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Abstract

Pathology plays an important role in disease diagnosis, treatment decision-making,1

and drug development. Previous works on interpretability for machine learning2

models on pathology images have revolved around methods such as attention value3

visualization and deriving human-interpretable features from model heatmaps.4

Mechanistic interpretability is an emerging area of model interpretability that fo-5

cuses on reverse-engineering neural networks. Sparse Autoencoders (SAEs) have6

strong potential for extracting monosemantic concepts from polysemantic model7

activations. In this work, we train a Sparse Autoencoder on the embeddings of a8

pathology-pretrained foundation model. We find that Sparse Autoencoder features9

represent interpretable and monosemantic biological concepts. In particular, indi-10

vidual SAE dimensions show strong correlations with the counts of individual cell11

types, such as plasma cells and lymphocytes. These biological representations are12

unique to the pathology-pretrained model and are not found in a self-supervised13

model pretrained on natural images. These biologically grounded monosemantic14

representations evolve across the model’s depth, and the pathology foundation15

model eventually gains robustness to non-biological factors, such as scanner type.16

The emergence of these biologically-relevant SAE features are generalizable to17

an out-of-domain dataset. Finally, we highlight certain limitations of SAEs and18

why more work is needed towards achieving complete monosemanticity. Our work19

paves the way for further exploration around interpretable feature dimensions and20

their utility for medical and clinical applications.21

1 Introduction22

Artificial Intelligence (AI) has made significant strides in various domains, including healthcare and23

pathology. As AI systems become more complex and widely adopted, understanding their internal24

mechanisms becomes crucial for ensuring reliability, addressing biases, and fostering trust among25

potential users in the medical community. This paper focuses on the application of mechanistic26

interpretability (MI) techniques, particularly sparse autoencoders (SAEs), to neural networks used in27

pathology.28

Mechanistic interpretability aims to study neural networks by reverse-engineering them, providing29

insights into their internal workings [1, 2, 3, 4]. SAEs are important tools for mechanistic inter-30

pretability, being used in NLP [5, 6] to achieve a more monosemantic unit of analysis compared31

to the model neurons. In vision datasets, SAEs trained on layers of convolutional neural nets have32

uncovered interpretable features such as curve detectors [7, 8]. Various improvements to SAEs have33

been suggested, including k-sparse [9] and gated sparse [10] autoencoders, and using JumpReLU34

[11] instead of ReLU as the activation function.35
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Histopathology, a term often used interchangeably with pathology, is the diagnosis and study of36

diseases through microscopic examination of cells and tissues. It plays a critical role in disease37

diagnosis and grading, treatment decision-making, and drug development [12, 13]. Digitized whole-38

slide images (WSIs) of pathology samples can be gigapixel-sized, containing millions of areas of39

interest and biologically relevant entities across a wide range of characteristic length scales.40

Machine learning has been applied to pathology images for tasks such as segmentation and classifica-41

tion of biological entities, and end-to-end weakly supervised prediction at a WSI level [14, 15, 16].42

Work on interpretability in pathology has focused on assigning spatial credit to WSI-level predic-43

tions [17, 18], computing human-interpretable features from model output [19], and visualization of44

multi-head self-attention values on image patches [20].45

Foundation Models (FMs) are promising for pathology as they can take advantage of large amounts46

of unlabeled data to build rich representations which can be easily adapted for downstream tasks in a47

data-efficient manner [21, 22, 23, 24, 20]. The diversity of pre-training data powers these models48

to generate robust representations, enabling them to generalize better than individual task-specific49

models trained on smaller datasets. Additionally, these models can be used as a universal backbone50

across different tasks, reducing the development and maintenance overhead associated with bespoke51

task-specific models.52

MI is particularly interesting in histopathology, where understanding the decision-making process of53

AI systems can promote trustworthiness of models in clinical settings. In addition, pathology images54

are susceptible to high-frequency artifacts and systematic confounders in image acquisition [25]. MI55

can help disentangle biological content from incidental attributes, leading to more robust models for56

real-world applications. With a forward-looking perspective, MI may lead to new biological insights57

or hypotheses that were not apparent through traditional analysis methods.58

This work evaluates the utility of sparse autoencoders (SAEs) for interpretability analysis of the59

embedding dimensions derived from a vision foundation model trained on histopathology images.60

We train SAEs on the pathology foundation model embeddings and examine four key properties of61

the trained SAEs which provide evidence for their utility in downstream interpretability analysis.62

We then evaluate the trained SAEs as well as the original FM embedding on which these SAEs63

are trained on two key criteria (1) monosemanticity of the neurons within the embeddings and (2)64

predictive performance of sparse linear probes. Our study provides the first detailed characterization65

and evaluation of sparse autoencoders in pathology.66

The main contributions of our work are as follows:67

• We train the first sparse autoencoders (SAEs) on the embeddings of a pathology foundation68

model and evaluate the interpretability of the dimensions in the SAE latent space.69

• We discover the following key properties of the trained SAEs:70

– Features that activate individual neurons in the SAE latent space are highly biological,71

including cell and tissue characteristics, geometric structures, and image artifacts.72

– Pathology-specific SAEs capture biological concepts better than natural-image SAEs.73

– A small proportion of SAE features are universal.74

– SAE latent dimensions representing biological features are robust to sources of varia-75

tions like scanners and stains.76

• We conduct a detailed evaluation of SAEs and original FM embeddings on which they are77

trained in two key metrics (1) monosemanticity of the neurons, and (2) predictive power in78

sparse probes. We find mixed evidence regarding the utility of SAEs in these two metrics.79

– SAE dimensions are much more monosemantic than original FM embeddings.80

– Monosemanticity in SAE features emerges in later layers of the FM.81

– Monosemantic behavior of SAEs generalizes to new datasets with unseen cancer types.82

– Partial monosemanticity limits SAE utility.83

– Sparse probes trained on SAE latents do not always outperform those trained on FM84

embeddings in predicting biological concepts.85
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Figure 1: Feature visualization of SAE hidden dimensions revealed interpretable dictionary of pathol-
ogy features. Manual examination reveals interpretable features represented by these dimensions.
For the TCGA model, these include cell and tissue features specific to H & E stain (top: poorly
differentiated carcinoma, red blood cells, mucin); geometric features (middle: edge of tissue, clefting,
diagonal fibers); staining and artifact features (bottom: blur, sectioning artifact, red stain). For the
1M model, some SAE dimensions are specific to H & E stain (left column), or specific to IHC stain
(middle column), or generalizable across stains (right column: large cancer cells, vertical structures,
tissue folds).

2 Experimental Setup86

2.1 Datasets87

For the training dataset, we use 1.1 million image patches (1M dataset) (224 x 224 pixels at resolution88

of 0.25 microns per pixel) including both haematoxylin & eosin (H & E) and immunohistochem-89

istry (IHC) stains, covering oncology, IBD (inflammatory bowel disease), and MASH (metabolic90

dysfunction-associated steatohepatitis).91

Two different datasets are used for evaluation. The first (‘TCGA dataset’) consists of three publicly92

available TCGA (The Cancer Genome Atlas) [26] cohorts containing H & E-stained histology images93

from three organs: breast (TCGA-BRCA, 951 WSIs), lung (TCGA-LUAD, 493 WSIs), and prostate94

(TCGA-PRAD, 488 WSIs). The second dataset (‘CPTAC’) consists of two publicly available CPTAC95

cohorts (Clinical Proteomic Tumor Analysis Consortium) [27] containing H & E-stained histology96

images from two cancer types: cutaneous melanoma (CPTAC-CM, 256 WSIs), and head and neck97

cancer (CPTAC-HNSCC, 228 WSIs).98

2.2 Embedding extraction99

All the images in the train and evaluation datasets are passed through a frozen ViT-S encoder taken100

from ‘PLUTO’ - a pathology pretrained foundation model [28]. For each image patch, we extract101

384-dimensional embedding vectors corresponding to the CLS token residual stream in layers 1-12102

with 12 being the output layer. CLS tokens are chosen as they better capture global context and103

predict total cell counts compared to average of patch tokens. For baseline comparison, we extract104

embeddings from a self-supervised vision transformer DINO [29] that is also 384-dimensional.105

2.3 Sparse autoencoder training106

We use a standard autoencoder architecture defined by [5]. The encoder and decoder are defined by107

z = ReLU (Wenc(x − bpre)) + benc

x̂ = Wdecz + bpre
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where x is the input PLUTO embedding and z is the SAE latent.108

During training, encoder and decoder weights are updated to minimize the loss function L =109
1
k (
∑k

i=1 ||xi − x̂i||2 + λ
∑k

i=1 ||zi||1), where k is the batch size. The first loss term is the reconstruc-110

tion MSE, and the second is an L1 loss on the latent space to promote sparsity. [5, 30]. We use Adam111

optimizer with a learning rate of 0.001, expansion factors of 1, 8, 16, 32; and L1-penalty weight in112

0.001, 0.004, 0.006, 0.008, 0.01. Results are reported for models with an expansion factor of 8 and113

L1-penalty weight of 0.004.114

A known problem during SAE training is the presence of dead neurons [5, 30], neurons that fail to115

activate for all input images. These dead neurons do not represent any useful features in the data.116

Previous work [5, 30] used dead neuron resampling to reduce the fraction of dead neurons. This117

involves identifying neurons that have not activated for a number of steps and resetting their encoder118

weights, increasing the number of likely interpretable features. We use the same approach during our119

SAE training.120

2.4 Probing strategy121

Probing is a mechanistic interpretability technique commonly used to examine the features that can122

be extracted from the activations of individual neurons in neural networks [31, 32, 33, 34, 35]. We123

train and evaluate sparse linear probes to evaluate the usefulness of SAEs in pathology.124

Probe construction: We extract a number of human-interpretable features (HIFs) corresponding125

to biological concepts from the TCGA dataset (Section 2.1). These HIFs are extracted using126

PathExplore, a set of machine-learning models that detect and classify tissue and cells in tumors127

[36, 37] (PathExplore is for research use only; not for use in diagnostic procedures). HIFs quantifying128

count of cancer cells, lymphocytes, macrophages, fibroblasts, and plasma cells, as well as area,129

eccentricity, and orientation of cell nuclei are computed. We also extract a set of other generic130

image features to serve as controls for the probing. These features include gray-scale intensity, LAB131

colorspace, and saturation, computed by taking the average or standard deviation of feature values132

across all the pixels in the image at its original resolution.133

Probe training: We split the TCGA dataset into a train set (80%) and a test set (20%). For each HIF,134

we train a k-sparse linear probe on the train set, where a k-sparse probe refers to a linear regression135

model with at most k non-zero coefficients. We repeat the sparse probe training for k = 1, ..., 10, and136

report results for k = 3. k-sparse linear probe fitting is known to be an NP-hard problem, and several137

approximate solutions have been proposed [38]. Here, we approximate the solution by determining138

the top k neurons with the highest Pearson correlation with the given HIF, and use these k neurons in139

the regression model.140

Probe evaluation: Performance of the sparse linear probes is evaluated as the R2 coefficient of the141

probe predictions on the test set.142

2.5 Quantification of monosemanticity143

We also test if SAE latent activations demonstrate utility compared to original PLUTO embeddings in144

terms of increased monosemanticity. A monosemantic neuron activates for a single feature, in contrast145

to a polysemantic neuron which activates for a large number of features. To quantify monosemanticity146

with respect to a set of N probes, we compute the entropy of a probability distribution pi =
|ρi|∑
j |ρj |147

where ρ1, ..., ρN are the Pearson’s correlations with the individual HIFs. A monosemantic neuron148

would have a highly-peaked distribution (high correlation for one feature and low correlations for149

others), with low entropy, while a polysemantic neuron would have a distribution with high entropy.150

3 Characteristics of SAE Interpretability151

In this section, we present our findings on the training of a sparse autoencoder model for disentangling152

features from a pathology foundation model. We train two sets of sparse autoencoder models using153

the CLS token embeddings in the output layer of PLUTO. One model is trained on the TCGA dataset,154

which consists of whole-slide images from a single stain (H&E), and another model is trained on a155

more diverse dataset of 1 million samples spanning multiple stains and diseases (1M). We will refer156
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to these two models the “TCGA model" and the “1M model". We highlight the following four key157

properties that provide initial evidence for utility of SAEs158

3.1 SAE dimensions are activated by interpretable biological concepts159

Visualization of images that strongly activate each SAE latent reveals highly interpretable features160

in both models, as shown in Figure 1. These features include cell and tissue features such as161

poorly differentiated carcinoma, geometric structures such as vertical fibers, and staining and artifact162

features. Importantly, SAE dimensions from the 1M model represent stain-specific features and163

exhibit cross-stain generalization (Fig. 1B).164

Figure 2: UMAP of 3072 SAE dimensions from the 1M model. Feature clusters are identified
by HDBSCAN and are interpreted by manual inspection. Several clusters clearly associated with
histological concepts are highlighted. For cancer and immune cell clusters, visualizations of top 3
patches that maximally activate the SAE dimension are shown.

To better categorize the features represented by the 1M SAE model, we extract SAE latents on the165

TCGA dataset (used as an independent evaluation set for the 1M model). We perform unsupervised166

clustering on the UMAP representations of the SAE dimensions using HDBSCAN, following the167

analysis strategy of [5] (Figure 2).168

By manually examining image patches activating the SAE dimensions within clusters, we find clusters169

containing SAE features correlated with unique histological concepts such as immune cell presence170

(Cluster 27), cancer stroma (Cluster 33), fibroblast cells (Cluster 37) and circular cancer cells (Cluster171

41). The presence of these interpretable clusters highlight the ability of SAEs to learn interpretable172

biological concepts from the training data.173

3.2 Pathology-specific SAEs capture biological concepts better than general natural-image174

SAEs175

We compare the representations of the 1M model against those from a baseline ViT-S pretrained on176

ImageNet-1k using the self-supervised DINO method (obtained from the timm library [39, 40, 41]).177

We choose the same input patch size as PLUTO and SAE training methodology as in Section 2 to178

ensure a fair comparison.179
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Figure 3: Pearson correlations of SAE di-
mensions of PLUTO and DINO models
with counts of pathology-relevant cell
types, showing much higher correlations
of the PLUTO SAE dimensions with the
cell count features.

To evaluate these two models, we extract human-interpretable features (HIFs) [19] quantifying the180

counts of cancer cells, plasma cells, lymphocytes, macrophages, and fibroblasts (Section 2.4), and181

correlate these features against dimensions in the SAE latents of the two models. We find SAE182

dimensions in PLUTO that strongly correlate with cell counts: plasma cells (ρ = 0.7), lymphocytes (ρ183

= 0.63), cancer cells (ρ = 0.37), macrophages (ρ = 0.38), and fibroblasts (ρ = 0.21). In contrast, SAE184

dimensions of DINO show weak association with these cell count features (Figure 3).185

Scanners Stains

AT2 C9600 DP200 GT450 UFS CD8 H&E HER2 485 PD-L1

Plasma-SAE 0.517 0.508 0.505 0.510 0.509 0.510 0.509 0.509 0.509
Macrophage-SAE 0.513 0.537 0.511 0.497 0.574 0.504 0.508 0.509 0.495
Lymphocyte-SAE 0.513 0.537 0.511 0.497 0.574 0.504 0.508 0.509 0.495
Fibroblast-SAE 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Cancer-SAE 0.505 0.494 0.503 0.504 0.504 0.503 0.503 0.502 0.504

Table 1: AUROC of biological SAEs predicting scanners and stains. SAE dimensions representing
cell types do not encode non-biological information. Test ROC scores for predicting scanners and
stains are close to the chance level of 0.5

3.3 A small proportion of SAE features are universal186

Previous work suggests that SAE dimensions are more likely to be useful (representing true monose-187

mantic features in the real world) if they display universality (the same feature is discovered across188

independently trained SAE models [5]). We examine feature universality by comparing the SAE189

activations from the two independently trained SAE models (TCGA and 1M). We define “universal-190

ity" as pairs of SAE features with Pearson’s ρ above 0.5, where the correlation is computed between191

the activation of those two features across all images in the TCGA dataset. Using the Hungarian192

matching algorithm, we identify 5% (152) SAE dimensions exhibiting feature universality between193

the two models. For example, SAE-1736 from the 1M model and SAE-2541 from the TCGA model194

are highly correlated (ρ = 0.96), and both represent plasma cells. Similarly, both SAE-1745 from195

the 1M model and SAE-1667 from the TCGA model (ρ = 0.91) represent anthracotic macrophages.196

This universality property of the SAEs suggests generalizability of the learned SAE features.197

3.4 SAE latent dimensions representing biological features are robust to sources of variations198

like scanner and stain199

In section 3.2, we have identified five SAE dimensions in the PLUTO-based SAE that correlate with200

cell count features (cancer cells, fibroblasts, lymphocytes, macrophages and plasma cells). To confirm201

that these features do not also encode non-biological information, we examine the predictive power202

of these SAEs for various stains or scanners.203

For each SAE dimension that best correlates with a given cell type, we examine how well the204

activation of that dimension predicts 9 binary variables corresponding to 5 scanners and 4 stain205

types (Table 1). We fit linear logistic regression models on the train set (80%) for predicting these 9206

variables, and evaluate the performance of each model on the test set (20%) using the ROC metric.207

ROC scores for these models are close to 0.5, showing that scanner and stain information cannot be208

linearly retrieved from the cell-type specific SAEs.209
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Figure 4: SAE features are more monosemantic than the FM features they are trained on. A) Entropy
distribution of PLUTO embedding dimensions (left, gray box), and the embedding dimensions of the
10 independently trained SAEs (right, light green boxes). B) Number of monosemantic dimensions
for each HIF in the SAE latent space (red), or PLUTO embedding space (black). Note that count of
monosemantic dimensions for PLUTO is zero for 7/8 features.

4 Monosemanticity in SAEs210

In this section, we use two orthogonal approaches to study the usefulness of SAEs. First, we evaluate211

the degree of monosemanticity in the SAE latents - the ability of single neurons in the SAE latent212

space to represent single biological concepts.213

As an orthogonal evaluation of SAEs, motivated by recent investigations of SAE neurons through214

probing [5, 31, 42], we construct sparse linear probes based on 8 HIFs, and test the performance of215

SAE latents and the original FM embeddings in predicting these interpretable concepts.216

4.1 SAE features are more monosemantic than the FM embeddings they are trained on217

Using biological interpretable features as probes, we evaluate and quantify the increase in monose-218

manticity in the SAE latents compared to PLUTO embedding space. We use a set of 5 cell count219

features and 3 nuclear features (mean nuclear size, orientation and eccentricity) derived using PathEx-220

plore (Section 2.4) to quantify monosemanticity (Section 2.5). By computing entropy for all SAE and221

FM embedding dimensions, we find a number of SAE dimensions with low entropy, forming a long222

tail of the entropy distribution (Fig 4A). These low-entropy dimensions are consistently seen in the 10223

independently trained SAE models with different seeds, and are not observed in the FM embedding224

dimensions. The entropies of the SAE features are significantly lower than the FM features (p<0.001225

for all 10 SAE-PLUTO comparisons, Mann-Whitney U test). While none of the FM features had226

S < 0.6, 0.8± 0.1% of the SAE features had entropy S < 0.6.227

To see which interpretable feature these low-entropy SAE dimensions correspond to, we focus228

on neurons in the SAE latents with entropy S < 0.6, determine the concept that each neuron229

best correlates with, and count the number of monosemantic neurons that best correlate with each230

concept (Fig 4B). The total number of monosemantic dimensions in SAEs is higher than the PLUTO231

embedding on which it is trained, suggesting that the SAE transforms the highly polysemantic original232

embeddings into a space with higher monosemanticity.233

We investigate SAE-1736 as an illustration of a monosemantic dimension in the SAE latent space.234

SAE-1736 highly correlates with plasma cell counts (ρ = 0.70) while showing minimal correlation235

(ρ < 0.1) with other cell types, suggesting high specificity of the activation. In contrast, no such236

monosemantic plasma cell feature is found in the PLUTO embedding space. The strongest plasma237

cell-associated PLUTO dimension, 148 (ρ = 0.29) also correlates with counts of other cell types.238

4.2 Monosemanticity in SAE features emerges in later layers of the FM239

We investigate how monosemanticity of SAEs evolves across layers by measuring the monoseman-240

ticity of SAE latent dimensions for models trained on CLS tokens from different layers of PLUTO.241
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Figure 5: Monosemanticity emerges in later layers of PLUTO. A) SAE dimensions with the highest
correlation with each cell count features across layers. B) Correlation of color features with SAE
dimensions.

Figure 6: Illustration of all monosemantic SAE
dimensions of the 1M model, and their correlations
with 8 human-interpretable features. Stars indicate
the features with the highest correlation for each
dimension. Multiple monosemantic SAEs (1574,
1736, 2525 and 2873) can be seen correlating with
plasma cell counts.

In earlier layers, SAE dimensions correlate with low-level color features such as intensity, hue and242

saturation (Figure 5B). Correlations of these SAE dimensions with cellular features are low (ρ < 0.5243

for lymphocytes and ρ < 0.3 for the other four cell types). At later layers , association of SAE244

dimensions with color features decreases, while association with cell features increases (Figure 5A).245

The increase in association is cell type is robust across 10 independently trained SAEs with different246

random seeds. Furthermore, SAE neurons with low entropy (S < 0.6) start to emerge in layers 11247

and 12 of the model.248

4.3 Monosemantic behavior of SAEs generalizes to new datasets with unseen cancer types249

We verify that our results in sections 4.1 and 4.2 generalize to an independent dataset. We extract FM250

embeddings and deploy the 10 trained SAEs on the CPTAC dataset, which includes two cancer types251

not included in TCGA (see Methods section 2.1). We confirm that (1) there are more monosemantic252

dimensions from the 10 independently trained SAEs than from the FM embeddings, and (2) neurons253

in the SAE latent space also correlate with cell count features, particularly in SAEs trained on254

embeddings from the later layers of the FM.255

4.4 Partial monosemanticity limits SAE utility256

Our results in Figure 4B suggests that not all interpretable features have an associated monosemantic257

SAE dimension. We perform a further investigation by analyzing the monosemantic SAE units of the258

1M model and the human interpretable features they best correlate with (Fig 6). We find 4 features259

with associated monosemantic neurons (count of cancer, count of fibroblast, count of macrophage,260

mean nucleus orientation), and 3 features that do not correlate with any monosemantic SAE neurons261

(mean nucleus area, mean nucleus eccentricity, count of lymphocyte). Notably, plasma cell counts262

is correlated with multiple monosemantic SAE units, suggesting potential feature splitting. These263

results point to a key limitation of SAEs since the monosemantic SAE units don’t have a one-to-one264

mapping with the HIFs.265

4.5 SAE sparse probes have mixed performance as compared to FM embeddings266

As an orthogonal approach for evaluating the utility of SAE in interpretability analyses, we use267

k-sparse probes (see Methods section 2.4) to quantify how well a small number of dimensions in268

SAEs (or dimensions in the original FM embedding space) can be used to predict the 8 HIFs (Fig269

8



Figure 7: Performance of
sparse probes trained on SAE
latent embeddings is not al-
ways better than those trained
on FM embeddings. A-B)
Test R2 of probes for predict-
ing count of plasma and count
of cancer from the SAE la-
tent space (red), or the FM
embeddings (black). Probes
trained on SAE latents achieve
higher test R2 for predicting
plasma counts, but not can-
cer cell counts. C) Sparse
probe test R2 for all 8 human-
interpretable features for k =
3.

7). We find mixed evidence regarding the utility of the SAE latent space, as SAE embeddings show270

better performance than the FM embeddings in only 4/8 probes. These findings are consistent with a271

recent study that investigated SAE utility in large language models [42].272

5 Limitations and future work273

In this work, we restrict our analysis to a vanilla SAE. We leave the application of newer variations274

such as gated SAE and k-sparse SAE in pathology to future work. Similarly, analysis around how275

these findings translate to SAEs trained on other pathology foundation models can be the subject of276

further studies. The exploration of probing is limited to 8 features representing 5 different cell types.277

Future studies might examine the performance of SAEs when evaluated on a larger number of probes278

corresponding to a more diverse selection of biological features.279

6 Conclusion280

We train the first sparse autoencoders on the embeddings of a pathology vision transformer model, and281

investigate the features represented in the embedding space of the model. Sparse autoencoder training282

enables the extraction of interpretable features corresponding to distinct biological characteristics,283

geometric features and image acquisition artifacts. Dimensions in the SAE latent space are more284

monosemantic than those in the FM embeddings, potentially facilitating downstream interpretability285

analyses. We find SAE dimensions that correlate with cell count features and are robust to non-286

biological factors like scanners and stains, suggesting the SAE has learned generalizable biological287

features. These learned biological features can be starting points for downstream interpretability288

analyses of the FM, similar to work in other domains [5, 31, 43, 44].289

Through an evaluation of the SAE in two metrics (monosemanticity and predictive performance290

with sparse linear probing), we also highlight strengths and limitations of the SAE latent space for291

interpretability analyses. First, while SAE embeddings are much more monosemantic than original292

FM embeddings, monosemanticity can be partial, as there is not a one-to-one mapping between293

the monosemantic SAE dimensions and HIFs. Second, while sparse probes trained on SAE latents294

sometimes outperform those trained on FM embeddings in predicting some biological concepts, they295

underperform in many other cases (consistent with recent observations [42]). Future studies might296

explore methods for sparse autoencoder training that address these limitations. Overall, investigation297

of sparse features is a promising direction and motivates further work in discovering explainable,298

generalizable features of pathology foundation models.299
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NeurIPS Paper Checklist432

1. Claims433

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s434

contributions and scope?435

Answer: [Yes]436

Justification: The abstract clearly summarizes the work. Main contributions are included in the last437

part of the introduction.438

Guidelines:439

• The answer NA means that the abstract and introduction do not include the claims made in the440

paper.441

• The abstract and/or introduction should clearly state the claims made, including the contributions442

made in the paper and important assumptions and limitations. A No or NA answer to this443

question will not be perceived well by the reviewers.444

• The claims made should match theoretical and experimental results, and reflect how much the445

results can be expected to generalize to other settings.446

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not447

attained by the paper.448

2. Limitations449

Question: Does the paper discuss the limitations of the work performed by the authors?450

Answer: [Yes]451

Justification: A separate limitation section (section 5) is included.452

Guidelines:453

• The answer NA means that the paper has no limitation while the answer No means that the paper454

has limitations, but those are not discussed in the paper.455

• The authors are encouraged to create a separate "Limitations" section in their paper.456

• The paper should point out any strong assumptions and how robust the results are to violations of457

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,458

asymptotic approximations only holding locally). The authors should reflect on how these459

assumptions might be violated in practice and what the implications would be.460

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested461

on a few datasets or with a few runs. In general, empirical results often depend on implicit462

assumptions, which should be articulated.463

• The authors should reflect on the factors that influence the performance of the approach. For464

example, a facial recognition algorithm may perform poorly when image resolution is low or465

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide466

closed captions for online lectures because it fails to handle technical jargon.467

• The authors should discuss the computational efficiency of the proposed algorithms and how468

they scale with dataset size.469

• If applicable, the authors should discuss possible limitations of their approach to address problems470

of privacy and fairness.471

• While the authors might fear that complete honesty about limitations might be used by reviewers472

as grounds for rejection, a worse outcome might be that reviewers discover limitations that473

aren’t acknowledged in the paper. The authors should use their best judgment and recognize474

that individual actions in favor of transparency play an important role in developing norms that475

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize476

honesty concerning limitations.477

3. Theory assumptions and proofs478

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete479

(and correct) proof?480

Answer: [NA]481

Justification: No theoretical results included.482

Guidelines:483

• The answer NA means that the paper does not include theoretical results.484

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.485

• All assumptions should be clearly stated or referenced in the statement of any theorems.486

13



• The proofs can either appear in the main paper or the supplemental material, but if they appear in487

the supplemental material, the authors are encouraged to provide a short proof sketch to provide488

intuition.489

• Inversely, any informal proof provided in the core of the paper should be complemented by490

formal proofs provided in appendix or supplemental material.491

• Theorems and Lemmas that the proof relies upon should be properly referenced.492

4. Experimental result reproducibility493

Question: Does the paper fully disclose all the information needed to reproduce the main experimental494

results of the paper to the extent that it affects the main claims and/or conclusions of the paper495

(regardless of whether the code and data are provided or not)?496

Answer: [Yes]497

Justification: All the methods used are clearly explained. Experimental results can be reproduced498

given the data.499

Guidelines:500

• The answer NA means that the paper does not include experiments.501

• If the paper includes experiments, a No answer to this question will not be perceived well by the502

reviewers: Making the paper reproducible is important, regardless of whether the code and data503

are provided or not.504

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make505

their results reproducible or verifiable.506

• Depending on the contribution, reproducibility can be accomplished in various ways. For507

example, if the contribution is a novel architecture, describing the architecture fully might suffice,508

or if the contribution is a specific model and empirical evaluation, it may be necessary to either509

make it possible for others to replicate the model with the same dataset, or provide access to510

the model. In general. releasing code and data is often one good way to accomplish this, but511

reproducibility can also be provided via detailed instructions for how to replicate the results,512

access to a hosted model (e.g., in the case of a large language model), releasing of a model513

checkpoint, or other means that are appropriate to the research performed.514

• While NeurIPS does not require releasing code, the conference does require all submissions515

to provide some reasonable avenue for reproducibility, which may depend on the nature of the516

contribution. For example517

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to518

reproduce that algorithm.519

(b) If the contribution is primarily a new model architecture, the paper should describe the520

architecture clearly and fully.521

(c) If the contribution is a new model (e.g., a large language model), then there should either be522

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,523

with an open-source dataset or instructions for how to construct the dataset).524

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are525

welcome to describe the particular way they provide for reproducibility. In the case of526

closed-source models, it may be that access to the model is limited in some way (e.g.,527

to registered users), but it should be possible for other researchers to have some path to528

reproducing or verifying the results.529

5. Open access to data and code530

Question: Does the paper provide open access to the data and code, with sufficient instructions to531

faithfully reproduce the main experimental results, as described in supplemental material?532

Answer: [No]533

Justification: The method section provides sufficient information to generate the code. The data cannot534

be shared for licensing.535

Guidelines:536

• The answer NA means that paper does not include experiments requiring code.537

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/538

guides/CodeSubmissionPolicy) for more details.539

• While we encourage the release of code and data, we understand that this might not be possible,540

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless541

this is central to the contribution (e.g., for a new open-source benchmark).542

• The instructions should contain the exact command and environment needed to run to reproduce543

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/544

guides/CodeSubmissionPolicy) for more details.545
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• The authors should provide instructions on data access and preparation, including how to access546

the raw data, preprocessed data, intermediate data, and generated data, etc.547

• The authors should provide scripts to reproduce all experimental results for the new proposed548

method and baselines. If only a subset of experiments are reproducible, they should state which549

ones are omitted from the script and why.550

• At submission time, to preserve anonymity, the authors should release anonymized versions (if551

applicable).552

• Providing as much information as possible in supplemental material (appended to the paper) is553

recommended, but including URLs to data and code is permitted.554

6. Experimental setting/details555

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,556

how they were chosen, type of optimizer, etc.) necessary to understand the results?557

Answer: [Yes]558

Justification: All the experimental setups are explained in Section 2.559

Guidelines:560

• The answer NA means that the paper does not include experiments.561

• The experimental setting should be presented in the core of the paper to a level of detail that is562

necessary to appreciate the results and make sense of them.563

• The full details can be provided either with the code, in appendix, or as supplemental material.564

7. Experiment statistical significance565

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-566

tion about the statistical significance of the experiments?567

Answer: [Yes]568

Justification: Statistical significance was reported where needed and rrror bars are included in figures.569

Guidelines:570

• The answer NA means that the paper does not include experiments.571

• The authors should answer "Yes" if the results are accompanied by error bars, confidence572

intervals, or statistical significance tests, at least for the experiments that support the main claims573

of the paper.574

• The factors of variability that the error bars are capturing should be clearly stated (for example,575

train/test split, initialization, random drawing of some parameter, or overall run with given576

experimental conditions).577

• The method for calculating the error bars should be explained (closed form formula, call to a578

library function, bootstrap, etc.)579

• The assumptions made should be given (e.g., Normally distributed errors).580

• It should be clear whether the error bar is the standard deviation or the standard error of the581

mean.582

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report583

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is584

not verified.585

• For asymmetric distributions, the authors should be careful not to show in tables or figures586

symmetric error bars that would yield results that are out of range (e.g. negative error rates).587

• If error bars are reported in tables or plots, The authors should explain in the text how they were588

calculated and reference the corresponding figures or tables in the text.589

8. Experiments compute resources590

Question: For each experiment, does the paper provide sufficient information on the computer591

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?592

Answer: [No]593

Justification: Compute resources were not included due to low relevance.594

Guidelines:595

• The answer NA means that the paper does not include experiments.596

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud597

provider, including relevant memory and storage.598

• The paper should provide the amount of compute required for each of the individual experimental599

runs as well as estimate the total compute.600
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• The paper should disclose whether the full research project required more compute than the601

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into602

the paper).603

9. Code of ethics604

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code605

of Ethics https://neurips.cc/public/EthicsGuidelines?606

Answer: [Yes]607

Justification: The authors have reviewed the NuerIPS Code of Ethics and confirmed conformity.608

Guidelines:609

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.610

• If the authors answer No, they should explain the special circumstances that require a deviation611

from the Code of Ethics.612

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due613

to laws or regulations in their jurisdiction).614

10. Broader impacts615

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts616

of the work performed?617

Answer: [NA]618

Justification: The work is foundational research and the authors do not expect any significant societal619

impact.620

Guidelines:621

• The answer NA means that there is no societal impact of the work performed.622

• If the authors answer NA or No, they should explain why their work has no societal impact or623

why the paper does not address societal impact.624

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,625

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-626

ment of technologies that could make decisions that unfairly impact specific groups), privacy627

considerations, and security considerations.628

• The conference expects that many papers will be foundational research and not tied to particular629

applications, let alone deployments. However, if there is a direct path to any negative applications,630

the authors should point it out. For example, it is legitimate to point out that an improvement in631

the quality of generative models could be used to generate deepfakes for disinformation. On the632

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks633

could enable people to train models that generate Deepfakes faster.634

• The authors should consider possible harms that could arise when the technology is being used635

as intended and functioning correctly, harms that could arise when the technology is being used636

as intended but gives incorrect results, and harms following from (intentional or unintentional)637

misuse of the technology.638

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies639

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-640

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the641

efficiency and accessibility of ML).642

11. Safeguards643

Question: Does the paper describe safeguards that have been put in place for responsible release of644

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or645

scraped datasets)?646

Answer: [NA]647

Justification: No such risks.648

Guidelines:649

• The answer NA means that the paper poses no such risks.650

• Released models that have a high risk for misuse or dual-use should be released with necessary651

safeguards to allow for controlled use of the model, for example by requiring that users adhere to652

usage guidelines or restrictions to access the model or implementing safety filters.653

• Datasets that have been scraped from the Internet could pose safety risks. The authors should654

describe how they avoided releasing unsafe images.655
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• We recognize that providing effective safeguards is challenging, and many papers do not require656

this, but we encourage authors to take this into account and make a best faith effort.657

12. Licenses for existing assets658

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,659

properly credited and are the license and terms of use explicitly mentioned and properly respected?660

Answer: [Yes]661

Justification: The original papers were properly cited and data resources were referenced.662

Guidelines:663

• The answer NA means that the paper does not use existing assets.664

• The authors should cite the original paper that produced the code package or dataset.665

• The authors should state which version of the asset is used and, if possible, include a URL.666

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.667

• For scraped data from a particular source (e.g., website), the copyright and terms of service of668

that source should be provided.669

• If assets are released, the license, copyright information, and terms of use in the package should670

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for671

some datasets. Their licensing guide can help determine the license of a dataset.672

• For existing datasets that are re-packaged, both the original license and the license of the derived673

asset (if it has changed) should be provided.674

• If this information is not available online, the authors are encouraged to reach out to the asset’s675

creators.676

13. New assets677

Question: Are new assets introduced in the paper well documented and is the documentation provided678

alongside the assets?679

Answer: [NA]680

Justification: No new assets were released.681

Guidelines:682

• The answer NA means that the paper does not release new assets.683

• Researchers should communicate the details of the dataset/code/model as part of their sub-684

missions via structured templates. This includes details about training, license, limitations,685

etc.686

• The paper should discuss whether and how consent was obtained from people whose asset is687

used.688

• At submission time, remember to anonymize your assets (if applicable). You can either create an689

anonymized URL or include an anonymized zip file.690

14. Crowdsourcing and research with human subjects691

Question: For crowdsourcing experiments and research with human subjects, does the paper include692

the full text of instructions given to participants and screenshots, if applicable, as well as details about693

compensation (if any)?694

Answer: [NA]695

Justification: The work does not involve crowdsourcing or human subjects.696

Guidelines:697

• The answer NA means that the paper does not involve crowdsourcing nor research with human698

subjects.699

• Including this information in the supplemental material is fine, but if the main contribution of the700

paper involves human subjects, then as much detail as possible should be included in the main701

paper.702

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other703

labor should be paid at least the minimum wage in the country of the data collector.704

15. Institutional review board (IRB) approvals or equivalent for research with human subjects705

Question: Does the paper describe potential risks incurred by study participants, whether such706

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an707

equivalent approval/review based on the requirements of your country or institution) were obtained?708

Answer: [NA]709
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Justification: The work does not involve crowdsourcing or human subjects.710

Guidelines:711

• The answer NA means that the paper does not involve crowdsourcing nor research with human712

subjects.713

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be714

required for any human subjects research. If you obtained IRB approval, you should clearly state715

this in the paper.716

• We recognize that the procedures for this may vary significantly between institutions and717

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for718

their institution.719

• For initial submissions, do not include any information that would break anonymity (if applica-720

ble), such as the institution conducting the review.721

16. Declaration of LLM usage722

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard723

component of the core methods in this research? Note that if the LLM is used only for writing,724

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or725

originality of the research, declaration is not required.726

Answer: [NA]727

Justification: No LLM used.728

Guidelines:729

• The answer NA means that the core method development in this research does not involve LLMs730

as any important, original, or non-standard components.731

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what732

should or should not be described.733
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