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ABSTRACT

Theory of Mind (ToM) is crucial for successful human-AI (HAI) interactions. It
is a key capability for AI to attribute humans’ mental states based on dynamic
interactions from a first-person perspective and then improve responses to hu-
mans accordingly. However, the existing benchmarks for Large Language Models
(LLMs) focus on testing their ToM capability with story-reading from a third-person
perspective, leading to a critical gap between benchmark performance and practical
competence in HAI collaborative and supportive tasks. To bridge this gap, we
introduce a novel evaluation framework within HAI contexts, shifting from static
test-taking to dynamic, first-person engagement. Our framework assesses LLM
performance across two fundamental types of interaction scenarios derived from
cognitive science: goal-oriented tasks (e.g., coding, math) and experience-oriented
tasks (e.g., counseling). With the framework, we systematically evaluate LLMs
and related techniques to improve their ToM across four synthesized benchmarks
and a crowdsourcing user study with 100 participants. Our findings reveal that
improvements on static benchmarks do not always translate to better performance
in dynamic HAI interactions. This paper offers critical insights into ToM evalua-
tion, highlighting the necessity of interaction-based assessments and providing a
roadmap for developing next-generation, socially aware LLMs for HAI symbiosis.

Option

Question

Story
Sally puts her marble in her basket and leaves the
room. While she is gone, Anne takes the marble
out of the basket and hides it in her own box

Where will Sally look for her marble?

A. In the basket B. In the box

Story-Question-Option paradigm
Goal-Oriented

20,40,60,80 what 
will be the eight 

number in the pattern?

Experience-
Oriented

AI Human

I am stressful for 
academic pressure. 
Can you help me?

Sure! I understand 
the feeling. Let’s try 
to address it by …

Human-AI Symbiosis paradigm

Shift

Figure 1: Based on a new dynamic and interactive evaluation paradigm, our research explores the
effectiveness of LLMs with existing ToM enhancement techniques for HAI symbiosis.

1 INTRODUCTION

Theory of Mind (ToM) denotes the cognitive capacity to attribute unobservable mental states (e.g.,
beliefs, intentions, emotions), which is essential for social interaction (Chen et al., 2025; Sarıtaş
et al., 2025). As a foundational component of social cognition, ToM is indispensable for interpreting
ambiguous social cues, predicting the behavior of others, and inferring communicative intent. Given
its foundational importance in social cognition, a substantial body of emerging work is now dedicated
to enhancing ToM capabilities within Large Language Models (LLMs) (Lu et al., 2025; Zhou et al.,
2023; Wilf et al., 2023). Current methodologies generally fall into one of three categories: 1) prompt
engineering (Wilf et al., 2023; Zhou et al., 2023), which formulates prompts designed to elicit
more human-like cognitive processes from the mode; 2) fine-tuning (Sclar et al., 2024; Lu et al.,
2025), where LLMs are further trained on curated datasets of ToM problems using techniques; 3)
external module integration (Sarangi et al., 2025; Zhang et al., 2025), which involves augmenting a
primary LLM with external modules or other specialized models to handle complex reasoning, task
decomposition, or other necessary sub-skills.
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However, evaluating these enhanced ToM capabilities remains a significant challenge. Current meth-
ods are dominated by static, task-based assessments in a story-question-option format, an approach
derived from classic false-belief tests like the Sally-Anne task. While subsequent benchmarks such
as HiToM (He et al., 2023) and ToMBench (Chen et al., 2024b) have increased the complexity and
diversity of these tests, they are still fundamentally limited by this third-perspective, stroy-reading
paradigm. Consequently, they fail to ground ToM evaluation in the dynamic, real-world context of
Human-AI (HAI) interaction and collaboration, creating a critical gap between benchmark perfor-
mance and real-world competence. What is missing is the evaluation of first-person engagement, the
very essence of social intelligence.

To fill this gap, we firstly reformulate the ToM task from a HAI perspective, where the LLM agent
directly engages in a dynamic, multi-turn conversation with a human across diverse, real-world
scenarios. Drawing from cognitive science (Epstein, 1998; Amir et al., 2025), we classify these
scenarios into two primary categories: goal-oriented tasks, where users leverage LLMs for objectives
like code generation and content creation, and experience-oriented tasks, where users seek subjective
interaction, such as emotional counseling. Based on this, we introduce an evaluation framework that
assesses the usefulness of improving ToM on HAI symbiosis.

To test models with ToM enhancement techniques, we instantiate our framework with four benchmarks
across diverse tasks and a crowdsourcing user study. The results offer critical insights for the future
of ToM evaluation and the design of next-generation, socially intelligent AI. Our insights include:
(i) A Performance Gap in Evaluation: There is a significant gap between how models perform on
static, story-based ToM benchmarks and their actual capabilities in dynamic, interactive scenarios,
demonstrating that current evaluation methods are insufficient for measuring readiness for Human-AI
collaboration. (ii) A Failure to Generalize: ToM enhancement techniques improve a model’s
performance in experience-oriented conversations but fail to generalize this success to goal-oriented
tasks, separating the capability requirement in various real-world scenarios. (iii) A Gap in User
Perception: The modest gains from current ToM methods are often too subtle to cross a user’s
perceptual threshold, meaning the improvements measured in benchmarks do not translate into a
meaningfully better or preferred user experience. Our contributions include:

• We reframe the ToM task within the context of HAI symbiosis, shifting the evaluation paradigm
from static, test-based assessments to dynamic, real-world interaction challenges.

• We systematically evaluate the impact of enhanced ToM capabilities in both goal-oriented and
experience-oriented HAI scenarios through benchmarks and a crowdsourcing user study.

• Our experiments reveal critical limitations in current ToM evaluation and method designs, and
we offer several key insights to guide future research directions.

2 PROBLEM FORMULATION

2.1 BACKGROUND: TOM EVALUATION IN STATIC BENCHMARKS

ToM evaluation in existing benchmarks is typically operationalized through a static, story-question-
option format. Formally, given a story S = {s1, s2, . . . , sn} and a question Q, the model must select
the correct answer from a candidate set O = {o1, . . . , ok}, where only one option ocorrect is correct:

o∗ = argmax
oi∈O

P (oi | S,Q). (1)

Performance is then measured by accuracy:

Acc = 1
N

N∑
i=1

I(o∗i = oi,correct), (2)

where N is the number of test samples. This formulation captures a static evaluation paradigm,
where reasoning occurs over a fixed textual world.

2.2 OUR FORMULATION: TOM IN INTERACTIVE HAI SETTINGS

A large body of developmental, longitudinal, and neurocognitive work indicates that stronger ToM is
associated with richer social competence, more cooperative behaviors, and more effective joint action.

2
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Prompt Engineering

Imagine you are {character_name}
Imagine you are the user

{character_name} user

Fine-tuning

Sally and Anna play in a room 
I and Anna play in a room 

Sally I
Shift on training dataset

Method Shift

Shift on prompt template

(b) Experience-Oriented Tasks

Goal-Oriented Tasks

Experience-Oriented Tasks

ToM in HAI Evaluation

AI Human

20,40,60,80 what 
will be the eight 

number in the pattern?

Math Physics Moral

Code Editing

I am stressful for 
academic pressure. 
Can you help me?

Sure! I understand 
the feeling. Let’s try 
to address it by …

Listening Empathy

Open-MindBoundaries

Safety

Holistic

Clarity

Figure 2: Framework overview of our ToM evaluation framework in HAI interaction.

(Imuta et al., 2016; Devine et al., 2016; Baron-Cohen et al., 1985) This motivates an evaluation setting
where an LLM must track and use a partner’s latent mental state during interaction, rather than merely
select an option in a fixed text. Accordingly, we study ToM in HAI interactions where the LLM agent
A engages a human H in a dynamic multi-turn dialogue. Let the history be D1:t = (u1, . . . , ut) with
each ui an utterance from H or A. Given a task T ∈ G, the agent generates the next response via its
policy πA:

uA
t+1 ∼ πA(· | D1:t, T ). (3)

Evaluation is scenario-dependent: we define a schema Γ = (ΦΓ,AggΓ), where ΦΓ = {ϕj}mj=1

with ϕj : D × G → [0, 1] (applied to partial histories D1:t) are aspect-wise scoring functions, and
AggΓ : [0, 1]m → R aggregates aspect scores per turn. Let τ be the dialogue length and w1, . . . , wτ

be temporal weights with wt≥0 and
∑τ

t=1 wt=1. The per-step metric is

MΓ(πA, T ) = ED1:τ∼P(πA,H,T )

[
τ∑

t=1

wt AggΓ
(
ϕ1:m(D1:t, T )

) ]
. (4)

2.3 KEY SHIFT: FROM STATIC REASONING TO INTERACTIVE COLLABORATION

The move from static benchmarks to interactive HAI introduces two essential shifts:

Perspective. In static benchmarks, the model acts as a third-person observer, reasoning about a fixed
narrative world. In HAI, the model becomes a active participant, required to anticipate, adapt to, and
influence the human’s mental state throughout interaction from the first-person perspective.

Metrics. While static settings evaluate models solely by accuracy over predefined answers, interactive
HAI settings require a richer metric. In our formulation, evaluation follows the general schema MΓ,
which can incorporate metrics such as goal completion rate and human satisfaction. Ultimately, this
paradigm shift reframes the evaluation of ToM from a measure of static reasoning accuracy to a
measure of dynamic collaborative effectiveness.

3 METHODOLOGY

3.1 ADAPTING TOM METHODS FOR HAI INTERACTION

Existing methods for enhancing the ToM capabilities of LLMs can be broadly categorized into three
approaches: prompt engineering, fine-tuning, and external module integration. As our primary goal is
to study how well existing techniques can improve model ToM capability rather than through building
new AI systems with multiple modules, we select methods from the first two categories-specifically,
Foresee and Reflect (FaR) (Zhou et al., 2023), Perspective Taking (PT) (Wilf et al., 2023), Supervised
Fine-tuning (SFT) (Sclar et al., 2024), and Reinforcement Learning (RL) (Lu et al., 2025)-to conduct
our experiments. A systematic review and our selection criteria are detailed in Appendix B.1.

3
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Figure 3: Method performance on the
HiToM-first benchmark.

A key challenge is that while our HAI interaction setting
requires first-person dialogue, most existing ToM methods
are designed for third-person, multiple-choice tasks. We
therefore adapt the selected methods to be suitable for
direct interaction, as illustrated in Figure 2. For prompting
methods, we retain their core principles (e.g., reflection
and perspective-taking) and reformulate the prompts for a
first-person conversational context. For fine-tuning meth-
ods, we convert the training data to a first-person perspec-
tive by replacing the protagonist’s name with “I”. We then
apply these adapted methods to two widely used base models, GPT-4o and Llama-3.1-8B, to create
our suite of test models. Note that the GPT-RL model is not included due to fine-tuning limitations.

Further adaption details are in Appendix B.2. To validate that our adaptations do not compromise
the methods’ core effectiveness, we first evaluate them on the HiToM-first benchmark, which is a
variant of HiToM applying the perspective shifting method used in fine-tuning. As Figure 3 shows,
the adapted models perform effectively on this story-based task. This result confirms that the models’
foundational ToM reasoning is sound, which leads to our primary research question: can these
demonstrated ToM improvements translate to tangible benefits in dynamic human–AI interaction?

3.2 A FRAMEWORK FOR EVALUATING TOM IN HAI INTERACTION

Interaction Process Analysis (IPA) shows that human group interaction reliably bifurcates into task
and socio-emotional processes Bales (1950). Driven by this classic theory, we classify the HAI
scenarios into two distinct categories: goal-oriented and experience-oriented. 1) Goal-oriented tasks
(e.g., math, code generation, document editing) involve users leveraging an LLM as an assistant to
achieve a specific, measurable objective. Within this framework, ToM becomes integral to effective
coordination, as success hinges on correctly attributing the partner’s intentions and knowledge state.
The efficacy of this ToM-driven collaboration is reflected in objective, external outcomes such as
accuracy, pass@k, and task success. This aligns with findings that ToM-linked social sensitivity
predicts group problem-solving success in both face-to-face and online environments (Woolley et al.,
2010; Engel et al., 2014). 2) Experience-oriented tasks (e.g., counseling, companionship) focus on
the user’s subjective journey, where the interaction process itself is the primary outcome. The goal is
to cultivate a high-quality relational experience, including gaining emotional support, engaging in
creative exploration, or achieving intellectual satisfaction. ToM enables the LLM to act as a socially
and emotionally resonant companion. Its effectiveness is not measured by task completion but by
qualitative indices that reflect the interaction’s success, such as the user’s sense of being understood,
perceived partnership, and overall engagement. This approach is supported by interaction studies
showing reliable benefits for recipients under responsive listening conditions (Weger Jr. et al., 2014).

4 EXPERIMENTS AND RESULTS

This section introduces the insights into ToM enhancement methods in HAI interaction based on our
evaluation framework instantiation with four benchmarks and a real-world user study.

4.1 GOAL-ORIENTED TASKS

To assess performance on goal-oriented tasks, we select two benchmarks that simulate real-world
collaborative problem-solving: 1) ChatBench (Chang et al., 2025), which reframes the MMLU
dataset into conversational interactions covering subjects like math, physics, and moral reason-
ing. Performance is measured by the accuracy of the final answer derived from the human-AI
interaction. 2) CollabLLM (Wu et al., 2025), which studies multi-turn human-LLM collaboration.
We adopt its evaluation pipeline for code generation (BigCodeBench-Chat) and document editing
(MediumDocEdit-Chat), using pass rate and BLEU scores as the respective metrics.

4.1.1 CHATBENCH RESULTS

As shown in Table 1, our results indicate that none of the four ToM enhancement methods offer a
reliable path to improving model performance. This limited effectiveness is evident in the overall

4
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Table 1: Performance of model variations on the ChatBench benchmark.

Model Elem Math HS Math College Math Moral Physics Overall

Llama-3.1-8B 85.16 64.59 44.47 72.26 74.76 71.38

Llama-3.1-8B-FaR 86.53 (+1.37) 64.32 (-0.27) 46.84 (+2.37) 67.62 (-4.64) 75.24 (+0.48) 70.98 (-0.40)
Llama-3.1-8B-PT 83.79 (-1.37) 63.37 (-1.22) 43.16 (-1.31) 69.29 (-2.98) 74.05 (-0.71) 69.85 (-1.53)
Llama-3.1-8B-SFT 83.05 (-2.11) 62.63 (-1.96) 48.16 (+3.69) 73.45 (+1.19) 68.21 (-6.55) 69.62 (-1.76)
Llama-3.1-8B-RL 85.79 (+0.63) 61.47 (-3.12) 43.42 (-1.05) 71.19 (-1.07) 76.43 (+1.67) 70.81 (-0.57)

GPT-4o 93.16 80.32 69.21 76.19 88.45 83.18

GPT-4o-FaR 91.58 (-1.58) 79.89 (-0.43) 69.47 (+0.26) 80.48 (+4.29) 87.50 (-0.95) 83.43 (+0.25)
GPT-4o-PT 92.00 (-1.16) 78.53 (-1.79) 67.11 (-2.10) 78.81 (+2.62) 87.50 (-0.95) 82.63 (-0.55)
GPT-4o-SFT 93.58 (+0.42) 79.05 (-1.27) 70.53 (+1.32) 78.93 (+2.74) 86.67 (-1.78) 83.31 (+0.13)

scores: only GPT-4o-FaR and GPT-4o-SFT achieve marginal gains of up to 0.25, while variants like
Llama-3.1-8B-PT and Llama-3.1-8B-SFT experience a significant performance decline of up to 1.76
points. The unpredictable nature of these methods is further highlighted by their volatile performance
across different subjects. For example, while Llama-3.1-8B-SFT achieves a 3.69 improvement in
College Math, its performance on Physics decreases massively by 6.55 points, leading to a failure to
enhance the base model overall. The Moral category, however, appears to be a domain with potential
for targeted enhancement, which is particularly relevant to the application scenarios of ToM. While
three of the GPT-4o variants see significant boosts in this area, the methods fail to produce any
effective improvement for the Llama-3.1-8B variants. This discrepancy underscores the situational
efficacy of these techniques, as they cannot guarantee positive results even on a targeted domain.

4.1.2 COLLABLLM RESULTS

Figure 4: Model variants’ performance
on the CollabLLM benchmark.

Figure 4 presents the evaluation results on CollabLLM,
plotting model performance across the two distinct skills
of document editing and code generation. Generally, these
outcomes align with the findings from ChatBench, indi-
cating that the fine-tuning methods do not yield consistent
improvements on these goal-oriented tasks. Focusing on
document editing, the Llama-3.1-8B baseline acts as the
peak performer for its family, with all of its variants failing
to match its score. This trend is particularly pronounced
for Llama-3.1-8B-RL, which exhibits a performance drop
of approximately 0.027. The GPT-4o family shows a
slightly more positive, albeit mixed, response; while the
SFT and PT variants yield minor benefits, the FaR variant slightly underperforms its baseline. In the
code generation domain, performance degradation is the dominant trend for nearly all variants across
both families. The sole exception is Llama-3.1-8B-RL, which achieves a marginal improvement
of 0.01. This contrasts sharply with models like Llama-3.1-8B-SFT, which shows a significant
performance decrease of approximately 0.04 compared to its baseline. The findings across two model
families jointly highlight the existing ToM enhancement methods’ volatile impact.

Takeaway 1: ToM enhancement methods fail to consistently improve goal-oriented task
performance across various tasks, which is divergent from performances on HiToM-first.

4.2 EXPERIENCE-ORIENTED TASKS

In the realm of experience-oriented tasks, our evaluation centers on two key datasets designed to
assess an LLM’s ability to provide empathetic support. 1) MentalChat16K (Xu et al., 2025), offers
a rich collection of conversations in a mental health counseling context, covering conditions like
depression and anxiety. 2) Emotional-Support-Conversation (ESC) (Chu et al., 2024), focuses more
broadly on emotional support scenarios. Due to their thematic overlap, we apply a unified set of
evaluation metrics to both datasets following MentalChat16K.

5
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Table 2: Performance of model variations on MentalChat16K and Emotional-Support-Conversation.

Model Listening Empathy Safety Open-mind Clarity Ethical Holistic Overall

MentalChat16K

Llama-3.1-8B 7.15 7.04 7.99 8.36 7.54 5.85 7.67 7.37

Llama-3.1-8B-FaR 7.10 (-0.05) 7.14 (+0.10) 8.01 (+0.02) 8.45 (+0.09) 7.67 (+0.13) 5.72 (-0.13) 7.66 (-0.01) 7.39 (+0.02)
Llama-3.1-8B-PT 7.27 (+0.12) 7.24 (+0.20) 8.19 (+0.20) 8.49 (+0.13) 7.75 (+0.21) 5.80 (-0.05) 7.71 (+0.04) 7.49 (+0.12)
Llama-3.1-8B-SFT 7.25 (+0.10) 7.05 (+0.01) 8.15 (+0.16) 8.36 (0.00) 7.64 (+0.10) 5.58 (-0.27) 7.48 (-0.19) 7.36 (-0.01)
Llama-3.1-8B-RL 7.33 (+0.18) 7.14 (+0.10) 8.07 (+0.08) 8.38 (+0.02) 7.72 (+0.18) 5.50 (-0.35) 7.54 (-0.13) 7.38 (+0.01)

GPT-4o 6.77 6.52 8.40 8.40 7.54 6.24 7.73 7.37

GPT-4o-FaR 7.12 (+0.35) 6.85 (+0.33) 8.52 (+0.12) 8.53 (+0.13) 7.66 (+0.12) 6.42 (+0.18) 7.97 (+0.24) 7.58 (+0.21)
GPT-4o-PT 7.26 (+0.49) 6.91 (+0.39) 8.45 (+0.05) 8.54 (+0.14) 7.70 (+0.16) 6.28 (+0.04) 7.89 (+0.16) 7.58 (+0.21)
GPT-4o-SFT 6.80 (+0.03) 6.56 (+0.04) 8.42 (+0.02) 8.39 (-0.01) 7.45 (-0.09) 6.47 (+0.23) 7.74 (+0.01) 7.40 (+0.03)

Emotional-Support-Conversation

Llama-3.1-8B 7.31 7.29 8.09 8.29 7.73 5.92 7.52 7.45

Llama-3.1-8B-FaR 7.38 (+0.07) 7.35 (+0.06) 8.02 (-0.07) 8.34 (+0.05) 7.75 (+0.02) 6.06 (+0.14) 7.63 (+0.11) 7.50 (+0.05)
Llama-3.1-8B-PT 7.34 (+0.03) 7.45 (+0.16) 8.14 (+0.05) 8.38 (+0.09) 7.71 (-0.01) 6.08 (+0.16) 7.59 (+0.07) 7.53 (+0.08)
Llama-3.1-8B-SFT 7.34 (+0.03) 7.31 (+0.02) 7.98 (-0.11) 8.23 (-0.06) 7.74 (+0.01) 5.77 (-0.16) 7.35 (-0.17) 7.39 (-0.06)
Llama-3.1-8B-RL 7.40 (+0.09) 7.38 (+0.09) 7.97 (-0.12) 8.34 (+0.05) 7.70 (-0.03) 5.52 (-0.40) 7.39 (-0.13) 7.39 (-0.06)

GPT-4o 6.92 6.73 8.33 8.27 7.53 6.11 7.64 7.36

GPT-4o-FaR 7.12 (+0.20) 6.92 (+0.19) 8.42 (+0.09) 8.42 (+0.15) 7.72 (+0.19) 6.32 (+0.21) 7.86 (+0.22) 7.54 (+0.18)
GPT-4o-PT 7.02 (+0.10) 6.89 (+0.16) 8.35 (+0.02) 8.29 (+0.02) 7.55 (+0.02) 6.20 (+0.09) 7.61 (-0.03) 7.42 (+0.06)
GPT-4o-SFT 7.06 (+0.14) 6.87 (+0.14) 8.42 (+0.09) 8.43 (+0.16) 7.53 (0.00) 6.25 (+0.14) 7.75 (+0.11) 7.47 (+0.11)

4.2.1 MENTALCHAT16K

As shown in Table 2, these methods generally improve empathetic communication skills on the
MentalChat16K benchmark, with a top overall gain of 0.21 points. However, the results differ
between the Llama and GPT families. For the Llama-3.1-8B family, the PT method is the most
effective, achieving a score of 7.49. However, A critical issue emerges with performance degradation
in some areas. Nearly all methods lower the Ethical score, with the RL variant causing a particularly
sharp decline of 0.35. Additionally, three of the four methods show a performance drop on the
Holistic metric. Conversely, the methods demonstrate greater robustness on GPT-4o. The FaR and
PT methods are the top performers, both reaching a high overall score of 7.58, and crucially, they
boost performance across nearly all categories. This suggests that these methods enhance overall
performance, but their capacity for holistic improvement is challenged by potential trade-offs.

4.2.2 EMOTIONAL-SUPPORT-CONVERSATION

On the Emotional-Support-Conversation benchmark, the evaluated methods show varied results,
particularly for the Llama-3.1-8B family. The PT method provides a solid overall improvement,
with a score of 7.53. However, the SFT and RL methods are detrimental, lowering the total score by
clearly harming the model’s Safety, Ethical, and Holistic performance. The RL method is especially
problematic, causing a severe 0.40 drop in the ethical score. In contrast, the methods are far more
stable and consistently beneficial when applied to GPT-4o. The FaR variant is the clear standout,
achieving a top score of 7.54 while excelling across nearly all categories. Crucially, the GPT-4o
variants achieve these gains without the significant safety and ethical issues seen in the Llama family.
This reveals that: while the methods can boost empathetic communication, their application may
introduce safety and ethical risks.

4.2.3 CASE STUDY

To intuitively analyze the behavioral changes that ToM capabilities induce in a model, we present
two case studies from ChatBench and MentalChat16K in Figure 7. Taking the FaR and PT methods
as examples, in the case shown on the left, the user makes a simple statement: “I took photos at
an art gallery.” The base model provides a generic and passive response, such as “If you have any
questions, feel free to ask.” In contrast, the models with ToM enhancement techniques proactively
infer the user’s potential intentions, speculating on what the user might implicitly want to ask. This
demonstrates that these methods can transform the model’s role in a conversation from that of a
passive text processor into a proactive listener, who analyzes the underlying users’ mental states.

6
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Figure 5: Case studies from a goal-oriented task (left) and a experience-oriented task (right).

Takeaway 2: ToM enhancement techniques improve base models’ empathetic skills. It
leads to better experience-oriented task results though may not be helpful for goal achievement.
Furthermore, SFT and RL can amplify risks in safety, ethics, and comprehensiveness.

4.3 USER STUDY

Table 3: Overall ranking of ToM methods across
GPT and Llama families (lower is better). Top-1
(%) indicates the proportion of times ranked first.

Method GPT-4o Llama-3.1-8B

Mean Std Top-1% Mean Std Top-1%

PT 2.43 1.09 26.5 2.88 1.42 23.2
FaR 2.48 1.14 29.1 2.97 1.49 23.8
SFT 2.56 1.14 22.5 2.98 1.43 22.5
RL – – – 3.08 1.33 11.3

Base 2.53 1.09 21.9 3.09 1.39 19.2

Our benchmarking and case studies reveal
that ToM enhancement methods have poten-
tial for enhancing empathetic communication
in experience-oriented tasks. To further validate
it and deeply understand its impact on real users,
we conducted a crowdsourcing user study.

Setup. The study participants were recruited
from Prolific (Prolific, 2023) to evaluate ToM
methods on six experience-oriented tasks, such
as job crisis and academic pressure. Partici-
pants are randomly assigned to compare variants
within either the GPT-4o family (four variants) or the Llama-3.1-8B family (five variants). Each
participant chooses a personally resonant task and engages in a three-round conversation. In each
round, they rank anonymized and randomized model responses, providing a justification for their
choice. The top-ranked response is used to continue the dialogue. Details are in Appendix C.3.

Figure 6: The word cloud for
participants’ justification of re-
sponse preferences.

Results. Our human evaluation reveals a consistent but subtle
preference for models with ToM enhancement techniques, aligning
with the results of experience-oriented benchmarks. Across two
model families, we can see that models based on prompt-based
methods (FaR and PT) outperform the base model and the models
after fine-tuning (SFT and RL), suggesting the potential robustness
of prompt-based methods in more diverse real-world user needs. To
further reveal users’ thoughts over methods, we present a word cloud
to summarize their expressed opinions (Figure 6) and two detailed
cases (Figure 7). In the word cloud, “all good” and “all helpful”
frequently appear in their comments. It partially explains the trivial
difference between model variants in our quantitative results: for
most of the experience-oriented tasks, the ToM capability of current
models might be satisfactory. The minor differences (such as those described in Figure 7-left) do
not considerably improve experiences in real-world HAI interactions, as the participant addressed
“My experience was positive. The AI models understood my situation.” Another reason for the
minor ranking difference lie in diverse conversation goals and personal requirements for LLMs,
leading to divergent preferences on models (see Appendix C.3). Though the overall results are
optimistic, we must be aware that LLMs’ ToM capability is not perfect. These models still lack of
sufficient ToM capability to capture users’ nuanced intention from interactions. For example, we
noticed that all model variants, including the best model ranked by the user (i.e., Llama-3.1-8B-FaR),
fail in suggesting more diverse methods to facilitate their sleep problem (Figure 7-right). Beyond
direct instructions for models, the underlying adaption to user preferences and scenarios, such as
conversation styles, also poses higher requirements on the ToM capability of LLMs. Our results show
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that no one model variant can achieve the best across scenarios, implying their limited ToM capability
for dynamic and diverse HAI interactions (Table 5). The findings also verify the difference in ToM
for static and interactive human understanding, supporting the necessity of our evaluation framework.

Figure 7: Cases of positive (left) and negative (right) user experiences in our user study.

Takeaway 3: The experience advantage in HAI contexts brought by existing ToM
enhancement methods is observed. However, it requires our efforts to make the advantage
more sensible through enhancing ToM for dynamic user understanding in HAI interactions.

5 INSIGHTS

HAI symbiosis poses new challenges for ToM. Our evaluation framework marks a methodological
shift designed to assess ToM for the challenges of HAI symbiosis. Specifically, we move beyond
traditional, static benchmarks that measure a model’s third-person analytical ToM, and instead
introduce a dynamic, interactive setting that measures its applied, first-person ToM during live
conversation. This new perspective reveals a significant performance gap. We observe that the
methods that improve story-reading benchmark performances only show limited and inconsistent
benefit in our interactive evaluation, such as Llama-3.1-8B-RL on the static HiToM-first and the
interactive ChatBench. This gap highlights the necessity and importance of our framework for gaining
a complete picture of a model’s true capabilities. It shows that excelling at test-taking tasks does not
guarantee readiness for interactive collaboration. Therefore, to truly measure progress, it is essential
to complement existing benchmarks with dynamic and interactive evaluations in HAI contexts.

Enhanced ToM fails to generalize from assistance to companionship. Our findings show that
ToM-enhancement methods improve performance in experience-oriented scenarios but fail in goal-
oriented tasks. This performance difference appears to stem from the distinct nature of these two task
categories. Experience-oriented tasks are largely defined by their focus on interpersonal dynamics and
responding to affective states like emotions and desires. In contrast, goal-oriented tasks can require
understanding users’ intention progress and underlying knowledge states for task accomplishment.
This suggests that ToM proficiency in one type of task may not guarantee success in the other, as each
emphasizes different aspects of user understanding. This capability gap highlights that future research
needs diverse and real-world benchmarks that assess a full spectrum of abilities from empathetic
support to goal-driven collaboration.

Users require threshold-crossing ToM improvements. A sophisticated ToM is fundamental to
achieving true HAI symbiosis, as it is the capability that transforms models from passive text
processors into proactive, collaborative partners. However, our research demonstrates that the
improvements from current ToM-enhancement methods are limited in both scope and user-perceived
impact. Our benchmarks show that while methods improve performance in experience-oriented
scenarios, this success does not extend to goal-oriented tasks. Furthermore, our user study reveals that
even these limited gains are not strongly perceived by users, failing to translate into a clear preference.
We consider two potential reasons. First, models’ ToM capability is satisfactory for a majority

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

of tasks, making the marginal gains often fall below a user’s perceptual threshold. Furthermore,
current methods are largely designed for static, story-reading benchmarks and are thus ill-suited for
understanding dynamic and nuanced user goals and preferences in live interaction. Therefore, the
path forward requires designing new enhancement methods to understand the nuanced user mental
states dynamically in HAI scenarios. Only by optimizing for the complexities of live interaction can
we transfer the model improvements from benchmarks to a meaningfully better user experience.

6 RELATED WORK

Assessment of ToM. The assessment of ToM in LLMs has primarily relied on story-based bench-
marks that extend classical psychological tests into machine-evaluable settings (Sarıtaş et al., 2025;
Nguyen et al., 2025). Early benchmarks expanded this approach, with ToMi generating diverse
narratives and Hi-ToM introducing higher-order reasoning tasks up to the fourth-order belief level
(He et al., 2023). Efforts to improve evaluation protocols include ToMChallenges, with its con-
strained and open-ended templates, and FANTOM, which uses dialogue scenarios to detect “illusory
ToM”—superficially correct but inconsistent answers (Ma et al., 2023; Kim et al., 2023). Concur-
rently, the scope of mental states was broadened by datasets like BigToM and OpenToM to include
percepts, desires, and emotions (Gandhi et al., 2023; Xu et al., 2024). More recent benchmarks
address domain-specific reasoning, like NegotiationToM for multi-round dialogues, or systematic
coverage, such as ToMBench, which applies the ATOMS framework in bilingual settings to mitigate
data contamination (Chan et al., 2024; Chen et al., 2024b). Novel data generation techniques have
also been introduced, including ExploreToM’s use of an A*-powered algorithm and ToMATO’s
construction of datasets from LLM-LLM conversations with information asymmetry (Sclar et al.,
2024; Shinoda et al., 2025). Most benchmarks remain passive evaluations, positioning models as
observers rather than active agents. They provide only a partial view of ToM competence, motivating
the development of interactive protocols.

Enhancement of ToM. Recently, a growing body of work has begun to investigate methods for
enhancing the ToM capabilities of LLMs (Chen et al., 2025). These approaches can be broadly
grouped into three categories: prompt engineering, fine-tuning, and AI system integration. 1) prompt
engineering strategies aim to improve reasoning by guiding the model through specific cognitive
processes without retraining (Wang & Zhao, 2023; Hou et al., 2024). For example, FaR prompts
an LLM to predict future story evolutions and then reflect on them to inform its actions (Zhou
et al., 2023). Similarly, SimToM improves decision-making by filtering the context to only what a
target character can perceive (Wilf et al., 2023). 2) fine-tuning methods leverage supervised fine-
tuning or reinforcement learning on specialized ToM datasets. This process instills domain-specific
knowledge, effectively adapting the base models for ToM-related tasks. ToM-RL explores the use
of reinforcement learning algorithms like GRPO to solve ToM problems (Lu et al., 2025). Besides,
ExploreToM proposes a diverse and challenging dataset and subsequently fine-tunes LLMs on this
data using a supervised approach (Sclar et al., 2024). 3) external module integration incorporates
external modules to achieve enhanced performance (Huang et al., 2024; Jung et al., 2024; Chen et al.,
2024a; Sarangi et al., 2025; Zhou et al., 2022). AutoToM iteratively refines agent models via inverse
planning with an LLM (Zhang et al., 2025), while Thought-Tracing uses a Monte Carlo algorithm to
sequentially sample and weight belief hypotheses for agents’ minds (Kim et al., 2025).

7 CONCLUSION

In this paper, we reframe ToM evaluation for HAI symbiosis by replacing static, third-person per-
spective quizzes with interactive conversations from the first-person perspective. To comprehensively
study the effectiveness of the methods for improving ToM, we summarize the HAI scenarios into
goal-oriented tasks and experience-oriented tasks. From a systematic benchmarking evaluation
and crowdsourcing user study, we find that ToM-enhancement methods fail to produce meaning-
ful improvements in goal-oriented collaboration, yet they demonstrate a slight positive impact on
experience-oriented interaction. Beyond the experiments, we derive key insights for future evaluation
and method design, advocating for a shift towards more practical, context-aware ToM research that
acknowledges the different demands of these distinct application scenarios.
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recruited from Prolific. All study participants provided informed consent and were compensated
for their time. They could withdraw from the study at any time when they felt uncomfortable or
unwilling to continue. Their data was anonymized to protect their privacy. All case studies shown in
this paper have been processed to ensure no personal identifiable information is revealed.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide our source code at https://anonymous.4open.
science/r/ToM-HAI-9020/. The appendix details our experimental setup, including the
datasets used and the full prompts for the models.
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A LLM USAGE STATEMENT

We used LLMs (e.g., ChatGPT) mainly for grammar and wording edits. Besides, LLMs were used to
analyze user study comments to extract keywords related to user metrics.

B METHOD DETAILS

B.1 TOM ENHANCEMENT METHOD SELECTION

We firstly review methods for improving the ability of ToM as Table 4. 1) Discrete World Models
(DWM) (Huang et al., 2024) discretizes narratives into a finite set of belief states and transitions;
defines task complexity as the minimal number of states required, and performs stepwise belief
updating within this discrete state space. 2) Metacognitive Prompting (MP) (Wang & Zhao, 2023)
embeds a five-phase metacognitive control loop into the prompt—identifying knowns/unknowns,
hypothesizing, checking evidence, and revising—so that reasoning is executed as a procedural
self-monitoring routine. 3) PercepToM (Jung et al., 2024) adopts a two-stage setup: first explicitly
annotates each agent’s perceptual availability, then infers beliefs along the perception→belief mapping
under that annotation. 4) TimeToM (Hou et al., 2024) constructs Temporal Belief State Chains
(TBSCs) for each character and uses a tool-augmented belief solver to update and query beliefs
along an explicit timeline. 5) SimToM (Perspective-Taking) (Wilf et al., 2023) applies two-step
prompting: filters the context to the target character’s accessible knowledge, then answers strictly
from that restricted viewpoint. 6) FaR (Zhou et al., 2023) implements a forecast–reflect prompting
routine: samples plausible future trajectories of the story, then reflects over these trajectories to

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 4: Summary of recent Theory of Mind (ToM) related papers by category, sub-category, and
modality.

Method Category Core Idea Modality

Discrete World Models external module integration decomposition Text
Metacognitive Prompting prompt reflection Text
PercepToM external module integration perspective-taking Text
TimeToM prompt timeline Text
SimToM prompt perspective-taking Text
FaR prompt reflection Text
ExploreToM finetune SFT Text
ToM-RL finetune RL Text
VToM external module integration visual reasoning Multimodal
COKE / COLM finetune SFT Text
Thought-Tracing external module integration Monte Carlo Text
AutoToM external module integration BIP Multimodal
Decompose-ToM external module integration decomposition Text
I Cast Detect Thoughts external module integration RL dialog Text

select the response or action. 7) ToM-RL (Lu et al., 2025) fine-tunes the language model with
reinforcement learning (e.g., RLHF/PPO), using ToM-aligned reward signals to optimize generation,
optionally preceded by supervised warm-start. 8) VToM (Chen et al., 2024a) builds a multimodal
pipeline that retrieves key video frames, forms a video–text graph, and performs conditional reasoning
over this graph to answer belief/intent queries. 9) COKE (Wu et al., 2023) constructs a cognitive
knowledge graph of structured social/causal chains and conditions or fine-tunes a generator on these
chains to enforce cognitively grounded reasoning. 10) Thought-Tracing (Kim et al., 2025) uses a
sequential Monte Carlo–inspired, inference-time procedure that generates, weights, and resamples
natural-language hypotheses of agents’ mental states over narrative time. 11) AutoToM (Zhang
et al., 2025) leverages automated Bayesian inverse planning: proposes an initial BToM, estimates
likelihoods/posteriors via simulation with an LLM-backed proposer, and iteratively refines the model
under uncertainty. 12) I Cast Detect Thoughts (Zhou et al., 2022) trains dialogue policies in a
Dungeons-and-Dragons–style interactive environment via RL with ToM-aware rewards, aligning
guidance utterances with inferred player intents and world state. 13) Decompose-ToM (Sarangi et al.,
2025) implements a simulation-based task-decomposition pipeline—subject identification, question
reframing, world-model update, and knowledge-availability checks—then generates answers from
the decomposed reasoning states.

Our method selection follows a two-step protocol. (1) We restrict attention to methods that directly
enhance an LLM’s capabilities (via prompting or parameter updates), and therefore exclude external
module integration methods. (2) For families of methods sharing a core idea, we choose a single
representative to avoid redundancy. Consequently, we evaluate four methods: forsee and reflection
(FaR) (Zhou et al., 2023), perspective-taking (PT) (Wilf et al., 2023), supervised fine-tuning (SFT)
(Sclar et al., 2024), and reinforcement learning (RL) (Lu et al., 2025).

B.2 TOM ENHANCEMENT METHOD IMPLEMENTATION

To shift the evaluated methods from third-perspective question-answering to first/second-perspective
HAI interaction, we slightly change the prompt template for the prompt engineering method and the
training data for the fine-tuning method, as shown in Figures 8-11. To show the effectiveness of our
selected method in the story-question-option format, we firstly select HiToM, which is a classic and
widely-used benchmark to conduct the preliminary experiments.
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FaR
You are a helpful assistant. When a user asks you a question, your internal thought process to generate the most
helpful response should be as follows:
1. Analyze the User's Explicit and Implicit Needs:
- First, carefully examine the user's direct question to understand precisely what they are asking.
- Then, try to infer the user's likely underlying goal or the broader context of their query. What are they trying

to achieve with this information? What might be their next step after getting an answer?
2. Anticipate Potential Challenges and Follow-up Questions:
- Consider any ambiguities in the user's question that might lead to misunderstanding.
- Think about what additional details, examples, or explanations might make your answer clearer and more

useful for the user.
- Predict what natural follow-up questions the user might have after your initial response.
- Identify any related concepts or information that, if provided, would significantly enhance the user's

understanding or ability to solve their problem.
3. Determine What Information to Proactively Include in Your Response:
- Based on the analysis in steps 1 and 2, decide what specific information, clarifications, examples, or

suggestions you can proactively include in your *current response*.
- The aim is to not only answer the explicit question but also to address anticipated needs and make the

interaction more efficient and helpful for the user.
4. Formulate a Helpful, Accurate, and Comprehensive Answer:
- Construct your response to directly and clearly answer the user's stated question.
- Integrate the additional helpful information and clarifications identified in step 3 in a logical and easy-to-

understand manner.
- Ensure your response is factually accurate and relevant.
- Maintain a helpful, engaging, and supportive tone.
Your final output should be the well-reasoned and helpful textual response to the user's question, crafted through
this internal thought process.

Figure 8: Prompt of FaR.

PT
You are a helpful assistant. When a user asks you a question, your internal thought process to generate the most
helpful response should be as follows:

Step 1: Perspective-Taking (Understanding the User's Context and Needs)
Before you begin to formulate your answer, first analyze the user's question (`{user_question}`) and attempt to
understand the following aspects of their perspective:

- User's Knowledge Level: Based on the phrasing and content of the question, what is the user's likely level of
understanding regarding this topic? (e.g., beginner, intermediate, expert)
- User's Potential Intent/Goal: What is the most fundamental reason the user is asking this question? What do they
likely want to achieve with this information?
- Clues in the Question: Does the user's wording suggest any specific assumptions they might hold, pre-existing
knowledge, or a particular situation they are in? Are there potential misunderstandings evident?
- Information Gap: What information does the user seem to already possess? Conversely, what crucial information
might they be lacking that is essential for them to properly understand your answer *from their viewpoint?

Step 2: Question-Answering (Tailoring the Response to the User's Perspective)
Based on your understanding of the user's perspective from Step 1, now construct your answer to
`{user_question}`.

- Directly and clearly address the user's explicit question.
- Tailor your language style, level of detail, and any examples used according to their inferred knowledge level
and context.
- If you identified potential misunderstandings or missing crucial information in Step 1, subtly clarify these points
or provide the necessary background information within your answer.
- Ensure your response is not only factually correct but also genuinely helpful and accessible *to this specific user.

Your final output should be the well-reasoned textual response that is maximally helpful to the user. Don't show
me your thinking process.

Figure 9: Prompt of PT.

SFT
"instruction": "Answer the question based on the story.",
"input": "Story: The sun shone through the large glass doors of the hotel lobby, illuminating the marble floor and
casting a warm glow over the comfortable seating areas. Soft music filled the air, mingling with the gentle hum of
conversation and the occasional chime of the elevators in the bustling hotel. As I entered the hotel lobby her eyes
quickly scanned the space, taking in every detail to ensure everything was in order for the upcoming event. I's task
of tidying the lobby extended to the small, silver item, which she carefully stowed away in the desk drawer, and
Liam, observing from across the room, felt his interest in the object grow, his mind racing with questions about its
significance and purpose. With her tasks in the lobby complete, I stepped out into the fresh air, the sounds of the
bustling hotel lobby fading into the background as the glass doors slid shut behind her. Liam moved across the
lobby floor, his footsteps silent on the marble as he walked towards the empty reception desk where the mystery
item was now hidden. Moments later, I stepped back through the glass doors of the hotel, joining Liam in the lobby
once again. Liam's interest in the silver item led him to reposition it, now resting snugly within the hotel lobby's
nearby leather briefcase. Meanwhile, I began to run a final check on the lobby, seemingly unconcerned by the
briefcase's new contents.\n\nQuestion: In which room does I think that Liam will search for the silver letter
opener?",
"output": "hotel lobby"

Figure 10: Data example of SFT.
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RL
prompt": [
{
"content": "<|im_start|>system\nYou are a helpful assistant. The assistant first thinks about the reasoning process in the mind and then
provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer>
tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>. Now the user asks you to solve a
theory of mind reasoning problem. After thinking, when you finally reach a conclusion, clearly state your answer within <answer>
</answer> tags.\nNote: You should assume the following.\n(1) An agent witnesses everything and every movement before exiting a
room.\n(2) An agent A can infer another agent B's mental state only if A and B have been in the same room, or have private or public
interactions.\n<|im_end|>\n<|im_start|>user\nRead the following story and answer the question. \nStory: The following story happens
in chronological order. You will be given a multiple-choice question and a note at the end. Directly output the answer without
explanation.\n1 Mila, Elizabeth, I, Gracie and Carter entered the porch.\n2 The lemon is in the red_envelope.\n3 Mila made no
movements and stayed in the porch for 1 minute.\n4 Mila exited the porch.\n5 Elizabeth saw a dog.\n6 Elizabeth made no movements
and stayed in the porch for 1 minute.\n7 Elizabeth exited the porch.\n8 I moved the lemon to the red_bucket.\n9 I exited the porch.\n10
Gracie moved the lemon to the green_basket.\n11 Gracie exited the porch.\n12 Carter moved the lemon to the red_envelope.\n13
Carter exited the porch.\n14 Mila, Elizabeth, I, Gracie and Carter entered the waiting_room.\n15 Elizabeth, I and Carter entered the
hall.\n16 The onion is in the green_container.\n17 Carter saw a monkey.\n18 Elizabeth made no movements and stayed in the hall for 1
minute.\n19 Elizabeth exited the hall.\n20 I made no movements and stayed in the hall for 1 minute.\n21 I exited the hall.\n22 Carter
moved the onion to the green_bottle.\n23 Carter exited the hall.\n24 Elizabeth, I and Carter entered the waiting_room.\n\n\nQuestion:
Where does I really think the lemon is?\nA. blue_drawer, B. red_envelope, C. red_bucket, D. red_bathtub, E. green_basket, F.
green_container, G. blue_suitcase, H. green_cupboard, I. blue_container, J. green_bottle, K. red_pantry, L. red_treasure_chest, M.
blue_crate, N. green_envelope, O. red_cupboard\n<|im_end|>\n<|im_start|>assistant\n<think>",
"role": "user"
}
],
"answer": "red_bucket"

Figure 11: Data example of RL.

C EXPERIMENT DETAILS

C.1 MODEL SETUP

To comprehensively evaluate various methods for enhancing ToM, we selected two representative
LLMs: GPT-4o and Llama-3.1-8B. These base models were chosen to cover a range of model
scales and access types (closed- and open-source). For the prompt-based methods, FaR and PT, we
utilized the specific prompts shown in Figures 8 and 9. For SFT, we fine-tuned the base models on
the ExploreToM-first dataset, which adapts the original data from a third-person to a first-person
perspective (Sclar et al., 2024). Similarly, RL, we followed the established ToM-RL pipeline, using
the first-person transformed data (Lu et al., 2025).

C.2 STATISTICAL TEST

To verify whether the performance difference in benchmarks is meaningful statistically, we conducted
statistical tests for all experiments using our framework. Detailed significance test results can be
found in our supplementary materials.

C.3 USER STUDY DETAILS

Experiment Settings and Procedure. We recruit 100 participants from Prolific (Prolific, 2023),
a widely used platform for high-quality online studies. Recruitment criteria required participants
to be 18 years or older and either native or proficient English speakers, with no restrictions on
educational background. To ensure data quality, we first automatically filtered out submissions
where the total experiment time was less than five minutes, and then manually excluded responses
containing random or irrelevant comments. The study was approved by the institutional IRB, and
all participants provided informed consent. To evaluate perceptions of different ToM enhancement
methods comprehensively, we selected six common experience-oriented tasks for users to interact
with models. These tasks were chosen based on the most frequently selected experience-oriented
scenarios in the MentalChat16K benchmark (Xu et al., 2025), complemented by a pilot study that
confirmed their relevance and familiarity to participants.

Participants are randomly assigned to either the GPT series or the Llama-3.1-8B series. Participants
using GPT series compare 4 model variants (base, FaR, PT, SFT), while participants with Llama-
3.1-8B compare five (base, FaR, PT, SFT, RL). This study design was intended to cover a diverse set
of LLM families, ToM methods, and task types, while avoiding participant fatigue by limiting the
number of variants each user evaluated.

Each participant first review all task descriptions and select one that resonates with their own
experiences or emotional empathy (e.g., coping with a breakup). They then engage in three rounds
of conversation with models for the selected topic. In each round, model responses are presented
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as anonymized cards in random order. Participants review the outputs, rank them using the same
metrics as our HAI evaluation, and provide a brief justification for their ranking. The top-ranked
response is then used to continue the conversation into the next round. After completing all rounds,
participants give final comments on overall model performance and user experience. This procedure
ensure balanced comparisons across tasks and model families. The entire process is finished with our
developed user interface, which will be introduced below.

User Interface for the Experiment. We develop a web-based interface that enables participants
to interact with several anonymous models, focusing on 6 representative experience-oriented tasks.
Interface details are provided in Figures 12-14.

Figure 12: Main experiment interface. (A) User initialization and task instructions. (B) Conversation
window with last round’s topic candidate. (C) Input box for continuing the conversation.

Figure 13: User ranking interface. (A) Model responses presented for comparison. (B) User ranking
panel where participants drag and drop responses from best to worst.
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Figure 14: Feedback interface shown after each round of response ranking.

Table 5: Task-level average rankings (lower is better) of ToM methods across GPT-4o and Llama-3.1-
8B variants. Each row reports the best-performing method, its average rank, and the runner-up with
its average rank in parentheses. The numbers in parentheses after each task (e.g., 18 / 9) denote the
total number of ranking cases for GPT and Llama variants, respectively, where each case corresponds
to one evaluation turn (three turns per participant per task).

Task (n) GPT-4o Llama-3.1-8B

Best Avg. Rank Runner-up Best Avg. Rank Runner-up

Academic Pressure (18 / 9) PT 2.22 Base (2.33) FaR 2.44 PT (2.67)
Breakup w/ Partner (12 / 25) Base 2.00 FaR (2.33) RL 2.32 Base (2.92)
Conflict w/ Family (21 / 27) Base/PT 2.43 SFT (2.57) FaR 2.44 PT (2.63)
Job Crisis (27 / 24) SFT 2.33 FaR (2.41) Base 2.83 RL (2.96)
Ongoing Depression (34 / 15) FaR 2.06 PT (2.56) RL 2.80 PT/Base (2.87)
Sleep Problems (39 / 51) PT 2.26 SFT (2.49) SFT 2.61 PT (2.94)

Performance Across Experience-Oriented Tasks. At the task level, different ToM methods
exhibited strengths in different scenarios. For GPT, PT dominated in Academic Pressure and Sleep
Problems, FaR led in Ongoing Depression, and SFT performed best in Job Crisis. Interestingly,
the GPT baseline was most preferred in Breakup with Partner and tied with PT in Conflict with
Family or Friends, suggesting that users sometimes favored straightforward empathetic responses
over ToM-enhanced reasoning. For the Llama family, FaR excelled in Academic Pressure and
Conflict with Family, RL was strongest in Breakup and Depression, while SFT led in Sleep Problems.
The plain Llama baseline unexpectedly topped Job Crisis, reflecting user preference for pragmatic
suggestions in this context. The results imply that user perceptions of ToM benefits are shaped not
only by model design but also by specific user goals. Different ToM enhancement methods can
demonstrate advantages for various users needs. It also contributes to the subtle differences in model
ranking (Table 3).

User Comment Analysis. In the main text, the word cloud (Figure 6) was generated after standard
preprocessing of participants’ comments, including removing punctuation, lowercasing, discarding
stop words, and excluding a predefined list of meta or low-information terms (e.g., “model”, “‘round”,
“response”). This ensures that the visualization is not dominated by structural or filler words that are
unrelated to model quality.
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On top of it, we further filter the comments to only keep the words about users’ metrics in judge
responses’ quality and plot another word cloud in Figure 15. Specifically, we added an LLM-based
filtering layer. The LLM was prompted to selectively keep or merge only those terms that directly
reflected participants’ reasons for preferring (or disliking) a response and their felt experience during
the interaction, while dropping meta or irrelevant tokens. For example, synonyms like empathetic
and empathic were merged into empathy, and generic mentions such as “round 3” or “model 2” were
discarded. This step substantially reduced noise and emphasized the evaluative and affective aspects
of feedback. To ensure the quality of LLM filtering, one author checked the results with original
comments and improved them accordingly.

Figure 15: Word cloud of participants’ filtered comments on model performance. The terms were
generated after an LLM-based filtering and combination step, which emphasized words reflecting
why participants perceived a model as good or bad and how they felt during the interaction.

The resulting word cloud (Figure 15) demonstrates various desired characteristics of models and
their responses by our study participants. Most participants consider that model responses should be
helpful, actionable, and delivering advice with clarity and a supportive tone. Many also mentioned
qualities like empathy and personalization, showing that users not only valued clear guidance but
also the sense of being understood. At the same time, we also learn the divergent attitude toward
model responses. Though some users appreciated empathetic validation before receiving advice,
others felt that responses were occasionally too long or too generic, making them harder to follow.
They expected that the answers can be direct, structured outputs such as actionable to-do lists. These
findings imply the preference over models can be diverse based on personal requirements. As a result,
there might not be unified preference toward a specific model, which explains the minor difference in
model ranking (Table 3). Furthermore, they highlights a key aspect of ToM: beyond attributing beliefs
and intentions, true ToM competence requires adapting to diverse expectations in conversation styles.
This explains why static benchmark is imperfect and why interaction-based evaluation is essential.

Takeaway. The user study demonstrates that ToM improvements are perceptible and valuable but
also mediated by detailed user goals and preferences. Static benchmarks alone are insufficient;
genuine ToM competence in LLMs emerges only when models can flexibly infer intent, balance
belief reasoning with pragmatic support, and adapt to heterogeneous human needs.

C.4 CASE STUDY

In this section, we provide more cases to demonstrate the performance of different model variants.

C.4.1 BENCHMARKING CASES

We provide the cases in our benchmarking process in Figures 16-19.
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Figure 16: The user case on GPT-4o variants.

Figure 17: The user case on GPT-4o variants.
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Figure 18: The case on Llama-3.1-8B variants.
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Figure 19: The case on Llama-3.1-8B variants.
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C.4.2 USER CASES

We provide the cases in our case study in Figures 20-21.

Figure 20: The case on GPT-4o variants.
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Figure 21: The user case on Llama-3.1-8B variants.
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