
Embed Everything: A Method for Efficiently
Co-Embedding Multi-Modal Spaces

Anonymous Author(s)
Affiliation
Address
email

Abstract

Any general artificial intelligence system must be able to interpret, operate on, and1

produce data in a multi-modal latent space that can represent audio, imagery, text,2

and more. In the last decade, deep neural networks have seen remarkable success in3

unimodal data distributions, while transfer learning techniques have seen a massive4

expansion of model reuse across related domains. However, training multi-modal5

networks from scratch remains expensive and illusive, while heterogeneous transfer6

learning (HTL) techniques remain relatively underdeveloped. In this paper, we7

propose a novel and cost-effective HTL strategy for co-embedding multi-modal8

spaces. Our method avoids cost inefficiencies by preprocessing embeddings using9

pretrained models for all components, without passing gradients through these10

models. We prove the use of this system in a joint image-audio embedding task. Our11

method has wide-reaching applications, as successfully bridging the gap between12

different latent spaces could provide a framework for the promised "universal"13

embedding.14

1 Introduction15

Traditional deep neural network classifiers (ImageNet, Inception, etc.) [7, 15, 10] operate in a16

unimodal latent space. Unimodal spaces, though useful, fail to encapsulate the inherently multi-17

modal methods that human beings use to interact with and experience real-world data. Bridging18

modalities is an active area of research [1, 17], frequently through a combination of transfer learning19

and the use of deep neural networks [12].20

Although deep neural networks exhibit remarkable generalization capabilities [14], even the best21

neural networks perform poorly on data that is far from the training distribution. A naive approach is22

to retrain models on unique sub-tasks; however, training costs increase in proportion to model size23

and complexity, and many tasks do not have sufficient labeled data available to fully train a model24

from scratch.25

Transfer learning has proven to be an effective tool in generalizing knowledge across domains with26

similar feature spaces [18]. Transfer learning can involve a model architecture that utilizes some27

or all of an existing trained model to generate learned features. This model is then trained on a28

(traditionally much smaller) dataset for a specific subtask. Transfer learning has successfully been29

used for text sentiment classification, image classification, and multi-language text classification [16].30

Notably, in many of these cases, the source and target domains involve similar feature spaces. In31

instances where the source and target domain are highly dissimilar (e.g. across modalities), standard32

transfer learning methods fail.33

Heterogeneous transfer learning (HTL), which aims to connect nonequivalent feature spaces, requires34

complex embedding transformations in order to handle cross-domain differences in data. HTL35

Submitted to the 5th Workshop on Meta-Learning at NeurIPS 2021, held virtually. Do not distribute.



techniques can significantly broaden real-world applications of transfer learning – tasks as varied as36

search or autonomous vehicle training depend on multi-modal inputs, including audio, imagery, and37

text[1]. Ideally, HTL techniques would allow practitioners to compose existing models that perform38

well in specific modalities, resulting in complex co-embedding spaces that function across modalities.39

In this work, we aim to tackle this foundational problem in HTL. We propose a heterogeneous40

transfer learning method (Embed Everything) which can be used to learn a co-embedding space41

over any two arbitrary pretrained models. Our approach utilizes preprocessed embeddings generated42

by the pretrained models without passing gradients to the models themselves, thereby distributing43

computational work while minimizing cost. We deploy contrastive losses to train a small deep neural44

network that projects between the preexisting model spaces. Using Embed Everything, we develop45

an image-audio co-embedding space that is based on CLIP [13] and VGGISH [9]. We present several46

experiments to show the efficacy of the Embed Everything method, and conclude with an analysis of47

the applications and limitations of our approach.48

2 Related Work49

2.1 Transfer Learning50

Transfer learning techniques aim to make model training more efficient by reusing parts or all of51

previously trained models for feature extraction. Models trained with transfer learning generally52

require fewer training steps [18, 6, 8] and smaller datasets [18, 6, 8] to generalize to new tasks. Deep53

neural networks work well with transfer learning techniques because lower layers of the model learn54

successively more abstract features of the dataset, which are more easily transferred to unrelated55

tasks [2].56

Transfer learning on deep neural networks can be described with the following notation:57

h0 = x

h1 = f1(h0)

hn = fn(hn−1)

t0 = h1...n

t1 = g1(t0)

tn = gn(tn−1)

where x represents input data, f1...n represent pre-trained learnable functions that are composed as58

layers in a deep neural network, g1...n represents the same but randomly initialized, h1...n represents59

the embeddings from a pretrained model H at different layers, and t1...n represents the embeddings60

from a transfer-learned model T at different layers. In the traditional setting, T is then trained on new61

data. Gradients can optionally flow from t0 to h1...n; in such settings, the entire model is able to fine62

tune on the novel inputs, resulting in higher quality outputs but with greater training cost.63

The method of transfer learning described above relies on T being trained on a task that is fundamen-64

tally similar to H , as both models depend on the same input data x. As a result, transfer learning65

techniques will not succeed on markedly different input data. Heterogeneous Transfer Learning66

techniques attempt to resolve this issue by training models that can explicitly project information into67

different target domains. We recommend [6] for an in depth review of existing HTL methods. As far68

as we are aware, HTL methods have not been applied to learning joint embedding spaces in multiple69

modalities, such as images and audio.70

2.2 Multi-Modal Deep Learning71

Deep neural networks have been shown to have powerful representation capabilities in multiple72

domains, including imagery, audio, and text. Because neural networks operate on vector space73

representations, they have become popular for attempting to solve multi-modal tasks [1]. Specific74

architectures are often used in conjunction with individual modalities – for example, convolutional75

networks for images, or transformers for text. As a result, multi-modal models are often composed76

of unimodal submodels, with composition layers that aggregate information into a single coherent77

representation that is then used to solve some underlying, potentially supervised task.78

2



More recently, models such as CLIP [13] have successfully created joint embedding spaces across79

modalities. Such models are extremely powerful, with CLIP displaying impressive generalization80

capabilities across a variety of tasks[13]. However, they are also expensive to train and require81

a significant amount of data. CLIP and similar models were trained using contrastive losses, an82

increasingly popular method of learning embedding spaces without supervision [5]. In particular,83

contrastive losses have shown surprising ability to adapt to potentially unclean labeled data. We84

suspect that contrastive losses can be utilized to find correlations across preexisting multi-modal85

embedding spaces.86

3 Methods87

The core insight behind the Embed Everything method is that preexisting embedding spaces can be88

projected into arbitrary target domains using a relatively small neural network that can be fine-tuned89

for specific tasks. Our system uses the following components: two pretrained models, M1 and M290

that ingest different modalities m1 and m2 respectively; a set of untrained transform layers T1 and91

T2 on top of one or both models that are significantly smaller in size than the pretrained models that92

produce outputs of the same dimensionality; and a contrastive loss function on an optimizer that takes93

in inputs from T1 and T2. The Embed Everything method additionally requires a dataset of pairs94

between m1 and m2; such data-pairs are commonly found from scrapes of the web (e.g. in [13], [3]).95

Training procedure is as follows:96

1. batches are created following the method laid out in [5] for the contrastive loss;97

2. batches are fed into M1 and M2 to produce embeddings in their own custom spaces,98

potentially of different dimensionalities;99

3. these custom embeddings are passed through the transform layers T1 and T2, producing an100

embedding of the same size;101

4. the same-sized embeddings are passed to the contrastive loss, which produces gradients102

such that embeddings coming from a pair are similar while all others are distinct;103

5. gradients are passed down through the model, which results in the transform layers learning104

to project into a common space.105

We could equivalently denote the outputs as follows:106

e1 = T1(M1(m1))

e2 = T2(M2(m2))

where e1 and e2 denote embeddings that live in the same latent space for potentially multimodal107

inputs m1 and m2.108

During inference, data is passed into M1 and M2 as usual. Embeddings taken from the pretrained109

models are then fed into the now-learned and static transform layers. Because the transform layers110

have been trained to produce embeddings that live in the same vector space, the outputs should be111

comparable, as if they were produced by the same model.112

To massively speed up training, we avoid passing gradients to M1 and M2. This allows us to separate113

steps 1 and 2 from the rest of the training process described above. We can effectively treat M1 and114

M2 as black boxes and run them in inference mode at scale in a highly distributed setting. We can115

then work entirely embedding spaces, discarding any of the original data. The entire model can now116

be seen as training a few small projection layers on input float vectors, which is a significantly less117

expensive task than training huge models from high dimensional data like images and audio.118

4 Experiments119

In this section, we describe how Embed Everything was used to create a joint image-audio embedding120

space.121

3



Figure 1: Summary of our approach. Left: Our system comprises two pretrained models, M1 and
M2 which take as input m1 and m2 respectively and two untrained transform layers T1 and T2. Right:
First, we preprocess our training data by generating the embeddings produced by CLIP and VGGish
on VGG-Sound videos. We train additional layers on top of the fixed audio embedding model to
transform the VGGish embedding space to align with the CLIP embedding space.

4.1 Dataset122

In order to utilize Embed Everything, we need to have a relatively large dataset of image-audio pairs.123

Conveniently, we can utilize the large amount of video data available online to generate these pairs.124

We scrape X videos from the VGG-Sound dataset [4]. From each video, we extract image frames that125

correspond to five seconds of audio around the frame. This process generates X image-audio pairs.126

We randomly divide image-audio pairings 67%/33% to form the training and validation datasets.127

4.2 Model Settings128

For our experiments, we utilize CLIP for our pretrained image embedding space and VGGish for129

our pretrained audio embedding space. To further simplify our training scheme, we utilize a single130

transform layer that projects the VGGish output embeddings into the CLIP embedding space. Because131

we do not pass gradients to CLIP or VGGish, we preprocess all of the image-audio pairs described in132

4.1 offline, at scale. These embeddings are then turned into batches of data and labeled as positive or133

negative based on whether the image-audio selection represents a pair in the original dataset.134

The transform layers are implemented in Keras and trained with an Adam optimizer using an adjusted135

learning rate of 0.0001. We train at batch size 4096 for 300 epochs. The transform layers were trained136

entirely on a personal laptop on CPU, underscoring the efficiency of the method. See Figure 1 for a137

visual description of the final approach.138

4.3 Embedding Projections139

To demonstrate whether Embed Everything successfully learned a joint image-audio embedding, we140

embed several image-audio pairs and then project the embeddings into two dimensions using UMAP141

[11]. We aim to determine whether the embedding space successfully separates data of different142

classes across modalities, while clustering data of the same class across modalities.143

As a baseline, we depict the VGGish embedding space for audio in Figure 2a. In this case, we see144

that data of different classes is relatively separated.145

Next, we examine how audio files are embedded in the CLIP embedding space, depicted in Figure 2b.146

We observe that audio data appears to be reasonably clustered by class, even when projected. This147

implies that the Embed Everything approach successfully captured some or all of the class separation148

information found in VGGish, and transferred that learning to the CLIP embedding.149

Finally, we explore how audio files and image files are clustered in the CLIP embedding space, shown150

in Figures 3 and 4. In general, audio and image data of the same class appear to be colocated, while151

audio and image data of different classes are separated from each other. This strongly implies that the152

Embed Everything approach successfully learned a generalized image-audio embedding space.153

4



Figure 2: Preservation of distinct classes. UMAP visualization of embeddings of audio from two
distinct classes. Audio from bells (blue) and cars (red) is embedded first in the VGGish space and
then transformed into the CLIP space. This transformation retains separation of the two classes.

Figure 3: Co-embedding of images and audio. UMAP visualization of embeddings of audio and
images from two distinct classes in one space. Audio used in figure 2, represented by circles, is
co-embedded with images corresponding to those classes, represented by triangles. The resulting
co-embedding manages to separate the two classes despite containing data in two distinct modes.

Figure 4: Performance on training set. UMAP visualization of co-embeddings of image-audio
pairs randomly selected from the training set. Circles and triangles of the same color represent an
image and audio file from the training data set.

5



5 Discussion154

In this work, we present a novel, cost effective method of heterogeneous transfer learning, and show155

its efficacy by generating a useful audio-image co-embedding space.156

Interestingly, even though we utilize CLIP as an image embedder, it actually generates a image-text157

co-embedding. As a result, we believe the embeddings generated by Embed Everything in our158

experiments actually live in a joint audio-image-text embedding space. In future work, we intend159

to explore how well text interacts with the audio in this space, especially since the transform layers160

were only trained on audio-image pairs.161

As with other transfer learning approaches, the choice of the underlying models is key to successfully162

learning a task. In our case, we suspect that CLIP is a particularly good model for Embed Everything.163

Because CLIP learns a coembedding between text and images, the pretrained CLIP embedding164

space is likely to be sufficiently generalizable. Importantly, the Embed Everything approach cannot165

reasonably do better than the manifolds it is trained on, so it is important to select large models that166

have been trained on a significant amount of variable data.167

One limitation of the Embed Everything method is that its success is dependent on finding a dataset168

where a positive pairing is readily apparent. The Embed Everything system translates easily to image169

and audio since videos form a natural semantic link between the two modalities. However, it may be170

difficult to find a publicly available dataset for any two arbitrary datatypes.171

Additionally, the quality of the training dataset greatly impacts the accuracy of the model. Although172

VGGSound attempts to reduce ambient noise and present only visually apparent sources of audio,173

they maintain a 50% threshold both for rejecting extraneous audio and for accepting correctly labeled174

class types. We believe this might cause difficulties since video clips containing extraneous noise or175

that are incorrectly identified ultimately interfere with the accuracy of our model.176

Overall, we are excited to see that Embed Everything can make the task of creating joint embeddding177

spaces significantly easier. We look forward to expanding this work on other large models in other178

domains.179

References180

[1] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learn-181

ing: A survey and taxonomy. IEEE transactions on pattern analysis and machine intelligence,182

41(2):423–443, 2018.183

[2] Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In184

Proceedings of ICML workshop on unsupervised and transfer learning, pages 17–36. JMLR185

Workshop and Conference Proceedings, 2012.186

[3] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,187

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are188

few-shot learners. arXiv preprint arXiv:2005.14165, 2020.189

[4] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale190

audio-visual dataset. In ICASSP 2020-2020 IEEE International Conference on Acoustics,191

Speech and Signal Processing (ICASSP), pages 721–725. IEEE, 2020.192

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework193

for contrastive learning of visual representations. In International conference on machine194

learning, pages 1597–1607. PMLR, 2020.195

[6] Oscar Day and Taghi M Khoshgoftaar. A survey on heterogeneous transfer learning. Journal of196

Big Data, 4(1):1–42, 2017.197

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-198

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern199

recognition, pages 248–255. Ieee, 2009.200

[8] Magda Friedjungová and Marcel Jirina. Asymmetric heterogeneous transfer learning: A survey.201

In DATA, pages 17–27, 2017.202

6



[9] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, Channing203

Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan Seybold, Malcolm Slaney, Ron Weiss,204

and Kevin Wilson. Cnn architectures for large-scale audio classification. In International205

Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017.206

[10] Yali Li, Shengjin Wang, Qi Tian, and Xiaoqing Ding. A survey of recent advances in visual207

feature detection. Neurocomputing, 149:736–751, 2015.208

[11] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation209

and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.210

[12] Niluthpol C Mithun, Juncheng Li, Florian Metze, and Amit K Roy-Chowdhury. Joint em-211

beddings with multimodal cues for video-text retrieval. International Journal of Multimedia212

Information Retrieval, 8(1):3–18, 2019.213

[13] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,214

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual215

models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.216

[14] Terrence J Sejnowski. The unreasonable effectiveness of deep learning in artificial intelligence.217

Proceedings of the National Academy of Sciences, 117(48):30033–30038, 2020.218

[15] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,219

inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI220

conference on artificial intelligence, 2017.221

[16] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal222

of Big data, 3(1):1–40, 2016.223

[17] Liang Zhang, Bingpeng Ma, Guorong Li, Qingming Huang, and Qi Tian. Multi-networks joint224

learning for large-scale cross-modal retrieval. In Proceedings of the 25th ACM international225

conference on Multimedia, pages 907–915, 2017.226

[18] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui227

Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE,228

109(1):43–76, 2020.229

7


	Introduction
	Related Work
	Transfer Learning
	Multi-Modal Deep Learning

	Methods
	Experiments
	Dataset
	Model Settings
	Embedding Projections

	Discussion

