
HEROFILTER: Adaptive Spectral Graph Filter for
Varying Heterophilic Relations

Shuaicheng Zhang∗
Virginia Tech

zshuai8@vt.edu

Haohui Wang∗

Virginia Tech
haohuiw@vt.edu

Junhong Lin
MIT

junhong@mit.edu

Xiaojie Guo
IBM Research

xiaojie.guo@ibm.com

Yada Zhu
IBM Research
yzhu@ibm.com

Si Zhang
Meta AI

sizhang@meta.com

Dongqi Fu
Meta AI

dongqifu@meta.com

Dawei Zhou
Virginia Tech
zhoud@vt.edu

Abstract

Graph heterophily, where connected nodes have different labels, has attracted
significant interest recently. Most existing works adopt a simplified approach -
using low-pass filters for homophilic graphs and high-pass filters for heterophilic
graphs. However, we discover that the relationship between graph heterophily and
spectral filters is more complex - the optimal filter response varies across frequency
components and does not follow a strict monotonic correlation with heterophily
degree. This finding challenges conventional fixed filter designs and suggests
the need for adaptive filtering to preserve expressiveness in graph embeddings.
Formally, natural questions arise: Given a heterophilic graph G, how and to what
extent will the varying heterophily degree of G affect the performance of GNNs?
How can we design adaptive filters to fit those varying heterophilic connections?
Our theoretical analysis reveals that the average frequency response of GNNs and
graph heterophily degree do not follow a strict monotonic correlation, necessitating
adaptive graph filters to guarantee good generalization performance. Hence, we
propose HEROFILTER, a simple yet powerful GNN, which extracts information
across the heterophily spectrum and combines salient representations through adap-
tive mixing. HEROFILTER’s superior performance achieves up to 9.2% accuracy
improvement over leading baselines across homophilic and heterophilic graphs.

1 Introduction

Graph Neural Networks (GNNs) have emerged as powerful tools for learning from graph-structured
data across a broad range of domains [1, 2, 3, 4, 5, 6, 7, 8, 9]. Despite their empirical success, GNNs
are known to suffer performance degradation when applied to graphs that exhibit heterophily, a
structural property where connected nodes tend to have dissimilar features or labels. This stands in
contrast to the homophily assumption, foundational to many GNN architectures, which presumes
that adjacent nodes share similar attributes. A growing body of work [10, 11, 12, 13, 14] has shown
that this mismatch in assumptions significantly limits the effectiveness of conventional GNNs, often
rendering them less effective than simple multilayer perceptrons (MLPs).

To better understand and mitigate the limitations of GNNs under heterophily, researchers have adopted
a spectral view grounded in graph signal processing (GSP) [15, 16, 17, 18]. In this framework,
graph signals are decomposed into frequency components via the eigen decomposition of the graph
Laplacian, where low-frequency components capture smooth variations across the graph, and high-

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

frequency components capture rapid, localized changes. Classic GNNs such as Graph Convolutional
Network (GCN) [19] and Graph Attention Network (GAT) [20] can thus be interpreted as applying
low-pass filters, effectively amplifying low-frequency components and suppressing high-frequency
noise [15]. This design aligns well with homophilic structures, where relevant information is
concentrated in the low-frequency spectrum. However, it is often inadequate for heterophilic graphs,
where informative signals may lie in higher-frequency bands.

Figure 1: 3D visualization showing the underly-
ing relationship among eigenvalues, heterophily
degree, and frequency response (in log scale). In
particular, we synthesized nine graphs with het-
erophily degrees ranging from 0.1 to 0.9. Each
curve with a unique color corresponds to a well-
trained spectral graph filter [21] on each graph.

To address this, recent works have proposed
filter-based GNNs that explicitly incorporate
high-frequency information [22, 23], and em-
pirical studies have supported the effectiveness
of high-pass or mixed filters for heterophilic
settings [24, 23]. Nevertheless, most existing
approaches rely on a simplifying assumption:
low-pass filters are used for homophilic graphs,
and high-pass filters are used for heterophilic
ones. This binary perspective assumes a mono-
tonic relationship between the heterophily level
of a graph and its optimal spectral filter, an as-
sumption that we show is often violated in prac-
tice.

To investigate this assumption, we conduct con-
trolled experiments on synthetic graphs with
varying heterophily degrees. As shown in Fig-
ure 1, we observe that the frequency responses
of trained spectral filters [21] exhibit complex,
non-monotonic behavior across the spectrum.
For example, in graphs with low heterophily
(e.g., 0.1), the learned filters reveal significant
activation in both low- and mid-frequency bands,
contrary to the expectation of a purely low-
pass response. Similarly, graphs with high het-
erophily (e.g., 0.9) do not exhibit a purely high-pass response, retaining strong low-frequency
components. These findings suggest that the relationship between heterophily and spectral response
is more intricate than previously assumed, and that fixed filter types (low-pass or high-pass) are
insufficient for capturing this complexity. These observations motivate two central research questions:

Q1 (Theoretical Understanding): How can we characterize the relationship between graph het-
erophily, spectral filters, and the prediction performance of GNNs?

Q2 (Adaptive Computation): How can we design adaptive filters and GNN models that perform
robustly across graphs with varying and possibly mixed heterophily patterns?

To address Q1, we conduct a theoretical analysis that formally establishes the connection between
the heterophily degree of a graph, its spectral representation, and the performance of GNNs. We
introduce a novel spectral-domain measure of heterophily and derive an error bound that highlights
the limitations of fixed filtering strategies and motivates the need for adaptivity in spectral design.

To address Q2, we propose HEROFILTER, a novel GNN architecture inspired by the MLP-
Mixer [25, 26]. HEROFILTER consists of two key components: (1) a Patcher that identifies spectrally
relevant neighbors for each node via adaptive polynomial filters, and (2) a Mixer that aggregates
and transforms patch representations along both the patch and feature dimensions. This architecture
allows HEROFILTER to modulate its spectral response based on the graph structure and heterophily
level, while remaining computationally efficient. We further introduce Fast-HEROFILTER, a scalable
variant that avoids eigen decomposition through efficient approximation.

Beyond conceptual proof and proposed theories, we conduct extensive experiments on homophilic,
heterophilic, and large-scale real-world graphs. HEROFILTER consistently achieves state-of-the-art
accuracy, improving over strong baselines by up to 9.2%. Data and code are available 2.

2https://github.com/zshuai8/HeroFilter

2

https://github.com/zshuai8/HeroFilter

2 Preliminaries

Notation. We denote scalars by regular lowercase letters (e.g., c), vectors by bold lowercase letters
(e.g., r), and matrices by bold uppercase letters (e.g., X). A graph is represented as G = (V, E ,X),
where V is the set of nodes, E ⊆ V × V is the set of edges, and X is the node feature matrix. Let
n = |V| be the number of nodes. We denote by A and L the adjacency and Laplacian matrices,
respectively, and by Ã and L̃ their normalized forms. A summary of key notations is provided in the
Appendix B.

Graph Spectral Filters. Spectral GNNs leverage the graph signal processing framework to define
convolutional operations in the spectral domain. The eigendecomposition of the normalized Laplacian
L̃ yields L̃ = UΛU⊤, where U ∈ Rn×n is the matrix of orthonormal eigenvectors forming the
graph Fourier basis, and Λ is a diagonal matrix containing the corresponding eigenvalues. Given a
graph signal x ∈ Rn, its graph Fourier transform is defined as x̂ = U⊤x, and the inverse transform
is x = Ux̂. The spectral graph convolution between a signal x and a filter g is defined as:

x ∗G g = Ug(Λ)U⊤x, (1)

where g(Λ) is a learnable filter function applied in the spectral domain.

The GCN [19] can be interpreted as a spectral GNN that employs a first-order Chebyshev polynomial
to approximate the filter function, yielding g(Λ) = (I + Λ)−1. This corresponds to a low-pass
filter, which suppresses high-frequency components and retains smooth signal patterns across the
graph [15].

Graph Heterophily. Many GNN models implicitly assume homophily, where connected nodes are
expected to have similar features or labels [15]. However, in practice, numerous real-world graphs
violate this assumption and instead exhibit high heterophily—connections between nodes of differing
labels or characteristics [27]. To quantify this, we adopt the notion of node-level heterophily [11],
defined as follows:
Definition 1 (Node Heterophily). Let N (vi) = {vj ∈ V : (vi, vj) ∈ E} denote the neighbors of
node vi, and let yi denote its label. The node heterophily hi for node vi is defined as:

hi =
|{vj ∈ N (vi) : yj ̸= yi}|

|N (vi)|
. (2)

The heterophily degree vector h = (h0, . . . , hn−1) ∈ Rn captures the heterophily level of each node,
and the overall heterophily of the graph is computed as the average: 1

n

∑n−1
i=0 hi.

High-heterophily graphs are common in domains such as social networks, citation graphs, and web
hyperlinks. Benchmark datasets including Texas, Squirrel, Chameleon, Cornell, Wisconsin, and
Actor [28, 29, 30] are representative examples. In such settings, conventional GCN-based message
passing, which aggregates information from neighboring nodes, often leads to feature smoothing that
can obscure useful class-distinctive signals, resulting in suboptimal performance.

3 Theoretical Bound in Terms of Graph Heterophily, Graph Filter, and
Prediction Performance

In this section, we address Q1 by theoretically analyzing the relationship among the graph filter,
the heterophily degree of a graph G, and the generalization performance of GNNs. We begin by
demonstrating that the average spectral response of a filter and the heterophily level of the graph
do not follow a simple monotonic relationship. This result, formalized in Proposition 1, motivates
the need for adaptive filtering. We then establish that adaptive filters can, in principle, align closely
with arbitrary label distributions (Proposition 2). Finally, we derive a generalization error bound
(Theorem 1) that quantifies how graph heterophily and spectral filter design jointly affect learning
performance. Full proofs of all results are provided in the Appendix C.

Spectral Characterization of Heterophily. While graph filters are naturally defined in the spectral
domain, heterophily is typically measured in the spatial domain. To bridge this gap, we introduce a
heterophily degree vector in the spectral domain via the graph Fourier transform.

3

Definition 2 (Heterophily Degree Vector in Spectral Domain). Let Ã = UΛU⊤ be the eigende-
composition of the normalized adjacency matrix Ã, where U contains the eigenvectors and Λ is the
diagonal matrix of eigenvalues. Then the heterophily degree vector in the spectral domain ĥ ∈ Rn is
defined as:

ĥ = U⊤h,

where h is the heterophily degree vector (spatial) and ĥ = (ĥ0, . . . , ĥn−1), ĥi is heterophily of the
i-th element in the spectral domain.

Non-Monotonicity of Frequency Response and Heterophily. We next examine how the average
spectral response of a graph filter relates to the heterophily in the spectral domain.

Proposition 1. Let Ã be the normalized adjacency matrix with eigendecomposition Ã = UΛU⊤,
where λ0 ≤ · · · ≤ λn−1 = 1. Then the average filter response is lower bounded by:

n−1∑

i=0

g(λi)

n
≥

∑n−1
i=0 log |ĥi|

n
(
log
∑n−1
i=0 g(λi)|ĥi| − log

∑n−1
i=0 g(λi)

) . (3)

This result reveals that the average filter response 1
n

∑
i g(λi) and the average heterophily in the

spectral domain 1
n

∑
i ĥi do not follow a monotonic relationship. As shown in Figure 1, graphs

with low overall heterophily in the spatial domain exhibit strong responses in mid-frequency bands,
contradicting the assumption that low-pass filters are always optimal in such cases.

Need for Adaptive Filtering. The non-monotonic and graph-dependent nature of het-
erophily–frequency interactions suggests that fixed filters (e.g., purely low-pass or high-pass) are
suboptimal. To accommodate diverse frequency needs, we consider an adaptive polynomial filter:

g(Λ) =

K∑

k=1

σ(wk ⊙Λk), (4)

where σ is an activation function, wk ∈ Rn are learnable weights, and ⊙ denotes the Hadamard
product. GCN [19] is a special case where g(Λ) = (I+Λ)−1 corresponds to a low-pass filter [15].

We next show that such adaptive filters can match any label pattern in the frequency domain.

Proposition 2. Let Y = (y1, . . . , yn) be the label vector with yi ∈ {0, . . . , C − 1}, and let Λ be the
eigenvalue matrix of Ã, assuming all eigenvalues are nonzero. Then there exist weights {wk}Kk=1
such that:

Align(g(Λ),Y) = 1,

where g(Λ) =
∑K
k=1 σ(wk ⊙Λk), σ(0) = 0, and Align(·, ·) denotes cosine similarity.

This proposition highlights the expressive power of adaptive filters to align with the target signal,
particularly under varying heterophily.

Generalization Error Bound. We now quantify how filter design and heterophily in the spectral
domain affect generalization error.

Theorem 1. Consider a binary classification task on a graph G with n nodes. Let X = (X0,X1) be
the filtered node features for nodes belonging to class 0 and class 1, respectively. Y = (y0,y1) be
the label indicators for classes 0 and 1. Let δ, η be the spectral coefficients of the label and feature
differences, respectively. Then the error is upper bounded as:

Er(X,Y) ≤ c1 −
min

i∈Ig,δ,η

ψ 1
g(1−λi)δi

(ηi) · δi
∑

i∈Iδ,η̃

log |ĥi|

2n log
∑

i∈Iδ,η̃

g(1− λi)|ĥi| − 2n log
∑

i∈Iδ,η̃

g(1− λi)
, (5)

where c1 is a constant, Iδ = {i | δi ̸= 0}, and ψ(x) = min{max{x,−1}, 1}.

4

D
ow

nstream
 Tasks

HeroFilter Patcher

Adaptive Patch Selection via Spectral Filters

HeroFilter Framework

(A, X)

HeroFilter Mixer

Low pass High pass
…K filters

Input Heterophilic Graph !

S

Class 1
Class 2

Class 3
Class 4

Top p extracted nodes

P

1 … p…
2 … …

n … …
… ……

ss

g(λ)

λ Patch-Mixing

Feature-Mixing

Aggregator

LayerNorm

Pm ∈ Rn×p×d

P̄m ∈ Rn×d

⎡
⎢⎣

P11 . . . P1d

...
. . .

...
Pp1 . . . Ppd

⎤
⎥⎦

MLP
M
LP

⎡
⎢⎣

P11 . . . P1d

...
. . .

...
Pp1 . . . Ppd

⎤
⎥⎦

+

+

P ∈ Rn×p×d

MLP over the patch
dimension

MLP over the feature
dimension

LayerNorm
g(λ)

λ

Figure 3: Overview of the HEROFILTER framework, consisting of (1) the HEROFILTER Patcher,
which adaptively selects spectrally relevant neighbors using learned filters, and (2) the HEROFILTER
Mixer, which aggregates patch features across nodes and dimensions.

Figure 2: An interpolated figure demonstrating
the relationship between filtered eigenvalues, het-
erophily degree, and accuracy.

Theorem 1 formally characterizes how filter
choice and heterophily in the spectral domain
influence prediction performance. To explore
this relationship, we synthesized nine graphs
with heterophily degrees ranging from 0.1 to
0.9 as shown in Figure 2. For each graph, we
employed five learnable spectral filters passing
specific eigenvalue segments: 0–0.4, 0.4–0.8,
0.8–1.2, 1.2–1.6, and 1.6–2.0. Our synthetic ex-
periments demonstrate that different frequency
regions contribute variably to accuracy depend-
ing on the heterophily level. This further sup-
ports the need for flexible, graph-specific filter-
ing strategies.

4 HEROFILTER Framework

The theoretical analysis in Section 3 highlights two key limitations of existing GNN approaches
when applied to heterophilic graphs. First, the spectral behavior of real-world graphs with varying
heterophily is complex and non-monotonic, rendering uniform low-pass or high-pass filters ineffective.
Second, different frequency bands contribute differently to prediction performance depending on the
graph’s heterophily structure. These insights motivate the design of HEROFILTER, a graph learning
framework that adaptively aligns its spectral processing with the graph’s heterophily profile.

HEROFILTER consists of two core modules: (1) The HEROFILTER Patcher, which dynamically
selects spectrally relevant neighbors for each node by learning adaptive polynomial filters. This step
enables the model to attend to contextually important nodes across spectral bands, beyond simple
local neighborhoods, and (2) The HEROFILTER Mixer, which processes each node’s patch using
a dual-axis MLP architecture that mixes across both spatial (patch) and feature dimensions. This
ensures that the model can effectively combine diverse signals arising from the selected patches.

Together, these components allow HEROFILTER to flexibly adapt its receptive field and frequency
sensitivity, providing an interpretable and scalable mechanism for handling graphs with varying or
mixed heterophily.

4.1 HEROFILTER Patcher

The goal of the patcher is to construct, for each node, a set of contextually informative neighbors that
reflect spectral, rather than purely topological, similarity. Traditional GNNs aggregate over immediate
neighbors, implicitly assuming local homophily. This assumption breaks down in heterophilic settings.

5

Thus, we propose to learn a filter g(Λ) that scores nodes based on their spectral alignment, enabling
a more adaptive notion of neighborhood.

We define the filter using a learnable polynomial function over the eigenvalues of the normalized
adjacency matrix:

g(Λ) =

K∑

k=1

σ(wk ⊙Λk), (6)

where σ is a non-linear activation function and wk are learnable frequency-specific weights. This pa-
rameterization allows the model to selectively emphasize different frequency bands based on training
data, consistent with our theoretical observation that fixed low/high-pass filters are suboptimal.

To apply this filter in the graph domain, we transform it via the graph Fourier basis U, resulting in
the node-node relevance matrix:

R = U

(
K∑

k=1

wk ⊙Λk

)
U⊤. (7)

Here, Rij measures the spectral relevance of node j to node i under the learned filter. For each node,
we sort all other nodes by their relevance scores and select the top-p most aligned ones to form the
patch. Mathematically:

ϕ(Ã) = top-pcol (R) . (8)

The resulting patches are structurally diverse and frequency-aware, allowing the model to capture
high-order or cross-cluster interactions often present in heterophilic graphs.

For each selected patch, we extract the corresponding feature vectors from X, yielding a patch tensor:

Pv = X[top-p(Rv)], P ∈ Rn×p×d, (9)

where p is the patch size and d is the feature dimension. These patches now serve as the input for the
next step of the model.

4.2 HEROFILTER Mixer

Once patches are constructed, we need to aggregate and transform them into useful node-level
representations. Unlike traditional GNNs that rely on fixed aggregation schemes (e.g., mean, sum),
our objective is to allow richer, learnable interactions both across patch elements (spatial mixing) and
across features (feature mixing). This is motivated by the observation that information relevant to
classification may lie in combinations of both positional and attribute-level patterns.

We adapt the MLP-Mixer architecture to this setting by defining two mixing layers:

Patch-Mixing Layer. For each node’s patch Pv ∈ Rp×d, we apply an MLP across the patch
dimension:

P̂v = MLP(LayerNorm(P⊤
v))

⊤. (10)

This operation allows the model to reason over relationships between the selected nodes in the
patch, independently for each feature. It enables the capture of role-based, cross-hop, or structurally
asymmetric dependencies.

Feature-Mixing Layer. Next, we apply an MLP across the feature dimension:

P̃v = MLP(LayerNorm(P̂v)). (11)

This allows the model to learn joint representations over node features, enabling flexible composition
and transformation of feature information within each patch.

The output of the mixer is a tensor P̃ ∈ Rn×p×d. We then apply a global aggregation function
(e.g., mean, sum, or flatten) over the patch dimension to produce a final node representation. This
aggregated output is passed to a classification layer.

6

4.3 Why Mixing Both Dimensions

Patch-mixing captures the heterophily in node context by modeling which other nodes influence the
representation of a given node. Feature-mixing captures intra-node complexity by transforming raw
input features into abstract representations. Therefore, the combination is essential: patch mixing
enables adaptivity to structural irregularities (e.g., in heterophilic regions), while feature mixing
enables expressive node-level reasoning.

4.4 Fast-HEROFILTER Patcher

Although the HEROFILTER Patcher is expressive, its reliance on eigen decomposition can be pro-
hibitive for large-scale graphs. To improve scalability, we propose Fast-HEROFILTER, an efficient
variant that approximates the patcher using iterative proximity ranking, inspired by personalized
PageRank and diffusion-based similarity.

We define the following objective for each node v:

J (rv) = cr⊤v (I− Ã)rv + (1− c)∥rv − ev∥22, (12)

where rv is a ranking vector and ev is a one-hot vector. This objective balances global smoothness
and local personalization.

Minimizing J (rv) yields the recurrence:

rv = c Ã rv + (1− c) ev, (13)

which has the closed-form solution:

rv = (1− c)(I− c Ã)−1ev.

To avoid matrix inversion, we approximate this with a truncated Neumann series:

rv ≈ (1− c)
K∑

k=0

ck Ãk ev. (14)

This expansion can be interpreted as diffusing information K steps away from v, with attenuation ck.
Since Ãk = UΛkU⊤, this operation also approximates spectral filtering.

Finally, we construct patches by selecting the top-p entries in each rv, with the Fast-HEROFILTER
patching rule:

ϕfast(Ã) = top-pcol([r1, . . . , rn]). (15)

Since R can be efficiently precomputed and patch extraction is fully parallelizable, this formulation
enables scalable and adaptive patch construction, serving as a practical alternative to spectral filtering.
Full pseudocode is provided in the Appendix D.

5 Experiment

We empirically evaluate HEROFILTER to validate the key claims made in this work: (1) that adaptive
spectral filtering enables robust performance across both homophilic and heterophilic graphs; (2) that
our proposed patching and mixing modules contribute significantly to model generalization; and (3)
that HEROFILTER offers a scalable, interpretable, and architecture-agnostic foundation for future
graph learning models. Due to space constraints, we include additional experiments (scalability,
sensitivity, and runtime) in the Appendix G and Appendix H.

We evaluate HEROFILTER on 16 node classification benchmarks encompassing diverse graph het-
erophily degrees. The homophilic graphs include Cora, CiteSeer, PubMed, and OGBN-Arxiv, where
neighboring nodes tend to share similar labels. The heterophilic graphs consist of Texas, Squirrel,
Chameleon, Cornell, Wisconsin, Actor, Arxiv-Year, and Snap-Patents, which feature connections
between dissimilar nodes and present greater challenges for conventional GNNs. Notably, Arxiv-Year
and Snap-Patents also serve as large-scale datasets, with up to 3 million nodes and 14 million edges,
enabling assessment of the model’s scalability and efficiency in high-volume scenarios.

7

Table 1: Comparison of different methods in node classification task on homophilic graph datasets.
We denote red, green, blue as the best, second best, and third best performance, respectively. OOM
denotes "Out of Memory".

Model Cora CiteSeer PubMed OGBN-Arxiv∑
hi

n 0.19 0.26 0.20 0.34
MLP 72.0 ± 1.7 71.8 ± 1.7 85.3 ± 0.4 49.7 ± 0.6
GPRGNN 86.2 ± 1.1 74.7 ± 1.8 87.6 ± 0.5 64.6 ± 1.2
ChebNet 85.5 ± 1.1 75.4 ± 1.4 87.7 ± 0.5 OOM
ChebNetII 84.0 ± 1.2 71.1 ± 1.8 86.2 ± 0.3 67.0 ± 0.8
APPNP 86.7 ± 1.0 74.5 ± 1.2 86.9 ± 0.3 62.4 ± 1.4
GCNJKNet 86.5 ± 1.1 75.2 ± 1.5 87.4 ± 0.4 65.1 ± 0.6
GCN 86.1 ± 1.0 74.3 ± 1.2 86.9 ± 0.4 64.9 ± 0.5
GAT 85.9 ± 1.0 74.7 ± 1.3 85.8 ± 0.5 65.7 ± 0.6
GraphSage 84.9 ± 1.4 73.4 ± 1.0 86.4 ± 0.5 64.7 ± 0.7
FAGCN 85.5 ± 0.7 74.8 ± 1.5 87.0 ± 0.3 64.1 ± 0.2
H2GCN 86.5 ± 1.2 74.6 ± 1.7 87.7 ± 0.4 OOM
BM-GCN 86.1 ± 1.1 74.3 ± 1.3 86.8 ± 1.1 OOM
BernNet 84.9 ± 1.7 72.3 ± 1.4 87.6 ± 0.4 OOM
G2-GCN 80.2 ± 1.7 70.2 ± 1.4 87.0 ± 0.4 62.6 ± 1.3
GOAT 84.0 ± 0.8 72.1 ± 1.6 87.1 ± 0.8 70.0 ± 0.4
NAGphormer 85.7 ± 1.2 73.5 ± 1.2 87.5 ± 0.3 68.1 ± 0.2
PolyFormer 83.2 ± 2.5 73.5 ± 2.3 87.5 ± 0.2 70.4 ± 0.2
Exphormer 84.7 ± 0.5 74.4 ± 1.2 87.6 ± 0.3 69.2 ± 0.5
VCR-Graphormer 83.8 ± 2.1 73.7 ± 0.5 87.7 ± 0.4 68.2 ± 0.2

HEROFILTER(Ours) 86.8 ± 1.5 75.0 ± 1.2 87.6 ± 0.3 70.5 ± 0.4

Table 2: Comparison of different methods in node classification task on heterophilic datasets. We
denote red, green, blue as the best, second best, and third best performance, respectively. OOM
denotes "Out of Memory".

Model Snap-Patents Arxiv-Year Texas Squirrel Chameleon Cornell Wisconsin Actor∑
hi

n 0.93 0.78 0.89 0.78 0.77 0.89 0.84 0.76
MLP 31.0 ± 0.1 35.7 ± 0.1 74.4 ± 5.6 33.6 ± 1.4 49.4 ± 1.6 69.9 ± 2.9 80.4 ± 3.7 35.0 ± 0.7
GPRGNN 41.1 ± 1.1 45.2 ± 0.1 64.2 ± 5.3 30.4 ± 2.0 39.2 ± 2.0 59.1 ± 4.4 72.8 ± 4.5 30.9 ± 0.7
ChebNet OOM 46.3 ± 0.1 74.4 ± 5.8 33.4 ± 1.0 49.4 ± 1.7 69.7 ± 2.8 77.9 ± 3.0 34.8 ± 1.0
ChebNetII OOM 40.4 ± 0.1 82.1 ± 5.6 37.5 ± 1.2 52.2 ± 1.5 72.2 ± 2.3 83.8 ± 2.2 35.1 ± 1.1
APPNP 40.9 ± 0.1 44.1 ± 0.6 56.3 ± 3.9 27.8 ± 0.7 44.3 ± 1.5 42.9 ± 3.7 52.3 ± 4.9 28.4 ± 0.6
GCNJKNet OOM 46.7 ± 0.2 57.8 ± 2.0 26.3 ± 0.6 42.2 ± 2.1 40.9 ± 4.6 49.6 ± 4.8 27.9 ± 0.8
GCN 46.1 ± 0.1 46.2 ± 0.2 58.7 ± 2.8 27.1 ± 0.5 41.4 ± 1.7 40.3 ± 3.3 49.4 ± 3.0 28.4 ± 0.7
GAT OOM 47.1 ± 0.1 58.3 ± 4.8 28.7 ± 0.9 43.9 ± 1.6 46.3 ± 4.3 51.1 ± 6.2 28.9 ± 0.5
GraphSage 48.9 ± 0.1 48.1 ± 0.2 74.3 ± 3.7 36.2 ± 0.8 46.2 ± 1.8 69.1 ± 3.5 76.9 ± 4.5 34.6 ± 0.7
FAGCN OOM 41.7 ± 3.1 65.4 ± 2.8 33.9 ± 0.8 43.2 ± 0.9 55.4 ± 5.1 65.7 ± 4.3 34.4 ± 0.5
H2GCN OOM 48.4 ± 0.6 81.1 ± 5.2 32.2 ± 1.2 54.0 ± 1.1 68.5 ± 2.9 78.0 ± 3.1 34.9 ± 0.4
BM-GCN OOM OOM 75.4 ± 4.8 34.2 ± 0.9 53.6 ± 1.5 62.3 ± 4.3 75.4 ± 5.2 34.7 ± 0.5
BernNet OOM 38.2 ± 0.2 80.7 ± 3.3 38.7 ± 0.8 50.9 ± 1.2 71.8 ± 2.8 84.3 ± 4.3 35.4 ± 0.6
G2-GCN OOM 51.2 ± 0.5 81.3 ± 3.7 38.5 ± 0.7 52.9 ± 1.3 71.1 ± 4.1 84.1 ± 4.4 34.3 ± 0.4
GOAT 55.0 ± 0.2 53.5 ± 0.2 62.2 ± 5.3 35.4 ± 1.2 49.9 ± 2.4 52.4 ± 4.1 74.6 ± 0.4 34.2 ± 0.9
NAGphormer 54.8 ± 0.1 47.8 ± 0.2 69.1 ± 6.7 36.3 ± 0.9 47.6 ± 1.2 63.8 ± 4.1 76.7 ± 4.0 34.8 ± 0.6
PolyFormer OOM 45.1 ± 0.2 63.5 ± 5.4 41.5 ± 1.0 54.9 ± 1.7 60.8 ± 3.5 75.8 ± 3.9 34.9 ± 0.3
Exphormer OOM 47.0 ± 0.2 76.3 ± 1.1 32.9 ± 0.5 46.5 ± 0.9 63.5 ± 1.5 77.2 ± 1.0 34.7 ± 0.6
VCR-Graphormer OOM 53.7 ± 1.0 64.2 ± 4.0 34.2 ± 2.0 56.9 ± 1.7 58.9 ± 3.5 53.1 ± 9.2 34.8 ± 0.5

HEROFILTER(Ours) 64.2 ± 0.1 54.6 ± 0.1 85.0 ± 3.5 47.7 ± 2.2 57.3 ± 1.2 72.5 ± 3.8 85.1 ± 3.1 37.8 ± 0.7

We compare against classical GNNs (GCN, GAT, GraphSAGE, ChebNet), spectral models (BernNet,
GPRGNN), heterophily-aware methods (H2GCN, BM-GCN, G2GCN), and graph transformers
(GOAT, NAGphormer, Exphormer, PolyFormer, VCR-Graphormer). Detailed dataset and model
descriptions are provided in the Appendix E.

8

Table 3: Patchers on Cora and Chameleon.
Patchers Cora Chameleon

Bandpass Filter 71.3 ± 0.8 52.1 ± 1.5
Heat Filter 70.4 ± 1.7 47.7 ± 1.7
Shared parameters 73.0 ± 1.3 52.2 ± 1.1
HEROFILTER 77.3 ± 0.6 57.3 ± 1.2

Table 4: Random vs. ranked patch order.
Dataset Random Ranked Change

Cora 71.4 ± 1.1 77.3 ± 0.6 ↑ 5.9%
Citeseer 60.7 ± 1.4 64.5 ± 1.8 ↑ 3.8%
Squirrel 35.4 ± 1.2 37.8 ± 1.6 ↑ 2.4%
Chameleon 51.0 ± 1.2 57.3 ± 1.1 ↑ 6.3%

Table 5: Accuracy on patch-induced graphs.

Model Cora Chameleon

GCN 76.1 ± 2.3 39.9 ± 2.0
GCN-Patch 74.1 ± 1.0 56.0 ± 2.0

FAGCN 73.2 ± 0.7 43.2 ± 0.9
FAGCN-Patch 74.8 ± 0.4 48.3 ± 2.2

HEROFILTER 77.3 ± 0.6 57.3 ± 1.2

Table 6: Indivdual component effectiveness in
HEROFILTER.

Ablation Arxiv-Year Snap-Patents

HEROFILTER 54.66 ± 0.28 65.05 ± 0.04
w/ Patch-Mixing 54.49 ± 0.04 64.97 ± 0.05
w/ Feature-Mixing 53.85 ± 0.20 63.00 ± 0.01
Both Removed 52.81 ± 0.10 62.95 ± 0.09

5.1 Overall Performance

Tables 1 and 2 summarize classification accuracy across all datasets. Three core insights emerge:

(1) HEROFILTER achieves strong performance across both homophilic and heterophilic regimes. On
homophilic graphs, HEROFILTER matches or exceeds state-of-the-art performance (e.g., 70.5% on
OGBN-Arxiv). More importantly, HEROFILTER substantially outperforms baselines on heterophilic
datasets. For instance, on Squirrel and Snap-Patents, HEROFILTER improves over the next-best
model by 9.0% and 9.2%, respectively. This validates the theoretical claim that a fixed low-pass
or high-pass filter is insufficient for generalization across heterophily levels and underscores the
effectiveness of adaptive spectral filtering.

(2) HEROFILTER remains effective on large and noisy graphs. While several baselines fail on large
graphs (marked OOM), HEROFILTER maintains strong accuracy (e.g., 64.2% on Snap-Patents)
without sacrificing runtime scalability. This highlights the value of patch-based processing and Fast-
HEROFILTER for memory efficiency—an increasingly critical concern in modern GNN deployments.

(3) HEROFILTER bridges gaps between GNNs, spectral methods, and transformers. Transformer
models with strong inductive biases underperform on small or irregular graphs (e.g., Texas, Wiscon-
sin). In contrast, HEROFILTER’s simpler design generalizes well without architectural complexity.
Compared to BernNet or GPRGNN, HEROFILTER does not require fine-tuned frequency designs and
yet achieves superior results, highlighting its robustness and ease of use.

5.2 Ablation Studies

To better understand HEROFILTER’s internal design, we conduct controlled experiments analyzing
the contributions of the Patcher, Mixer, and positional structure.

Effectiveness of Patchers. We compare HEROFILTER’s adaptive polynomial patcher against several
alternatives: heat filter, bandpass filter, and a shared-parameter variant. As shown in Table 3, our
method consistently outperforms others, especially on heterophilic graphs (e.g., 57.3% on Chameleon).
This highlights the importance of a learnable and flexible filter form, consistent with our theoretical
insights from Section 3. While bandpass and heat filters capture fixed spectral bands, they lack the
adaptability needed for general graphs.

Importance of Patch Order. We assess the role of node order within each patch. As shown in
Table 4, randomly shuffling the patch degrades performance on all datasets, with up to 6.3% accuracy
loss on Chameleon. This demonstrates that patch structure encodes meaningful spectral and positional
information, and that the model effectively leverages this structure, an important design signal for
future permutation-sensitive architectures.

Patch-Induced Graphs. To isolate the value of the patcher, we create graphs by linking each node
only to its selected patch neighbors, then apply existing GNNs (GCN, FAGCN). Results in Table 5

9

show significant performance gains, especially for GCN on Chameleon (+16%), validating that
HEROFILTER Patcher successfully surfaces informative neighbors even for GNNs not explicitly
tuned to heterophily. Conversely, slight degradation on Cora for GCN confirms that fixed low-pass
assumptions may conflict with spectrally diverse patches.

Component-Level Analysis. We remove or replace individual layers in the HEROFILTER Mixer to
evaluate their contribution (Table 6). Removing the patch-mixing or feature-mixing layers causes
consistent drops in performance across datasets, confirming their complementary roles. Notably, the
patch-mixing layer provides the largest standalone gain (e.g., +2.02% on Snap-Patents), suggesting
its importance in modeling structural diversity within patches.

6 Related Work

Learning on Heterophilic Graphs. Traditional GNNs, including GCN [19], GAT [20], and
APPNP [31], are grounded in the homophily assumption, neighboring nodes tend to share simi-
lar labels. However, real-world networks often violate this assumption, exhibiting heterophily where
connected nodes belong to different classes [32, 27]. This has motivated a range of models that en-
hance GNN performance under heterophily. H2GCN [32] and BM-GCN [33] extend message passing
to multi-hop neighborhoods or learn block-level compatibility. Other methods like FAGCN [34] and
BernNet [22] leverage spectral insights, using learnable filters to balance low- and high-frequency
information. ChebNetII [35] revisits Chebyshev polynomials for deeper spectral modeling, while
G2GCN [36] introduces gradient gating mechanisms. These works highlight the importance of high-
frequency components in heterophilic settings but often rely on heuristic assumptions or task-specific
filter tuning.

Spectral GNNs and Frequency-Adaptive Filters. A complementary line of work focuses on
understanding GNNs from the spectral perspective. The view of GNNs as graph filters in the
spectral domain, applying transformations g(Λ) via eigen decomposition of the Laplacian, has been
formalized in studies such as [15, 37]. Spectral GNNs such as ChebNet [21] and GPRGNN [37]
design polynomial filters to capture information across the graph spectrum. While these methods
enhance theoretical interpretability and offer flexibility, most assume a global, fixed filter shape
(e.g., low-pass or band-pass), which limits adaptivity. As recent theoretical works note [17, 16],
the relationship between graph heterophily and optimal spectral response is non-monotonic and
dataset-dependent, suggesting the need for instance-level adaptivity in filter design.

Graph Transformers and Global Attention. Transformer architectures have been adapted to graphs
to address the limitations of locality in message passing. Approaches such as NAGphormer [38],
GOAT [39], Exphormer [40], VCR-Graphormer [41], and PolyFormer [42] integrate global attention
mechanisms, often augmented with positional encodings or spectral bias terms. While effective on
large-scale and heterophilic graphs, these models tend to be computationally expensive and architec-
turally complex. Moreover, their reliance on learned positional encodings can make generalization
brittle, especially on smaller graphs or graphs with evolving structure.

Our proposed HEROFILTER bridges the gap between the spectral flexibility of filter-based GNNs and
the architectural simplicity of transformer-free encoders. Instead of hard-code frequency biases or
depending on hand-tuned spectral forms, HEROFILTER introduces an adaptive polynomial filter that
dynamically aligns its frequency response with the graph’s heterophily structure. Theoretical results
provide the first formal link between graph heterophily, spectral filter response, and generalization
error. This connection not only strengthens empirical observations from prior work [27, 22], but also
introduces a framework for future frequency-aware and architecture-agnostic GNN design.

7 Conclusion

In this paper, we make three key contributions: (1) a theoretical analysis that, for the first time,
formally connects graph heterophily, spectral filter response, and generalization error—challenging
the prevailing assumption of monotonic filter-heterophily correlation; (2) a modular architecture that
integrates adaptive polynomial filters with a lightweight MLP-Mixer backbone, enabling interpretable
and efficient spectral reasoning across diverse graph structures; and (3) extensive empirical validation
across 16 benchmark datasets, where HEROFILTER consistently outperforms state-of-the-art GNNs
and graph transformers on both homophilic and heterophilic graphs, including large-scale settings.

10

Acknowledgements

We thank the anonymous reviewers for their constructive comments. This work is supported by the
MIT-IBM Watson AI Lab, National Science Foundation under Award No. IIS-2339989 and No.
2406439, DARPA under contract No. HR00112490370 and No. HR001124S0013, U.S. Department
of Homeland Security under Grant Award No. 17STCIN00001-08-00, Amazon-Virginia Tech
Initiative for Efficient and Robust Machine Learning, Amazon AGI Team, Amazon AWS, Google,
Cisco, 4-VA, Commonwealth Cyber Initiative, National Surface Transportation Safety Center for
Excellence, UIUC AICE Center, and Virginia Tech. The views and conclusions are those of the
authors and should not be interpreted as representing the official policies of the funding agencies or
the government. We thank Professor Julian Shun (MIT) for his insightful discussions and feedback
that improved this manuscript.

References
[1] Kexin Huang, Cao Xiao, Lucas M Glass, Marinka Zitnik, and Jimeng Sun. Skipgnn: predicting

molecular interactions with skip-graph networks. Scientific reports, 10(1):1–16, 2020.

[2] Dongqi Fu and Jingrui He. SDG: A simplified and dynamic graph neural network. In Fernando
Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai, editors,
SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Virtual Event, Canada, July 11-15, 2021, pages 2273–2277. ACM, 2021.

[3] Shuaicheng Zhang, Qiang Ning, and Lifu Huang. Extracting temporal event relation with
syntax-guided graph transformer. In Findings of the Association for Computational Linguistics:
NAACL 2022, pages 379–390, Seattle, United States, July 2022. Association for Computational
Linguistics.

[4] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dimitris N Metaxas. Semantic graph
convolutional networks for 3d human pose regression. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 3425–3435, 2019.

[5] Haohui Wang, Baoyu Jing, Kaize Ding, Yada Zhu, Wei Cheng, Si Zhang, Yonghui Fan, Liqing
Zhang, and Dawei Zhou. Mastering long-tail complexity on graphs: Characterization, learning,
and generalization. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD ’24, page 3045–3056, New York, NY, USA, 2024. Association
for Computing Machinery.

[6] Haohui Wang, Yuzhen Mao, Yujun Yan, Yaoqing Yang, Jianhui Sun, Kevin Choi, Balaji
Veeramani, Alison Hu, Edward Bowen, Tyler Cody, and Dawei Zhou. Evolunet: advancing
dynamic non-iid transfer learning on graphs. In Proceedings of the 41st International Conference
on Machine Learning, ICML’24. JMLR.org, 2024.

[7] Lecheng Zheng, Dongqi Fu, Ross Maciejewski, and Jingrui He. Drgnn: Deep residual graph
neural network with contrastive learning. Trans. Mach. Learn. Res., 2024, 2024.

[8] Zihao Li, Lecheng Zheng, Bowen Jin, Dongqi Fu, Baoyu Jing, Yikun Ban, Jingrui He, and
Jiawei Han. Can graph neural networks learn language with extremely weak text supervision?
In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors,
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pages 11138–
11165. Association for Computational Linguistics, 2025.

[9] Xinyu He, Dongqi Fu, Hanghang Tong, Ross Maciejewski, and Jingrui He. Temporal hetero-
geneous graph generation with privacy, utility, and efficiency. In The Thirteenth International
Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net, 2025.

[10] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
Koutra. Graph neural networks with heterophily. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 11168–11176, 2021.

11

[11] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S. Yu. Graph neural networks
for graphs with heterophily: A survey, 2022.

[12] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. In NeurIPS, 2022.

[13] Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching
old MLPs new tricks via distillation. In International Conference on Learning Representations,
2022.

[14] Limei Wang, Kaveh Hassani, Si Zhang, Dongqi Fu, Baichuan Yuan, Weilin Cong, Zhigang Hua,
Hao Wu, Ning Yao, and Bo Long. Learning graph quantized tokenizers. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28,
2025. OpenReview.net, 2025.

[15] Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters. ArXiv, abs/1905.09550, 2019.

[16] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang.
Addressing heterophily in graph anomaly detection: A perspective of graph spectrum. In
Proceedings of the ACM Web Conference 2023, pages 1528–1538, 2023.

[17] Fan Xu, Nan Wang, Hao Wu, Xuezhi Wen, Xibin Zhao, and Hai Wan. Revisiting graph-based
fraud detection in sight of heterophily and spectrum. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 9214–9222, 2024.

[18] Katherine Tieu, Dongqi Fu, Jun Wu, and Jingrui He. Invariant link selector for spatial-temporal
out-of-distribution problem. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and Moham-
mad Emtiyaz Khan, editors, International Conference on Artificial Intelligence and Statistics,
AISTATS 2025, Mai Khao, Thailand, 3-5 May 2025, volume 258 of Proceedings of Machine
Learning Research, pages 4753–4761. PMLR, 2025.

[19] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[20] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018.

[21] Shanshan Tang, Bo Li, and Haijun Yu. Chebnet: Efficient and stable constructions of deep
neural networks with rectified power units using chebyshev approximations. arXiv preprint
arXiv:1911.05467, 2019.

[22] Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. Bernnet: Learning arbitrary
graph spectral filters via bernstein approximation. In NeurIPS, 2021.

[23] Shouheng Li, Dongwoo Kim, and Qing Wang. Beyond low-pass filters: Adaptive feature
propagation on graphs. In Machine Learning and Knowledge Discovery in Databases. Research
Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021,
Proceedings, Part II 21, pages 450–465. Springer, 2021.

[24] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

[25] Yang Liu, Yao Zhang, Yixin Wang, Feng Hou, Jin Yuan, Jiang Tian, Yang Zhang, Zhongchao
Shi, Jianping Fan, and Zhiqiang He. A survey of visual transformers. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

[26] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI
Open, 2022.

12

[27] Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu,
Xiao-Wen Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning hand-
book: Benchmarks, models, theoretical analysis, applications and challenges. arXiv preprint
arXiv:2407.09618, 2024.

[28] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, 9(2):cnab014, 2021.

[29] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’09, page 807–816, New York, NY, USA, 2009. Association for
Computing Machinery.

[30] Alberto P García-Plaza, Víctor Fresno, Raquel Martínez Unanue, and Arkaitz Zubiaga. Using
fuzzy logic to leverage html markup for web page representation. IEEE Transactions on Fuzzy
Systems, 25(4):919–933, 2016.

[31] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[32] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in Neural Information Processing Systems, 33, 2020.

[33] Dongxiao He, Chundong Liang, Huixin Liu, Mingxiang Wen, Pengfei Jiao, and Zhiyong Feng.
Block modeling-guided graph convolutional neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 4022–4029, 2022.

[34] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in
graph convolutional networks. In AAAI. AAAI Press, 2021.

[35] Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. In NeurIPS, 2022.

[36] T Konstantin Rusch, Benjamin P Chamberlain, Michael W Mahoney, Michael M Bronstein,
and Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. In International
Conference on Learning Representations, 2023.

[37] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In International Conference on Learning Representations,
2021.

[38] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph trans-
former for node classification in large graphs. In Proceedings of the International Conference
on Learning Representations, 2023.

[39] Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein.
Goat: A global transformer on large-scale graphs. In International Conference on Machine
Learning, pages 17375–17390. PMLR, 2023.

[40] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, pages 31613–31632. PMLR, 2023.

[41] Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey
Malevich, Jingrui He, and Bo Long. Vcr-graphormer: A mini-batch graph transformer via
virtual connections. arXiv preprint arXiv:2403.16030, 2024.

[42] Jiang Liu, Hui Ding, Zhaowei Cai, Yuting Zhang, Ravi Kumar Satzoda, Vijay Mahadevan, and
R Manmatha. Polyformer: Referring image segmentation as sequential polygon generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
18653–18663, 2023.

13

[43] DG Hoffman. Packing problems and inequalities. In The Mathematical Gardner, pages 212–225.
Springer, 1981.

[44] Mingguo He, Zhewei Wei, zengfeng Huang, and Hongteng Xu. Bernnet: Learning arbitrary
graph spectral filters via bernstein approximation. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, volume 34, pages 14239–14251. Curran Associates, Inc., 2021.

[45] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In International Conference on Learning Representations,
2020.

[46] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

[47] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[48] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using
graph convolutional networks. Advances in neural information processing systems, 30, 2017.

[49] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[50] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1–20, 2016.

[51] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 5449–5458. PMLR, 2018.

[52] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the core contributions of HEROFIL-
TER, including its theoretical analysis, adaptive filter design, and experimental improve-
ments. These claims are supported throughout the paper with theoretical bounds, algorithmic
innovation, and extensive empirical evaluation.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the limitation on computation efficiency which they
alleviate this limitation by introducing an efficient model variant.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: The paper provides full assumptions and proofs in Appendix C for Propo-
sition 1, Proposition 2, and Theorem 1, which establish the theoretical grounding for the
proposed adaptive filtering mechanism.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper details datasets, baselines, metrics, and experimental setups, and
refers to the appendices for parameter settings and runtime details, making reproduction
feasible.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides an anonymous open repository link
(https://anonymous.4open.science/r/HeroFilter-221C/) that includes code and datasets for
reproducing results.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Detailed descriptions of training settings, data splits, patch sizes, optimizers,
and hyperparameter tuning procedures are included in the appendices.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All reported results include standard deviations (e.g., 86.8 ± 1.5), indicating
that experiments were repeated with multiple random seeds.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The runtime and scalability analysis are included in Appendix G. Fast-
HEROFILTER is proposed specifically for scalable deployment, and compute efficiency is
discussed.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research uses only public benchmark datasets, poses no human or environ-
mental risk, and follows ethical machine learning practices.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

15

https://neurips.cc/public/EthicsGuidelines

Justification: The impact statement notes that the work is intended to advance machine
learning but does not specifically highlight societal impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work does not involve any high-risk models or data types.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used are publicly available and either CC BY 4.0 or MIT-licensed.
Proper citations are provided.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets or models requiring separate documentation are introduced
beyond what is presented in the paper and repository.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing or human subject research.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human participants or require IRB approval.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?
Answer: [NA]
Justification: Large Language Models (LLMs) were used only for writing assistance (e.g.,
editing and formatting) and had no role in the technical contributions of the research.

16

A Appendix Content

• Appendix B: Key symbols and notations in this paper.

• Appendix C: Detailed proofs of Proposition 1, Proposition 2, and Theorem 1.

• Appendix D: Algorithm descriptions including HEROFILTER Framework and Fast-
HEROFILTER Framework.

• Appendix E: Dataset statistics, including node count, edge count, number of classes, feature
dimensions, and heterophily scores for both homophilic and heterophilic graphs. Details of
baseline models used for comparison and implementation details.

• Appendix F: Parameter settings and tuning procedures, including hyperparameter search
spaces.

• Appendix G: Scalability and runtime analysis of Fast-HEROFILTER and baseline models
showing the inference speed of each model.

• Appendix H: Parameter sensitivity studies showing the impact of patch size and filter
numbers.

B Symbols and Notations

Table 7: Symbols and notations.
Symbol Description
G Graph
V Set of vertices (nodes) of the graph G
E Set of edges of the graph G
X Node feature matrix of G.
n Number of nodes in the graph G

L,A Laplacian matrix and adjacency matrix of G
L̃, Ã Normalized Laplacian matrix and adjacency matrix of G
N (v) Set of neighbors of node v
g(Λ) A spectral graph filter on eigenvalue matrix Λ

C Proofs of the Theorems

Proposition 1. Let Ã be the normalized adjacency matrix with eigendecomposition Ã = UΛU⊤,
where λ0 ≤ · · · ≤ λn−1 = 1. Then the average filter response is lower bounded by:

n−1∑

i=0

g(λi)

n
≥

∑n−1
i=0 log |ĥi|

n
(
log
∑n−1
i=0 g(λi)|ĥi| − log

∑n−1
i=0 g(λi)

) . (3)

Proof. According to the weighted AM-GM inequality [43], we have

g(λ0)∑
0≤i≤n−1 g(λi)

|ĥ0|+ · · ·+
g(λn−1)∑

0≤i≤n−1 g(λi)
|ĥn−1|

≥|ĥ0|
g(λ0)∑

0≤i≤n−1 g(λi) · · · · · |ĥn−1|
g(λn−1)∑

0≤i≤n−1 g(λi) .

(16)

As we have valid polynomial filer g(λi) ∈ [0, 1] for all i [44], then
∑

0≤i≤n−1 g(λi)|ĥi|∑
0≤i≤n−1 g(λi)

≥ |ĥ0|
1∑

0≤i≤n−1 g(λi) · · · · · |ĥn−1|
1∑

0≤i≤n−1 g(λi)

=
∏

0≤i≤n−1

|ĥi|
1∑

0≤k≤n−1 g(λk) .

(17)

17

Since both sides of the inequality are greater than 0, we take the logarithm

log

(∑
0≤i≤n−1 g(λi)|ĥi|∑

0≤i≤n−1 g(λi)

)
≥ 1∑

0≤k≤n−1 g(λk)

∑

0≤i≤n−1

log |ĥi|. (18)

Hence, it completes the proof.

Proposition 2. Let Y = (y1, . . . , yn) be the label vector with yi ∈ {0, . . . , C − 1}, and let Λ be the
eigenvalue matrix of Ã, assuming all eigenvalues are nonzero. Then there exist weights {wk}Kk=1
such that:

Align(g(Λ),Y) = 1,

where g(Λ) =
∑K
k=1 σ(wk ⊙Λk), σ(0) = 0, and Align(·, ·) denotes cosine similarity.

Proof. To match g(Λ) with Y, we require g(Λ) = cY, where c ̸= 0 is a scalar. This requires:

K∑

k=1

σ
(
wk,i · λki

)
= αyi ∀i ∈ {1, 2, . . . , n}. (19)

If Yi = 0, then we need gi(Λ) = 0, ∀i ∈ {1, . . . , n}. Let wk,i = 0 for all k, since σ(0) = 0, the
conclusion holds.

If Yi > 0. Case 1: σ(x) is bounded. Suppose σ(x) ∈ [0,M] for someM > 0. Since Yi ∈ [0, C−1],
we have cYi

K ∈ [0,M] by choosing c large enough. Since σ is continuous and monotonic, we can
always find wk,i to satisfy σ(wk,i(Λi)k) = cYi

K .

Case 2: σ(x) is unbounded. In this case, no scaling constraints are required. The left term can be
arbitrarily large if wk,i is chosen large enough. So we can find wk,i, s.t. σ(wk,i(Λi)k) = cYi

K .

Thus, we have

gi(Λ) =

K∑

k=1

σ(wk,i(Λi)
k) = cYi, (20)

for all i ∈ {1, . . . , n}. Then we have
g(Λ) = cY. (21)

The cosine similarity is

cos(g(Λ),Y) =
g(Λ) ·Y
∥g(Λ)∥∥Y∥ = 1. (22)

Hence, it completes the proof.

Theorem 1. Consider a binary classification task on a graph G with n nodes. Let X = (X0,X1) be
the filtered node features for nodes belonging to class 0 and class 1, respectively. Y = (y0,y1) be
the label indicators for classes 0 and 1. Let δ, η be the spectral coefficients of the label and feature
differences, respectively. Then the error is upper bounded as:

Er(X,Y) ≤ c1 −
min

i∈Ig,δ,η

ψ 1
g(1−λi)δi

(ηi) · δi
∑

i∈Iδ,η̃

log |ĥi|

2n log
∑

i∈Iδ,η̃

g(1− λi)|ĥi| − 2n log
∑

i∈Iδ,η̃

g(1− λi)
, (5)

where c1 is a constant, Iδ = {i | δi ̸= 0}, and ψ(x) = min{max{x,−1}, 1}.

Proof. Let ψ be the clamp function defined as

ψ(x) ≜ min{max{x,−1}, 1} =
{

1 x > 1
x −1 < x < 1
−1 x < −1

, (23)

18

d(x, ψ(x)) ≜

(
1

1 + ex
− y
)2

−
(

1

1 + eψ(x)
− y
)2

∈





[−(1
1+e)

2, 0] x > 1, y = 0

[0, (1
1+c)

2] x > 1, y = 1

[0, (1
1+e)

2] x < −1, y = 0

[−(1
1+e)

2, 0] x < −1, y = 1

≤ 1

(1 + e)2
,

(24)

and for x ∈ [−1, 1], the first-order Taylor expansion of 1
1+ex is 1

2− 1
4x. DenoteR(x) as the remainder

term, that is, R(x) = 1
1+ex − 1

2 + 1
4x. since

(
1

(1 + ex)
2

)′′′

= −e
x
(
−4ex + e2x + 1

)

(1 + ex)
4 ≤

(
1

(1 + ex)
2

)′′′∣∣∣∣∣
x=0

=
1

8
, (25)

we have

|R(x)| ≤ max

∣∣∣∣∣

(
1

(1 + ex)
2

)′′′∣∣∣∣∣
|x|3
3!

=
|x|3
48

. (26)

Therefore,
(

1

1 + ex
− y
)2

=

(
1

1 + eψ(x)
− y
)2

+ d(x, ψ(x))

=

(
1

2
− 1

4
ψ(x)− y +R(ψ(x))

)2

+
1

(1 + e)2

=

(
1

2
− 1

4
ψ(x)− y

)2

+ (R(ψ(x)))
2
+ 2R(ψ(x))

(
1

2
− 1

4
ψ(x)− y

)
+

1

(1 + e)2

=

(
1

2
− 1

4
ψ(x)− y

)2

+

(|ψ(x)|3
48

)2

+
|ψ(x)|3

24

∣∣∣∣
1

2
− 1

4
ψ(x)− y

∣∣∣∣+
1

(1 + e)2

≤
(
1

2
− y
)2

− (1− 2y)ψ(x)

4
+
ψ(x)2

16
+
|ψ(x)|6
2304

+
|ψ(x)|3

24

(
1

4
|ψ(x)|+ 1

2

)
+

1

(1 + e)2

≤1

4
− (1− 2y)ψ(x)

4
+
ψ(x)2

16
+
|ψ(x)|3

48
+
ψ(x)4

96
+
|ψ(x)|6
2304

+
1

(1 + e)2
.

(27)

According to the above conclusion,

Er (X0,y0) =
∑

l

(
1

1 + eg(I−Ã)(x1l−x0l)
− y0l

)2

≤n
4
− 1

4
(y1 − y0)

⊤
ψ(z) +

∥ψ(z)∥22
16

+
∥ψ(z)∥33

48
+
∥ψ(z)∥44

96
+
∥ψ(z)∥66
2304

+
n

(1 + e)2
,

(28)

z = g(I − Ã)(X1 −X0)l , noting that C ≤ ∥ψ(z)∥66 ≤ ∥ψ(z)∥44 ≤ ∥ψ(z)∥33 ≤ ∥ψ(z)∥22 ≤ n, then
we have

Er (X0,y0)

≤n
4
− 1

4
(y1 − y0)

⊤
ψ(z) +

217

2304
∥ψ(z)∥22 +

n

(1 + e)2

=c1n−
1

4

∑

l

ψ
(
(y1l − y0l)(g(I − Ã)(X1 −X0)l)

)
,

(29)

where c1 is a constant. For any η, we construct η̃i = ψ 1
g(1−λi)δi

(ηi) such that |η̃ig (1− λi) δi| ≤ 1

and
∑
i∈Ig,δ,η

ψ (ηig (1− λi) δi) =
∑
i∈Ig,δ,δ,η̃

η̃ig (1− λi) δi. We define mg ≜ mini∈Ig,δ,η
η̃iδi.

19

From the proof of Proposition 1, for any g(·) and δ, we have

n−1∑

i=0

ψ (ηig (1− λi) δi) =
∑

i∈Ig,δ,η

ψ (ηig (1− λi) δi)

=
∑

i∈Ig,δ,η̃

η̃ig (1− λi) δi ≥ mg

∑

i∈Ig,δ,η̃

g (1− λi)

=mg


 ∑

i∈Iδ,η̃

g (1− λi) +
∑

i∈Ig

g (1− λi)−
n−1∑

i=0

g (1− λi)




=mg

∑

i∈Iδ,η̃

g (1− λi)

≥mg

∑
i∈Iδ,η̃

log |ĥi|
log
∑
i∈Iδ,η̃

g (1− λi) |ĥi| − log
∑
i∈Iδ,η̃

g (1− λi)
.

(30)

According to Eq. 29 and Eq. 30, we have

Er(X,Y) =
1

n
∥σ(g(I − Ã)X)−Y∥2F

=
2

n
Er (X0,y0) ≤ c1 −

mini∈Ig,δ,η
ψ 1

g(1−λi)δi
(ηi) · δi

∑
i∈Iδ,η̃

log |ĥi|

2n log
∑
i∈Iδ,η̃

g (1− λi) |ĥi| − 2n log
∑
i∈Iδ,η̃

g (1− λi)
.

(31)

Hence, it completes the proof.

D Algorithm

Algorithm 1 HEROFILTER Framework

Require: source graph G(V, E ,X); adjacency matrix A; patch size p; layer number m
Ensure: Y

1: Preprocessing:
2: Ã← Normalization(A)

3: Λ,U← EigenDecomposition(Ã)
4: HEROFILTER Patcher ϕ:
5: R← Ug(Λ)UT ▷ Compute the patcher score matrix
6: P← X[top-pcol(R, p)] ▷ Extract top-p nodes columnwise from patcher score matrix
7: P0 ← P ▷ P ∈ Rn×p×d
8: HEROFILTER Mixer:
9: for l← 1 to m do

10: P̂l ← σ(MLP(LayerNorm(Pl−1),θipatch)) ▷ Mixing along patch dimension
11: P̃l ← σ(MLP(LayerNorm(P̂l),θlfeature)) ▷ Mixing along feature dimension
12: ¯̃P← Aggregate(Pm)
13: Y ← MLP(P̄,θpredict) ▷ Aggregate along patch dimension via summation function and predict

node label.
14: return Y

In the standard HEROFILTER framework, we generate patches denoted by P = {Pv : v ∈ V}
for all nodes using the patcher ϕ. The patches P undergo multiple layers of HEROFILTER Mixer
operations to yield Pm, which is subsequently employed for node label prediction to obtain Y .
Initially, we preprocess the data by normalizing matrix A, followed by the extraction of Λ and
U from the modified adjacency matrix Ã. Applying the patcher ϕ on X to our graph, we obtain
patches of size [n × p × d], where n denotes the number of nodes, p the patch size, and d the
dimension of the input node features. Each patch, represented by a [p× d] matrix, encapsulates the
extracted features from a node and its top p neighboring nodes. These patches are then processed by

20

a patch-mixing layer, which mixes information along the patch dimension p by transposing its feature
dimension with its patch dimension and passing it through an MLP layer. This process is followed by
Layer Normalization and an arbitrary activation function, after which another transpose operation is
conducted between the feature and patch dimensions, resulting in a tensor of size [n× p× d]. This
tensor is further processed by a feature-mixing layer, utilizing an MLP to operate on the d-dimension.
By passing P through m layers, the final Pm is constructed. Finally, we aggregate along the patch
dimension p of Pm using an arbitrary aggregation function, yielding a final representation of size
[n× d]. An additional MLP is applied to this final representation for classifying the label of each
node, resulting in a matrix of size [n× |Y|].

Algorithm 2 Fast-HEROFILTER Framework

Require: Source graph G(V, E ,X); adjacency matrix A; patch size p; layer number m; dangling
scalar c

Ensure: Predicted labels Y
1: Preprocessing:
2: Ã← Normalization(A)
3: HEROFILTER Patcher ϕfast:
4: for v in |V| do
5: rv ← Minimize J (rv) given A, c ▷ Eq. 12
6: R← Stack(rv)
7: P← X[top-pcol(R, p)] ▷ Extract top-p nodes column-wise
8: P0 ← P ▷ P ∈ Rn×p×d
9: HEROFILTER Mixer:

10: for l = 1 to m do
11: P̂l ← σ(MLP(LayerNorm(Pl−1),θlpatch)) ▷ Mixing patches
12: P̃l ← σ(MLP(LayerNorm(P̂l),θlfeature)) ▷ Mixing features
13: P̄← Aggregate(P̃m)
14: Y ← MLP(P̄,θpredict) ▷ Predict node label
15: return Y

In the Fast-HEROFILTER framework, we generate patches P = {Pv : v ∈ V} for all nodes using
patcher ϕfast, mix P using multiple layers of patch-mixing operations to obtain Pm, and predict node
labels Y using P̄m. The patcher process involves minimizing an objective function, as described
in Eq. 12, to obtain the patcher scores rv for each node v. These scores are then stacked to form
the patcher score matrix R. The dangling scalar c controls how the patcher adapts to different
degrees of heterophily during score computation. When c is lower, the focus of the patcher score
matrix R focuses on relationships between nodes with similar spectral properties. On the other
hand, when c is higher, the patcher score matrix R captures relationships across nodes with varying
spectral characteristics, allowing the model to adapt to more diverse heterophily patterns. The
choice of c enables the framework to flexibly adjust its spectral response based on the underlying
heterophily structure of different graphs. The rest of the framework remains the same as the standard
HEROFILTER framework.

E Experiment Setup

Data Splits. In our experiments, we are strictly using the same training and testing environment across
different baselines. Following the official data split provided by [45], heterophilic graph datasets
(Texas, Squirrel, Chameleon, Cornell, Wisconsin, Actor) and homophilic graph datasets (Cora,
CiteSeer, PubMed, OGBN-Arxiv) are split roughly by 48 : 32 : 20. Two large-scale heterophilic
graph datasets (arxiv-year and snap-patents) are following [46], using a 50 : 25 : 25 random data
split. All datasets are provided with masks in the newest version of Pytorch Geometrics.

Implementation Details. We employ the Adam optimizer [47] with a learning rate of 0.01 and a
weight decay of 5e-4 for training the model. The default training setting for all models is performed
using torch-geometric default masks (train, validation, and test) and trained for a maximum of 500
epochs, a hidden dimension of 64, a dropout rate of 0.5, and a number of layers of 2. Early stopping is
applied with a patience of 50 epochs, which monitors the validation loss and terminates the training if

21

Table 8: Dataset Statistics of homophilic and heterophilic graph datasets. The columns show the
number of nodes (|V|), the number of edges (|E|), the number of unique classes (|Y|), the feature
dimension (|X|), and the average heterophily score (

∑
hi

n) indicating the degree of heterophily within
each dataset.

Dataset |V| |E| |Y| |X|
∑

hi
n

∑
hi
n

≤ 0.5

Cora 2708 5278 7 1433 0.19
Citeseer 3327 4676 6 3703 0.26
Pubmed 19717 44327 3 500 0.2

OGBN-Arxiv 169343 1116243 40 400 0.34

∑
hi
n

> 0.5

Snap-Patents 2,923,922 13,975,788 5 269 0.93
Arxiv-Year 169,343 1,166,243 5 128 0.78

Texas 183 295 5 1703 0.89
Squirrel 5201 198493 5 2089 0.78

Chameleon 2277 31421 5 2325 0.77
Cornell 183 295 5 1703 0.89

Wisconsin 251 499 5 1703 0.84
Actor 7600 33544 5 931 0.76

there is no improvement observed within the specified patience. We employ each baseline method as
a representation learner, subsequently concatenating their outputs with a two-layer MLP to perform
the node classification task. To assess the performance of the models, we use the standard accuracy
metric, which is commonly adopted in node classification tasks.

Datasets. We evaluate our model using several standard graph datasets originated from [48, 30,
28, 46, 49, 50]: Cora, Citeseer, PubMed, OGB-Arxiv, Snap-Patents, Arxiv-Year, Texas, Squirrel,
Chameleon, Cornell, Wisconsin, and Actor. These datasets are diverse in terms of their sizes and
degrees of heterophily. Specifically, homophilic graph datasets are Cora, Citeseer, and PubMed,
while heterophilic graph datasets include Texas, Squirrel, Chameleon, Cornell, Wisconsin, and Actor.
To demonstrate the effectiveness of HEROFILTER on larger scale graph datasets, we also evaluate our
model on Penn94 [46], Arxiv-Year, OGBN-Arxiv [49], and patent networks [50] datasets.

Comparison Methods. We benchmark our model against a variety of established methods. For
homophilic graphs, we consider: GCN [19], GAT [20], GPRGNN [37], ChebNet [21]/ChebNetII [35],
APPNP [31], GCN-JKNet [51], GraphSage [52], and FAGCN [23]. For heterophilic graphs, we ex-
plore: H2GCN [32], BM-GCN [33], BernNet [44], and G2-GCN. For graph transformer based meth-
ods, we compare with: NAGphormer [38], VCR-Graphormer [41], Exphormer [40], Polyphormer [42]
and GOAT [39]. Lastly, we incorporate MLP.

F Details of Parameter Settings and Tuning

We perform a grid search to find the optimal hyperparameters for our model, including the learning
rate, patch size, and filter number. The search space is defined as follows: the learning rate ∈
{0.01, 0.008, 0.005, 0.003, 0.001}, the patch size ∈ {8, 16, 32, 64, 96}, and the filter number ∈
{10, 50, 100, 150, 200}. For Fast-HEROFILTER, we set c as 0.5 to balance the spectral response
across different frequency components. The optimal hyperparameters are determined based on the
performance of the validation set.

G Scalability and Runtime Analysis

Scalability Analysis on HEROFILTER Mixer. We analyze the runtime of the algorithm as the
number of nodes and patch size varies to assess the scalability of our proposed approach in Figure 4a.
We perform experiments on synthetic datasets with varying numbers of nodes from {10, 100, 1,000,
10,000, 100,000}. We also consider different patch sizes, specifically {8, 16, 32, 64}. The runtime
results are reshaped into a matrix for visualization purposes. Figure 4a shows the runtime in seconds
on a logarithmic scale for the different patch sizes as a function of the number of nodes. As expected,
the runtime increases with the number of nodes and patch size. Nevertheless, Fast-HEROFILTER
demonstrates reasonable scalability as the growth in runtime is sub-linear, indicating that our approach

22

101 102 103 104 105

Number of Nodes

2 9

2 7

2 5

2 3

Ru
nt

im
e

(s
ec

on
ds

)

Patch Mixer Scalability

Patch size 8
Patch size 16
Patch size 32
Patch size 64

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(a) Scalability analysis of Fast-HEROFILTER.
The x-axis shows the number of nodes pro-
cessed, and the y-axis shows the running time
per iteration.

(b) Runtime results for one epoch of inference (5 runs). Lower is
better.

Figure 5: Parameter sensitivity analysis results for Cora (left) and Texas (right) datasets, respectively.

can handle large-scale graph datasets effectively. The results also highlight the importance of selecting
an appropriate patch size to balance the trade-off between computational efficiency and performance.

Runtime Analysis on HEROFILTER Mixer. We further evaluate the runtime performance of
HEROFILTER against existing filter-based and graph transformer methods across four datasets:
Squirrel, Chameleon, Arxiv-year, and Snap-patents. Since HEROFILTER patcher can be computed
offline as a preprocessing step, we only record the inference time of HEROFILTER mixer. Shown
from Figure 4b, our findings reveal that HEROFILTER consistently achieves the fastest inference time
across all datasets. Specifically, on Squirrel and Chameleon, HEROFILTER executes in 0.92 and 0.75
milliseconds, respectively, outperforming the next fastest method (Exphormer) by 8 times. For larger
datasets like Arxiv-year and Snap-patents, HEROFILTER maintains its efficiency (45.60 and 71.66
milliseconds), while transformer-based methods like VCR-Graphormer either require significantly
more time (1832.73 milliseconds) or fail to complete due to out-of-memory (OOM) errors.

H Parameter Sensitivity Analysis

We conduct a parameter sensitivity analysis to investigate the impact of patch size and the number of
filters in Figure 5. The analysis was performed on two datasets, namely the Cora and Texas datasets.
We varied the patch size from {8, 16, 32, 64} and the number of filters from {10, 50, 100, 200}. We
measure the accuracy of the model for each combination of parameters. Figure 5 shows the results
of the parameter sensitivity analysis. The plots reveal that for both datasets, increasing the patch
size and the number of filters generally leads to higher accuracy, although the improvements tend to
plateau beyond certain values. This indicates that our model can effectively handle different patch
sizes and filter configurations while highlighting the importance of selecting appropriate parameters
to achieve optimal performance.

23

	Introduction
	Preliminaries
	Theoretical Bound in Terms of Graph Heterophily, Graph Filter, and Prediction Performance
	HeroFilter Framework
	HeroFilter Patcher
	HeroFilter Mixer
	Why Mixing Both Dimensions
	Fast-HeroFilter Patcher

	Experiment
	Overall Performance
	Ablation Studies

	Related Work
	Conclusion
	Appendix Content
	Symbols and Notations
	Proofs of the Theorems
	Algorithm
	Experiment Setup
	Details of Parameter Settings and Tuning
	Scalability and Runtime Analysis
	Parameter Sensitivity Analysis

