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Abstract
This paper focuses on a method to train a regres-
sion model from incomplete input values. It is
assumed in this paper that there are no missing
values in a training data set while missing values
exist during a prediction phase using the trained
model. Under this assumption, Intentional-Value-
Substitution (IVS) training is proposed to obtain a
machine learning model that makes the prediction
error as minimum as possible. Through a mathe-
matical analysis, it is shown that there are some
meaningful substitution values in the IVS training
for the model. It is shown through a series of com-
putational experiments that the substitution values
estimated by the extended mathematical analysis
help the models predict outputs for inputs with
missing values even though there is more than one
missing value.

1. Introduction
An ideal situation in terms of regression in general is that
each data point is complete without any missing values as
well as the training dataset is large enough to build an ac-
curate model. However, this is a rare case in real-world
problems. For example in medical diagnosis, some mea-
surements might not be available due to the failure in the
measuring equipment or patient’s personal reasons.

There are several ways to overcome the issue of handling
missing values (Baraldi & Enders, 2010). One way is to
impute a missing value by a certain value (e.g., zero, the
average value of feature values, or the output of an imputa-
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tion model constructed from the training dataset). Another
way is to construct a model without those features that in-
clude missing values. Some papers presented how to handle
the incomplete data with missing values by using statistical
modeling. Methods for the parameter estimation were also
proposed in (Little & Rubin, 1986). Furthermore, the ways
to handle missing values have been discussed as multiple im-
putation (Rubin, 1989) and maximum likelihood estimation
(Schafer & Graham, 2002). Tresp et al.(Tresp et al., 1993)
provided a way to incorporate missing or uncertain values
during training of neural networks and showed that heuristic
ways could be harmful in the training. Acock (Acock, 2005)
discussed substitution strategies for missing values. He men-
tioned that non-optimum strategies for missing values could
produce biased estimates, distorted statistical power, and
invalid conclusions.

It should be noted that the above-mentioned methods con-
sider the case where both training and test datasets have the
missing values. On the other hand, we consider the case
where there are missing values only in the test dataset and
the training dataset is complete without any missing values.
This situation happens in many real-world problems. For
example, in emergency medical care and sports, a good
amount of information is available in the training and learn-
ing phase, but in the practical situation (i.e., in the test phase
in the context of machine learning), one must decide in a
short time with a limited amount of information.

Hasegawa et al.(Hasegawa et al., 2019) proposed a method
for training a data-driven model for the case where there
are missing values only in the test data. In this paper, we
refer to this method as Intentional-Value-Substitution (IVS)
training. IVS training substitutes a non-missing value in
the training dataset with some value. In other words, this
method models the target function using a modified training
dataset where some feature values are substituted with a
certain value even though no missing values are contained
in the datasets. Hasegawa et al.(Hasegawa et al., 2019) in-
vestigated the effectiveness of IVS training, and Fukushima
et al.(Fukushima et al., 2019) proposed a method to estimate
an appropriate value for value-substitution in the case of
two-dimensional problems.

In this paper, we extend the previous estimation method
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to three-dimensional problems. We assume that the value-
missing happens at the second and last dimensions with a
certain probability, not at the first dimension. Under these
assumptions, we propose the method for estimating the
optimal substitution values.

2. Intentional-Value-Substitution (IVS)
Training

In this section, we introduce the procedure of the IVS train-
ing for obtaining a robust machine learning model against
missing values. Note that no missing values exist in a train-
ing dataset, while a test dataset contains missing values. On
the other hand, we assume that we know in advance which
features will contain missing values in a test dataset.

For the sake of simplicity, this paper define x =
(x1, x2, . . . , xn) as an n-dimensional input vector drawn
from the training dataset. Furthermore, we suppose that the
i-th feature xi is possibly missing at the test dataset. Under
such a situation, the procedure of IVS training is shown in
the following three steps:

Step 1: Draw an input vector x with its associated target
value from the training dataset.

Step 2: With a pre-specified probability, substitute xi for a
certain value.

Step 3: Train a prediction model with the modified input
vector and the target value.

We can easily expand the above procedure for mini-batch
training by iterating the process as many as the number of
input vectors in the batch set.

The training phase in the IVS training needs to consider
which value is used for substitution. The setting is used in
Step 2 of the above procedure.

Through a mathematical analysis, the optimal value that can
minimize the expected error between the prediction of the
model and the target value is obtained as follows:

ψ′DXmis
(xobs)

= arg min
x′

mis

{
∫
DXmis

p(xmis|xobs)f(xobs,xmis) dXmis

−f(xobs,x
′
mis)}2, (1)

where xobs is the value that never be missing even a test
phase. On the other hand, xmis are possibly missing only in
the test phase. In Eq. (1), some conditions are assumed(e.g.,
the target function and where the missing is possibly to
occur are known, a prediction model has a sufficient accu-
racy in approximating the target function). The more detail
explanation are in Appendix. A.

3. Estimation of Optimal Substitution Values
without the Target Function

In the previous section, we obtained the function ψ′(·) by
assuming that we know the target function f beforehand.
However, of course, the target function f is unknown in
many problem settings. On the other hand, as shown in
the previous section, it is clear that the optimal substitution
value has an important meaning in an imputation of missing
values and IVS training.

For this problem, Fukushima et al.(Fukushima et al., 2019)
proposed a method to estimate the optimal value without
the target function in problem settings where features only
on a single dimension are missing. In general, however,
the value missing would happen simultaneously in practical
problems that have more than two-dimensionality.

Therefore, in this section, we propose a method that can es-
timate the optimal substitution values even though multiple
missing would happen.

3.1. Single Missing

First of all, we introduce a method that can estimate
the optimal value of single-missing problems proposed
in (Fukushima et al., 2019). For simplicity, it is assumed
that the dimensionality of the problem is three. The method
consists of the following four steps to calculate the function
ψ′(·) to estimate optimal substitution values. In the follow-
ing explanation, it is assumed that the missing occurs only
at the third dimension.

The method is described as pseudo-code in Algorithm 1.
Note that the method can only apply to problem settings
where feature-missing would happen just on a particular
dimension regardless of the number of dimensionalities.

3.2. Multiple Missing

In this paper, we extend the method mentioned in Subsec. 3.1
to be able to treat multiple missing. For simplicity, we
assume that the dimensionality is set as three similarly, and
the second and third elements might be missing. Therefore,
we discuss the case where the features are missing on the
second and third dimensions simultaneously. When each
random variable is independent, Eq. (1) should be satisfied
in all missing features, that is,

ψ′2 = arg min
x′
2

{
∫ ∞
−∞

p(x2|x1, x3) (2)

f(x1, x2, x3)dx2 − f(x1, x′2, x3)}2,

ψ′3 = arg min
x′
3

{
∫ ∞
−∞

p(x3|x1, x2) (3)

f(x1, x2, x3)dx3 − f(x1, x2, x′3)}2,
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Algorithm 1 Estimate ψ′(·) in single missing. Assume
that the dimensionality of data is 3 and the value missing
happens only at the third dimensions.

Require: Dtrain = {(x, y)|x = (x1, x2, x3) s.t., a <
x1, x2, x3 < b}

Require: The number of division d
bandwidth← (b− a)/d
for i← 0 to bandwidth− 1 do

for j ← 0 to bandwidth− 1 do
count← 0
ysum ← 0
for (xt, yt) ∈ Dtrain do

if xt
1 in (x1i, x1(i+1)] and (x2j , x2(j+1)] then

count← count + 1
ysum ← ysum + yt

end if
yavg ← ysum/count

end for
t′ ← arg min(yavg − yt)2
x3 ← xt

′

3 at (x1i, x1(i+1)] and (x2j , x2(j+1)]
end for

end for

ψ′2, ψ
′
3 = arg min

x′
2,x

′
3

{
∫ ∞
−∞

∫ ∞
−∞

p(x2, x3|x1) (4)

f(x1, x2, x3)dx2dx3 − f(x1, x′2, x′3)}2.

In order to find x2 and x3 that satisfy Eq. (2) - (4), we first
estimate x2 and after that estimate x3 step by step. Thus, we
can extend the estimation method that is for single missing
to multiple missing. The extended method is described in
Algorithm 2 and the more detail explanation of this algo-
rithm is in Appendix B.

4. Experiments
In computational experiments, we employ the following
benchmark functions:

f1 (Sphere function): f(x) =

n∑
k=1

x2k (−5 < xk < 5)

If we suppose that n = 3, p(x1, x2, x3) = p(x1)p(x2)p(x3)
and p(x1) = p(x2) = p(x3) = 1

10 (i.e., a uniform distri-
bution), then the optimal substitution value in the ideal
situation is obtained from Eq. (1). The optimal values are
described at Appendix C.

f2: f(x) = (x1 − x2 − x3)2, (−5 < x1, x2, x3 < 5)

If we suppose that n = 3, p(x1, x2, x3) = p(x1)p(x2)p(x3)
and p(x1) = p(x2) = p(x3) =

1
10 (i.e., a uniform distribu-

tion), the optimal substitution value in the ideal situation is

Algorithm 2 Estimate optimal values in multiple missing.
Assume that the dimensionality of data is 3 and the value
missing happens at the second and third dimensions.

Require: Dtrain = {(x, y)|x = (x1, x2, x3) s.t., a <
x1, x2, x3 < b}

Require: ψ′(·) in single missing by Algorithm 1
Require: The number of division d

bandwidth← (b− a)/d
for i← 0 to bandwidth− 1 do
count← 0
αsum ← 0
for (xt, yt) ∈ Dtrain do

if xt1 in (x1i, x1(i+1)] then
count← count + 1
αsum ← αsum + xt3

end if
αavg[i]← αsum/count

end for
end for
if missing on the second and third dimensions then
i← index s.t., x1 in (x1i, x1(i+1)]
x2 ← ψ′2(x1, αavg[i])
x3 ← ψ′3(x1, x2)

else if missing on the second dimension then
x2 ← ψ′2(x1, x3)

else if missing on the third dimension then
x3 ← ψ′3(x1, x2)

end if

obtained from Eq. (1). The optimal values are also described
at Appendix D.

The number d that divides domains of non-missing dimen-
sionality is obtained by the following equation:

d = n
√
Nall, (5)

where n and Nall mean the dimensionality and the num-
ber of data in Dtrain, respectively. In this paper, three-
dimensional problems are used for the experiments. The
number of Dtrain is 10000, so the number of d is

d =
3
√
10000 = 21.544... ' 22,

obtained by Eq. (5). Every element of the data is drawn from
a uniform random distribution with the domain (−5, 5).

A neural network is employed to model the benchmark
functions. The neural network is trained with the following
settings: The number of epochs is 1000 and the size of a
mini-batch is 32. The number of layers in the neural network
is set to three and the number of hidden units is specified as
50. The sigmoid function is used as an activation function
for each layer and each unit. Adam algorithm (Kingma &
Ba, 2015) is used as the optimizer that computes adaptive
learning rates for updating the weights of the networks.
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In order to show the effectiveness of the estimation method,
we compare the prediction errors of models among several
substitution ways for missing values. Substitution probabil-
ity in the training phase and missing probability in the test
phase are set as psub, pmis ∈ {0.00, 0.25, 0.50, 0.75, 0.90},
respectively. When substituting and missing would happen,
the values are replaced to ψ′ estimated by Algorithms 1 and
2 according to non-missing values.

5. Results
The results of the prediction errors when training by using
the substitution values with probability psub are shown in
Figs. 1 and 2. The horizontal axes in the figures represent
pmis. At the setting psub = 0.00, the models are trained
without IVS training. In Figs. 1 and 2, the test missing
probabilities are changed at the interval of 0.1 for each ex-
perimental setting. The test errors in f1 and f2 are compared
among five types of the substitution methods. The solid line
and the colored areas represent the average and the variance
of the test error using the model trained with IVS training,
respectively. “Zero” and “Five” set the fixed value 0.0 and
5.0 to the missing features. “Theory” and “Theory random”
are set to the substitution value as described in Sec. 2 with
the temporary value α = 0 (see Appendix B). When the
features are missing simultaneously, both of them are im-
puted according to the substitution methods. The difference
between them is that “Theory” indicates the two substitution
values (positive and negative) that give preference to the pos-
itive one. On the other hand, “Theory random” substitutes
the two values randomly. “Estimation” substitutes the value
estimated by the Algorithms 1 and 2.

The performance of “Estimation” is as good as “Theory”
and “Theory random” for all settings. Therefore, it is shown
that the estimated substitution values that obtained from our
proposed method work effectively for those data that include
missing values regardless of multiple missing even though
the target function f is unknown. Moreover, comparing the
y-axis of (a)-(e) in each setting, it is noteworthy that IVS
training allows the models to become more robustness even
though any value is employed as the substitution.

In respect of the substitution probability psub, it was found
that the proposed method can obtain some effect regard-
less of the frequency of IVS Training. However, the optimal
substitution probability will depend on the test missing prob-
ability pmis.

For the function f2, the substitution value “Zero” was as
good as “Theory” and “Theory random”. On the other hand,
the setting “Zero” has no effect for the function f1. The
policy of assigning 0 is not effective for all functions. It
seems reasonable to conclude that the estimation method
can be employed for any regression problems in order to
obtain a robust model.

6. Conclusions
In this research, we extended the estimation method of the
optimal substitution value that can consider multiple missing
in the IVS training. As the results of numerical experiments,
it was shown that the validity of the robust model against
the loss for unknown data that contain missing values by
estimating the optimal substitution values. For future work,
we will conduct experiments with a biased-distribution data,
and make use of the findings of this research for handling
missing values in other noisy experimental settings.
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Figure 1. Test error maps on f1 (Sphere)
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A Study on Intentional-Value-Substitution Training for Regression with Incomplete Information

A. Analysis on the Optimal Values with the
Target Function

The expected error of the trained model for test data is math-
ematically investigated. The mathematical investigation
reveals that naive substitutions such as an average and a
zero do not lead to a good trained model with a high predic-
tion performance for unseen data. It should be noted that
the mathematically appropriate substitution value can be
obtained only in a ideal situation where the target function
is known and which feature will be missing in the prediction
phase. Thus, the mathematically appropriate substitution
value is used only for the reference in the computational
experiments.

Let us denote the n feature variables as an n-dimensional
random variable vector ~X = (X1, X2, . . . , Xn). We
also consider an n-dimensional random variable vector
~R = (R1, R2, . . . , Rn), where each element of the vec-
tor represents whether the corresponding feature is observed
or missing as follows:

Ri =

{
1, if Xi is observed,
0, otherwise (i.e., Xi is missing). (6)

Now let us define a new random variable as follows:

X ′i =

{
Xi, if the i-th feature value is observed,
?, if it is missing. (7)

Then, we can define φ : X × R −→ X ′, where φ is a
bijective function.

When we consider the modeling problem with missing data
using a joint probability distribution on the universe of
discourse (X1, . . . , Xn, R1, . . . , Rn), the joint probability
function p(x, r) is defined as follows:

p(x, r) = p(x|r)p(r) = p(r|x)p(x), (8)

where p(x) = p(x1, . . . , xn) is the joint probability den-
sity function of X1, . . . , Xn, and p(r|x) is the probability
function which represents whether xi is observed or not for
X = x.

Secondly, we define a substituting operation for missing
elements of the feature values. Let a mapping be ψ : Rn

? →
Rn where Rn

? is {x′ = (x′1, · · · , x′n)|x′i ∈ R ∪ {?}}. Then
the substituted data follow x∗ = ψ(x′) = ψ(φ(x, r))(,
ψr(x)). Furthermore, when we put ψr(x) = ψr

1 × · · · ×
ψr
n(x) = (ψr

1 (x), . . . , ψ
r
n(x)), we can obtain

ψi(φ(x, r)) =

{
xi, if ri = 1,
ψ′ri (xobs), if ri = 0,

(9)

where xobs is a vector that consists of those observed fea-
tures.

Next, we discuss the machine learning model and its loss
function for a task. For simplicity, let the target function be
f , and the prediction model be g. Without loss of generality,
we suppose f : Rn → R and g : Rn → R. Moreover, let us
define the distance (i.e., error) between f and g for an input
vector x as δ(f(x), g(x)), and also let us define a possible
vector set for r as S = {s1, · · · , sn|∀i ∈ N, si ∈ {0, 1}}.
Then, the expectation of the error δ between f and g is
represented as follows:

E[δ(f, g)]

=
∑
s∈S

∫
. . .

∫
DX

p(x, r = s)δ(f(x), g(ψs(x)))dX

=

∫
. . .

∫
DX

p(x, r = 1)δ(f(x), g(x))dX (10)

+
∑

s∈S\{1}

∫
. . .

∫
DX

p(x, r = s)δ(f(x), g(ψs(x)))dX.

Unless otherwise noted, we denote
∫
. . .
∫
DX

=
∫
DX

for
simplifying equations hereafter. In Eq. (10), the first term
is the expectation for those input vectors with no missing
values, and the second term means the one for those input
vectors with missing feature values. Here, when we suppose
that the loss is evaluated by δ(f, g) = {f − g}2, then we
have the following equation for obtaining the expected loss:

E[δ(f, g)]

=

∫
DX

p(x, r = 1){f(x)− g(x)}2dX (11)

+
∑

s∈S\{1}

∫
DX

p(x, r = s){f(x)− g(ψs(x))}2dX.

Now, we focus only on a single term in the latter part of
Eq. (11). In this discussion, we assume that the elements
of s are s1 = s2 = · · · = sk = 1, sk+1 = sk+2 = · · · =
sn = 0. However, please note that the following discussion
holds even if the value of either 1 or 0 appears in arbi-
trary elements. Let us denote Xobs = X1, X2, · · · , Xk,
and Xmis = Xk+1, Xk+2, · · · , Xn. When we suppose
p(x, r = s) = ps(x), the latter term that satisfies r = s in
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Eq. (11) is written as follows:∫
DX

ps(x){f(x)− g(ψs(x))}2dX

=

∫
DX

ps(x)f
2(x)dX

−2
∫
DXobs

g(xobs, ψ
′s
k+1(xobs), . . . , ψ

′s
n (xobs))[∫

DXmis

ps(x)f(x) dXmis

]
dXobs

+

∫
DXobs

g2(xobs, ψ
′s
k+1(xobs), . . . , ψ

′s
n (xobs))[∫

DXmis

ps(x) dXmis

]
dXobs, (12)

where
∫
DXmis

ps(x) dXmis in Eq. (12) can be deformed as
follows:∫
DXmis

ps(x) dXmis = ps(xobs)

∫
DXmis

ps(xmis|xobs) dXmis

that denotes a marginal distribution by Xmis. By rearrang-
ing
∫
DXmis

ps(x)f(x) dXmis, the following equation is ob-
tained: ∫

DXmis

ps(x)f(x) dXmis

= ps(xobs)

∫
DXmis

ps(xmis|xobs)f(x) dXmis

= ps(xobs)EXmis
[f(x)]. (13)

This represents the expected output value for the missed
value. For simplicity, we denote this as EXmis

[f(x)] =
es(xobs) in the following equations. Based on these dis-
cussions, by setting g′(xobs) , g(xobs, ψ

′s
k+1(xobs), . . . ,

ψ′sn (xobs)), then we have the following:∫
DX

ps(x){f(x)− g(ψs(x))}2dX

=

∫
DXobs

ps(xobs) {g′(xobs)− es(xobs)}
2

−ps(xobs)e
2
s(xobs) dXobs

+

∫
DX

ps(x)f
2(x)dX.(14)

If there is only one combination of the observed features
and the missing features, that is, if r = s, the optimal
model g′ that minimizes Eq. (14) can be trained from
the training using IVS method. Eq. (14) is minimized
when g′(xobs) = g(xobs, ψ

′s
k+1(xobs), . . . , ψ

′s
n (xobs)) =

es(xobs). As it is possible that there is no missing

value in the input vector, it is necessary to minimize
Eq. (11), with which Eq. (14) is substituted. Now, we
suppose that f can be approximated by g, and g ' f .
Then, we obtain the function ψ′sk+1, . . . , ψ

′s
n satisfying

g(xobs, ψ
′s
k+1(xobs), . . . , ψ

′s
n (xobs)) = es(xobs). This

leads to the substitution value for minimizing the expec-
tation of error in the case where the above missing observa-
tions could occur.

Finally, we discuss this mathematical analysis in more
detail by tackling to a concrete example. Let us as-
sume that R1, R2, · · · , Rn, and X are independent, that
is, p(x, r) = p(x)p(r1)p(r2) . . . p(rn). Moreover, we
also suppose p(r1 = 1) = · · · = p(rk = 1) = 1.0,
p(rk+1 = 0) = · · · = p(rn = 0) = pmis. The expected
error under these settings is obtained from Eq. (11) as fol-
lows:

E[δ(f, g)] = (1− pmis)

∫
DXobs

p(x){f(x)− g(x)}2dXobs

+pmis

∫
DXmis

p(x){f(x)− g(ψs(x))}2dXmis

and from Eq. (14), we obtain

E[δ(f, g)] = (1− pmis)

∫
DX

p(x){f(x)− g(x)}2dX

+pmis

∫
DXobs

p(xobs) {g′(xobs)− e(xobs)}
2

−p(xobs)e
2(xobs) dXobs

+pmis

∫
DX

p(x)f2(x)dX,

where e(xobs) = EXmis [f(x)] =
∫∞
−∞ p(xmis|xobs) f(x)

dXmis (see Eq. (13) ). Now, when g ' f , the expected error
is minimized if ψ′ satisfies the following equation:

ψ′xmis
(xobs)

= arg min
x′

mis

{
∫
DXmis

p(xmis|xobs)f(xobs,xmis) dXmis

−f(xobs,x
′
mis)}2. (15)

B. Optimal Temporary Value for the
Proposed Method

When ψ′ is a multi-valued function, we suppose that one of
the solutions is selected according to pre-defined rules (i.e.,
ψ′ becomes a one-to-one correspondence function).

We can use Eq. (2) in order to obtain the optimal substitution
values on the second dimension x2. However, since the
value on the third dimension is missing, let us put x3 = α
temporary. Then, we can obtain the optimal value x2 as
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follows:

ψ′2(x1, α)= arg min
x′
2

{
∫ ∞
−∞

p(x2|x1, α)f(x1, x2, α)dx2

−f(x1, x′2, α)}2. (16)

By using Eq.(16), the optimal values of the third dimansion
are written as follows:

ψ′3(x1, ψ
′
2(x1, α))

= arg min
x′
3

{
∫ ∞
−∞

p(x3|x1, ψ′2(x1, α))

f(x1, ψ
′
2(x1, α), x3)dx3

−f(x1, ψ′2(x1, α), x′3)}2

=arg min
x′
3

{
∫ ∞
−∞

p(x3|x1)f(x1, ψ′2(x1, α), x3)dx3

−f(x1, ψ′2(x1, α), x′3)}2, (17)

where p(x1 = x′1 ∩ψ′2(x1, α) = ψ′2(x
′
1, α)) = p(x1 = x′1)

because ψ′ is a one-to-one correspondence function.

The term
∫∞
−∞ p(x3|x1)f(x1, ψ′2(x1, α), x3)dx3 in Eq. (17)

is the expected value of f for x3 when x2 is set to ψ′2(x1, α).
On the other hand, from Eq. (4), the expected value of f(·) is∫∞
−∞

∫∞
−∞ p(x2, x3|x1)f(x1, x2, x3)dx2dx3 when x2 and

x3 are simultaneously missing. Therefore, α that equalize
the expected value in Eq. (17) to the one of Eq. (4) can be
obtained by the following equation:∫ ∞

−∞
p(x3|x1)f(x1, ψ′2(x1, α), x3)dx3

=

∫ ∞
−∞

∫ ∞
−∞

p(x2, x3|x1)f(x1, x2, x3)dx2dx3.(18)

The right side of the Eq. (18) can be rearranged by Bayes’
theorem as follows:∫ ∞

−∞

∫ ∞
−∞

p(x2, x3|x1)f(x1, x2, x3)dx2dx3

=

∫ ∞
−∞

∫ ∞
−∞

p(x2|x1, x3)p(x3|x1)f(x1, x2, x3)dx2dx3

=

∫ ∞
−∞

p(x3|x1)

{
∫ ∞
−∞

p(x2|x1, x3)f(x1, x2, x3)dx2}dx3.(19)

Now, from Eq. (2), the term
∫∞
−∞ p(x2|x1, x3)f(x1,

x2, x3)dx2 is the expected value of f(·) for x2. In the case
of continuous function f(·), there is at least one x′2 satisfy-
ing f(x1, x′2, x3)−

∫∞
−∞ p(x2|x1, x3)f(x1, x2, x3)dx2 = 0

that can minimizes the right part of Eq. (2). Therefore,
Eq. (2) can be deformed as follows:

f(x1, ψ
′
2(x1, x3), x3)

=

∫ ∞
−∞

p(x2|x1, x3)f(x1, x2, x3)dx2. (20)

By substituting Eq. (20) into Eq. (19), we can obtain the
following equation:∫ ∞

−∞

∫ ∞
−∞

p(x2, x3|x1)f(x1, x2, x3)dx2dx3

=

∫ ∞
−∞

p(x3|x1){
∫ ∞
−∞

p(x2|x1, x3)f(x1, x2, x3)dx2}dx3

=

∫ ∞
−∞

p(x3|x1)f(x1, ψ′2(x1, x3), x3)dx3. (21)

Therefore, the value of α that holds Eq. (18) is written as
follows: ∫ ∞

−∞
p(x3|x1)f(x1, ψ′2(x1, α), x3)dx3

=

∫ ∞
−∞

p(x3|x1)f(x1, ψ′2(x1, x3), x3)dx3

⇐
∫ ∞
−∞

p(x3|x1)αdx3 =

∫ ∞
−∞

p(x3|x1)x3dx3

⇔ α =

∫ ∞
−∞

p(x3|x1)x3dx3,(22)

where the right side of Eq. (22) means a conditional expecta-
tion of the random variable x3 for x1. When we temporarily
substitute the optimal value to α, the relational expression
Eq. (4) can be satisfied.

(ψ′2(x1, α), ψ
′
3(x1, ψ

′
2(x1, α)))

∈ arg min
x′
2,x

′
3

{
∫ ∞
−∞

∫ ∞
−∞

p(x2, x3|x1)f(x1, x2, x3)dx2dx3

−f(x1, x′2, x′3)}2. (23)

C. Optimal Values for f1

ψ′2(x1, x3)

= arg min
x2

{
∫ 5

−5

1

10
(x21 + x22 + x23)dx2 − (x21 + x22 + x23)}2

=± 5√
3
,

ψ′3(x1, x2)

= arg min
x3

{
∫ 5

−5

1

10
(x21 + x22 + x23)dx3 − (x21 + x22 + x23)}2

=± 5√
3
,

ψ′2,3(x1)

= arg min
x2,x3

{
∫ 5

−5

∫ 5

−5

1

100
(x21 + x22 + x23) dx2dx3

−(x21 + x22 + x23)}2

⇔ x22 + x23 = 50/3.
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D. Optimal Values for f2

ψ′2(x1, x3)= arg min
x2

{
∫ 5

−5

1

10
(x1 − x2 − x3)2 dx2

−(x1 − x2 − x3)2}2

=(x1 − x3)±
√
(x1 − x3)2 +

25

3
,

ψ′3(x1, x2)= arg min
x3

{
∫ 5

−5

1

10
(x1 − x2 − x3)2 dx3

−(x1 − x2 − x3)2}2

= (x1 − x2)±
√
(x1 − x2)2 +

25

3
,

ψ′2,3(x1) = arg min
x2,x3

{
∫ 5

−5

∫ 5

−5

1

100
(x1 − x2 − x3)2 dx2dx3

−(x1 − x22 − x3)2}2

⇔ x2 + x3 = x1 ±
√
x21 + 50/3.


