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Abstract

Property prediction on molecular graphs is an important application of Graph Neu-
ral Networks (GNNs). Recently, unlabeled molecular data has become abundant,
which facilitates the rapid development of self-supervised learning for GNNs in
the chemical domain. In this work, we propose pretraining GNNs at the fragment
level, a promising middle ground to overcome the limitations of node-level and
graph-level pretraining. Borrowing techniques from recent work on principal sub-
graph mining, we obtain a compact vocabulary of prevalent fragments from a large
pretraining dataset. From the extracted vocabulary, we introduce several fragment-
based contrastive and predictive pretraining tasks. The contrastive learning task
jointly pretrains two different GNNs: one on molecular graphs and the other on
fragment graphs, which represents higher-order connectivity within molecules. By
enforcing consistency between the fragment embedding and the aggregated em-
bedding of the corresponding atoms from the molecular graphs, we ensure that the
embeddings capture structural information at multiple resolutions. The structural
information of fragment graphs is further exploited to extract auxiliary labels for
graph-level predictive pretraining. We employ both the pretrained molecular-based
and fragment-based GNNs for downstream prediction, thus utilizing the fragment
information during finetuning. Our graph fragment-based pretraining (GraphFP)
advances the performances on 5 out of 8 common molecular benchmarks and
improves the performances on long-range biological benchmarks by at least 11.5%.
Code is available at: https://github.com/lvkd84/GraphFP.

1 Introduction

The rise of Graph Neural Networks (GNNs) has captured the interest of the computational chemistry
community [11]. Representing molecules and chemical structures as graphs is beneficial because the
topology and connectivity are preserved and can be directly analyzed during learning [13], leading to
state-of-the-art performance. However, there is a problem in that while highly expressive GNNs are
data-hungry, the majority of molecular datasets available are considerably small, posing a critical
challenge to the generalization of GNNs. Following the steps that were taken in other domains
such as text and images, a potential solution is to pretrain GNNs on large-scale unlabeled data via
self-supervised pretraining [3, 5]. How to do so effectively is still an open question since graphs
are more complex than images or text, and the chemical specificity of molecular graphs needs to be
considered when designing graph-based pretraining tasks.

A large number of pretraining methods have been proposed for molecular graphs [38, 40]. For
example, [15] uses node embeddings to predict attributes of masked nodes, [17, 27] predicts graph
structural properties, and [16] generatively reconstructs graphs via node and edge predictions. Another
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popular direction is contrastive learning [26, 32, 35, 45, 46], in which multiple views of the same
graph are mapped closer to each other in the embedding space. These views are commonly generated
via augmentations to the original graphs [35, 45, 46]. However, without careful adjustments, there
is a great risk of violating the chemical validity or changing the chemical properties of the original
molecular graph after applying the augmentations. Other methods such as [23, 31] avoid this problem
by contrasting 2D-graphs against 3D-graphs. Unfortunately, privileged information such as 3D
coordinates is often expensive to obtain. Node versus graph contrastive learning has also been
investigated [32], however, this approach may encourage over-smoothing among node embeddings.

In general, the majority of works pretrain embeddings at either node-level or graph-level. Node-
level pretraining may be limited to capturing local patterns, neglecting the higher-order structural
arrangements while graph-level methods may overlook the finer details. As such, motif-based or
fragment-based pretraining is a new direction that potentially overcomes these problems [27, 48,
49]. Still, existing fragment-based methods use either suboptimal fragmentation or fragmentation
embeddings. GROVER [27] predicts fragments from node and graph embeddings, however, their
fragments are k-hop subgraphs that cannot account for chemically meaningful subgraphs with varying
sizes and structures. MICRO-Graph [48] contrastively learns subgraph embeddings versus graph
embeddings; however, these embeddings may not effectively capture global patterns. MGSSL [49]
utilizes graph topology via depth-first search or breadth-first search to guide the fragment-based
generation of molecules; however, their multi-step fragmentation may overly decompose molecules,
thereby losing the ability to represent higher-order structural patterns.

In this paper, we propose GraphFP, a novel fragment-level contrastive pretraining framework that
captures both granular patterns and higher-order connectivity. For each molecule, we obtain two
representations, a molecular graph and a fragment graph, each of which is processed by a separate
GNN. The molecular GNN learns node embeddings that capture local patterns while the fragment
GNN learns fragment embeddings that encode global connectivity. The GNNs are jointly trained
via a contrastive task that enforces consistency between the fragment embedding and the aggregated
embedding of the corresponding atoms from the molecular graphs. Unlike previous work, we pretrain
the fragment-based aggregation of nodes instead of individual nodes. With the fragment embeddings
encoding the global patterns, contrasting them with the aggregation of node embeddings reduces the
risk of over-smoothing and allows flexibility in learning the appropriate node latent space. Since
aggregation of nodes in this context can also be considered a kind of fragment representation, our
framework essentially contrasts views of fragments, each of which captures structural information at
a different scale. Moreover, as the molecular graphs and the fragment graphs are chemically faithful,
our framework requires no privileged information or augmentation.

Exploiting the prepared fragment graphs, we further introduce two predictive pretraining tasks. Given
a molecular graph as input, the molecular GNN is trained to predict structure-related labels extracted
from the corresponding fragment graph. These tasks enhance the structural understanding of the
molecular GNN and can be conducted together with contrastive pretraining.

To generate a vocabulary of molecular fragments, we utilize Principal Subgraph Mining [20] to
extract optimized prevalent fragments that span the pretraining dataset. Compared to fragmentations
used in previous works, this approach can produce a concise and diverse vocabulary of fragments,
each of which is sufficiently frequent without sacrificing fragment size.

We evaluate GraphFP on benchmark chemical datasets and long-range biological datasets. Inter-
estingly, both the molecular and the fragment GNNs can be used in downstream tasks, providing
enriched signals for prediction. Empirical results and analysis show the effectiveness of our proposed
methods. In particular, our pretraining strategies obtain the best results on 5 out of 8 common chemical
benchmarks and improve performances by 11.5% and 14% on long-range biological datasets.

2 Related Works

2.1 Representation Learning on Molecules

Representation learning on molecules has made use of fixed hand-crafted representations such as
descriptors and fingerprints [30, 43], string-based representations such as SMILES and InChI [22, 28],
and molecular images [47]. Currently, state-of-the-art methods rely on representing molecules as
graphs and couple them with modern graph-based learning algorithms like GNNs [11]. Depending
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on the type of compounds (small molecules, proteins, crystals), different graph representations
can be constructed [11, 39, 44]. Compared to graph-based representation, molecular descriptors
and fingerprints cannot encode structural information effectively while string-based representations
require an additional layer of syntax which may significantly complicate the learning problem.

2.2 Graph Neural Networks

Given a graph G = (V,E) with node attributes xv for v ∈ V and edge attributes euv for (u, v) ∈ E,
GNNs learn graph embedding hG and node embedding hv. At each iteration, a node updates
its embedding by gathering information from its neighborhood, including both the neighboring
nodes and the associated edges. This process often involves an aggregating function Mk and an
updating function Uk [11]. After the k-th iteration (layer), the embedding of node v is, h(k)

v =

Uk(h
(k−1)
v ,Mk({(h(k−1)

v , h
(k−1)
u , euv)|u ∈ N(v)})), where N(v) is the set of neighbors of v and

h
(0)
v = xv . The aggregating function Mk pools the information from v’s neighbors into an aggregated

message. Next, the updating function Uk updates the embedding of v based on its previous embedding
h
(k−1)
v and the aggregated message. An additional readout function R combines the final node

embeddings into a graph embedding hG = R({h(K)
v |v ∈ V }), where K is the number of iterations

(layers). Since there is usually no ordering among the nodes in a graph, the readout function R
is often chosen to be order-invariant [41]. Following this framework, a variety of GNNs has been
proposed [12, 34, 41], some specifically for molecular graphs [9, 29].

2.3 Pretraining on Graph Neural Networks

To alleviate the generalization problem of graph-based learning in the chemical domain, graph
pretraining has been actively explored [15, 23, 26, 31, 32, 35, 45, 46] in order to take advantage of
large databases of unlabeled molecules [10].

In terms of the pretraining paradigm, existing methods can be categorized into being predictive
[15, 27, 37], contrastive [23, 26, 31, 35, 45, 46], or generative [16, 49]. Predictive methods often
require moderate to large labeled datasets for pretraining. In the case of an unlabeled large dataset,
chemically or topologically generic labels can be generated. Despite the simple setup, predictive
methods are prone to negative transfer [15]. On the other hand, contrastive methods aim to learn a
robust embedding space by using diverse molecular views [23, 31, 35, 45, 46]. Generative methods
intend to learn the distribution of the components constituting molecular graphs [16, 49].

At the pretraining level, methods can be sorted into node-level [16, 27], graph-level [15, 23, 26, 31,
35, 45, 46], and more recently motif-level [27, 48, 49]. Node-level methods only learn chemical
semantic patterns at the lowest granularity, limiting their ability to capture higher-order molecular
arrangements, while graph-level methods may miss the granular details. Motif-based or fragment-
based pretraining has emerged as a possible solution to these problems [27, 48, 49]; however, existing
methods use suboptimal fragmentation or suboptimal fragment embeddings. In this work, we learn
fragment embeddings that effectively capture both local and global topology. We exploit the fragment
information at every step of the framework, from pretraining to finetuning.

3 Methods

In this section, we introduce the technical details of our pretraining framework GraphFP. We begin
with discussing molecular fragmentation and fragment graph construction based on an extracted
vocabulary. Then, we describe our fragment-based pretraining strategies, including one contrastive
task and two predictive tasks. Finally, we explain our approach for combining pretraining strategies
and the pretrained molecular-based and fragment-based GNNs for downstream predictions.

3.1 Molecule Fragmentation

Graph fragmentation plays a fundamental role in the quality of the learning models because it dictates
the global connectivity patterns. Existing methods rely on variations of rule-based procedures such
as BRICS [4] or RECAP [21]. Though chemistry-inspired, the extracted vocabulary is often large,
to the order of the size of the pretraining dataset, and contains unique or low-frequency fragments,
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Figure 1: Fragment-based contrastive pretraining framework. GNNM processes molecular graphs
while GNNF processes fragment graphs. The fragment-based pooling function FRAGPOOL ag-
gregates node embeddings into a combined embedding that forms a positive contrastive pair with
the corresponding fragment embedding. Notice that the two -OH groups, blue and light pink, are
considered distinct. Therefore, the aggregated node embedding corresponding to the blue fragment
and the embedding of the light pink fragment form a negative pair.

posing a significant challenge for pattern recognition. To overcome these drawbacks, some works
further break down fragments [49], even to the level of rings and bonds [18]. However, reducing the
sizes of fragments forfeits their ability to capture higher-order arrangements.

3.1.1 Principal Subgraph Extraction

In this work, we borrow the Principal Subgraph Mining algorithm from [20] to alleviate the above-
mentioned problems. Given a graph G = (V,E), a subgraph of G is defined as S = (Ṽ , Ẽ), where
Ṽ ⊆ V and Ẽ ⊆ E. In a vocabulary of subgraphs, S is a principal subgraph if ∀S′ intersecting with
S in any molecule, either S′ ⊆ S or c(S′) ≤ c(S) where c(·) counts the occurrences of a fragment
among molecules. Intuitively, principal subgraphs are fragments with both larger sizes and more
frequent occurrences. The algorithm heuristically constructs a vocabulary of such principal subgraphs
via a few steps:

Initialize: Initialize the vocabulary with unique atoms.

Merge: For each molecular graph, for all pairs of overlapping fragments in the graph, merge the
fragment in the pair and update the occurrences of the resulting combined fragment.

Update: Update the vocabulary with the merged fragment with the highest occurrence. Repeat the
last two steps until reaching the predefined vocabulary size.

For a more detailed description, we refer readers to [20]. We investigate the effect of vocabulary sizes
on the performance of pretrained models in Section 4.4 and Appendix C. Similarly, we investigate
the effect of fragmentation strategies in Section 4.2.

3.1.2 Fragment-graph Construction

Given an extracted vocabulary of principal fragments, for each molecular graph, we construct a
corresponding fragment graph. Let F = {S(0), S(1), ..., S(m)} be the fragmentation of a molecular
graph GM = (VM , EM ), where S(i) = (Ṽ (i), Ẽ(i)) is a fragment subgraph, Ṽ (i) ∩ Ṽ (j) = ∅,
and ∪m

i=1Ṽ
(i) = VM . We denote the fragment graph as GF = (VF , EF ), where |VF | = |F |

and each node v
(i)
F ∈ VF corresponds to a fragment S(i). An edge exists between two fragment

nodes of GF if there exists at least a bond interconnecting atoms from the fragments. Formally,
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EF = {(i, j)|∃u, v, u ∈ Ṽ (i), v ∈ Ṽ (j), (u, v) ∈ E}. For simplicity, in this work, we withhold
edge features in the fragment graph. As a result, a fragment graph purely represents the higher-
order connectivity between the large components within a molecule. Fragment node features are
embeddings from an optimizable lookup table. Vocabulary and fragment graphs statistics are provided
in Appendix C.

3.2 Fragment-based Contrastive Pretraining

Figure 1 illustrates our contrastive framework. We define two separate encoders, GNNM and GNNF .
GNNM processes molecular graphs and produces node embeddings while GNNF processes fragment
graphs and produces fragment embeddings. Since GNNs can capture structural information, the node
embeddings encode local connectivity of neighborhoods surrounding atoms. Similarly, the fragment
embeddings encode global connectivity and positions of fragments within the global context.

We apply contrastive pretraining at the fragment level. Contrastive pretraining learns robust latent
spaces by mapping similar views closer to each other in the embedding space while separating
dissimilar views. Learning instances are processed in pairs, in which similar views form the positive
pairs while dissimilar views form the negative pairs. In this case, a positive pair consists of a fragment
from a fragment graph and the collection of atoms constituting this fragment from the corresponding
molecular graph. On the other hand, a fragment and any collection of atom nodes constituting a
different fragment instance form a negative pair. Notice that different occurrences of the same type of
fragment in the same or different molecules are considered distinct instances because when structural
contexts are taken into account, the embeddings of these instances are dissimilar. The -OH groups in
Figure 1 illustrate one such case.

To obtain the collective embedding of atom nodes corresponding to a fragment, we define a function
FRAGPOOL(·) that combines node embeddings. Contrasting the combined embedding of nodes
against the fragment embedding allows flexibility within the latent representations of individual
nodes. Intuitively, the learning task enforces consistency between fragment embeddings and collective
node embeddings, incorporating higher-order connectivity information. Through the learning process,
the information is optimally distributed among the nodes so that each node only holds a part of this
collective knowledge. Arguably, such setup is semantically reasonable because nodes and fragments
represent different orders of connectivity. A node does not necessarily hold the same structural
information as the corresponding fragment. Instead, it is sufficient for a group of nodes to collectively
represent such higher-order information. Essentially, the fragment embeddings and the collective
embeddings of atom nodes can be considered different views of molecular fragments.

Extending the notations in 3.1.2, given a pretraining dataset of molecular graphs DM =

{G(1)
M , G

(2)
M , ..., G

(N)
M }, we obtain a set of fragmentations F = {F (1), F (2), ..., F (N)} and a set

of corresponding fragment graphs DF = {G(1)
F , G

(2)
F , ..., G

(N)
F }, with G

(i)
M = (V

(i)
M , E

(i)
M ) and

G
(i)
F = (V

(i)
F , E

(i)
F ). More specifically, V

(i)
M is the set of atom nodes in the molecular graph

G
(i)
M and V

(i)
F is the set of fragment nodes in the fragment graph G

(i)
F . For the i-th molecule, let

H
(i)
M ∈ R|V (i)

M |×d and H
(i)
F ∈ R|V (i)

F |×d be the final node embeddings and fragment embeddings after
applying GNNM and GNNF , respectively, i.e:

H
(i)
M = GNNM (V

(i)
M , E

(i)
M ) (1)

H
(i)
F = GNNF (V

(i)
F , E

(i)
F ) (2)

We further compute the fragment-based aggregation of node embeddings:

H
(i)
A = FRAGPOOL(H

(i)
M , F (i)), (3)

where H
(i)
A ∈ R|V (i)

F |×d has the same dimensions as those of H(i)
F . The r-th rows, h(i)

A,r ∈ H
(i)
A and

h
(i)
F,r ∈ H

(i)
F , from both matrices are embeddings of the same fragment from the original molecule.

In our contrastive framework, h(i)
F,r is the positive example for the anchor h(i)

A,r. The negative learning
examples are sampled from:

X−
i,r = {H(j)

F,q)|j ̸= i ∨ q ̸= r} (4)
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Figure 2: Fragment-based predictive pretraining. GNNM processes molecular graphs and produces
graph-level embeddings used for prediction. The right upper box shows unique fragments that exist
in the input molecule while the right lower box shows the ground-truth structural backbone. A few
other backbones are also visualized for comparison.

We minimize the contrastive learning objective based on the InfoNCE loss [25]:

LC = −Ei,r

 exp(⟨h(i)
A,r , h

(i)
F,r⟩)

exp(⟨h(i)
A,r , h

(i)
F,r⟩) +

∑
h−∼X−

i,r
exp(⟨h(i)

A,r , h
−⟩)

 (5)

3.3 Fragment-based Predictive Pretraining

We further define two predictive pretraining tasks of which labels are extracted from the properties
and the topologies of the fragment graphs. Only the molecular GNN is pretrained in this case. The
labels provided by the fragment graphs guide the graph-based pretraining of the molecular GNNs,
encouraging the model to learn higher-order structural information.

Fragment Existence Prediction A multi-label prediction task that outputs a vocabulary-size
binary vector indicating which fragments exist in the molecular graph. Thanks to the optimized
fragmentation procedure [20] that we use, the output dimension is compact without extremely rare
classes or fragments, resulting in more robust learning.

Fragment Graph Structure Prediction We predict the structural backbones of fragment graphs.
The number of classes is the number of unique structural backbones. Essentially, a backbone is a
fragment graph with no node or edge attributes. Graphs share the same backbone if their fragments
are arranged similarly. For example, fragment graphs in which three fragments connect in a line
correspond to the same structural backbone, a line graph with three nodes. This task also benefits
from the optimized fragmentation. As the extracted fragments are sufficiently large, the fragment
graphs are small enough that the enumeration of all unique backbones is feasible.

The predictive tasks pretrain the graph embedding hG. In particular, one task injects local community
information of fragments while the other task injects the arrangements of fragments into hG. We
train both tasks together, optimizing the objective LP = LP1

+ LP1
, where LP1

and LP2
are the

predictive objective of each task. The predictive tasks are illustrated in Figure 2.

We can combine the predictive pretraining with the contrastive pretraining presented in Section 3.2.
We found parallel pretraining more effective than the sequential pretraining described in [15]. With α
being the weight hyperparameter, the joint pretraining objective is then:

L = αLP + (1− α)LC (6)

3.4 Combining Models based on Fragment Graphs and Molecule Graphs

We further propose to utilize both the molecule encoder GNNM and the fragment encoder GNNF

for downstream prediction. Following the procedure described in Section 3.1, we can easily fragment
and extract molecular graph and fragment graph representations from any unseen molecule. Such
convenience is not always the case. For example, existing works that contrast 2D and 3D molecular
graphs [23, 31] can only finetune the 2D encoder since 3D information is expensive to obtain for
unseen molecules. Other works that rely on graph augmentation [35, 45, 46] cannot utilize the
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augmented views as signals for downstream prediction since they are not faithful representations of
the original molecule. In contrast, the representations extracted by our framework are faithful views
that do not require expensive information other than the vanilla molecular structure.

Let hM and hF be the graph embeddings produced by GNNM and GNNF , respectively. We obtain
the downstream prediction by applying a fully-connected layer on the concatenation of hM and hF .

4 Experiments

4.1 Experimental Settings

We pretrain GNNs according to the process discussed in section 3. The pretrained models are
evaluated on various chemical benchmarks.

Datasets We use a processed subset containing 456K molecules from the ChEMBL database [24]
for pretraining. A fragment vocabulary of size 800 is extracted as described in Section 3.1.1. To ensure
possible fragmentation of unseen molecules, we further complete the vocabulary with atoms not
existing in the pretraining set, totaling 908 unique fragments. For downstream evaluation, we consider
8 binary graph classification tasks from MoleculeNet [36] with scaffold split [15]. Moreover, to
assess the ability of the models in recognizing global arrangement, we consider two graph prediction
tasks on large peptide molecules from the Long-range Graph Benchmark [7]. Long-range graph
benchmarks are split using stratified random split. More information regarding datasets is provided
in Appendix B.

Models For graph classification benchmarks, we model our molecular encoders GNNM with the
5-layer Graph Isomorphism Network (GIN) [41] as in previous works [15, 23], using the same
featurization. Similarly, we model the fragment encoder GNNF with a shallower 2-layer GIN since
fragment graphs are notably smaller. For long-range benchmarks, both GNNM and GNNF are GIN
with 5 layers, with the featurization of molecular graphs based on the Open Graph Benchmark [14].
All encoders have hidden dimensions of size 300. For more details, please refer to Appendix A.

Pretraining and Finetuning All pretrainings are done in 100 epochs, with AdamW optimizer,
batch size 256, and initial learning rate 1× 10−3. We reduce the learning rate by a factor of 0.1 every
5 epochs without improvement. We use the models at the last pretraining epoch for finetuning. On
graph classification benchmarks, to ensure comparability, our finetuning setting is mostly similar to
that of previous works [15, 23]: 100 epochs, Adam optimizer, batch size 256, initial learning rate
1 × 10−3, and dropout rate chosen from {0.0, 0.5}. We reduce the learning rate by a factor of 0.3
every 30 epochs. On long-range benchmarks, the setting is similar except that we finetune for 200
epochs and factor the learning rate by 0.5 every 20 epochs without improvement. We find that using
averaging as FRAGPOOL(·) works well. All experiments are run on individual Tesla V 100 GPUs.

Baselines We compare to several notable pretraining baselines, including predictive methods
(AttrMask & ContextPred [15], G-Motif & G-Contextual (GROVER) [27]), generative method (GPT-
GNN [16]), contrastive methods (GraphLoG [42], GraphCL [46], JOAO, JOAOvs [45]), contrastive
method with privileged knowledge (GraphMVP [23]), and fragment-based method (MGSSL [49]).
For long-range prediction, we compare our method with popular GNN architectures: GCN [19],
GCNII [2], GIN [41], and GatedGCN [1] with and without Random Walk Spatial Encoding [6].

Our goal is to benchmark the quality of our proposed pretraining methods with existing work. The
settings in our experiments are chosen to fulfill this objective. In general, our settings follow closely
those from previous works to ensure comparability. Specifically, we use the same embedding model
(5-layer GIN), featurization, and overall similar hyperparameters and amount of pretraining data as
those in the baselines [15, 23, 42, 45, 46, 49]. We limit the amount of hyperparameter tuning for
the same reason. In general, self-supervised learning and property prediction on molecular graphs
are important research topics and a wide variety of methods have been proposed in terms of both
the pretraining task and the learning model, resulting in impressive results [8, 50, 51]. Some of
these performances stem from deeper neural network design, extensive featurization, and large-scale
pretraining. Pretraining at the scale of [8, 51] requires hundreds of GBs or even a TB of memory.
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Table 1: Test ROC-AUC on binary molecular property prediction benchmarks using different pre-
training strategies in GraphFP. The top-3 performances on each dataset are shown in red color, with
red being the best result, red being the second best result, and red being the third best result. The 2
rightmost column shows the average performance ranking (lower value means better ranking) and the
average AUC. The last 5 rows show the performances of our methods, with C, P , and F indicate
contrastive pretraining, predictive pretraining, and inclusion of fragment encoders in downstream
prediction, respectively.

Pretraining Strategies BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg. Rank Avg. AUC

AttrMasking [15] 64.3 ± 2.8 76.7 ± 0.4 64.2 ± 0.5 61.0 ± 0.7 71.8 ± 4.1 74.7 ± 1.4 77.2 ± 1.1 79.3 ± 1.6 7.88 71.15
ContextPred [15] 68.0 ± 2.0 75.7 ± 0.7 63.9 ± 0.6 60.9 ± 0.6 65.9 ± 3.8 75.8 ± 1.7 77.3 ± 1.0 79.6 ± 1.2 7.56 70.89
G-Motif [27] 66.9 ± 3.1 73.6 ± 0.7 62.3 ± 0.6 61.0 ± 1.5 77.7 ± 2.7 73.0 ± 1.8 73.8 ± 1.2 73.0 ± 3.3 14.25 70.16
G-Contextual [27] 69.9 ± 2.1 75.0 ± 0.6 62.8 ± 0.7 58.7 ± 1.0 60.6 ± 5.2 72.1 ± 0.7 76.3 ± 1.5 79.3 ± 1.1 11.88 69.34
GPT-GNN [16] 64.5 ± 1.4 74.9 ± 0.3 62.5 ± 0.4 58.1 ± 0.3 58.3 ± 5.2 75.9 ± 2.3 65.2 ± 2.1 77.9 ± 3.2 13.63 67.16
GraphLoG [42] 67.8 ± 1.9 75.1 ± 1.0 62.4 ± 0.2 59.5 ± 1.5 65.3 ± 3.2 73.6 ± 1.2 73.7 ± 0.9 80.2 ± 3.5 12.56 69.70
GraphCL [46] 69.7 ± 0.7 73.9 ± 0.7 62.4 ± 0.6 60.5 ± 0.9 76.0 ± 2.7 69.8 ± 2.7 78.5 ± 1.2 75.4 ± 1.4 12.13 70.78
JOAO [45] 70.2 ± 1.0 75.0 ± 0.3 62.9 ± 0.5 60.0 ± 0.8 81.3 ± 2.5 71.7 ± 1.4 76.7 ± 1.2 77.3 ± 0.5 9.56 71.89
JOAOv2 [45] 71.4 ± 0.9 74.3 ± 0.6 63.2 ± 0.5 60.5 ± 0.7 81.0 ± 1.6 73.7 ± 1.0 77.5 ± 1.2 75.5 ± 1.3 8.94 72.14
GraphMVP [23] 68.5 ± 0.2 74.5 ± 0.4 62.7 ± 0.1 62.3 ± 1.6 79.0 ± 2.5 75.0 ± 1.4 74.8 ± 1.4 76.8 ± 1.1 10.00 71.70
MGSSL [49] 68.9 ± 2.5 74.9 ± 0.6 63.3 ± 0.5 57.7 ± 0.7 67.5 ± 5.5 73.2 ± 1.9 75.7 ± 1.3 82.1 ± 2.7 10.94 70.41
GraphFP-JTC 71.5 ± 0.9 75.2 ± 0.5 63.6 ± 0.5 62.0 ± 1.0 77.7 ± 4.5 76.0 ± 2.2 75.6 ± 1.0 79.7 ± 1.3 6.13 72.66
GraphFP-JTCF 70.2 ± 1.7 72.7 ± 0.8 62.5 ± 0.9 59.3 ± 1.3 75.9 ± 5.6 73.9 ± 1.3 73.0 ± 1.9 74.2 ± 2.8 13.56 70.21

GraphFPC 71.5 ± 1.6 75.5 ± 0.4 63.8 ± 0.6 61.4 ± 0.9 78.6 ± 2.7 77.2 ± 1.5 76.3 ± 1.0 78.2 ± 3.4 5.50 72.81
GraphFPP 68.2 ± 1.2 76.0 ± 0.5 63.2 ± 0.7 59.3 ± 1.0 53.8 ± 3.8 74.5 ± 2.1 76.7 ± 1.0 80.7 ± 4.8 9.50 69.05
GraphFPCP 71.3 ± 1.7 75.5 ± 0.5 64.7 ± 0.2 61.3 ± 0.6 73.7 ± 3.9 76.6 ± 1.8 76.3 ± 1.0 81.3 ± 2.2 5.19 72.59
GraphFPCF 70.1 ± 1.8 74.3 ± 0.3 65.3 ± 0.8 64.7 ± 1.0 87.7 ± 5.8 74.5 ± 1.8 76.1 ± 2.0 77.1 ± 2.1 7.25 73.73
GraphFPCPF 72.0 ± 1.7 74.0 ± 0.7 63.9 ± 0.9 63.6 ± 1.2 84.7 ± 5.8 75.4 ± 1.9 78.0 ± 1.5 80.5 ± 1.8 4.56 74.01

Due to limited resources, we leave the evaluation of GraphFP and other baselines when pretrained on
such larger datasets for future work.

4.2 Results on Graph Classification Benchmarks

Table 1 reports our results on chemical graph classification benchmarks. For each dataset, we report
the mean and error from 10 independent runs with predefined seeds. Except for GraphLoG [42]
and MGSSL [49], the results of other baselines are collected from the literature [15, 23, 37, 45, 46].
To ensure a comprehensive evaluation, we conduct experiments with all possible combinations of
the proposed strategies, which include contrastive pretraining (denoted as C), predictive pretraining
(denoted as P ), and inclusion of fragment encoders in downstream prediction (denoted as F ).
Because F requires C, all possible combinations of these components are {C,P,CP,CF,CPF},
with the corresponding pretrained models GraphFPC , GraphFPP , GraphFPCP , GraphFPCF , and
GraphFPCPF . For GraphFPCP , we choose α = 0.3 and for GraphFPCPF , we choose α = 0.1. The
choices of α are reported in Appendix A. We also compare to GraphFP-JTC and GraphFP-JTCF ,
which are variations of our models pretrained with the fragmentation from [18]. The fragments used
by [18] are generally smaller, resulting in larger fragment graphs. We found 5-layer GIN models
encode these larger graphs better. Our models are competitive in all benchmarks, obtaining the best
performance in 5 out of 8 downstream datasets. We report the average ranking and the average AUC
of the models. As reported in Table 1, the GNNs with our proposed fragment-based pretraining and
finetuning strategies achieve the best average rankings and average AUCs across baselines. Moreover,
adding the strategies successively, i.e. C, CP , and CPF , improves the average downstream rankings,
confirming the individual effectiveness of each strategy in supporting the learning on molecular
graphs. We attribute the remarkable performances of our methods to the capability of the pretrained
embeddings and the fragment graph encoder in capturing higher-order structural patterns. For instance,
the BBBP benchmark requires predicting blood-brain barrier permeability, where the molecular shape,
size, and interaction with the transporting proteins play significant roles in determining the outcome.
Capturing such information necessitates a deep understanding of the global molecular structure,
which is the goal of our pretraining strategies.

4.3 Results on Long-range Chemical Benchmarks

In Table 2, we compare fragment-based pretraining and finetuning of GraphFP with GNN baselines
on two long-range benchmarks: PEPTIDE-FUNC containing 10 classification tasks regarding peptide
functions and PEPTIDE-STRUCT containing five regression tasks regarding 3D structural information
[7]. Because fragment graphs of peptides are extremely large for effective extraction of structural
backbones, we exclude predictive pretraining in this experiment. On both benchmarks, the results
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Table 2: Performances on PEPTIDE-FUNC (graph classification) and PEPTIDE-STRUCT (graph re-
gression). These tasks require capturing long-range interactions within large peptide molecules. Best
performances are colored red.

Methods Peptide-func Peptide-struct
Test AP Test MAE

GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GCNII 0.5543 ± 0.0078 0.3471 ± 0.0010

GIN 0.5498 ± 0.0079 0.3547 ± 0.0045
GatedGCN 0.5864 ± 0.0077 0.3420 ± 0.0013

GatedGCN+RWSE 0.6069 ± 0.0035 0.3357 ± 0.0006

GraphFPCF 0.6267 ± 0.0073 0.3137 ± 0.0019

Table 3: Effects on varying the size of the vocabulary

Models Fragmentation ROC-AUC

Avg Frag Size Avg Frag Graph Size SIDER ClinTox HIV

GraphFP800 2.40 4.61 61.4 ± 0.9 78.6 ± 2.7 76.3 ± 1.0
GraphFP1600 2.47 4.15 60.4 ± 0.5 76.4 ± 4.6 75.3 ± 1.6
GraphFP3200 2.53 3.73 60.6 ± 0.5 75.5 ± 5.9 75.1 ± 1.3

show that the proposed method outperforms other GNN baselines, including GatedGCN+RWSE with
positional encoding. In particular, our pretrained model GraphFPCF obtains about 14% improvement
on PEPTIDE-FUNC and 11.5% improvement on PEPTIDE-STRUCT compared to vanilla GIN. As
the tasks require recognizing long-range structural information, these improvements indicate the
effectiveness of our strategies in capturing the global arrangement of molecular graph components.

4.4 Analysis

Pretraining with Various GNN Architectures In Table 4, we report the performances of some
other GNN architectures besides GIN. The pretraining and finetuning conditions are similar to
those described in Section 4.1 and Table 6. All architectures share the same input features, hidden
dimensions, and the number of layers. On average, GIN, being the most expressive GNN among the
ones shown, performs the best. This observation agrees with the conclusions from previous works
[15, 41].

Figure 3: (left) t-SNE plot showing the embeddings of a common fragment. Each color corresponds
to a structural backbone. (right) t-SNE plot showing the embeddings of atoms in a molecule with
colors distinguishing fragment membership. Round markers indicate atom embeddings while square
markers indicate fragment-based pooling of atom embeddings.
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Table 4: Downstream performances with models pretrained with various GNN architectures.

Architectures BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg. Rank

GIN 71.3 ± 0.8 75.8 ± 0.3 63.9 ± 0.4 61.3 ± 0.4 63.2 ± 1.0 76.2 ± 2.0 76.1 ± 1.4 82.5 ± 1.9 1.88
GCN 70.5 ± 1.2 74.3 ± 0.3 63.3 ± 0.5 61.5 ± 0.8 78.1 ± 5.8 77.8 ± 1.8 74.6 ± 0.9 76.2 ± 2.1 2.13
GraphSage 72.3 ± 1.5 74.5 ± 0.6 62.8 ± 0.3 61.2 ± 0.8 69.6 ± 3.1 77.3 ± 1.3 77.1 ± 1.1 78.0 ± 3.6 2.00

Effects on Varying the Size of the Vocabulary The size of the fragment vocabulary likely
influences the quality of pretraining and finetuning since it dictates the resolution of fragment graphs.
To investigate such effects, we prepare two additional vocabularies with size 1, 600 and size 3, 200.
We repeat the same contrastive pretraining as in Section 4.1 using the new vocabularies. As the
vocabulary size increases, more unique and larger fragments are discovered, increasing the average
fragment size and reducing the average fragment graph size. Table 10 shows that the performances
worsen on some downstream benchmarks as the vocabulary size grows larger. We conjecture a few
possible reasons. Firstly, a larger vocabulary means more parameters to optimize. Second, smaller
fragment graphs represent an excessively loose view of the graph, resulting in a loss of structural
information. In general, vocabulary size is an important hyperparameter that greatly affects the
quality of self-supervised learning. In [20], the authors gave a discussion on selecting an optimal
vocabulary size according to the entropy-sparsity trade-off.

Visualizing the Learned Embeddings As shown in Figure 3, we visualize the learned embeddings
via t-SNE [33]. The left plot illustrates the embeddings produced by the pretrained fragment encoder
GNNF of a common fragment. Each dot corresponds to a molecule in which the fragment appears.
The color of a dot indicates the structural backbone of the molecule it represents. For visibility, we
only show the most common backbones. The embeddings are reasonably separated according to
the structural backbones, indicating that the fragment embeddings capture higher-order structural
information. Notice that the fragment encoder GNNF is not directly trained to recognize structural
backbones. The right plot shows the embeddings produced by the molecule encoder GNNM of
atoms within a molecule. The embeddings of atoms within the same fragment are clustered together.
Interestingly, some clusters, shown in green, purple, and black, are arranged similarly to how they
appear in the original molecule. This observation confirms that the collective embedding of nodes
can capture higher-order connectivity.

5 Conclusions and Future Work

In this paper, we proposed contrastive and predictive learning strategies for pretraining GNNs based on
graph fragmentation. Using an optimized fragment vocabulary, we pretrain two separate encoders for
molecular graphs and fragment graphs, thus capturing structural information at different resolutions.
When benchmarked on chemical and long-range peptide datasets, our method achieves competitive
or better results compared to existing methods. Moving forward, we plan to further improve the
pretraining via larger datasets, more extensive featurizations, better fragmentations, and more optimal
representations. We also plan to extend the fragment-based techniques to other learning problems,
including novel molecule generation and interpretability.
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A Experimental Settings

A.1 Graph Isomorphism Network

Given a graph G = (V,E) with node attributes xv for v ∈ V and edge attributes euv for (u, v) ∈ E,
after the k-th layer of the GNN, the embedding of node v is updated as:

h(k)
v = Uk(h

(k−1)
v ,Mk({(h(k−1)

v , h(k−1)
u , euv)|u ∈ N(v)})), (7)

where N(v) is the set of neighbors of v and h
(0)
v = xv . The graph embedding hG is obtained via:

hG = R({h(K)
v |v ∈ V }), (8)

where K is the number of layers and R is the readout function. The overall graph embedding hG

is used for graph-level prediction, as in Section 4.1. In our work as well as some previous works,
Graph Isomorphism Network (GIN) with edge encoding [15, 23, 42] is often used as the underlying
architectures of learning models. In particular:

h(k)
v = ReLU

MLP(k)

 ∑
u∈N(v)∪{v}

h(k−1)
v +

∑
e∈{(u,v)|v∈N(v)∪{v}}

h(k−1)
e

 , (9)

where h
(k)
e is the learnable edge embedding at the k-th layer. The mean readout is used to obtain the

graph embedding:
hG = MEAN({h(K)

v |v ∈ V }) (10)

A.2 Model and Training Configurations

The configurations of GNNM and GNNF are provided in Table 5. The pretraining and finetuning
setups are provided in Table 6. In general, our parameters are comparable to those of previous works
with which we compare [15, 23, 42]. Note that the number of node features and edge features is
much fewer than that in [8, 50, 51]. On downstream tasks, we only finetune the dropout rate, selected
from {0.0, 0.5}.

Table 5: Model Configuration

Methods Parameters Values

GNNM

Convolution type GIN
Number of atom features 2
Number of atom features for long-range benchmarks 9
Number of edge features 2
Number of edge features for long-range benchmarks 3
Dimension of hidden embeddings 300
Aggregation SUM
Number of layers 5
Readout MEAN

GNNF

Convolution type GIN
Number of fragment features 1
Dimension of hidden embeddings 300
Aggregation SUM
Number of layers 2
Number of layers for long-range benchmarks 5
Readout MEAN

A.3 Combination of Predictive and Contrastive Pretraining

We combine the contrastive pretraining and predictive pretraining proposed in Section 3 by optimizing
the joint objective function:

L = αLP + (1− α)LC , (11)
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Table 6: Training Configuration

Phases Hyperparameters Values

Pretraining

Number of epochs 100
Batch size 256
Optimizer AdamW
Weight decay 0.01
Learning rate 0.001
Learning rate decay Reduce on plateau
Learning rate decay factor 0.1
Learning rate decay patience 5 epochs

Finetuning, chemical

Number of epochs 100
Batch size 256
Dropout {0.0,0.5}
Optimizer Adam
Weight decay 0.0
Learning rate 0.001
Learning rate decay Step decay
Number of steps before decay 30
Learning rate decay 0.3

Finetuning, long-range

Number of epochs 100
Batch size 128
Dropout {0.0,0.5}
Optimizer Adam
Weight decay 0.0
Learning rate 0.001
Learning rate decay Reduce on plateau
Learning rate decay factor 0.5
Learning rate decay patience 20 epochs

where LP is the predictive objective, LC is the contrastive objective, and α is the weight hyperparam-
eter. We select α from {0.1, 0.2, 0.3, 0.4, 0.5}, using finetuning results as the performance indicator.
Table 7 shows the performances using models trained with different values of α.

Table 7: Downstream performances with models pretrained using different values of the weight
hyperparameter α. Subscripts C, P , and F indicate contrastive pretraining, predictive pretraining,
and inclusion of fragment encoders in downstream prediction, respectively. Best results for either CP
or CPF models are shown in red. The rightmost column shows the average performance ranking for
either CP or CPF models (lower value means better ranking).

Models BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg. Rank

CP, α = 0.1 71.3 ± 0.8 75.8 ± 0.3 63.9 ± 0.4 61.3 ± 0.4 63.2 ± 1.0 76.2 ± 2.0 76.1 ± 1.4 82.5 ± 1.9 2.88
CP, α = 0.2 70.8 ± 1.9 75.3 ± 0.3 64.1 ± 0.3 62.1 ± 0.5 64.7 ± 7.9 76.5 ± 1.2 76.0 ± 1.1 83.2 ± 1.4 2.63
CP, α = 0.3 71.3 ± 1.7 75.5 ± 0.5 64.7 ± 0.2 61.3 ± 0.6 73.7 ± 3.9 76.6 ± 1.8 76.3 ± 1.0 81.3 ± 2.2 2.13
CP, α = 0.4 70.1 ± 2.3 76.1 ± 0.4 64.0 ± 0.3 61.2 ± 0.6 60.1 ± 6.7 75.6 ± 2.0 75.7 ± 1.0 82.1 ± 2.2 3.81
CP, α = 0.5 70.6 ± 1.1 76.1 ± 0.3 64.6 ± 0.5 59.2 ± 0.9 65.7 ± 4.2 74.1 ± 2.4 75.6 ± 1.1 81.9 ± 1.3 3.56

CPF, α = 0.1 72.0 ± 1.7 74.0 ± 0.7 63.9 ± 0.9 63.6 ± 1.2 84.7 ± 8.8 75.4 ± 1.9 78.0 ± 1.5 80.5 ± 1.8 1.63
CPF, α = 0.2 69.4 ± 1.3 73.7 ± 0.8 64.5 ± 0.4 63.3 ± 0.9 76.9 ± 3.2 73.0 ± 4.2 77.6 ± 1.3 79.9 ± 1.0 4.06
CPF, α = 0.3 70.0 ± 1.6 73.9 ± 0.5 65.0 ± 0.5 62.6 ± 0.9 83.0 ± 5.6 74.2 ± 2.7 77.6 ± 1.2 78.2 ± 1.0 3.25
CPF, α = 0.4 71.7 ± 0.9 73.3 ± 0.8 64.6 ± 0.5 63.5 ± 0.8 83.0 ± 6.9 73.3 ± 3.0 77.7 ± 2.1 78.8 ± 2.8 3.06
CPF, α = 0.5 70.3 ± 0.9 74.2 ± 0.7 64.8 ± 0.5 62.7 ± 0.9 79.3 ± 3.1 73.4 ± 2.8 76.7 ± 1.3 80.1 ± 1.2 3.00

B Datasets

Table 8 and Table 9 show statistics regarding the benchmark datasets used to evaluate our models. In
Table 8, we list the number of learning instances and the number of binary tasks in each chemical
dataset. Out of 8 datasets, 6 are small-size and 2 are medium-size. Table 9 presents long-range
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datasets and predictive tasks on peptides. The peptide datasets have similar learning instances but
with different predictive tasks.

Table 8: Binary Chemical Benchmarks

Datasets Descriptions Number of Graphs Number of Tasks

BBBP Blood-brain barrier permeability 2039 1
Tox21 Toxicology on 12 biological targets 7831 12
ToxCast Toxicology measurements via high-throughput screening 8575 617
SIDER Adverse drug reactions of marketed medicines 1427 27
ClinTox Drugs that failed clinical trials for toxicity reasons 1478 2
MUV Validation of virual screening techniques 93087 17
HIV Ability to inhibit HIV replication 41127 1
BACE Binding results for inhibitors of human β-secretase 1 1513 1

Table 9: Long-range Peptide Benchmarks

Datasets Peptides-func Peptides-struct

Number of Graphs 15535 15535
Number of Tasks 1 5
Number of Classes 10 N/A
Task types Multi-label classification Multi-label regression
Descriptions Peptide functions: antibacterial, antiviral, etc 3D properties: length, sphericity, etc

To maintain comparability with prior works, we use different featurizations for molecules from the
binary chemical benchmarks and the long-range benchmarks. For data from Table 8, we follow the
featurization used by [15], in which there are 2 input atom features and 2 input bond features 1. For
data from Table 9, we use the standard featurization provided in Open Graph Benchmark [14], in
which there are 9 input atom features and 3 input bond features 2. The latter featurization scheme is
more up-to-date and adopted by recent works on machine learning in the chemical space [8, 50, 51].

C Vocabulary

C.1 Vocabulary Statistics

In Figure 4, we present statistics on fragments in the extracted vocabulary, molecular graphs, and
fragment graphs. Subplot c shows the distribution of fragments based on their sizes. The smallest
fragments consist of singleton atoms, while the largest one contains 21 atoms. The majority of
fragments comprise 1 to 14 atoms. Although the extracted vocabulary is precise, its fragments are
both large and highly prevalent, which is not the case for fragmentations used in previous works. In
fact, the most prevalent fragments are size-independent. As shown in subplot d, common fragments
are well distributed among all fragment sizes. This high prevalence throughout the vocabulary fosters
pattern recognition, thereby contributing to the competitive results achieved by our models. The
presence of large fragments also positively impacts the size of the fragment graphs. Subplot a and
subplot b depict the size distributions of the fragment graphs and the molecular graphs, respectively.
Relative to the molecular graphs, fragment graphs are more sparse and considerably smaller in size.
This property, combined with the optimized fragments, enables them to capture the higher-order
connectivity patterns of graph components effectively.

C.2 Vocabulary Size and Downstream Performance

The vocabulary size may influence the performance of pretrained models on downstream tasks. In
Table 10, we report this effect when varying the vocabulary size from 200 to 3, 200, doubling the size
with each step. The results suggest that in general, for each task, there is an optimal vocabulary size.
For instance, GraphFPC performs the best on ClinTox and HIV when pretrained with a vocabulary
of size 800. The optimal vocabulary size for Tox21 is 400 while the optimal size for BBBP falls

1Hu et al, ICLR 2020, Appendix C
2https://github.com/snap-stanford/ogb/blob/master/ogb/utils/features.py
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Figure 4: (a) Size distribution of fragment graphs (b) Size distribution of molecular graphs (c) Size
distribution of fragments from the extracted vocabulary (d) Blue plot shows the occurrences of
fragments in the vocabulary and purple plot shows the sizes of the fragments.

between 400 to 800. SIDER favors smaller vocabulary sizes while MUV favors larger vocabulary
sizes. Varying vocabulary sizes seem to have little impact on the performance of ToxCast. BACE
perceives the most interesting trend when the performance drops at vocabulary size 400 and rises
again when the size increases.

Table 10: Downstream performances with GINC pretrained on vocabulary of various sizes.

Vocab Size BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE

200 69.8 ± 1.5 75.6 ± 0.8 63.5 ± 0.8 61.3 ± 0.7 74.8 ± 4.3 74.9 ± 1.8 76.9 ± 1.0 79.4 ± 1.6
400 71.6 ± 1.4 75.8 ± 0.5 63.8 ± 0.4 61.3 ± 0.7 75.2 ± 6.6 75.7 ± 2.5 75.9 ± 1.0 77.5 ± 2.5
800 71.5 ± 1.6 75.5 ± 0.4 63.8 ± 0.6 61.4 ± 0.9 78.6 ± 2.7 77.2 ± 1.5 76.3 ± 1.0 78.2 ± 3.4
1600 71.1 ± 1.6 75.4 ± 0.8 63.9 ± 0.9 60.4 ± 0.5 76.4 ± 4.6 76.1 ± 2.1 75.3 ± 1.6 79.0 ± 4.3
3200 71.3 ± 0.8 75.4 ± 0.4 63.7 ± 0.6 60.6 ± 0.5 75.5 ± 5.9 77.1 ± 1.9 75.1 ± 1.3 79.4 ± 4.5

C.3 Fragment Graph Statistics

We report several statistics regarding the fragment graphs from the prepared pretraining dataset
described in Section 4.1. Table 11 lists the number of graphs for each fragment graph size. The
smallest fragment graphs are of size 1 (standalone fragment) while the largest fragment graphs are of
size 30. The majority of fragment graphs are of smaller sizes. This indicates that the fragmentation
algorithm was able to extract large and frequent fragments, resulting in small fragment graphs that
can capture higher-order connectivity.

To illustrate the connectivity within fragment graphs, for each fragment graph size, we report the
average number of edges in Table 12. To save space, we only consider fragment graphs with a
maximum size of 10. Since our molecular graphs are connected, our fragment graphs are also
connected (i.e., no disconnected island). From the above table, we can see that, given a fragment
graph with size n, the average number of edges connecting the fragments varies from around n− 1
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Table 11: Number of Fragment Graphs by Size.

Size 1 2 3 4 5 6 7 8 9 10 11 . . . 30

Num Graphs 167 8433 76024 144940 112426 52607 20999 7742 3334 1570 788 . . . 30

to n. When the fragment graphs are small, the average number of edges is closer to n− 1, indicating
that the fragment graphs are mostly tree-like. As the fragment graph size increases, more loops
appear and thus the average number of edges deviates further from n− 1.

Table 12: Average number of edges by graph size.

Size 1 2 3 4 5 6 7 8 9 10

Average Num Edges 0.00 1.00 2.02 3.07 4.17 5.33 6.51 7.74 8.88 10.11

Finally, in Table 13, with varying vocabulary sizes, we report the average fragment graph size and the
average number of edges for the whole pretraining dataset. As the vocabulary size increases, the size
of fragment graphs decreases in general since larger vocabularies contain larger fragments.

Table 13: Average graph size and average number of edges with varying vocabulary size.

Vocabulary Size 200 400 800 1600 3200

Average Graph Size 5.92 5.17 4.61 4.15 3.73
Average Num Edges 5.23 4.40 3.78 3.28 2.84
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