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Abstract

Pathology plays an important role in disease diagnosis, treatment decision-making,
and drug development. Previous works on interpretability for machine learning
models on pathology images have revolved around methods such as attention value
visualization and deriving human-interpretable features from model heatmaps.
Mechanistic interpretability is an emerging area of model interpretability that fo-
cuses on reverse-engineering neural networks. Sparse Autoencoders (SAEs) have
strong potential for extracting monosemantic concepts from polysemantic model
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activations. In this work, we train a Sparse Autoencoder on the embeddings of a
pathology-pretrained foundation model. We find that Sparse Autoencoder features
represent interpretable and monosemantic biological concepts. In particular, indi-
vidual SAE dimensions show strong correlations with the counts of individual cell
types, such as plasma cells and lymphocytes. These biological representations are
unique to the pathology-pretrained model and are not found in a self-supervised
model pretrained on natural images. These biologically grounded monosemantic
representations evolve across the model’s depth, and the pathology foundation
model eventually gains robustness to non-biological factors, such as scanner type.
The emergence of these biologically-relevant SAE features are generalizable to
an out-of-domain dataset. Finally, we highlight certain limitations of SAEs and
why more work is needed towards achieving complete monosemanticity. Our work
paves the way for further exploration around interpretable feature dimensions and
their utility for medical and clinical applications.

1 Introduction

Artificial Intelligence (AI) has made significant strides in various domains, including healthcare and
pathology. As AI systems become more complex and widely adopted, understanding their internal
mechanisms becomes crucial for ensuring reliability, addressing biases, and fostering trust among
potential users in the medical community. This paper focuses on the application of mechanistic
interpretability (MI) techniques, particularly sparse autoencoders (SAEs), to neural networks used in
pathology.

Mechanistic interpretability aims to study neural networks by reverse-engineering them, providing
insights into their internal workings [1, 2, 3, 4]. SAEs are important tools for mechanistic inter-
pretability, being used in NLP [5, 6] to achieve a more monosemantic unit of analysis compared
to the model neurons. In vision datasets, SAEs trained on layers of convolutional neural nets have
uncovered interpretable features such as curve detectors [7, 8]. Various improvements to SAEs have
been suggested, including k-sparse [9] and gated sparse [10] autoencoders, and using JumpReLU
[11] instead of ReLU as the activation function.

Histopathology, a term often used interchangeably with pathology, is the diagnosis and study of
diseases through microscopic examination of cells and tissues. It plays a critical role in disease
diagnosis and grading, treatment decision-making, and drug development [12, 13]. Digitized whole-
slide images (WSIs) of pathology samples can be gigapixel-sized, containing millions of areas of
interest and biologically relevant entities across a wide range of characteristic length scales.

Machine learning has been applied to pathology images for tasks such as segmentation and classifica-
tion of biological entities, and end-to-end weakly supervised prediction at a WSI level [14, 15, 16].
Work on interpretability in pathology has focused on assigning spatial credit to WSI-level predic-
tions [17, 18], computing human-interpretable features from model output [19], and visualization of
multi-head self-attention values on image patches [20].

Foundation Models (FMs) are promising for pathology as they can take advantage of large amounts
of unlabeled data to build rich representations which can be easily adapted for downstream tasks in a
data-efficient manner [21, 22, 23, 24, 20]. The diversity of pre-training data powers these models
to generate robust representations, enabling them to generalize better than individual task-specific
models trained on smaller datasets. Additionally, these models can be used as a universal backbone
across different tasks, reducing the development and maintenance overhead associated with bespoke
task-specific models.

MI is particularly interesting in histopathology, where understanding the decision-making process of
AI systems can promote trustworthiness of models in clinical settings. In addition, pathology images
are susceptible to high-frequency artifacts and systematic confounders in image acquisition [25]. MI
can help disentangle biological content from incidental attributes, leading to more robust models for
real-world applications. With a forward-looking perspective, MI may lead to new biological insights
or hypotheses that were not apparent through traditional analysis methods.

This work evaluates the utility of sparse autoencoders (SAEs) for interpretability analysis of the
embedding dimensions derived from a vision foundation model trained on histopathology images.

2



We train SAEs on the pathology foundation model embeddings and examine four key properties of
the trained SAEs which provide evidence for their utility in downstream interpretability analysis.
We then evaluate the trained SAEs as well as the original FM embedding on which these SAEs
are trained on two key criteria (1) monosemanticity of the neurons within the embeddings and (2)
predictive performance of sparse linear probes. Our study provides the first detailed characterization
and evaluation of sparse autoencoders in pathology.

The main contributions of our work are as follows:

• We train the first sparse autoencoders (SAEs) on the embeddings of a pathology foundation
model and evaluate the interpretability of the dimensions in the SAE latent space.

• We discover the following key properties of the trained SAEs:

– Features that activate individual neurons in the SAE latent space are highly biological,
including cell and tissue characteristics, geometric structures, and image artifacts.

– Pathology-specific SAEs capture biological concepts better than natural-image SAEs.
– A small proportion of SAE features are universal.
– SAE latent dimensions representing biological features are robust to sources of varia-

tions like scanners and stains.

• We conduct a detailed evaluation of SAEs and original FM embeddings on which they are
trained in two key metrics (1) monosemanticity of the neurons, and (2) predictive power in
sparse probes. We find mixed evidence regarding the utility of SAEs in these two metrics.

– SAE dimensions are much more monosemantic than original FM embeddings.
– Monosemanticity in SAE features emerges in later layers of the FM.
– Monosemantic behavior of SAEs generalizes to new datasets with unseen cancer types.
– Partial monosemanticity limits SAE utility.
– Sparse probes trained on SAE latents do not always outperform those trained on FM

embeddings in predicting biological concepts.

Figure 1: Feature visualization of SAE hidden dimensions revealed interpretable dictionary of pathol-
ogy features. Manual examination reveals interpretable features represented by these dimensions.
For the TCGA model, these include cell and tissue features specific to H & E stain (top: poorly
differentiated carcinoma, red blood cells, mucin); geometric features (middle: edge of tissue, clefting,
diagonal fibers); staining and artifact features (bottom: blur, sectioning artifact, red stain). For the
1M model, some SAE dimensions are specific to H & E stain (left column), or specific to IHC stain
(middle column), or generalizable across stains (right column: large cancer cells, vertical structures,
tissue folds).
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2 Experimental Setup

2.1 Datasets

For the training dataset, we use 1.1 million image patches (1M dataset) (224 x 224 pixels at resolution
of 0.25 microns per pixel) including both haematoxylin & eosin (H & E) and immunohistochem-
istry (IHC) stains, covering oncology, IBD (inflammatory bowel disease), and MASH (metabolic
dysfunction-associated steatohepatitis).

Two different datasets are used for evaluation. The first (‘TCGA dataset’) consists of three publicly
available TCGA (The Cancer Genome Atlas) [26] cohorts containing H & E-stained histology images
from three organs: breast (TCGA-BRCA, 951 WSIs), lung (TCGA-LUAD, 493 WSIs), and prostate
(TCGA-PRAD, 488 WSIs). The second dataset (‘CPTAC’) consists of two publicly available CPTAC
cohorts (Clinical Proteomic Tumor Analysis Consortium) [27] containing H & E-stained histology
images from two cancer types: cutaneous melanoma (CPTAC-CM, 256 WSIs), and head and neck
cancer (CPTAC-HNSCC, 228 WSIs).

2.2 Embedding extraction

All the images in the train and evaluation datasets are passed through a frozen ViT-S encoder taken
from ‘PLUTO’ - a pathology pretrained foundation model [28]. For each image patch, we extract
384-dimensional embedding vectors corresponding to the CLS token residual stream in layers 1-12
with 12 being the output layer. CLS tokens are chosen as they better capture global context and
predict total cell counts compared to average of patch tokens. For baseline comparison, we extract
embeddings from a self-supervised vision transformer DINO [29] that is also 384-dimensional.

2.3 Sparse autoencoder training

We use a standard autoencoder architecture defined by [5]. The encoder and decoder are defined by

z = ReLU (Wenc(x − bpre)) + benc

x̂ = Wdecz + bpre

where x is the input PLUTO embedding and z is the SAE latent.

During training, encoder and decoder weights are updated to minimize the loss function L =
1
k (
∑k

i=1 ||xi − x̂i||2 + λ
∑k

i=1 ||zi||1), where k is the batch size. The first loss term is the recon-
struction MSE, and the second is an L1 loss on the latent space to promote sparsity. [5, 30]. We
use Adam optimizer with a learning rate of 0.001, expansion factors of 1, 8, 16, 32; and L1-penalty
weight in 0.001, 0.004, 0.006, 0.008, 0.01. SAE training is performed on A40 GPU nodes and each
model training takes about 10 min. Results are reported for models with an expansion factor of 8 and
L1-penalty weight of 0.004.

A known problem during SAE training is the presence of dead neurons [5, 30], neurons that fail to
activate for all input images. These dead neurons do not represent any useful features in the data.
Previous work [5, 30] used dead neuron resampling to reduce the fraction of dead neurons. This
involves identifying neurons that have not activated for a number of steps and resetting their encoder
weights, increasing the number of likely interpretable features. We use the same approach during our
SAE training.

2.4 Probing strategy

Probing is a mechanistic interpretability technique commonly used to examine the features that can
be extracted from the activations of individual neurons in neural networks [31, 32, 33, 34, 35]. We
train and evaluate sparse linear probes to evaluate the usefulness of SAEs in pathology.

Probe construction: We extract a number of human-interpretable features (HIFs) corresponding
to biological concepts from the TCGA dataset (Section 2.1). These HIFs are extracted using
PathExplore, a set of machine-learning models that detect and classify tissue and cells in tumors
[36, 37] (PathExplore is for research use only; not for use in diagnostic procedures). HIFs quantifying
count of cancer cells, lymphocytes, macrophages, fibroblasts, and plasma cells, as well as area,
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eccentricity, and orientation of cell nuclei are computed. We also extract a set of other generic
image features to serve as controls for the probing. These features include gray-scale intensity, LAB
colorspace, and saturation, computed by taking the average or standard deviation of feature values
across all the pixels in the image at its original resolution.

Probe training: We split the TCGA dataset into a train set (80%) and a test set (20%). For each HIF,
we train a k-sparse linear probe on the train set, where a k-sparse probe refers to a linear regression
model with at most k non-zero coefficients. We repeat the sparse probe training for k = 1, ..., 10, and
report results for k = 3. k-sparse linear probe fitting is known to be an NP-hard problem, and several
approximate solutions have been proposed [38]. Here, we approximate the solution by determining
the top k neurons with the highest Pearson correlation with the given HIF, and use these k neurons in
the regression model.

Probe evaluation: Performance of the sparse linear probes is evaluated as the R2 coefficient of the
probe predictions on the test set.

2.5 Quantification of monosemanticity

We also test if SAE latent activations demonstrate utility compared to original PLUTO embeddings in
terms of increased monosemanticity. A monosemantic neuron activates for a single feature, in contrast
to a polysemantic neuron which activates for a large number of features. To quantify monosemanticity
with respect to a set of N probes, we compute the entropy of a probability distribution pi =

|ρi|∑
j |ρj |

where ρ1, ..., ρN are the Pearson’s correlations with the individual HIFs. A monosemantic neuron
would have a highly-peaked distribution (high correlation for one feature and low correlations for
others), with low entropy, while a polysemantic neuron would have a distribution with high entropy.

3 Characteristics of SAE Interpretability

In this section, we present our findings on the training of a sparse autoencoder model for disentangling
features from a pathology foundation model. We train two sets of sparse autoencoder models using
the CLS token embeddings in the output layer of PLUTO. One model is trained on the TCGA dataset,
which consists of whole-slide images from a single stain (H&E), and another model is trained on a
more diverse dataset of 1 million samples spanning multiple stains and diseases (1M). We will refer
to these two models the “TCGA model" and the “1M model". We highlight the following four key
properties that provide initial evidence for utility of SAEs

3.1 SAE dimensions are activated by interpretable biological concepts

Visualization of images that strongly activate each SAE latent reveals highly interpretable features
in both models, as shown in Figure 1. These features include cell and tissue features such as
poorly differentiated carcinoma, geometric structures such as vertical fibers, and staining and artifact
features. Importantly, SAE dimensions from the 1M model represent stain-specific features and
exhibit cross-stain generalization (Fig. 1B).

To better categorize the features represented by the 1M SAE model, we extract SAE latents on the
TCGA dataset (used as an independent evaluation set for the 1M model). We perform unsupervised
clustering on the UMAP representations of the SAE dimensions using HDBSCAN, following the
analysis strategy of [5] (Figure 2).

By manually examining image patches activating the SAE dimensions within clusters, we find clusters
containing SAE features correlated with unique histological concepts such as immune cell presence
(Cluster 27), cancer stroma (Cluster 33), fibroblast cells (Cluster 37) and circular cancer cells (Cluster
41). The presence of these interpretable clusters highlight the ability of SAEs to learn interpretable
biological concepts from the training data.

3.2 Pathology-specific SAEs capture biological concepts better than general natural-image
SAEs

We compare the representations of the 1M model against those from a baseline ViT-S pretrained on
ImageNet-1k using the self-supervised DINO method (obtained from the timm library [39, 40, 41]).
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Figure 2: UMAP of 3072 SAE dimensions from the 1M model. Feature clusters are identified
by HDBSCAN and are interpreted by manual inspection. Several clusters clearly associated with
histological concepts are highlighted. For cancer and immune cell clusters, visualizations of top 3
patches that maximally activate the SAE dimension are shown.

Figure 3: Pearson correlations of SAE di-
mensions of PLUTO and DINO models
with counts of pathology-relevant cell
types, showing much higher correlations
of the PLUTO SAE dimensions with the
cell count features.

We choose the same input patch size as PLUTO and SAE training methodology as in Section 2 to
ensure a fair comparison.

To evaluate these two models, we extract human-interpretable features (HIFs) [19] quantifying the
counts of cancer cells, plasma cells, lymphocytes, macrophages, and fibroblasts (Section 2.4), and
correlate these features against dimensions in the SAE latents of the two models. We find SAE
dimensions in PLUTO that strongly correlate with cell counts: plasma cells (ρ = 0.7), lymphocytes (ρ
= 0.63), cancer cells (ρ = 0.37), macrophages (ρ = 0.38), and fibroblasts (ρ = 0.21). In contrast, SAE
dimensions of DINO show weak association with these cell count features (Figure 3).

3.3 A small proportion of SAE features are universal

Previous work suggests that SAE dimensions are more likely to be useful (representing true monose-
mantic features in the real world) if they display universality (the same feature is discovered across
independently trained SAE models [5]). We examine feature universality by comparing the SAE
activations from the two independently trained SAE models (TCGA and 1M). We define “universal-
ity" as pairs of SAE features with Pearson’s ρ above 0.5, where the correlation is computed between
the activation of those two features across all images in the TCGA dataset. Using the Hungarian
matching algorithm, we identify 5% (152) SAE dimensions exhibiting feature universality between
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Scanners Stains

AT2 C9600 DP200 GT450 UFS CD8 H&E HER2 485 PD-L1

Plasma-SAE 0.517 0.508 0.505 0.510 0.509 0.510 0.509 0.509 0.509
Macrophage-SAE 0.513 0.537 0.511 0.497 0.574 0.504 0.508 0.509 0.495
Lymphocyte-SAE 0.513 0.537 0.511 0.497 0.574 0.504 0.508 0.509 0.495
Fibroblast-SAE 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Cancer-SAE 0.505 0.494 0.503 0.504 0.504 0.503 0.503 0.502 0.504

Table 1: AUROC of biological SAEs predicting scanners and stains. SAE dimensions representing
cell types do not encode non-biological information. Test ROC scores for predicting scanners and
stains are close to the chance level of 0.5

the two models. For example, SAE-1736 from the 1M model and SAE-2541 from the TCGA model
are highly correlated (ρ = 0.96), and both represent plasma cells. Similarly, both SAE-1745 from
the 1M model and SAE-1667 from the TCGA model (ρ = 0.91) represent anthracotic macrophages.
This universality property of the SAEs suggests generalizability of the learned SAE features.

3.4 SAE latent dimensions representing biological features are robust to sources of variations
like scanner and stain

In section 3.2, we have identified five SAE dimensions in the PLUTO-based SAE that correlate with
cell count features (cancer cells, fibroblasts, lymphocytes, macrophages and plasma cells). To confirm
that these features do not also encode non-biological information, we examine the predictive power
of these SAEs for various stains or scanners.

For each SAE dimension that best correlates with a given cell type, we examine how well the
activation of that dimension predicts 9 binary variables corresponding to 5 scanners and 4 stain
types (Table 1). We fit linear logistic regression models on the train set (80%) for predicting these 9
variables, and evaluate the performance of each model on the test set (20%) using the ROC metric.
ROC scores for these models are close to 0.5, showing that scanner and stain information cannot be
linearly retrieved from the cell-type specific SAEs.

4 Monosemanticity in SAEs

In this section, we use two orthogonal approaches to study the usefulness of SAEs. First, we evaluate
the degree of monosemanticity in the SAE latents - the ability of single neurons in the SAE latent
space to represent single biological concepts.

As an orthogonal evaluation of SAEs, motivated by recent investigations of SAE neurons through
probing [5, 31, 42], we construct sparse linear probes based on 8 HIFs, and test the performance of
SAE latents and the original FM embeddings in predicting these interpretable concepts.

4.1 SAE features are more monosemantic than the FM embeddings they are trained on

Using biological interpretable features as probes, we evaluate and quantify the increase in monose-
manticity in the SAE latents compared to PLUTO embedding space. We use a set of 5 cell count
features and 3 nuclear features (mean nuclear size, orientation and eccentricity) derived using PathEx-
plore (Section 2.4) to quantify monosemanticity (Section 2.5). By computing entropy for all SAE and
FM embedding dimensions, we find a number of SAE dimensions with low entropy, forming a long
tail of the entropy distribution (Fig 4A). These low-entropy dimensions are consistently seen in the 10
independently trained SAE models with different seeds, and are not observed in the FM embedding
dimensions. The entropies of the SAE features are significantly lower than the FM features (p<0.001
for all 10 SAE-PLUTO comparisons, Mann-Whitney U test). While none of the FM features had
S < 0.6, 0.8± 0.1% of the SAE features had entropy S < 0.6.

To see which interpretable feature these low-entropy SAE dimensions correspond to, we focus
on neurons in the SAE latents with entropy S < 0.6, determine the concept that each neuron
best correlates with, and count the number of monosemantic neurons that best correlate with each
concept (Fig 4B). The total number of monosemantic dimensions in SAEs is higher than the PLUTO

7



Figure 4: SAE features are more monosemantic than the FM features they are trained on. A) Entropy
distribution of PLUTO embedding dimensions (left, gray box), and the embedding dimensions of the
10 independently trained SAEs (right, light green boxes). B) Number of monosemantic dimensions
for each HIF in the SAE latent space (red), or PLUTO embedding space (black). Note that count of
monosemantic dimensions for PLUTO is zero for 7/8 features.

Figure 5: Monosemanticity emerges in later layers of PLUTO. A) SAE dimensions with the highest
correlation with each cell count features across layers. B) Correlation of color features with SAE
dimensions.

embedding on which it is trained, suggesting that the SAE transforms the highly polysemantic original
embeddings into a space with higher monosemanticity.

We investigate SAE-1736 as an illustration of a monosemantic dimension in the SAE latent space.
SAE-1736 highly correlates with plasma cell counts (ρ = 0.70) while showing minimal correlation
(ρ < 0.1) with other cell types, suggesting high specificity of the activation. In contrast, no such
monosemantic plasma cell feature is found in the PLUTO embedding space. The strongest plasma
cell-associated PLUTO dimension, 148 (ρ = 0.29) also correlates with counts of other cell types.

4.2 Monosemanticity in SAE features emerges in later layers of the FM

We investigate how monosemanticity of SAEs evolves across layers by measuring the monoseman-
ticity of SAE latent dimensions for models trained on CLS tokens from different layers of PLUTO.
In earlier layers, SAE dimensions correlate with low-level color features such as intensity, hue and
saturation (Figure 5B). Correlations of these SAE dimensions with cellular features are low (ρ < 0.5
for lymphocytes and ρ < 0.3 for the other four cell types). At later layers , association of SAE
dimensions with color features decreases, while association with cell features increases (Figure 5A).
The increase in association is cell type is robust across 10 independently trained SAEs with different
random seeds. Furthermore, SAE neurons with low entropy (S < 0.6) start to emerge in layers 11
and 12 of the model.

4.3 Monosemantic behavior of SAEs generalizes to new datasets with unseen cancer types

We verify that our results in sections 4.1 and 4.2 generalize to an independent dataset. We extract FM
embeddings and deploy the 10 trained SAEs on the CPTAC dataset, which includes two cancer types
not included in TCGA (see Methods section 2.1). We confirm that (1) there are more monosemantic
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Figure 6: Illustration of all monosemantic SAE
dimensions of the 1M model, and their correlations
with 8 human-interpretable features. Stars indicate
the features with the highest correlation for each
dimension. Multiple monosemantic SAEs (1574,
1736, 2525 and 2873) can be seen correlating with
plasma cell counts.

Figure 7: Performance of
sparse probes trained on SAE
latent embeddings is not al-
ways better than those trained
on FM embeddings. A-B)
Test R2 of probes for predict-
ing count of plasma and count
of cancer from the SAE la-
tent space (red), or the FM
embeddings (black). Probes
trained on SAE latents achieve
higher test R2 for predicting
plasma counts, but not can-
cer cell counts. C) Sparse
probe test R2 for all 8 human-
interpretable features for k =
3.

dimensions from the 10 independently trained SAEs than from the FM embeddings, and (2) neurons
in the SAE latent space also correlate with cell count features, particularly in SAEs trained on
embeddings from the later layers of the FM.

4.4 Partial monosemanticity limits SAE utility

Our results in Figure 4B suggests that not all interpretable features have an associated monosemantic
SAE dimension. We perform a further investigation by analyzing the monosemantic SAE units of the
1M model and the human interpretable features they best correlate with (Fig 6). We find 4 features
with associated monosemantic neurons (count of cancer, count of fibroblast, count of macrophage,
mean nucleus orientation), and 3 features that do not correlate with any monosemantic SAE neurons
(mean nucleus area, mean nucleus eccentricity, count of lymphocyte). Notably, plasma cell counts
is correlated with multiple monosemantic SAE units, suggesting potential feature splitting. These
results point to a key limitation of SAEs since the monosemantic SAE units don’t have a one-to-one
mapping with the HIFs.

4.5 SAE sparse probes have mixed performance as compared to FM embeddings

As an orthogonal approach for evaluating the utility of SAE in interpretability analyses, we use
k-sparse probes (see Methods section 2.4) to quantify how well a small number of dimensions in
SAEs (or dimensions in the original FM embedding space) can be used to predict the 8 HIFs (Fig
7). We find mixed evidence regarding the utility of the SAE latent space, as SAE embeddings show
better performance than the FM embeddings in only 4/8 probes. These findings are consistent with a
recent study that investigated SAE utility in large language models [42].

9



5 Limitations and future work

In this work, we restrict our analysis to a vanilla SAE. We leave the application of newer variations
such as gated SAE and k-sparse SAE in pathology to future work. Similarly, analysis around how
these findings translate to SAEs trained on other pathology foundation models can be the subject of
further studies. The exploration of probing is limited to 8 features representing 5 different cell types.
Future studies might examine the performance of SAEs when evaluated on a larger number of probes
corresponding to a more diverse selection of biological features. Our evaluation is performed on
oncology datasets only. Future studies should test the generalizability of the findings to other disease
types.

6 Conclusion

We train the first sparse autoencoders on the embeddings of a pathology vision transformer model, and
investigate the features represented in the embedding space of the model. Sparse autoencoder training
enables the extraction of interpretable features corresponding to distinct biological characteristics,
geometric features and image acquisition artifacts. Dimensions in the SAE latent space are more
monosemantic than those in the FM embeddings, potentially facilitating downstream interpretability
analyses. We find SAE dimensions that correlate with cell count features and are robust to non-
biological factors like scanners and stains, suggesting the SAE has learned generalizable biological
features. These learned biological features can be starting points for downstream interpretability
analyses of the FM, similar to work in other domains [5, 31, 43, 44].

Through an evaluation of the SAE in two metrics (monosemanticity and predictive performance
with sparse linear probing), we also highlight strengths and limitations of the SAE latent space for
interpretability analyses. First, while SAE embeddings are much more monosemantic than original
FM embeddings, monosemanticity can be partial, as there is not a one-to-one mapping between
the monosemantic SAE dimensions and HIFs. Second, while sparse probes trained on SAE latents
sometimes outperform those trained on FM embeddings in predicting some biological concepts, they
underperform in many other cases (consistent with recent observations [42]). Future studies might
explore methods for sparse autoencoder training that address these limitations. Overall, investigation
of sparse features is a promising direction and motivates further work in discovering explainable,
generalizable features of pathology foundation models.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All the experimental setups are explained in Section 2.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance was reported where needed and rrror bars are included in figures.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.
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• The method for calculating the error bars should be explained (closed form formula, call to a
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report
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not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [No]

Justification: Compute resources were not included due to low relevance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NuerIPS Code of Ethics and confirmed conformity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: The work is foundational research and the authors do not expect any significant societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The original papers were properly cited and data resources were referenced.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: No new assets were released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The work does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification: The work does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLM used.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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