are the paired frame-event
datasets obtained via stereo rectification and coaxial optical system, respectively.
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Table 2: Quantitative results on real nighttime datasets. ‘–’ denotes none of the training data.

Method
Frame-based methods Event-based methods

SMURF PWC GMA DarkFlow-PWC GyroFlow ABDA EV-FlowNet E-RAFT E-ABDA

Dark-GOF
EPE 2.87 10.26 1.14 3.35 0.92 0.85 – – –
Fl-all 28.20% 65.47% 13.60% 32.18% 9.85% 7.94% – – –

Dark-DSEC
EPE 2.13 3.08 1.48 2.29 – 0.74 3.21 0.82 0.78
Fl-all 36.75% 59.32% 24.10% 38.23% – 11.85% 63.25% 13.81% 12.26%

(a) Nighttime images (b) DarkFlow-PWC (c) GMA (d) ABDA-Flow

3.5 lux

9.2 lux

Figure 6: Visual comparison of optical flows on the proposed unseen LLFE with various illumination.

Implementation Details. We set the sample number N as 1000 and the motion class number K as
10. During the training phase, we need only three steps. First, we train daytime and event optical
flow models to ensure that the proposed framework can learn accurate motion knowledge. Second,
we train nighttime optical flow model via appearance adaptation to transfer motion knowledge from
daytime to nighttime domain. Finally, we use boundary adaptation to further train nighttime optical
flow model for transferring motion knowledge from event to nighttime image domain. During the
testing phase, we only need the single nighttime optical flow model for inference. We choose the
average end-point error (EPE (Dosovitskiy et al., 2015)) and the lowest percentage of erroneous
pixels (Fl-all (Menze & Geiger, 2015)) as the evaluation metrics for the quantitative evaluation.

Comparison Methods. We choose visual adaptation DarkFlow-PWC (Zheng et al., 2020) and motion
adaptation GyroFlow (Li et al., 2021) for a fair comparison. Several supervised (PWC-Net (Sun
et al., 2018) and GMA (Jiang et al., 2021)) and unsupervised (Selflow (Liu et al., 2019) and SMURF
Stone et al. (2021)) methods are also compared. Note that, the supervised methods are first trained
on Dark-KITTI2015, and then trained on target real nighttime datasets via self-supervised learning
(Stone et al., 2021). For the comparison on synthetic datasets, we have two training strategies for
competing methods, one is to directly train on nighttime images; and the other is the two-stage one by
performing image enhancement first (e.g., KinD++ (Zhang et al., 2019), AGLLNet (Lv et al., 2021)),
and then train them on the enhanced results (named as (KinD++)+ / AGLLNet+). In addition, we
also compare with the event optical flow methods (e.g., EV-FlowNet (Zhu et al., 2018) and E-RAFT
(Gehrig et al., 2021b)) with our event optical flow model on the DSEC and LLFE datasets.

4.2 COMPARISON EXPERIMENTS

Comparison on Synthetic Datasets. In Table 1, we choose unsupervised methods for fair comparison.
We can conclude that the proposed method significantly outperforms the competing methods by a
large margin. Note that, the pre-processing image enhancement approaches do benefit to nighttime
optical flow, while the performance is still limited due to the possible artifacts after enhancement.
Compared with DarkFlow-PWC, the proposed method with the latent-space adaptation works better.

Comparison on Real Datasets. In Table 2, the unsupervised method suffers degradations, and the
supervised methods cannot work well due to the gap between synthetic and real images. There exist
outliers in the results of DarkFlow-PWC and GyroFlow that are designed for nighttime scenes in Fig.
5. In contrast, our result is sharp-boundary. Moreover, we compare with SOTA event optical flow
methods in Table 2, demonstrating the superiority of the proposed event optical flow model.

Generalization for Unseen Nighttime Scenes. In Fig. 6, we choose the proposed LLFE dataset as
the unseen nighttime scenes for generalization comparison. Under real nighttime conditions with
various illumination, the proposed method performs better than other competing methods. The
main reason is that the proposed common space adaptation can explicitly learn the intrinsic motion
knowledge for nighttime scenes, regardless of the illumination change.
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Table 3: Discussion on
effect of common space.

Strategy EPE
w/o motion/reflect./bound. 1.51

w/ motion, w/o reflect./bound.1.09
w/ motion/reflect., w/o bound.0.87
w/ motion/bound., w/o reflect.0.95

w/ motion/reflect./bound. 0.74

Table 4: Ablation study on
adaptation losses.
Lalign

intraL
align
interLcontraLself

flowEPE
× × × × 1.45√

× × × 1.24√ √
× × 1.05√ √ √

× 0.85√ √ √ √
0.74

Table 5: Discussion on training data and
optical flow backbone.
Training data Method EPE

daytime,
nighttime

CycleGAN + our baseline 1.41
Our appearance adaptation 0.87

daytime,
nighttime,

event

CycleGAN + our baseline + E-RAFT1.33
Ours w/ CNN backbone 0.77

Ours w/ Transformer backbone 0.74

smooth motion sharp motion

(c) Appearance-boundary adaptation (ABA)

DA AA ABA

(a) Direct adaptation (DA) (b) Appearance adaptation (AA)

Reflectance Map

Event Frame

Nighttime Image

Figure 7: t-SNE of motion distribution in smooth and sharp motion regions during appearance and
boundary adaptation. Direct adaptation cannot work well. Appearance adaptation with reflectance
could smooth global motion. Boundary adaptation with event further sharpens the motion boundary.

4.3 ABLATION STUDY AND DISCUSSION

How does Common Space Work? In Table 3, we demonstrate the role of common space on
knowledge transfer. Motion adaption is a motion transfer part of appearance adaptation and boundary
adaptation, which does improve nighttime optical flow, while the performance has an upper limit due
to the domain gap. Common space further contributes positively to the optical flow result. The main
reason is that common space can bridge the domain gap, and guide directional knowledge transfer.

Direct Adaptation v.s. Common Space Adaptation. In Fig. 7, we visual the motion results and
low-dimension feature distributions in smooth and sharp motion regions via t-SNE. Direct adaptation
cannot work well, and the entire distribution is cluttered. Common appearance adaptation with
reflectance concentrates smooth motion features, and common boundary adaptation with event further
clusters sharp motion features. Clustered low-dimension feature distributions illustrate that the
common appearance-boundary adaptation could effectively learn discriminative motion features.

Effectiveness of Adaptation Losses. In Table 4, Lalign
intra and Lalign

inter significantly improve nighttime
optical flow performance, since appearance adaptation could transfer the dense motion knowledge
to nighttime domain. Lcontra and Lself

flow slightly further improve the optical flow result, because
boundary adaptation mainly transfers sparse boundary knowledge to nighttime image domain.

Influence of Training Data and Backbone. In Table 5, we replace common space adaptation with
CycleGAN (Zhu et al., 2017) and CNN-based RAFT for comparison on multi-source training data
and optical flow backbone. For training data, the "CycleGAN+" strategies do not perform as well as
common space adaptation. For the backbone, the performances of transformer-based and CNN-based
backbones are almost the same. Therefore, training data diversity and backbone can indeed improve
the performance, while common space adaptation is the key to solving nighttime optical flow.

5 CONCLUSION

In this work, we propose a novel common appearance-boundary adaptation framework to learn an
intermediate common space with discriminative feature representations for nighttime optical flow. To
the best of our knowledge, we are the first to investigate the new common space learning paradigm
for tackling the heterogeneous feature representations due to the gap between auxiliary and nighttime
domains for nighttime optical flow. We construct the daytime-nighttime reflectance-aligned common
space and the image-event spatiotemporal gradient-aligned common space. The two common space
adaptations are complementary to each other for joint global appearance and local boundary motion
estimation. We demonstrate that the proposed method significantly outperforms the state-of-the-art
methods. We believe that our work could not only facilitate the development of the nighttime optical
flow but also enlighten the researchers of the broader field, i.e., adverse scene understanding.
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