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ABSTRACT

Consistency regularization, referring to enforcing consistency across a model’s re-
sponses to different views of the same input, is widely used for self-supervised im-
age representation learning. However, consistency regularization can be trivially
achieved by collapsing the model into a constant mapping. To prevent this, exist-
ing methods often use negative pairs (contrastive learning) or ad hoc architecture
constructs. Inspired by SimSiam’s alternating optimization hypothesis (Chen &
He, 2020), we propose a novel optimization target, SimMER, for self-supervised
learning that explicitly avoids model collapse by balancing consistency (total vari-
ance minimization) and entropy of inputs’ representations (entropy maximiza-
tion). Combining consistency regularization with entropy maximization alone,
the method can achieve performance on par with the state-of-the-art. Furthermore,
we introduce an linear independence loss to further increase the performance by
removing linear dependency along the feature dimension of the batch representa-
tion matrix (rank maximization), which has both anticollapsing and redundancy
removal effects. With both entropy and rank maximization, our method surpasses
the state-of-the-art on CIFAR-10 and Mini-ImageNet under the standard linear
evaluation protocol.

1 INTRODUCTION

Recently, significant progress has been made in self-supervised representation learning as self-
supervised models could achieve or even surpass the performance of fully supervised methods on
many downstream tasks including image classification. Contrastive methods (Chen et al., 2020a;b;
He et al., 2020; Chen et al., 2020c) achieved high performance by forcing negative pairs to have dif-
ferent representations while positive pairs to share the same feature representations. This approach
is effective, but it relies on a large number of negative pairs which can be achieved using a large
batch size (Chen et al., 2020a) or a large memory bank (He et al., 2020). Recent non-contrastive
approaches such as Grill et al. (2020) and Chen & He (2020) learn representations by focusing on
the consistency among different perturbed views of the same input. These methods are generally
less memory and computation-heavy since they do not explicitly utilize negative pairs. One major
problem in consistency-only approaches is the need to prevent trivial solutions where all inputs are
mapped to the same vector. To prevent such model collapse, consistency regularization methods
usually have an asymmetric architecture, additional layers (e.g., the predictor in Chen & He (2020)),
or stop gradient operations.

To overcome the above issues in contrastive and consistency methods, we introduce SimMER, a
simple yet effective consistency based self-supervised representation learning algorithm. As shown
in figure 1, SimMER is a symetric method using a shared-weight neural network across all aug-
mentation heads. The encoder network consists of a CNN backbone and an Multi Layer Perceptron
(MLP) projection head (Chen et al., 2020a). SimMER is optimized through three newly proposed
loss terms: total variance, rank, and entropy loss. The total variance loss ensures that the model
learns a consistent representation of the same inputs under different perturbations. The entropy loss
is introduced to prevent degenerate solutions where all inputs are mapped to the same representa-
tion. The rank loss is used to remove the linear dependence in the feature dimensions and forces
the model to have efficient feature representations. Additionally, it also prevents the model from
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collapsing. Recently, an arXiv paper, VICReg (Bardes et al., 2021) has also proposed a method that
prevents model collapse without negative pairs and asymmetric architecture; however, our design
and loss functions are different.

Due to the symmetric structure of SimMER over all augmentation heads, our algorithm naturally
supports multiple views of the same input. Therefore, SimMER can be considered as a generaliza-
tion of the Siamese architecture used in current consistency-based methods. Since SimMER learns
the representations via direct optimization of the three loss terms over the K views, it does not
require negative pairs, large batch size, asymmetric architecture, or ad hoc architectural designs.

Our contributions are summarized as in the following. (1) We introduce a novel self-supervised rep-
resentation learning algorithm, SimMER, which uses an interpretable balance between consistency
regularization, entropy, and linear independence to remove the necessity of negative pairs and archi-
tecture constructs in previous self-supervised learning methods. (2) We introduce a total variance
minimization loss that maintains a consistent representation of the same input under different pertur-
bations and generalizes the previous 2-head consistency. (3) We introduce an entropy maximization
loss which prevents a collapsed constant solution by maximizing the nearest neighbor distances in a
batch. (4) We introduce a family of rank losses that remove redundancy in the feature space in addi-
tion to preventing model collapse by preferring linear independence in the column space of the batch
representation matrix. (5) We conducted extensive experiments on CIFAR-10 and Mini-ImageNet
where SimMER achieved state-of-the-art performance.

2 APPROACH

Within the self-supervised representation learning framework, we aim to learn useful representations
of images for downstream tasks like classification by only using unlabeled images drawn from a
distribution X . In our method (figure 1), an encoder network, Fθ, consisting of a standard CNN
backbone attached with a projection MLP (Chen et al., 2020a), is used to encode a batch of B
images (xb)

B
b=1. The projection MLP projects the output feature map of the backbone to a vector in

RD. For each image xb, we use the stochastic augmentation function T (e.g. ColorJittering,
RandomResizedCrop) to generate K views (xb,k)Kk=1. Each view xb,k is then encoded by Fθ
to get the representation zb,k. Then, an averaged representation z̄b = 1

B

∑B
b=1 zb,k is calculated as

the true representation of the image xb. Inspired by SimSiam’s alternating optimization hypothesis
(Chen & He, 2020), we use a total variance term to encourage the consistency across different
views (xb,k)Kk=1 of the same image xb. To avoid trivial solution of Fθ like a constant function, we
add an entropy maximization term to encourage the representations to contain more information.
Combining total variance minimization with entropy maximization alone, the method can achieve
performance on par with the state-of-the-art (see section 3.5.1). To further increase the quality
of the representations, we added a rank (linear independence) maximization term to encourage all
feature dimensions of the representation to be linearly independent to remove redundancy. In the
following sections, we introduce the total variance minimization, entropy maximization, and rank
(linear independence) maximization terms in detail.

2.1 TOTAL VARIANCE MINIMIZATION

Among the recent advances of self-supervised learning algorithms (Chen & He, 2020; Grill et al.,
2020; Caron et al., 2020), SimSiam by Chen & He (2020) proposes a Siamese architecture that uses
consistency regularization on representations encoded by encoder network Fθ to learn high quality
representations without negative pairs. The key to SimSiam’s success is the stop-gradient operation
on one head of Siamese architecture which prevents the gradient propagation through that head.
Without this operation, SimSiam can easily learn a constant mapping and the quality of the repre-
sentations is degenerated (Chen & He, 2020). However, the presence of a stop-gradient operation
in the SimSiam loss makes the method less interpretable. Although on the surface, SimSiam only
optimizes the network parameter θ, the authors theorize that SimSiam is actually performing an im-
plicit alternating optimization (Expectation-Maximization like) algorithm on two parameters θ and
η. More concretely, the target of the underlying alternating optimization is

min
θ,η

E
T

x∼X

[
‖Fθ(T (x))− ηx‖22

]
, (1)
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Figure 1: SimMER architecture. For a batch of B images (xb)
B
b=1, each image xb is augmented K

times through the stochastic augmentation function T to generate K views (xb,k)Kk=1. All views are
encoded by the encoder network Fθ (backbone plus projection MLP) to generate K representations
(zb,k)Kk=1. To encourage consistency, we minimize the total variance across all representations of
a single image. To encourage diversity and decoupling of the feature dimension, we maximize the
entropy and rank (linear independence) across the averaged representations of a batch of images.

where η is the extra set of parameter whose size is proportional to the number of images, and ηx
refers to using the image index of x to access a sub-vector of η. The stop-gradient operation ap-
pears as a consequence of introducing this extra parameter η. They further theorize that during the
optimization process, ηx is assigned the average representation of x over the distribution of aug-
mentation, meaning ηx = ET [Fθ(T (x))]. Thus, equation 1 is similar to the trace of the covariance
matrix ofFθ(T (x)), or the total variance ofFθ(T (x)). Inspired by this, we define our total variance
term for consistency regularization as

LTV (θ) = E
T

x∼X

[∥∥∥∥Fθ(T (x))− E
T

[FθT (x)]

∥∥∥∥2
2

]
. (2)

In practice, we use K different views of x to estimate ET [FθT (x)]. Therefore, in a batch of B im-
ages, LTV is calculated as 1

B

∑B
b=1 ‖zb,k − z̄b‖

2
2, where zb,k = Fθ(T (xb)) is the representation of

each view, and z̄b = 1
K

∑K
k=1 zb,k is the averaged representation of each image. This conceptually

forms a completely symmetric K-head architecture and can be viewed as a generalization of the
existing two-head Siamese architecture.

2.2 ENTROPY MAXIMIZATION

Minimizing the total variance term directly will lead to inevitable collapse of the model as it will
quickly degenerate into a constant mapping (see section 3.5.1). In prior works, negative pairs or
ad hoc architecture constructs (e.g., predictor head, stop-gradient, momentum encoder) are used to
prevent such model collapse. However, a large batch size is required to sample enough negative pairs
and architecture constructs often lack interpretability. Inspired by information theory, we introduce
an entropy maximization term, LH , in the loss to prevent model collapse.

We can view the representation encoded by the encoder network as a random variable Z, where
Z = Fθ(T (X)). Since Z is continuous, the classic definition of discrete entropy does not apply. To
measure the entropy of Z, we need to use the notation of differential entropy. Differential entropy is
also related to the shortest description length and is similar in many ways to the entropy of a discrete
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random variable (Cover & Thomas, 2006). More concretely, the differential entropy of Z is defined
as

h(Z) = −
∫
f(z) log f(z)dz, (3)

where f is the probability density function of Z. Since access to the probability density function
of Z requires access to the probability density function of X , which is not feasible. Instead, we
estimate the differential entropy from the samples directly. In particular, we find the classic entropy
estimator based on nearest neighbor distances by Kozachenko & Leonenko (1987) performed well
in practice and offers additional insights to our method. Given a batch of B random representation
vectors (zb)

B
i=1, the nearest neighbor estimate is defined as

h(Z) ≈ ĥ
(
(zb)

B
i=1

)
=

1

B

B∑
b=1

log

(
B min
i∈[B],i6=b

‖zb − zi‖2
)

+ ln 2 + CE , (4)

where CE = −
∫∞
0
e−t log tdt is the Euler constant (Beirlant et al.). Under some mild conditions,

Kozachenko & Leonenko (1987) prove the mean square consistency of ĥ (Beirlant et al.). Removing
the constant terms from ĥ, we obtain the entropy maximization loss of SimMER:

LH(θ) = − 1

B

B∑
b=1

log

(
min

i∈[B],i6=b
‖z̄b − z̄i‖2

)
. (5)

We keep the log term to increase numerical stability during optimization. Intuitively, this loss maxi-
mizes the distance between any two nearest representations in the batch, encouraging all representa-
tions to evenly spread out in the feature space. Additionally, we can also view the nearest neighbor
as a negative sample, comparing with prior contrastive learning methods (He et al., 2020; Chen et al.,
2020a) which consider every other sample as the negative sample. Noticeably, with LTV and LH ,
SimMER can already achieve linear evaluation performance on par with state of the art (see section
3.5.1).

2.3 RANK (LINEAR INDEPENDENCE) MAXIMIZATION

We now introduce a rank maximization term, LR, to increase the linear independence on the rep-
resentation dimension, which reduces redundancy in the learned representations and also prevents
model collapse. To be more specific, given a batch of B representation (zb)

B
b=1 and zb ∈ RD, we

want to maximize rank([zᵀb ]Bb=1), where [zᵀb ]Bb=1 is a matrix of shape B ×D whose b-th row is zᵀb .
To illustrate the effect of maximizing rank([zᵀb ]Bb=1), we use the following toy example. Suppose
that the encoder network Fθ outputs vectors of the form z = (z(1), z(2), z(3)) ∈ R3. If it happens
that for all the z outputted by Fθ, z(3) = z(1) + z(2), then information encoded in z(3) is redundant.
For example, performing linear classification on a truncated vector (z(1), z(2)) will generate the
same result with the original vector z = (z(1), z(2), z(3)) (notice, the actual linear evaluation is not
performed on z directly as we remove the MLP projection head after self-supervised training). Ad-
ditionally, increasing linear independence can also be viewed as strengthening the effect of entropy
maximization term by preventing the representation from concentrating into in a linear subspace of
the Rd. If we maximize LH term alone, it is theoretically possible that our learned representations
are only spread out in a linear subspace of Rd.

Unfortunately, for general matrices, calculating the matrix rank is an NP-hard problem, and the rank
cannot be maximized directly. However, multiple values related to the singular values of the matrix
can be used to measure the level of linear independence and can be optimized easily with gradient
methods. To introduce the four variants of rank maximization loss, we use the following standard
notation: For a rectangular matrixA ∈ Rm×n, we use σi(A) to denote the i-th largest singular value
of A with 1 ≤ i ≤ min(m,n). As a shorthand, we use r to denote rank(A). Notice for i > r, we
have σi(A) = 0.

Total Least Squares Minimization. The total least squares minimization seeks to find a vector
u ∈ Rn on the unit ball that minimizes the 2-norm of vector Au. The value of ‖Au‖2 can be used
to measure the level of linear independence of the columns of A. For example, if there are linearly
dependent columns inA, the value of ‖Au‖2 will become 0. A higher value of the total least squares
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minimum indicates that any linear combination of the columns of A is still far from the zero vector,
thus more linearly independent. Formally, we define the total least squares minimum of a matrix A
as

tlsm(A) = min
u

‖Au‖2 (6)

subj. to ‖u‖2 = 1. (7)

It can be shown that the total least square value of A is the smallest singular value, i.e., tlsm(A) =
σmin(m,n)(A). Here, we define the first variant of LR as

LR1(θ) = −tlsm([zᵀb ]Bb=1). (8)

Nuclear Norm. The nuclear norm of A, denoted as ‖A‖∗, is equal to the sum of all its singular
values, i.e., ‖A‖∗ =

∑r
i=1 σi(A). Fazel Sarjoui (2002) shows that on the unit ball, the convex

envelope of the rank of a matrix is the nuclear norm of a matrix. Here, we define the second variant
of LR as

LR2(θ) = −‖[zᵀb ]Bb=1‖∗. (9)

Normalized Nuclear Norm. We can directly bound the rank with the nuclear norm by normalizing
it with the induced 2-norm or Frobenius norm. The induced 2-norm of A, denoted as ‖A‖2, is
defined as

‖A‖2 = max
u

‖Au‖2 (10)

subj. to ‖u‖2 = 1. (11)

It is well known that the induced 2-norm is equal to the largest singular value, i.e., ‖A‖2 = σ1(A).
Moreover, the Frobenius norm, denoted as ‖A‖F , is equal to the l2 norm of the singular value
vector, i.e., ‖A‖F = (

∑r
i=1 σi(A))

1
2 . We can obtain the following inequality with Cauchy–Schwarz

inequality:
‖A‖∗ ≤

√
r‖A‖F ≤ r‖A‖2. (12)

Therefore, we have r ≥ ‖A‖∗
‖A‖2 and r ≥

(
‖A‖∗
‖A‖F

)2
. We can use these to define our third and fourth

variants of LR:

LR3(θ) = − 1

min(B,D)

‖[zᵀb ]Bb=1‖∗
‖[zᵀb ]Bb=1‖2

(13)

LR4(θ) = − 1

min(B,D)

( ‖[zᵀb ]Bb=1‖∗
‖[zᵀb ]Bb=1‖F

)2

. (14)

The term 1
min(B,D) is added to normalize the loss to [0, 1], as min(B,D) is the maximum possible

rank. In practice, we find that all four variants can further improve the performance of our method.
LR1, LR3, and LR4 have a theoretical lead as the total least squares minimum measures the level of
linear independence directly, and the normalized nuclear norm provides a lower bound of the rank.
However, we choose to use the nuclear norm variant LR2 (equation 9) as we observe it works better
in practice. Additionally, a bias column can be horizontally concatenated to [zᵀb ]Bb=1 to ensure that
the learned representation does not collapse into an affine subspace instead of a linear subspace.
More specifically, we can maximize LR on [zᵀb , 1]Bb=1 instead of [zᵀb ]Bb=1, where the b-th row of
[zᵀb , 1]Bb=1 is zᵀb concatenated with 1. A full ablation study on these variants is in section 3.5.2.

2.4 SIMMER

With all three components, LTV ,LH ,LR, we now introduce our complete loss function:

LSimMER(θ) = LTV (θ) + αHLH(θ) + αRLR(θ). (15)

SimMER loss imposes consistency across different views of the same image by minimizing LTV .
Minimizing LH and LR raises the level of entropy and linear independence to prevent the output
representations from collapsing to a single point or a linear subspace of RD. Lastly, LR also removes
the redundancy in the representations by enforcing feature dimensions to be not linearly dependent.
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We use two hyperparameters αH and αR to control the balance between the three terms. The
pseudo-code of calculating LSimMER is provided in algorithm 1.

Algorithm 1: SimMER Loss
input : a batch of B unlabeled images (xi)

B
i=1, number of views K, weight for the entropy maximization

loss αH , weight for the rank maximization loss αR
1 for b← 1 to B do
2 for k ← 1 to K do
3 zb,k = Fθ(T (xb)) .get representations of K views of B images

4 z̄b = 1
K

∑K
k=1 zb,k .get the averaged representation

5 LTV = 1
B

∑B
b=1 ‖zb,k − z̄b‖

2
2

6 LH = − 1
B

∑B
b=1 log

(
mini∈[B],i 6=b ‖z̄b − z̄i‖2

)
.[z̄b

ᵀ]Bb=1 denotes a matrix whose b-th rows is z̄bᵀ

7 LR = −‖[z̄bᵀ]Bb=1‖∗
output: LTV + αHLH + αRLR

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

We use ResNet-18 and ResNet-50 (He et al., 2016) as our backbone. Our projection MLP follows
the implementation of SimSiam (Chen & He, 2020). During self-supervised training, the projec-
tion MLP is attached to the output of the final pooling layer of the backbone. Unless specified
otherwise, the following are the default configuration used in all experiments, which are mainly
derived from SimSiam (Chen & He, 2020). We use Adam (Kingma & Ba, 2015) with weight de-
cay as the optimizer (base lr = 0.001, weight decay = 1 × 10−6) to train on the full training
set for 800 epochs with batch size B = 512 (Chen & He, 2020). For hyperparameters, we choose
αH = 0.1, αR = 2 × 10−4,K = 4. We also follow Goyal et al. (2018)’s linear learning rate
scaling scheme, i.e., lr = base lr ×B/256. During self-supervised training, linear evaluation, and
semi-supervised finetuning stages, we use a cosine learning rate scheduler to decay the learning rate
(Loshchilov & Hutter, 2016). To be consistent with SimSiam, we use a 3 layer MLP on ResNet-50
and 2 layer MLP on ResNet-18. We use the same type of stochastic data augmentation as that of
SimSiam. We use linear evaluation to evaluate the quality of the representation learned by Sim-
MER. Additionally, we use a partially labeled dataset to finetune the model to draw comparisons
with semi-supervised methods. Unlike many baselines (Chen & He, 2020; Caron et al., 2020; Grill
et al., 2020), we do not apply any normalization to our representations.

3.2 DATASETS

CIFAR-10. CIFAR-10 is a commonly used dataset that contains 60K images of size 32× 32. The
training set and the test set each contain 50K and 10K images uniformly distributed in 10 classes.
We use the full training set for self-supervised training.

Mini-ImageNet. Mini-ImageNet has a total of 60K images of shape 84 × 84 with 100 classes
(600 images per class). Mini-ImageNet was originally proposed by Vinyals et al. (2016). As a
resized subset of the full ILSVRC2012 ImageNet dataset (Russakovsky et al., 2015), it has a high
level of complexity while training on Mini-ImageNet requires less computation power than the full
ImageNet. Although it is originally designed for meta-learning, recently, there is a rising trend for
using this ImageNet subset as a benchmark in the weakly-supervised learning literature (Hu et al.,
2021; Kuo et al., 2020; Iscen et al., 2019) due to its high complexity. We follow the protocol of
Iscen et al. (2019), in which 500 images are selected from each class to form the training set, and
the remaining 100 images of each class are used for testing. We use the full training set for self-
supervised training.

3.3 LINEAR EVALUATION

We closely follow SimSiam’s linear evaluation protocol. During linear evaluation, we freeze the
backbone and replace the MLP projection head with a linear classifier. We train the linear classifier
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alone on the full training set for 90 epochs with LARS (You et al., 2017) optimizer. The batch size
is 4096 and we linearly scale the base learning rate to be lr = 0.1 × 4096/256. The weight decay
is set to be 0. The final test accuracy is calculated on the entire test set. We use SimSiam (Chen &
He, 2020), SimCLR (Chen et al., 2020a), MoCo (He et al., 2020), MoCo v2 (Chen et al., 2020c),
SwAV (Caron et al., 2020), and BYOL (Grill et al., 2020) as our baselines. We are unable to provide
a comparison with VICReg (Bardes et al., 2021) due to unavailability of the code.

CIFAR-10. Following SimSiam and MoCo, we use ResNet-18 CIFAR variant for all CIFAR-10
experiments. It uses a smaller kernel on the first convolution layer and turns off the first max-pooling
layer. Table 1 shows that our method outperforms all baselines. Both SimSiam and SimCLR scores
are reported in the SimSiam paper (Chen & He, 2020), and the MoCo score is reported in MoCo’s
official code repository (He et al., 2021). We use 10 views in this experiment. Since we believe the
model is saturated on CIFAR-10, any gain of accuracy on CIFAR-10 is difficult.

Table 1: CIFAR-10 top-1 linear evaluation test accuracy. All experiments use ResNet-18. † reported
in SimSiam. ∗ reported in MoCo’s original code repository.

Method Accuracy (%) Negative Pair Stop-gradient Predictor Memory Bank Momentum Encoder
MoCo∗ 90.70 X X X

SimCLR† 91.10 X
SimSiam† 91.80 X X
SimMER 92.61

Mini-ImageNet. We used ResNet-50 for all Mini-ImageNet experiments. Since the baseline
methods do not have Mini-ImageNet results, we used the official implementation of MoCo, MoCo
v2, SwAV, and SimSiam to conduct the experiments (He et al., 2020; Chen & He, 2020; Caron
et al., 2020). A popular deep learning research library, PyTorch Lightning (Falcon & The PyTorch
Lightning team, 2019), provides the implementation for BYOL (Grill et al., 2020). We also used
the default ResNet-50 hyperparameters provided in each baseline method to obtain the results. As
shown in Table 2, SimMER significantly improves all baseline methods on Mini-ImageNet.

Table 2: Mini-ImageNet top-1 linear evaluation test accuracy. All experiments use ResNet-50. ∗
use original implementation. † uses implementation provided by Pytorch-Lightning.

Method Accuracy (%) Negative Pair Stop-gradient Predictor Momentum Encoder Memory Bank
MoCo v2∗ 55.30 X X X

SwAV∗ 42.70 X
BYOL† 59.46 X X X

SimSiam∗ 58.14 X X
SimMER 62.62

3.4 SEMI-SUPERVISED EXPERIMENTS

To compare with semi-supervised learning methods, we finetune our self-supervised pretrained
model on a fraction of the labeled train set and evaluate the classification accuracy on the test set.
In particular, after replacing the MLP projection head with a linear classifier, we train the backbone
and linear classifier together with separate learning rates. The base learning rate for the classifier is
0.1, and the backbone’s base learning rate is 0.001. Linear learning rate scaling still applies. We use
SGD with momentum (0.9) and no weight decay as the optimizer. We turn off the first max-pooling
layer of the backbone. We use MeanTeacher (Tarvainen & Valpola, 2017), Label Propagation (Iscen
et al., 2019), SimPLE (Hu et al., 2021), FeatMatch (Kuo et al., 2020) as our baselines. We finetune
our model with a batch size of 512 on the exact 40-shot train split (40 images for each class, 4000
images in total) used by Hu et al. (2021) for 40 epochs. Results are in table 3. Although SimMER
is not specifically designed for the semi-supervised learning task, it achieves accuracy on par with
state-of-the-art methods.
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Table 3: Mini-ImageNet 40 shot semi-supervised top-1 test accuracy. All experiments use ResNet-
18. ∗ are reported in Label Propagation. † are reported in their own original publications.

Method MeanTeacher∗ Label Propagation∗ SimPLE† FeatMatch† SimMER
Accuracy (%) 27.49 29.71 49.39 60.95 60.94

3.5 ABLATION STUDY

We conducted our ablation study with the ResNet-18 CIFAR variant (Chen & He, 2020; He et al.,
2020) on CIFAR-10. The quality of the learned representation is evaluated by the linear evaluation
protocol introduced in Section 3.3.

3.5.1 EFFECT OF HYPERPARAMETERS

We conducted an extensive study on the effect of hyperparameters. The results are available in Table
4. We found that the method is not sensitive to changes in hyperparameters. Notice, when αH = 0,
the rank maximization loss LR alone can stop the model from collapsing though suffering a loss of
performance. With αR = 0, the entropy maximization loss, LH , alone can achieve performance
on par with state-of-the-art methods. The performance gain of enabling LR is observable but not
significant. Increasing the number of views, K, generally increases the performance. Our method
works on a small batch size of B = 64 or B = 128, showing the calculation of LH and LR is
not heavily dependent on a large batch size. Lastly, when both αH = 0 and αR = 0, the model
collapses as we expected.

Table 4: Ablation study on CIFAR-10. All experiments use ResNet-18. We study the effect of αH ,
αR, number of views K, and batch size B. The first row serves as the basis for comparison, and
shaded areas indicate changes of hyperparameters.

αH αR Num. Views (K) Batch Size (B) Accuracy (%)
0.1 2× 10−4 4 512 92.44
0 2× 10−4 4 512 82.50
1 2× 10−4 4 512 91.20
10 2× 10−4 4 512 90.01
0.1 0 4 512 91.53
0.1 2× 10−5 4 512 91.77
0.1 2× 10−2 4 512 90.32
0.1 2× 10−4 10 512 92.61
0.1 2× 10−4 3 512 91.96
0.1 2× 10−4 4 64 91.44
0.1 2× 10−4 4 128 92.07
0 0 4 512 10.00

3.5.2 EFFECT OF RANK MAXIMIZATION LOSS VARIANT

We conducted experiments on the four variants of the rank maximization loss, LR. The four variants
are total least square minimum (LR1), nuclear norm (LR2), nuclear norm normalized by induced
norm (LR3), and nuclear norm normalized by Frobenius norm (LR4). Additionally, we study the
effect of attaching a bias column to the batch representation matrix [zᵀb ]Bb=1, which prevents the
representations from collapsing into affine subspaces instead of linear subspaces. Although LR1,
LR3, and LR4) seem to be a better measurement of linear independence in theory, we found simple
nuclear norm LR2 works best. Although we observe an increment in performance with the bias
column attached, we decide not to use it in the main experiments for simplicity.
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Table 5: Ablation study on the effect of different variants of LR conducted on CIFAR-10. All
experiments use ResNet-18. By default, we use LR2, the nuclear norm, as LR. The index in the
subscript of loss weight αR indicates which variation the weight is acting on.

αR2 αR1 αR3 αR4 Use Bias Accuracy (%)
2× 10−4 0 0 0 92.44

0 2× 10−3 0 0 91.64
0 0 2× 10−3 0 91.81
0 0 0 2× 10−3 91.82

2× 10−4 0 0 0 X 92.52

4 RELATED WORK

Contrastive learning. Contrastive learning methods learn effective features by pushing away the
representations of negative pairs and force positive pairs to have the same representations. Positive
pairs are usually constructed from differently augmented versions of the same input, while negative
pairs are all other inputs in a mini-batch. In other words, each input sample is considered as a class
in the contrastive learning paradigm. Contrastive methods (Chen et al., 2020a; He et al., 2020; Chen
et al., 2020b;c) have achieved state-of-the-art performance in many tasks. The success of contrastive
methods, however, depends on a large number of negative samples. This can be achieved by either
using a large batch size (Chen et al., 2020a;b) or a memory bank (He et al., 2020; Chen et al., 2020c).
Both approaches require a large amount of memory and are computationally expensive.

Consistency Regularization. Similar to contrastive methods, consistency regularization based al-
gorithms (Grill et al., 2020; Chen & He, 2020; Caron et al., 2020) also force the model to produce
the similar representation for different views of the same input; however, consistency based methods
do not use negative pairs. Without the need for a large batch size, they are generally less compu-
tationally expensive and have a smaller memory footprint. On the other hand, not using negative
examples could lead to trivial solutions such as a constant mapping where all inputs are mapped to
the same value. Therefore, the most important problem in consistency based methods is to add a
constraint so that the model does not learn a degenerate mapping. Common approaches to prevent
collapsing are asymmetric architecture, ad hoc architecture design, and stop gradient operations.
Bardes et al. (2021) use an invariance loss for consistency regularization, a variance loss to prevent
model collapsing, and a covariance loss to decorrelate the features.

Information Theory. Information theory has been widely utilized in self-supervised representa-
tion learning. For discrete representations, Hu et al. (2017) proposed the idea of maximizing the
mutual information between input and representation while regularizing the network with consis-
tency. Hjelm et al. (2018) also encourages the idea of maximizing mutual information between
input and representations. Recently, more works start to focus on learning minimal sufficient repre-
sentation. Tian et al. (2020) explore the importance of the augmentation in the lens of information
theory and argues that mutual information between views should be minimized while keeping the
task-relevant information intact. Tsai et al. (2021) further study the minimal sufficient representation
problem and connect prior contrastive and predictive learning objectives to information theory.

5 CONCLUSION

We propose SimMER, a self-supervised learning algorithm. SimMER improves on previous works
(Hu et al., 2021; He et al., 2020; Chen et al., 2020a; Grill et al., 2020; Caron et al., 2020) by replac-
ing negative pairs and ad hoc architecture constructs with an interpretable trade-off between consis-
tency regularization, entropy, and linear independence. Extensive experiments over standard datasets
demonstrate the effectiveness of the SimMER. SimMER shows significant performance gains over
previous state-of-the-art self-supervised learning methods on CIFAR-10 and Mini-ImageNet dur-
ing linear evaluation. Furthermore, although not designed specifically for semi-supervised learning
tasks, SimMER achieves performance on par with state-of-the-art semi-supervised methods.
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