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ABSTRACT

We introduce a deep multivariate latent variable model, Deep Independent Vector
Analysis (DeepIVA), for learning linked and identifiable latent sources across
multiple data modalities by unifying multidataset independent subspace analysis
(MISA) and identifiable variational autoencoders (iVAE). DeepIVA aims to learn
hidden linkage information via the MISA loss to attain latent cross-modal alignment
while leveraging the identifiability properties of the iVAE to ensure proper unimodal
disentanglement. We propose a stricter set of performance measures, facilitating
comprehensive evaluation. We demonstrate that DeepIVA can successfully recover
nonlinearly mixed multimodal sources on multiple synthetic datasets compared
with iVAE and MISA. We then apply DeepIVA on a large multimodal neuroimaging
dataset, and show that DeepIVA can reveal linked imaging sources associated with
phenotype measures.

1 INTRODUCTION

One fundamental problem in representation learning is how to learn the latent variables used to
generate the data. In blind source separation (BSS) (Silva et al., 2016), independent component
analysis (ICA) (Comon, 1994) aims to recover latent sources that are statistically independent, but
there is no guarantee of identifiability in general without additional assumptions. Notably, the solution
of a linear ICA problem is identifiable only when at most one of latent sources is Gaussian (Comon,
1994). The solution of a nonlinear ICA problem, on the other hand, is highly non-unique without
additional restrictions (Hyvärinen & Pajunen, 1999). If the learned sources are not identifiable,
it is impossible to reveal the underlying structure of the data. Recent advancements in nonlinear
ICA theory have proposed to recover identifiable latent sources mixed nonlinearly up to trivial
indeterminacies by introducing auxiliary information (Hyvarinen & Morioka, 2016; Hyvarinen
et al., 2019; Khemakhem et al., 2020). Specifically, an identifiable variational autoencoder (iVAE)
(Khemakhem et al., 2020) has been proved to recover nonlinearly mixed sources up to permutations
or sign flips by utilizing auxiliary variables such as time indices or class labels. It assumes that
sources are conditionally independent given such auxiliary variables, in the form of an exponential
family distribution.

Apart from identifiability, we are often interested in learning linked representations from multiple
data modalities, as each modality can only capture limited information of the data-generating system.
For example, in the field of neuroimaging, structural magnetic resonance imaging (sMRI) can reveal
static anatomical structure of the brain in high resolution, while functional magnetic resonance
imaging (fMRI) can capture temporal dynamics at the cost of lower spatial resolution. Jointly
analyzing two imaging modalities can uncover cross-modal relationships that cannot be detected
by a single imaging modality, providing new insights into structural and functional interactions in
the brain and its disorders (Calhoun & Sui, 2016). Recent studies on multi-view BSS assume that
observations from different views originate from a shared source variable and distinct additive noise
variables (Richard et al., 2020; 2021; Pandeva & Forré, 2023; Gresele et al., 2020). However, in the
context of multimodal fusion, it is more reasonable to assume that each modality is generated by
modality-specific latent variables which, in turn, are linked across modalities, rather than a shared set,
especially for data modalities that are inherently heterogeneous.

To identify linked sources from multiple datasets, a unified framework called multidataset independent
subspace analysis (MISA) has been developed (Silva et al., 2020) encompassing multiple linear
latent variable models, such as ICA (Comon, 1994), independent vector analysis (IVA) (Kim et al.,
2006), and independent subspace analysis (ISA) (Cardoso, 1998). MISA can be applied to analyze
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both multi-subject and multimodal neuroimaging data. Built upon MISA, multimodal IVA (MMIVA)
(Silva et al., 2021) and multimodal subspace IVA (MSIVA) (Li et al., 2023a) have been recently
developed to capture one-to-one and many-to-many latent multimodal associations, respectively. In
both cases, the learned linked latents are found to be significantly associated with phenotype measures
such as age, sex and psychosis from large-scale multimodal neuroimaging datasets including sMRI
and fMRI. Although both MMIVA and MSIVA assume that sources undergo a linear mixing process,
it is possible that the true mixing process in neuroimaging data is actually nonlinear, considering
nonlinear transformations in modeling and preprocessing stages. For example, the hemodynamic
response function that models the relationship between neural activities and fMRI signals is nonlinear;
preprocessing steps such as coregistration include nonlinear transformations. Nonlinear methods
such as deep neural networks (LeCun et al., 2015) have been increasingly applied for neuroimaging
data analysis, showing the potential to learn robust brain-phenotype relationships (Abrol et al., 2021).

Here, we ask the question: How can we learn linked and identifiable latent sources that are nonlinearly
mixed across multiple data modalities? Built upon MISA and iVAE, we develop a deep multivariate
latent variable model, Deep Independent Vector Analysis (DeepIVA), to learn linked and identifiable
latent sources from multiple data modalities. In DeepIVA, we utilize the iVAE to identify sources from
each modality, and the MISA loss function to align sources across all modalities. We demonstrate
that DeepIVA can effectively recover sources compared to iVAE and MISA on multiple synthetic
datasets and a large multimodal neuroimaging dataset. Our key contributions are as follows:

• We propose a deep latent variable model, DeepIVA, to learn linked and identifiable represen-
tations from multimodal data by unifying MISA and iVAE;

• We propose multiple evaluation metrics, including segment-specific minimum distance and
trimmed mean correlation coefficient, to comprehensively characterize model performance;

• We perform a systematic evaluation of model performance and demonstrate that DeepIVA
can effectively learn linked and identifiable multimodal sources in multiple simulation
configurations (different sources, segments, and observations per segment);

• We apply DeepIVA on a large multimodal neuroimaging dataset to identify biologically
meaningful sources associated with phenotype measures (age and sex).

2 METHODS

2.1 DEEP INDEPENDENT VECTOR ANALYSIS

Independent Vector Analysis Independent vector analysis (IVA) (Kim et al., 2006) is a multivariate
latent variable model which extends the ICA problem from a single dataset to multiple datasets and
captures statistical dependence across datasets. IVA aims to identify linked vector sources across M
datasets or data modalities (M > 1) where each observation xm can be modeled as a linear mixture
Am of statistically independent sources sm:

xm = Amsm, (1)

where xm ∈ RV is an observation in the m-th dataset or data modality Xm ∈ RN×V , sm ∈ RC
is the source corresponding to the observation xm, Am ∈ RV×C is the invertible linear mixing
matrix, m ∈ [[1,M ]] indexes the dataset or data modality, N is the number of observations, V is the
number of features, and C is the number of sources (C ≤ V ). Particularly, in neuroimaging data, the
observations are the subjects and the features are the volume pixel (voxel) intensities.

The IVA algorithm seeks to identify the sources ŝm by learning a demixing matrix Wm: ŝm =
Wmxm. The IVA problem can be solved by minimizing the following mutual information loss
(Adali et al., 2014):

LIVA =

C∑
i=1

(
M∑
m=1

H(smi )− I(si)

)
−

M∑
m=1

log |detWm|, (2)

where H(·) denotes the entropy, I(·) denotes the mutual information, si is the i-th source component
vector (SCV) which spans M datasets, si = [s1i , s

2
i , . . . , s

m
i ]⊤. The IVA objective aims to minimize

the mutual information among SCVs while capturing multimodal dependence among sources within
each SCV.
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Multidataset Independent Subspace Analysis Multidataset independent subspace analysis (MISA)
(Silva et al., 2020) is a unified framework encompassing multiple linear BSS models including ICA,
IVA and ISA. MISA utilizes a multivariate Kotz distribution (Kotz, 1975) for SCV modeling:

pψ(si) =
βλνΓ

(
di
2

) (
s⊤i D

−1
i si

)η−1

π
di
2 (detDi)

1
2 Γ (ν)

e−λ(s
⊤
i D−1

i si)
β

, (3)

where ψ = [β, λ, η] is the set of Kotz hyperparameters, and di is the i-th SCV dimension, here

di = M . We define ν ≜ 2η+di−2
2β > 0 and α ≜

Γ(ν+β−1)
λβ−1diΓ(ν )

for brevity, where Γ(·) denotes the
gamma function. The positive definite dispersion matrix Di is related to the SCV covariance matrix
Σsi as Di = α−1Σsi . The Kotz distribution is highly flexible, as it encompasses the multivariate
Gaussian distribution (ψ = [1, 12 , 1]) and the multivariate Laplace distribution (ψ = [ 12 , 1, 1]).

The MISA loss (Silva et al., 2020) is defined as the KL divergence between the joint distribution
across all SCVs pψ(s) and the product of the Kotz distributions from each SCV pψ(si):

LMISA(W) = DKL(pψ(s)∥
C∏
i=1

pψ(si))

= −
M∑
m=1

JDm
+

1

2

C∑
i=1

JCi
− f −

C∑
i=1

µ− 1

N

N∑
n=1

JFin
+

C∑
i=1

λ

N

N∑
n=1

JEin
,

(4)

where JDm
=
∑C
i=1 ln |σmi | and {σmi }Ci=1 is the set of non-zero singular values of the demix-

ing matrix Wm, JCi
= ln |detDi|, JFi

= ln(s⊤i D
−1
i si), JEi

= ln(s⊤i D
−1
i si)

β , f =∑C
i=1

[
lnβ + ν lnλ+ lnΓ

(
di
2

)
− di

2 lnπ − ln Γ(ν)
]
.

Identifiable Variational Autoencoder The original MISA framework only includes linear BSS
methods. In practice, we are also often interested in learning nonlinear mixtures, especially for
high-dimensional data such as neuroimaging. Recently, an identifiable variational autoencoder (iVAE)
(Khemakhem et al., 2020) has been proposed to recover latent sources that are nonlinearly mixed by
conditioning latents on auxiliary variables. It has also been proved that iVAE can recover independent
conditional latent variables while maximizing the likelihood of generating the data, thus bridging the
gap between iVAE and nonlinear ICA (see Appendix F in Khemakhem et al. (2020) for more details).

Consider the following conditional unimodal generative model (Khemakhem et al., 2020):

xm = fm(sm) + ϵm, m = 1, . . . ,M, (5)

pθm(xm, sm|u) = pfm(xm|sm)pTm,λm(sm|u), (6)
pfm(xm|sm) = pϵm(xm − fm(sm)), (7)

pTm,λm(sm|u) =
C∏
i

Qmi (smi )

Zmi (u)
exp

 k∑
j=1

Tmi,j(s
m
i )λmi,j(u)

 , (8)

where xm ∈ RV and u ∈ RS are observed random variables, sm ∈ RC (C ≤ V ) is a latent variable,
ϵm ∈ RV is an independent modality-specific noise variable with probability density function
pϵm(ϵm), θm = (fm,Tm, λm) is a set of parameters of the conditional generative model, and fm :
RC → RV is a nonlinear mixing function. We assume that the prior on the latent variables pθm(sm|u)
is conditionally independent, and each unimodal source smi follows a univariate exponential family
distribution given the auxiliary variable u, where Qmi is the base measure, Zmi (u) is the normalizing
constant, Tm

i = (Tmi,1, . . . , T
m
i,k) are the sufficient statistics, λmi (u) = (λmi,1(u), . . . , λ

m
i,k(u)) are the

parameters depending on u, and k is the dimension of each sufficient statistic.

Given a dataset D = {
(
xm(n),u(n)

)
}Nn=1 with N observations sampled from the generative model

defined by Equations 5 6 7 8, the iVAE aims to learn the parameters (θm, ϕm) that maximize the data
generation likelihood by maximizing the evidence lower bound (ELBO):

LmiVAE(θ
m, ϕm) = EqD

[
Eqϕm (sm|xm,u)[log pθm(xm, sm|u)− log qϕm(sm|xm,u)]

]
, (9)

where qD is the empirical distribution of the dataset D; pθm(xm, sm|u) is the observed condi-
tional joint distribution; qϕm(sm|xm,u) is the approximated posterior. The reparameterization trick
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Step 1. IVAE identifies unimodal sources Step 2. MISA aligns cross-modal sources

Iterate steps 1 and 2 until convergence

Frozen

alignedmisaligned misaligned

Figure 1: DeepIVA overview. Step 1: An iVAE is trained to recover sources for each of M data
modalities. Step 2: The MISA loss is applied to align sources across M data modalities. Steps 1 and
2 are iterated until convergence.

(Kingma & Welling, 2013) is used to sample from a multivariate Gaussian distribution with a diagonal
covariance, i.e. qϕm(sm|xm,u) = N

(
sm|gm(xm,u;ϕgm), Iσ2(xm,u;ϕσ)

)
.

We implement an L-layer multilayer perceptron (MLP) as the backbone of the iVAE. The input
dimension of the first layer in the encoder is equal to the sum of the feature dimension and the
auxiliary information dimension. The input and output dimensions of each intermediate layer are the
same, which doubles the feature size (2V ). The output dimension of the last layer is again equal to
the feature dimension. We use Leaky ReLU (Andrew et al., 2013) as the activation function.

Deep Independent Vector Analysis Consider the following conditional multimodal generative
model:

xm = fm(sm) + ϵm, m = 1, . . . ,M, (10)

pθ(x
1, . . . ,xM , s1, . . . , sM |u) =

(
M∏
m=1

pfm(xm|sm)

)
pθs(s|u), (11)

where we define
pfm(xm|sm) = pϵm(xm − fm(sm)), (12)

pθs(s|u) = pθs(s
1, . . . , sM |u) =

C∏
i=1

pθs,i(s
1
i , . . . , s

M
i |u). (13)

Integrating pθs(s|u) over sm
′

i , ∀i, ∀m′,m′ ̸= m, implies the following (marginal) conditionally
independent unimodal latent model:

pθms (sm1 , . . . , s
m
C |u) =

C∏
i=1

pθms,i(s
m
i |u). (14)

Built upon MISA and iVAE, we propose Deep Independent Vector Analysis (DeepIVA)1 to learn
linked and identifiable latent sources from multiple data modalities defined according to Equations
10 11 12 13 14 (Figure 1). Assuming the unimodal marginals smi |u follow a univariate exponential
family distribution, we show that the learned model parameters and sources from DeepIVA are
identifiable up to a permutation and component-wise transformation (Appendix A).

In DeepIVA, an iVAE is first initiated for each data modality and then a single MISA module is
initiated across all data modalities. The iVAE aims to recover sources for each modality and the MISA
module aims to identify linkage of sources across modalities. At each epoch, we alternate between
training the cross-modal MISA and the unimodal iVAEs. Specifically, we process one segment
(segments are defined by the auxiliary variables) from all M modalities at a time, and simultaneously
update the encoder parameters for all modalities according to the MISA loss (Equation 4). We then

1Code will be made publicly available upon acceptance.
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update the iVAE model parameters (both encoder and decoder) using all segments simultaneously,
for each of the M modalities separately, following the iVAE loss (Equation 9).

The MISA loss term JDm in DeepIVA is different from the original MISA framework. Specifically,
we compute the Jacobian matrix Jm of the nonlinear transformation parameterized by the MLP
encoder gm for them-th data modality. For computational efficiency, we approximate the determinant
of each Jacobian by the determinant of the average Jacobian across samples, J

m
= 1

N

∑N
n=1

∂gm

∂xm(n) .
The loss term is defined as JDm

= ln |detJm| if J
m

is a square matrix; JDm
=
∑C
i=1 ln |σmi | where

{σmi }Ci=1 is the set of non-zero eigenvalues of J
m
J
m⊤

if J
m

is not a square matrix.

Additionally, since MISA is not designed to handle auxiliary information, we modify the original
encoder architecture to distinguish between data features xm and auxiliary variables u such that 1)
the iVAE updates model parameters with respect to both xm and u at the input layer, and 2) the MISA
updates only those pertaining to xm but not u. The original iVAE model uses a single input layer
taking the concatenated xm and u. In DeepIVA, we split this layer into two: one for data features xm
and another for auxiliary variables u. The parameters with respect to u will only be updated at the
iVAE training step but will remain frozen at the MISA training step. Also, the inputs for the auxiliary
variables are set to 0 during MISA training to ensure no influence from the frozen weights.

2.2 SYNTHETIC DATA EXPERIMENT

Synthetic Data We generate multimodal synthetic datasets including non-stationary multivariate
Gaussian sources. Specifically, we simulate a dataset X ∈ RN×C×M whereN = O×S is the number
of total observations, O is the number of observations per segment, S is the number of segments, C
is the number of sources, and M is the number of modalities. Here, we set M = 2, C ∈ {5, 10, 15},
S ∈ {14, 8, 4}, N ∈ {2800, 5600} to simulate real data, leading to 18 configurations in total. These
configurations are chosen according to source identification performance in IVA tasks (Li et al.,
2023b). For each segment, we generate a covariance matrix Σ ∈ R2C×2C of both modalities,
where the within-modality covariance matrices Σm,m ∈ RC×C along the main (block) diagonal
are diagonal matrices with values sampled from a uniform distribution [0.2, 4]. Then, the between-
modality covariance Σm,m′ ∈ RC×C (m ̸= m′) along the off-diagonal block is defined as a diagonal
matrix with correlation values sampled from a uniform distribution [0.7, 0.9] and scaled by the source
standard deviations according to Σm,m. The data is then generated from a multivariate Gaussian
distribution N (µ,Σ), where µ ∈ R2C is sampled from a uniform distribution [−3, 3]. The auxiliary
variable u is the segment label with a uniform distribution on the integer set [[1, S]]. Latent variables
within each modality are conditionally independent given segment labels u. Synthetic sources are
visualized in Appendix B.1. A neural network with L = 2 layers was employed to act as the nonlinear
mixing function h. For each layer, a Leaky ReLU (Maas et al., 2013) with a negative slope of 0.2 is
used as the activation function. After the last Leaky ReLU layer, we multiply the mixed data from
each modality by a different random orthogonal matrix A to obtain the final mixed dataset X.

Synthetic Data Experiment For each configuration, we run iVAE, MISA and DeepIVA on the
same synthetic data for 10 different random seeds, respectively. As for hyperparameters, we set an
initial learning rate of 0.001 for the iVAE model. The corresponding MISA learning rate is equal
to the iVAE learning rate divided by the number of segments, considering that the MISA model is
trained on data from each segment separately. A learning rate scheduler is used to reduce the learning
rate by a factor of 0.1 if there is no improvement for 20 epochs. We set the number of maximum
contiguous iterations as 10 for both models. For synthetic datasets with 4, 8, and 14 segments, we
use a batch size of 140, 160 and 160 for the iVAE model, and a batch size of 200, 350 and 700 for
the MISA model, respectively. The model parameters are updated by the Adam optimizer (Kingma &
Ba, 2014). Each model is trained for 300 epochs until convergence.

2.3 NEUROIMAGING DATA EXPERIMENT

Neuroimaging Data We utilize the UK Biobank dataset (Miller et al., 2016) X ∈ RN×V×M

including two imaging modalities T1-weighted sMRI and resting-state fMRI (M = 2) from 2907
subjects (N = 2907). We preprocess sMRI and fMRI to obtain the gray matter tissue probability
segmentation (GM) and amplitude of low frequency fluctuations (ALFF) feature maps, respectively.
Each GM or ALFF feature map includes 44318 voxels (V = 44318). Here, we use age and sex groups
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Figure 2: Aggregated RDC matrices across segments from a synthetic dataset (2800 samples, 5
sources, 14 segments). IVAE can correctly identify sources from each modality while MISA can
better capture linked sources across both modalities. DeepIVA, which unifies iVAE and MISA, can
not only recover unimodal sources, but also capture cross-modal linkage.

as auxiliary information, assuming that sources within each modality are conditionally independent
given the age and sex group. This assumption is based on studies showing the significant impact of
age and sex on both brain structure and function (Raz et al., 2004; Good et al., 2001; Ruigrok et al.,
2014). We divide neuroimaging data into 14 segments according to sex and age groups such that
segments approximately follow a uniform distribution (2 sex groups: male and female; 7 age groups:
46− 53, 53− 57, 57− 61, 61− 64, 64− 67, 67− 70, 70− 79 years old).

Neuroimaging Data Experiment We first run singular value decomposition on each data modality
and choose the number of latent sources C based on variance explained. We next apply multimodal
group principal component analysis (MGPCA) on two data modalities (sMRI and fMRI) to reduce
the feature dimension from 44318 voxels to C common sources. After that, the transformation is
applied separately to each dataset in order to obtain modality-specific reductions. We next run iVAE,
MISA and DeepIVA on the reduced data Xr ∈ RN×C×M , respectively. During the training process,
we use a full batch size of 2907 samples for both iVAE and MISA, an iVAE learning rate of 0.001, a
MISA learning rate of 7.14× 10−5, 300 epochs and 10 iterations per epoch.

2.4 EVALUATION METRICS

We utilize two metrics, the trimmed mean correlation coefficient between the 25th percentile and
the 75th percentile (MCC) and the minimum distance (MD), to evaluate model performance. Unlike
MCC, which only measures similarity along the main diagonal after permutation, MD also accounts
for off-diagonal (dis)similarity. For each metric, we derive four types of coefficients: 1) a coefficient
per modality, per segment; 2) an aggregated coefficient per modality; 3) an aggregated coefficient per
segment; 4) a final aggregated coefficient across all modalities and segments.

We first compute the randomized dependence coefficient (RDC) matrix R (Lopez-Paz et al., 2013)
between the recovered sources and the ground-truth sources for each modality and each segment.
Note that we compute a RDC matrix for each segment separately, instead of computing it across
all segments by convention. Our segment-specific RDC can more precisely characterize the data
within each segment and effectively mitigate the noise introduced when all segments are taken
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Figure 3: MD (↓) and MCC (↑) values between recovered sources and ground-truth sources for
three approaches (iVAE, MISA, DeepIVA) and three simulation configurations (2800 samples,
5 sources, 4/8/14 segments). The bar plot shows the mean and 95% confidence interval. IVAE
and DeepIVA show comparable performance for the per-modality per-segment metrics. DeepIVA
demonstrates superior performance for the other metrics which account for unimodal identifiability,
cross-modal linkage and cross-segment consistency.

simultaneously. Next, we aggregate the RDC matrices over segments by taking the mean to obtain an
RDC matrix Rm per modality (mean aggregation). We also obtain an aggregated RDC matrix R[u]

per segment by taking the minimum across modalities for the entries corresponding to the sorted
indices (i.e., the entries along the main diagonal after sorting) from a linear sum assignment problem
(LSAP) solver (Crouse, 2016), and then taking the maximum for the remaining entries across all
modalities (min-max aggregation). This min-max aggregation penalizes approaches that fail to detect
cross-modal linkage, even when unimodal identifiability is high. To compute the final aggregated
RDC matrix, we use min-max aggregation of Rm across modalities. We use the permuted indices
from the modality-specific RDC matrix Rm which yields the lowest MD value as the global sorting
indices to sort the other RDC matrices. For each sorted RDC matrix Rs, we compute the MCC, as
well as the MD, slightly adjusted from Equation 4 in Nordhausen et al. (2011):

MD(R) =
1

2
(1 +

1

d
trace(RR⊤)− 2

d
trace(Rs)), (15)

where R is the unsorted matrix, Rs is the sorted matrix, and d is the dimension of R.

3 RESULTS

3.1 DEEPIVA LEARNS LINKED AND IDENTIFIABLE SOURCES FROM SYNTHETIC DATASETS

The aggregated RDC matrices for a synthetic dataset with 2800 samples, 5 sources and 14 segments
from iVAE, MISA, and DeepIVA are shown in Figure 2. The aggregated RDC matrices for datasets
with 4 and 8 segments are shown in the Appendix B.2 Figures 10 and 11. Columns I and II show
the RDC matrices between the ground-truth sources and the recovered sources for the first modality
(M1) and the second modality (M2), respectively. If an approach can successfully recover the latent
sources that match the ground-truth sources, we anticipate that high RDC values align along the main
diagonal after column permutation (same for both modalities). Greater contrast indicates better source
identification performance. Column III shows the RDC matrices of the recovered sources between
two modalities, while column IV shows the RDC matrices of the ground-truth sources between two
modalities. If an approach can successfully identify the cross-modal linkage, high RDC values will
be aligned along the main diagonal in column III, as the ground-truth linkage pattern in column IV.

According to Figure 2, we observe that iVAE can identify sources with high RDC values within each
modality (M1 MCC: 0.80, M2 MCC: 0.99; row I, columns I and II) but fail to capture cross-modal
linkage (MCC: 0.62; row I, column III). By constrast, MISA reveals stronger cross-modal dependence
along the main diagonal, suggesting its ability to detect cross-modal linkage (MCC: 0.65; row II,
column III). However, MISA cannot fully recover unique unimodal sources (M1 MCC: 0.70, M2
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Figure 4: Aggregated MD (↓) and MCC (↑) values between recovered sources and ground-truth
sources in multiple synthetic data configurations. The bar plot shows the mean and 95% confidence
interval across 10 random seeds. DeepIVA shows the best aggregated performance in all simulations.

MCC: 0.67; row II, columns I and II). In the first modality (M1), we note that the recovered SCV 1
shows high dependence with both ground-truth SCVs 2 and 3. DeepIVA, which unifies iVAE and
MISA, can not only recover unimodal sources (M1 MCC: 0.91, M2 MCC: 0.92; row III, columns I
and II) but also show the strongest cross-modal linkage (MCC: 0.72; row III, column III).

The corresponding MD and MCC measures are presented in Figure 3. The iVAE shows the best
performance for the per-modality per-segment metrics (low MDs, high MCCs). As these metrics
only account for identifiability within each modality and each segment (no aggregation), these
results again indicate that iVAE can effectively recover segment-specific unimodal sources. We also
note that DeepIVA achieves comparable performance to iVAE, suggesting that DeepIVA can also
effectively identify sources. The other measures (coefficients per modality, coefficients per segment,
and aggregated coefficients) take not only unimodal identifiability but also cross-segment consistency
and cross-modal linkage into account. From these metrics, we observe that DeepIVA exhibits
superior performance (lowest MDs, highest MCCs) over the other two approaches in all simulation
configurations. The aggregated MDs from DeepIVA are consistently lower than those from iVAE and
MISA across different segments. Specifically, for 4, 8, and 14 segments, the aggregated MDs from
DeepIVA are 68.62%, 49.59%, and 51.26% lower than those from iVAE, respectively. Similarly, the
aggregated MDs from DeepIVA are 46.49%, 51.37%, and 44.41% lower than those from MISA for
the corresponding segments. Furthermore, the aggregated MCCs from DeepIVA are consistently
higher than those from iVAE and MISA. Notably, the aggregated MCCs from DeepIVA are 332.95%,
31.71%, and 88.25% higher than those from iVAE for 4, 8, and 14 segments, respectively. Likewise,
the aggregated MCCs from DeepIVA are 22.93%, 34.29%, and 42.36% higher than those from MISA
for the respective segments. Additionally, when comparing performance across datasets with 4, 8 and
14 segments, the configuration of 4 segments and 700 samples per segment shows the best source
identification performance for the per-modality per-segment metrics. It suggests that variability in the
dataset grows with the number of segments, making the optimization problem harder to solve.

We perform a systematic evaluation of model performance across different data-generating config-
urations by varying both the problem scale (5, 10 and 15 sources) and the sample size (2800 and
5600 samples). The aggregated MD and MCC metrics are shown in Figure 4. Remarkably, DeepIVA
outperforms iVAE and MISA in every configuration, showcasing its superior performance across
all evaluated scenarios. Within each panel, we observe a consistent drop in model performance as
the number of latent sources increases, suggesting that the optimization problem becomes more
challenging as the latent dimension increases. Across horizontal panels, the DeepIVA performance
improves for configurations with 10 and 15 sources when the sample size increases from 2800 to
5600, indicating that a larger sample size is necessary to better recover sources in a harder problem.

3.2 DEEPIVA RECOVERS LINKED NEUROIMAGING SOURCES ASSOCIATED WITH SEX AND AGE

We run iVAE, MISA and DeepIVA on a multimodal neuroimaging dataset to evaluate their effec-
tiveness in real data. Results from singular value decomposition of sMRI GM and fMRI ALFF
feature maps suggest that top 15 sources can capture a large portion of variance explained in the data
(Appendix C.1 Figure 12), and thus we choose to identify 15 common independent sources. The
aggregated RDC matrices across segments between two neuroimaging modalities are presented in
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Figure 5: Aggregated RDC matrices across 14 segments of 15 recovered sources between two
imaging modalities. DeepIVA captures cross-modal linkage from multimodal neuroimaging data.
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Figure 6: DeepIVA linked imaging SCVs associated with sex and age. Row I shows sex effect
(blue: male; red: female). Row II shows aging effect (cold color: younger group; warm color: older
group). Row III shows fitted linear lines from each segment (blue: male; red: female; light: younger
group; dark: older group).

Figure 5. Similar to simulations, DeepIVA shows the strongest cross-modal dependence along the
main diagonal (MCC: 0.46), suggesting that it can better capture linked sources across two imaging
modalities. We then color code the recovered sources from DeepIVA by sex and age groups (Figure
6), and observe noticeable sex clusters (e.g. SCVs 12 and 15) and age clusters (e.g. SCVs 8 and 11),
indicating that DeepIVA captures linked sources related to phenotype measures. Furthermore, we
fit a separate linear line for observations from each segment. If DeepIVA is capable of identifying
consistent linked sources across segments, we should be able to observe that these fitted lines share
similar slopes. Indeed, we note that slopes of fitted lines per segment are very consistent for most
sources (e.g. SCVs 1− 9). Color-coded sources from iVAE are less aligned across segments while
those from MISA are not associated with sex and age (Appendix C.2 Figures 13 and 14).

4 DISCUSSION

Summary We propose a deep multivariate latent variable model, Deep Independent Vector Analysis
(DeepIVA), to learn linked and identifiable latent sources that are nonlinearly mixed across multiple
data modalities. DeepIVA unifies iVAE and MISA, and exhibits unique advantages from each
approach, specifically unimodal source identification from iVAE as well as cross-modal linkage
detection from MISA. We demonstrate that DeepIVA can recover linked and identifiable sources
from multiple synthetic datasets. Moreover, we show that DeepIVA reveals biologically meaningful
linked sources from a large multimodal neuroimaging dataset.

Limitations DeepIVA assumes that sources are conditionally independent given the auxiliary variable
to achieve identifiability, as it utilizes the iVAE objective. However, there may not be sufficient
information about such an auxiliary variable in real data. Though we obtain sources related to age
and sex groups, the true data-generating process remains unknown in the neuroimaging data.

Future Work We plan to extend our proposed method from nonlinear IVA problems to nonlinear
ISA problems, aiming to capture source dependence by leveraging higher-dimensional subspaces. It
is also worth exploring approaches that do not require side information, such as applying structural
sparsity (Zheng et al., 2022), learning latent clusters (Willetts & Paige, 2021; Jiang et al., 2016) or
using a Gaussian mixture prior and a deep ReLU/Leaky-ReLU network (Kivva et al., 2022).
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Tülay Adali, Matthew Anderson, and Geng-Shen Fu. Diversity in independent component and vector
analyses: Identifiability, algorithms, and applications in medical imaging. IEEE Signal Processing
Magazine, 31(3):18–33, 2014.

Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical correlation analysis.
In International conference on machine learning, pp. 1247–1255. PMLR, 2013.

Vince D Calhoun and Jing Sui. Multimodal fusion of brain imaging data: a key to finding the
missing link (s) in complex mental illness. Biological psychiatry: cognitive neuroscience and
neuroimaging, 1(3):230–244, 2016.

J-F Cardoso. Multidimensional independent component analysis. In Proceedings of the 1998
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181), volume 4, pp. 1941–1944. IEEE, 1998.

Pierre Comon. Independent component analysis, a new concept? Signal processing, 36(3):287–314,
1994.

David F Crouse. On implementing 2d rectangular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

Catriona D Good, Ingrid S Johnsrude, John Ashburner, Richard NA Henson, Karl J Friston, and
Richard SJ Frackowiak. A voxel-based morphometric study of ageing in 465 normal adult human
brains. Neuroimage, 14(1):21–36, 2001.

Luigi Gresele, Paul K Rubenstein, Arash Mehrjou, Francesco Locatello, and Bernhard Schölkopf.
The incomplete rosetta stone problem: Identifiability results for multi-view nonlinear ica. In
Uncertainty in Artificial Intelligence, pp. 217–227. PMLR, 2020.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. Advances in neural information processing systems, 29, 2016.

Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and
uniqueness results. Neural networks, 12(3):429–439, 1999.

Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 859–868. PMLR, 2019.

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep embed-
ding: An unsupervised and generative approach to clustering. arXiv preprint arXiv:1611.05148,
2016.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoencoders
and nonlinear ica: A unifying framework. In International Conference on Artificial Intelligence
and Statistics, pp. 2207–2217. PMLR, 2020.

Taesu Kim, Torbjørn Eltoft, and Te-Won Lee. Independent vector analysis: An extension of ica to
multivariate components. In International conference on independent component analysis and
signal separation, pp. 165–172. Springer, 2006.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Identifiability of deep
generative models without auxiliary information, 2022.

10



Under review as a conference paper at ICLR 2024

Samuel Kotz. Multivariate distributions at a cross road. Springer, 1975.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Xinhui Li, Tulay Adali, Rogers F Silva, and Vince Calhoun. Multimodal subspace independent vector
analysis captures latent subspace structures in large multimodal neuroimaging studies. bioRxiv, pp.
2023–09, 2023a.

Xinhui Li, Daniel Khosravinezhad, Vince D Calhoun, and Rogers F Silva. Evaluating trade-offs in
iva of multimodal neuroimaging using cross-platform multidataset independent subspace analysis.
In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE, 2023b.

David Lopez-Paz, Philipp Hennig, and Bernhard Schölkopf. The randomized dependence coefficient.
Advances in neural information processing systems, 26, 2013.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, pp. 3. Atlanta, Georgia, USA, 2013.

Karla L Miller, Fidel Alfaro-Almagro, Neal K Bangerter, David L Thomas, Essa Yacoub, Junqian
Xu, Andreas J Bartsch, Saad Jbabdi, Stamatios N Sotiropoulos, Jesper LR Andersson, et al.
Multimodal population brain imaging in the uk biobank prospective epidemiological study. Nature
neuroscience, 19(11):1523–1536, 2016.

Klaus Nordhausen, Esa Ollila, and Hannu Oja. On the performance indices of ica and blind source
separation. In 2011 IEEE 12th international workshop on signal processing advances in wireless
communications, pp. 486–490. IEEE, 2011.
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A IDENTIFIABILITY

Here, we provide a conceptual sketch of the proof that the learned model parameters and sources
from DeepIVA are identifiable up to a permutation of a component-wise transformation.

Proof. We consider the following conditionally independent multimodal generative model:

xm = fm(sm) + ϵm, m = 1, . . . ,M, (16)

pθ(x
1, . . . ,xM , s1, . . . , sM |u) =

(
M∏
m=1

pfm(xm|sm)

)
pθs(s|u), (17)

where we define
pfm(xm|sm) = pϵm(xm − fm(sm)), (18)

pθs(s|u) = pθs(s
1, . . . , sM |u) =

C∏
i=1

pθs,i(s
1
i , . . . , s

M
i |u). (19)

Integrating pθs(s|u) over sm
′

i , ∀i, ∀m′,m′ ̸= m, implies the following (marginal) conditionally
independent unimodal latent model:

pθms (sm1 , . . . , s
m
C |u) =

C∏
i=1

pθms,i(s
m
i |u). (20)

Assuming the unimodal marginals smi |u can be accurately modeled with a univariate exponential
family distribution, we can write the following conditionally independent unimodal generative model:

pθm(xm, sm|u) = pfm(xm|sm)pθms (sm|u), (21)

pθms (sm|u) = pTm,λm(sm|u) =
C∏
i

Qmi (smi )

Zmi (u)
exp

 k∑
j=1

Tmi,j(s
m
i )λmi,j(u)

 , (22)

where xm ∈ RV and u ∈ RS are two observed random variables, sm ∈ RC (C ≤ V ) is a latent
variable, ϵm ∈ RV is an independent modality-specific noise variable with probability density
function pϵm(ϵm), θm = (fm,Tm, λm) is a set of parameters of the conditional generative model,
fm : RC → RV is a nonlinear mixing function, Qmi is the base measure, Zmi (u) is the normalizing
constant, Tm

i = (Tmi,1, . . . , T
m
i,k) are the sufficient statistics, and λmi (u) = (λmi,1(u), . . . , λ

m
i,k(u)) are

the parameters depending on u, and k is the dimension of each sufficient statistic.

Definition A.1 (Identifiability). Let P = {pθ : θ ∈ Θ} be a statistical model with parameter space
Θ. We say P is identifiable up to ∼ if:

∀θ, θ̂ ∈ Θ, pθ = pθ̂ ⇒ θ ∼ θ̂. (23)

Definition A.2 (Equivalence Relation). Let ∼ be the equivalence relation on Θ defined as follows:

(f ,T, λ) ∼ (f̂ , T̂, λ̂) ⇔ ∃A, c | T(f−1(x)) = AT̂f̂−1(x)) + c, ∀x ∈ X , (24)

where A ∈ RCk×Ck is an invertible matrix and c ∈ RCk is a vector.

If the unimodal generative models defined by Equations 21 18 22 follows additional assumptions,
the learned model parameters and sources are identifiable up to trivial indeterminacies, as proved
in Khemakhem et al. (2020). We restate the key assumptions and Theorems in Khemakhem et al.
(2020) as follows.

Theorem 1. (Khemakhem et al., 2020) Assume that we observe data sampled from a generative
model defined by Equations 21 18 22, with parameters θm = (fm,Tm, λm). The parameters θm are
∼A-identifiable if the following assumptions hold:

(i) The set {xm ∈ X |ϕϵm(xm) = 0} has measure zero, where ϕϵm is the characteristic function of
the density pϵm defined in Equation 18.
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(ii) The mixing function fm in Equation 18 is injective.

(iii) The sufficient statistics Tmi,j in Equation 22 are differentiable almost everywhere, and
(Tmi,j)1≤j≤k are linearly independent on any subset of X of measure greater than zero.

(iv) There exist Ck + 1 distinct points u0, . . . ,uCk such that the matrix L =[
λm(u1)− λm(u0), . . . , λm(uCk)− λm(u0)

]
of size Ck × Ck is invertible.

Proof of Theorem 1 can be found at Khemakhem et al. (2020) Supplementary Material B.2.

Let θ̂m = (f̂m, T̂m, λ̂m) be the learned parameters from some algorithm that approximates the
marginal distribution of the observations from the m-th dataset. This Theorem says necessarily
θ̂m ∼A θm, where A is a linear transformation. The recovered sources ŝm = ĝm(xm) are equal to
the true sources sm = gm(xm) up to a linear transformation (A) of a component-wise nonlinear
transformation (with respect to Tm and T̂m). We can further assume sufficient conditions to obtain
identifiability up to a permutation of a component-wise nonlinear transformation (∼P ), as stated in
the following Theorems 2 and 3.

Theorem 2. (Khemakhem et al., 2020) Assume the hypotheses of Theorem 1 hold, and that k ≥ 2.
The parameters θm are ∼P -identifiable if the following assumptions hold:

(i) The sufficient statistics Tmi,j in Equation 18 are twice differentiable.

(ii) The mixing function fm has all second order cross derivatives.

Proof of Theorem 2 can be found at Khemakhem et al. (2020) Supplementary Material B.3.

Theorem 3. (Khemakhem et al., 2020) Assume the hypotheses of Theorem 1 hold, and that k = 1.
The parameters θm are ∼P -identifiable if the following assumptions hold:

(i) The sufficient statistics Tmi,1 are not monotonic.

(ii) All partial derivatives of fm are continuous.

Proof of Theorem 3 can be found at Khemakhem et al. (2020) Supplementary Material B.4.

In DeepIVA, the assumptions of Theorems 1 2 3 suffice for identifiability per dataset or data modality,
and lead to ∼P -identifiable model parameters and sources for each dataset or data modality. Although
these assumptions suffice for identifiability in unimodal iVAEs, they provide no guarantee of cross-
modal alignment. In addition, following iVAE estimation, arbitrary component-wise nonlinearities
remain, and thus we can assume they yield latents that follow a Kotz distribution marginal (see
Section 2.1). Consequently, the MISA loss can be utilized to align sources across datasets or data
modalities, for example by means of combinatorial optimization to search for modality-specific
source permutation matrices. Sources are still identifiable after applying such permutations and
component-wise nonlinear transformations, according to Theorems 1, 2, and 3. This concludes the
identifiability proof for the proposed DeepIVA.

In practice, given the poor scalability of combinatorial search when the number of modalities M and
the number of latent sources C grow, we pursue numerical optimization of the MISA loss to promote
learning of a component-wise nonlinear function that yields Kotz marginals. This also has the added
benefit of promoting source alignment in tandem with identification via unimodal iVAE training.
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B SYNTHETIC DATA EXPERIMENT

B.1 SYNTHETIC DATA VISUALIZATION

Here, we visualize the ground-truth source pairs in synthetic data generated from 4 segments (Figure
7), 8 segments (Figure 8), and 14 segments (Figure 9).
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Figure 7: Visualization of synthetic data (5 sources, 4 segments, 700 observations per segment).
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B.2 AGGREGATED RDC MATRICES

Here, we present the aggregated RDC matrices across segments for different configurations used to
generate the data: 2800 samples, 5 sources and 4 segments (Figure 10); 2800 samples, 5 sources and
8 segments (Figure 11).
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Figure 10: Aggregated RDC matrices across segments from a synthetic dataset (2800 samples, 5
sources, 4 segments).
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Figure 11: Aggregated RDC matrices across segments from a synthetic dataset (2800 samples, 5
sources, 8 segments).
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C NEUROIMAGING DATA EXPERIMENT

C.1 SINGULAR VALUE DECOMPOSITION

We perform singular value decomposition on sMRI GM and fMRI ALFF feature maps, respectively.
Figure 12 shows proportion of variance explained. According to the elbow criterion, we observe that
5− 15 sources can capture a large portion of variance explained. Thus, we choose 15 latent sources
for neuroimaging data.
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Figure 12: Proportion of variance explained in neuroimaging data in top 50 dimensions.

Table 1: Proportion of variance explained.

Dimension sMRI fMRI

5 0.273 0.178
10 0.342 0.236
15 0.389 0.270
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C.2 IMAGING SOURCES

We color code linked SCVs from neuroimaging data by sex and age, and present the color-coded
SCVs from iVAE in Figure 13 and those from MISA in Figure 14. Row I shows sex effect (blue:
male; red: female). Row II shows aging effect (cold color: younger group; warm color: older group).
Row III shows fitted linear lines from each segment (blue: male; red: female; light: younger group;
dark: older group).

In general, we observe that the iVAE SCVs reveal several sex clusters (e.g. SCVs 4 and 15) and age
clusters (e.g. SCVs 5 and 15), but the linear fitted lines are less aligned across segments. By contrast,
there is no visually obvious cluster related to sex and age from the MISA linked SCVs while the
linear fitted lines are more aligned across segments. These results can be explained by the differences
in the objectives of iVAE and MISA. Specifically, iVAE incorporates sex and age information during
optimization, while MISA lacks access to such information. The loss function in MISA is specifically
designed to align multimodal data, whereas iVAE is not explicitly designed for this purpose.
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Figure 13: IVAE imaging SCVs associated with sex and age.
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Figure 14: MISA linked imaging SCVs associated with sex and age.
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