
DAPO : Improving Multi-Step Reasoning Abilities of
Large Language Models with Direct Advantage-Based

Policy Optimization

Jiacai Liu1,2 Chaojie Wang1,† Chris Yuhao Liu1 Liang Zeng1 Rui Yan1

Yiwen Sun2 Yang Liu1 Yahui Zhou1

1Skywork AI 2Fudan University
{jiacai.liu,chaojie.wang}@kunlun-inc.com

Abstract

The role of reinforcement learning (RL) in enhancing the reasoning of large lan-
guage models (LLMs) is becoming increasingly significant. Despite the success of
RL in many scenarios, there are still many challenges in improving the reasoning
of LLMs. One key challenge is the sparse reward, which introduces more training
variance in policy optimization and makes it difficult to obtain a good estimation for
value function in Actor-Critic (AC) methods. To address these issues, we introduce
Direct Advantage-Based Policy Optimization (DAPO), a novel step-level offline
RL algorithm with theoretical guarantees for enhancing the reasoning abilities of
LLMs. Unlike response-level methods (such as DPO and GRPO) that the update
directions of all reasoning steps are governed by the outcome reward uniformly,
DAPO employs a critic function to provide step-level dense signals for policy
optimization. Additionally, the actor and critic in DAPO are trained independently,
ensuring that critic is a good estimation of true state value function and avoiding
the co-training instability observed in standard AC methods. We train DAPO on
mathematical and code problems and then evaluate its performance on multiple
benchmarks. Our results show that DAPO can effectively enhance the mathemati-
cal and code capabilities on both SFT models and RL models, demonstrating the
effectiveness of DAPO.

1 Introduction

In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have
emerged as a cornerstone of natural language processing (NLP) and beyond. These models, trained
on vast corpora of text data, have demonstrated an unprecedented ability to understand [16, 3],
generate, and reasoning such as solving mathematical problems [61, 48, 63, 53] and code generations
[23, 8]. When the token generation process of a LLM is modeled as a Markov Decision Process
(MDP), it can be naturally optimized and aligned with human preference using reinforcement learning
(RL) methods, known as Reinforcement Learning from Human Feedback (RLHF). Despite the success
of RLHF in various fields [11, 42, 43, 55, 46, 6], it still encounters challenges and difficulties in the
field of reasoning especially in long Chain-of-Thought (CoT) models. One of the key challenges
is the sparsity of rewards [44, 57]. When using LLMs for mathematical problem-solving and code
generation, rewards are only assigned to the terminal tokens. This implies that the intermediate tokens
receives no direct reward, and the optimization direction relies solely on the backpropagation of the
reward from the terminal token. Consequently, there are two issues in practical RL training:

† Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Step B.1 : Compute Advantages

CRITIC

GENERATOR

Step A.1 : Generation

Query q : What is the
smallest positive integer

that ends in 9 and is
divisible by 7

Training Query Set

Intermediate Step x : Let's
list some numbers that
end in 9: 9, 19, 29, 39\n

COMPLETER

Wait, Let’s double ... Final answer 119

Let's check if any … Final answer 119

So, our number can … Final answer 50

Golden
Answer

119

State s :=
Concat(q,x)

Step B.2 : Direct Advantage Policy Optimization

Input : State s Predict

Next Step a1

…

Next Step anAction a ~ LLM (·|s)

Pretrained

Q1=V(s,a1)

…

Qn=V(s,an)

Step A.2 : Completion

Optimize

LLM Policy

State s Action a
Advantage A

State s :=
Concat(q,x)

Advantage
A=Q-E[Q]

Next Step Generation

Figure 1: Direct Advantage-Based Policy Optimization (DAPO). The whole training procedure of
DAPO consists of two individual stages : 1) Critic Training (left). Given the training query set Q,
for each query q ∈ Q, DAPO uses the generator πgen to generate multiple rollouts from q and derive
a dataset of training states denoted as Dgen. For each state in s ∈ Dgen, DAPO uses the completer
(often πref) to sample multiple sub-trajectory from s and collects the MC value as the estimation of
the true value. Then a critic network Vϕ is trained to approximate the value function of the completer.
2) Policy Optimization (right). After extracting multiple next steps {ai}ni=1 of each state s from the
completions in step A.1, DAPO then uses the trained critic to compute the advantages for all actions
by ∀i ∈ [n] : Ai = Qi − 1

n

∑n
j=1 Qj and Qi is the predicted value of Concat(s, ai). Finally, DAPO

fits the policy ratio to the advantage to optimize the generation of reasoning steps.

High training variance induced by response-level algorithms. Response-level algorithms (such
as DPO [42], GRPO [48], ReMax[30] and etc) treat the complete response as a unified whole and
the gradient directions across all reasoning steps within the response are governed by the final
reward uniformly. Although response-level algorithms have recently achieved great success, such as
Deepseek-R1 [10], the sparsity of the reward indeed introduces more training variance and addressing
the training variance introduced by it would lead to a larger performance improvement. See Section
D for detailed discussions.

Bad value estimation in actor-critic methods. When applying standard actor-critic methods
[46, 15, 12] to LLMs, due to the sparsity of the reward and vast generation policy, the critic often fails
not only to learn a good semantic representation but also to provide the fine-grained credit assignment
for policy optimization, leading to the poor performance of online actor-critic methods [25, 62] such
as PPO [46]. Besides, these methods train the actor and critic simultaneously and the regression
targets of both actor and critic are non-stationary and change in response to the updates of the other
during the training process. This interwoven update mechanism also leads to an unstable training
process that is prone to collapse [27, 12] especially when the critic is not a good approximation of
the true value function.

In order to overcome these challenges, we introduce Direct Advantage-Based Policy Optimization
(DAPO), a new step-level offline actor-critic method designed to enhance LLM’s performance in
reasoning tasks. In order to reduce the training variance induced by the sparsity of the reward, we use
a critic function to provide dense training signals. To ensure that the critic function is well-trained,
DAPO trains the critic individually before policy optimization to ensure it is a good approximation of
the true state value function. The procedure of DAPO is visualized in Figure 1. We summarize our
contributions as follows:

• We introduce DAPO, a new step-level, offline RL method that learns from all generated
samples. DAPO optimizes the generation of the reasoning steps by sampling multiple
candidate steps for each intermediate step s and updating the policy according to the

2

advantages of each candidate step. Our main theoretical result (see Theorem 3.2) shows that
DAPO will produce a better policy until the reference policy is already optimal.

• We conduct extensive experiments to demonstrate the effectiveness of DAPO. DAPO im-
proves the performance on multiple mathematical and coding benchmarks. Our results
empirically shows that DAPO consistently outperforms both the response-level baseline
GRPO and the actor-critic baseline PPO on multiple base models .

2 Preliminaries

In this section, we introduce the mathematical formulation of RL problem we studied and some
important related theoretical results.

RL reasoning. The objective for RL reasoning can be formulated as
max
π

Ex∼µ

[
Ey∼π(·|x) [r (x, y)]− βKL

(
πx, π

ref
x

)]
, (1)

where µ is the distribution of training prompt x, y is the response sampled from policy π(·|x),
r(x, y) ∈ {0, 1} is the binary reward for the correctness of the response, πx, π

ref
x are short for

π(·|x), πref(·|x) respectively, πref is the reference policy, β ≥ 0 is the coefficient of KL regularization.

Equivalency to multi-step decision problem. We use the line break \n as the delimiter for
reasoning steps. By doing so, a response y can be divided into multiple reasoning steps, i.e. y =
(a0, ..., aT−1), where ∀t ≥ 0 at is the reasoning step and T is the total number of steps. Thus one
can easily show that the objective 1 is equivalent to following step-level decision problem:

max
π

Ex∼µ

[
E∀t:at∼π(·|st)

[
T−1∑
t=0

r (st, at)− βKL
(
πst , π

ref
st

)
|s0 = x

]]
, (2)

where st := Concat(x, a0, ..., at−1) is the state (context prefix), the reasoning step at is sampled
from policy π(·|st) (here we use π to denote both step generation and response generation policy
with a slightly abuse of the notation), πst , π

ref
st are short for π(·|st), πref(·|st) respectively and the

reward function r satisfies

r (st, at) =

{
r (x, y) t = T − 1

0 t < T − 1.

For any state s ∈ S, we define as

V π
β (s) := E∀t:at∼π(·|st)

[
T−1∑
t=0

r (st, at)− βKL
(
πst , π

ref
st

)
|s0 = s

]
. (3)

Thus the objective (2) is equivalent to finding a policy π that maximizes the state value function, i.e.,
max
π

Ex∼µ

[
V π
β (x)

]
. (4)

We denote π∗
β as the optimal policy of objective (4) and V ∗

β := V
π∗
β

β as the state value function of
optimal policy. We define the state space S as the set of all possible states that can be encountered in
the response y and the action spaceA as the set of all possible singular reasoning steps. For simplicity
of analysis, we introduce the following assumptions in this work.
Assumption 2.1. We assume there exists a constant H1 <∞ such that for any policy π and initial
state s0 ∈ S, the random decision horizon T satisfies T < H1 almost surely. We also assume that
there exists a constant H2 <∞ such that for any singular reasoning step a ∈ A, the token length of
a is no greater than H2 so that the state space S and action space A are both finite.

More value functions. We define the KL-constrained state-action value function as
Qπ

β (s, a) := r (s, a) + V π
β (s ◦ a) , (5)

where s ◦ a := Concat(s, a). The advantage function Aπ
β is defined as

Aπ
β (s, a) := Qπ

β (s, a)− V π
β (s)− β log

π (a|s)
πref (a|s)

. (6)

We denote Q∗
β (s, a) := r (s, a) + V ∗

β (s). For unregularized state value functions, i.e. β = 0, we use
V π, Qπ, Aπ instead of V π

0 , Qπ
0 , A

π
0 to be aligned with the standard RL literatures.

3

Bellman operators For arbitrary policy π ∈ Π and any function V : S → R, the Bellman operator
T π
β is defined as

∀s ∈ S :[T π
β V] (s) = Ea∼π(·|s)

[
r (s, a) + V (f(s, a))− β log

π (a|s)
πref (a|s)

]
. (7)

Performance difference lemma. Following is the key theoretical analysis tool used in this work.

Lemma 2.2. For arbitrary two policies π, π̃ ∈ Π and any distribution ρ ∈ ∆(S),

V π
β (ρ)− V π̃

β (ρ) = Es∼dπ
ρ

[
T π
β V π̃

β (s)− V π̃
β (s)

]
, (8)

where V π
β (ρ) := Es∼ρ

[
V π
β (s)

]
and the visitation measure dπρ is defined as,

dπρ (s) := E∀t:at∼π(·|st)

[
T−1∑
t=0

1 {st = s}|s0 ∼ ρ

]
.

The proof of this lemma is deferred to the Appendix C. We also put some additional theoretical
results about MDP on Appendix B.

Remark 2.1. Note that our definition of visitation measure, dπρ is not standard as the one in [1, 33].
The reason is that the planing horizon in problem (2), i.e. T , is random while it is the constant 1

1−γ

in [1, 33]. Thus we do not try to normalize dπρ to a probability distribution by dividing T directly.

3 Direct Advantage-Based Policy Optimization

In this section, we present the details of DAPO. We only consider the case where a binary reward
r(s, a) ∈ {0, 1} is assigned in the terminal state since it is the most common situation in the LLMs
setting. We first present the objective of policy optimization with related theoretical results in Section
3.1 assuming that one has access to the true value function.

3.1 Policy objective

We first derive the policy optimization objective in one single iteration provided with the reference
policy πref . In the perspective of policy optimization, the most important quantity may be the
advantage function. Recall Lemma 2.2. The performance difference for any policy π ∈ Π w.r.t πref

on arbitrary ρ ∈ ∆(S) is measured as

V π
β (ρ)− V πref

β (ρ) := Es∼dπ
ρ

T π
β V πref

β (s)− V πref

β (s)︸ ︷︷ ︸
:=Is(π,πref)

 ,

where Is (π, πref) can be regarded as the policy improvement at state s. By the definition of Bellman
operator T π

β in (7) and that of function V π
β in (3), one can easily show that

Is (π, πref) = Ea∼π(·|s)

[
Aπref (s, a)− β log

π (a|s)
πref (a|s)

]
.

A natural idea that ensures V π
β (ρ) − V πref

β (ρ) ≥ 0 might be to increase Is (π, πref) on as many
states s as possible. For ease of understanding, we first focus on how to increase Is (π, πref) at an
arbitrary state s ∈ S . Considering parameterized policy πθ, the most directly and easily method may
be to do multi gradient ascent steps w.r.t Is (πθ, πref), i.e.,

∀K ∈ N+, θK = θ0 + η

K−1∑
k=0

∇θIθ (πθk , πref), (9)

where η is the step size. Following lemma gives an equivalent form of∇θIs (πθk , πref).

4

Lemma 3.1. If we define the surrogate function

Hk
s (θ) :=

1

2
Ea∼πθk

(·|s)

(
1

β
Aπref (s, a)− log

πθ (a|s)
πref (a|s)

)2

,

then∇θIs (πθk , πref) = −β∇θHk
s (θ) .

By Lemma 3.1, the update (9) is equivalent to

θK = θ0 − ηβ

K−1∑
k=0

∇θHk
s (θk). (10)

We now to turn to the offline policy optimization problem setting for the sake of implementation
simplicity and data efficiency. A natural question is that can we implement (10) approximately in an
offline dataset without sampling the on-policy rollouts at each iteration? Our answer is affirmative.
We find that (which will be proved latter), just solving the problem

min
θ

1

2
Ea∼ν(·|s)

(
1

β
Aπref (s, a)− log

πθ (a|s)
πref (a|s)

)2

, (11)

where ν ∈ ∆(A) can be any exploratory sampling distribution, can still yield a policy that
Is (πθ, πref) > 0 unless πref = π∗

β . Taking the consideration of optimizing multiple states si-
multaneously (weighted by a state sampling distribution νS), the objective of DAPO is

min
θ
L (θ) := 1

2
Es∼νS ,a∼νA(·|s)

[(
1

β
Aπref (s, a)− log

πθ (a|s)
πref (a|s)

)2
]

(12)

Remark 3.1. We give a detailed discussion in Section D on how DAPO is specifically designed
to improve multi-step reasoning abilities of LLMs, thereby distinguishing it from response-level
optimization algorithms such as DPO [42], GRPO [48] and etc.

Notice that the state space S and the action space A are both finite under the assumption 2.1.
Following theorem establish the validity of Loss (12) and shows that the solution of (12) is a better
policy w.r.t πref on objective (4).
Theorem 3.2 (Monotonic improvement). Suppose ∀s ∈ S, a ∈ A, νS(s) > 0, νA(a|s) >
0, πref(a|s) > 0. Let π+ be the solution in (12). Then for any state s ∈ S, there exists a func-
tion λs : ∆ (A)→ [0,+∞) such that

V π+

β (µ)− V πref

β (µ) ≥ E
s∼dπ+

D
[λs (νA)] ≥ 0.

The equality holds if and only if πref = π∗
β .

Remark 3.2. The function λs serves as a lower bound of the policy improvement Is (π+, πref) in
each states s. Since Theorem 3.2 is established for arbitrary exploratory νA, λs should be a function
of νA. For the case νA (·|s) = πref (·|s), one can show that

λs (πref) = β ·KL
(
πref (·|s) , π+ (·|s)

)
,

by combining (20) and (21) in the proof of Theorem 3.2. It remains as a great interest for us to derive
a more precise expression of λs and figure out which νA should yield biggest lower bound.

Theorem 3.2 implies that DAPO can improve the performance until there is no room for improvement
in the trust region of πref. Theorem 3.2 also establishes the monotonic improvement property on
unregularized state value function. This can be verified by

V π+

(µ) = V π+

β (µ) + Es∼dπ+
µ

[
KL
(
π+ (·|s) , πref (·|s)

)]
≥ V π+

β (µ) ≥ V πref

β (µ) = V πref (µ) .

Implementation of DAPO. In practice, DAPO can be implemented by minimizing (12) on an

offline training dataset D =
{(

si, ai, Âi

)}N

i=1
, where si ∼ νS , ai ∼ νA(·|s) and Âi is an

estimation of true advantage Aπref (si, ai). The whole procedure can be found in Algorithm 1.

5

Advantage estimation. Recall the definition of Q function in (5) and advantage function in (6).
For non-terminal states, one has r(s, a) = 0 and

Aπref (s, a) = Qπref (s, a)− V πref (s) = V πref (s ◦ a)− Ea′∼πref (·|s) [V
πref (s ◦ a′)] .

Thus in our implementation, we sample multiple actions {ai}Mi=1 for each state s from πref(·|s) and
estimate the advantage of each action by

∀i ∈ [m] : Â (s, ai) := Vϕ (s ◦ ai)−
1

M

M∑
j=1

Vϕ (s ◦ aj) . (13)

Here Vϕ ≈ V πref is a pretrained critic function. Since (13) is fully determined by the critic Vϕ, thus
the training of Vϕ plays a crucial role for the optimization of training states. In the following, we
introduce the optimization method of Vϕ.

3.2 Critic objective

Generally speaking, the critic optimization problem for any target policy π can be formulated as

min
ϕ

Es∼D [L (Vϕ (s) , V
π (s))] , (14)

here L is a sample-wise loss function, D is the distribution of training states. However, since the
target V πref(s) can not be accessed to in advance, we need to construct the estimate of V π as the
training samples for the optimization of Vϕ. One can show that

V π (s) = E

[
T−1∑
t=0

r (st, at) |s0 = s

]
= Pπ (r (sT−1, aT−1) = 1|s0 = s) .

Thus, one can firstly use a behavior policy πgen (also called generator) to generate a set of training
states s. Then for each training state s, one can use π as the completer to sample N sub-trajectories

from s,
{
τi =

(
s, a

(i)
0 , a

(i)
1 , ..., a

(i)
Ti−1

) }N

i=1
, and construct the empirical MC mean,

MCN (s) :=
1

N

N∑
i=1

r (sTi−1, aTi−1) ,

as the estimation of V π(s), which is guaranteed to converge to V π(s) as n→∞ by the strong law
of large numbers. Notice that the state value V π(s) is a probability. Thus we the binary cross-entropy
loss in our implementation, i.e.,

LBCE(y, ypred) = − (y log(ypred) + (1− y) log(1− ypred))

as the sample-wise loss function L in (14) to avoid gradient diminishing if a MSE loss is applied
(which is more common in RL literatures). Finally, the critic optimization objective is

min
ϕ

Es∼D [LBCE (MCN (s) , Vϕ (s))] . (15)

Remark 3.3 (Should we treat Vϕ as a PRM?). Its worthy to note that the critic training method we
presented above is mostly aligned with [56]. However, we argue that the Vϕ should be treated as a
value function other than a process reward model. Here are the reasons : 1) From the optimization
perspective, Vϕ is trained to approximate the true state value of the completer. 2) From the RL
perspective, using Vϕ as a reward function will deviate from the original RLHF optimization objective
and easily lead to a serve reward hacking issue on the number of reasoning steps as shown in [13].

4 Experiments

In this section, we conduct DAPO on mathematical and coding datasets individually. The experimental
setup is detailed in Section 4.1, and specific conclusions and benchmark results of our experiments is
presented in Section 4.2.

6

Model In Domain Out of Domain
MATH GSM8K Minerva MATH Olympiad Bench College Math

SFT Models
Skywork-Math-Llama 41.90 61.49 5.51 18.68 24.85

+ DAPO 46.88+4.98 67.55+6.06 7.34+1.82 22.38 +3.70 25.87 +1.03

Llama-3.1-8B-Instruct 49.42 85.29 26.48 16.14 30.91
+ DAPO 53.62+4.20 86.74+1.45 23.54−2.94 20.01 +3.88 30.91 +1.63

OpenO1-Llama-8B-v0.1 52.73 85.99 29.04 19.86 29.10
+ DAPO 60.33 +7.60 88.77 +2.78 29.42 +0.39 24.44 +4.59 32.12 +3.02

Qwen2.5-72B-instruct 82.90 95.40 46.30 45.45 43.00
+ DAPO 84.70 +1.80 95.70 +0.30 50.00 +3.70 47.70 +2.25 43.40 +0.40

RL Models
Qwen2-Math-7B-Instruct 74.46 89.38 40.07 34.36 41.59

+ DAPO 75.41 +0.95 89.45+0.07 37.51−2.56 37.03 +2.67 42.23 +0.64

Skywork-O1-Open-Llama3.1-8B 78.10 91.64 26.10 43.11 40.40
+ DAPO 79.81 +1.71 92.81 +1.17 29.77 +3.67 44.76 +1.65 40.26 −0.14

Qwen2.5-Math-7B-Instruct 83.42 95.78 40.06 38.96 42.65
+ DAPO 84.86 +1.44 96.14+0.36 41.56+1.50 41.25 +2.29 41.97 −0.67

Table 1: Performance of models optimized via DAPO on mathematical benchmarks. We use zero-shot
prompting and greedy decoding for all evaluations in the table. Across a wide range of model families
and out-of-domain math word problem benchmarks, DAPO achieves steady improvement with only
7.5K training samples from MATH [18].

SFT Model Out of Domain
HumanEval HumanEval+ MBPP MBPP+ LiveCodeBench

Llama-3.1-8B-Instruct 72.0 66.5 72.0 56.9 18.8
+ DAPO 75.0+3.0 68.9+2.4 77.0+5.0 66.1 +9.2 20.9 +2.1

OpenO1-Llama-8B-v0.1 69.5 61.0 69.8 58.7 16.1
+ DAPO 72.0 +2.5 64.6 +3.6 75.9 +6.1 63.8 +5.1 13.7 −2.4

Table 2: Performance of models optimized via DAPO on code benchmarks. We use zero-shot
prompting and greedy decoding for all evaluations in the table. DAPO consistently improves
performance when starting with both regular and reasoning LLMs, even when only 4K training
samples from TACO [29] is used.

4.1 Experimental setup

Training dataset. For all the DAPO experiments on mathematics, we utilize only the 7500 training
problems from the dataset MATH [18] to generate the advantage datasets for DAPO training, requiring
no additional human annotations. In particular, we only use the questions and the corresponding
golden answers in the dataset while the provided solutions are not used for training. For coding
experiments, For coding experiments, we subsample the TACO [29] dataset to compile approximately
4,000 competition-level programming questions derived from real-world scenarios. We utilize its
provided unit test cases to evaluate whether a solution is accurate.

Base models. Considering the reproducibility and of DAPO, our experiments are taken over of several
open-source language models including general and math-specific models. For general models, we
consider Llama-3.1-8B-Instruct [52] , OpenO1-Llama-8B-v0.1 [39], Skywork-O1-Open-Llama3.1-
8B [40], Qwen2.5-72B-Instruct [51]. For math-specific models, we consider Skywork-Math-Llama
[63], Qwen2-Math-7B-Instruct [59] and Qwen2.5-Math-7B-Instruct [60]. Notice that Skywork-O1-
Open-Llama3.1-8B, Qwen2-Math-7B-Instruct and Qwen2.5-Math-7B-Instruct are already trained by
RL algorithms [48]. Thus we conduct continue-RL training on three models by DAPO.

Benchmarks & Metrics. For mathematical experiments, we evaluate performance on English
mathematical benchmarks. In addition to the 5000 test problems from MATH [18], We also add 4
out-of-domain benchmarks, GSM8K [9], Minerva Math [28], Olympiad Bench [17] and College Math
[50], to test the performance generalization of DAPO. For coding experiments, we evaluate DAPO on
several widely-used benchmarks in code generation, i.e., HumanEval [7], HumanEval+ [22], MBPP
[4], MBPP+ [5] and LiveCodeBench [21]. All the evaluations are conducted in a zero-shot greedy

7

Model Base +GRPO +PPO +DAPO

Llama-3.1-8B-Instruct 49.42+2.99 52.28+2.86 52.41+2.99 53.62+4.20

OpenO1-Llama-8B-v0.1 52.73+2.99 55.63+2.90 54.12+1.39 60.33+7.60

Qwen2-Math-7B-Instruct 74.46+2.99 74.94+0.46 74.93+0.47 75.41+0.95

Qwen2.5-Math-7B-Instruct 83.42+2.99 84.33+0.91 83.76+0.34 84.86+1.44

Table 3: Comparison with baseline methods on the 5K test samples from MATH [18]. DAPO
consistently outperforms both the initial model and model optimized with GRPO and PPO.

sampling (i.e. temperature 0) with a cot prompt template and a maximum amount of 2048 newly
generated tokens (except 4096 for OpenO1-Llama-8B-v0.1 and Skywork-O1-Open-Llama3.1-8B).

DAPO implementations. For each DAPO experiment, we first use the base model to generate 32
solutions for each training problem and then 6 solutions are selected out of them while making
the correct solutions and wrong solutions as balanced as possible. For each selected solution, we
use one line break \n to segment the solution steps and use the base model as the completer to
do 16 completions for each reasoning step. Then the MC estimations are constructed for the critic
training. The training methodology of critic is presented in Section 3.2. In our implementation, the
critics are fine-tuned for one epoch on Qwen2.5-Math-7B-Instruct for mathematical experiments
and Qwen2.5-coder-7B-Instruct for coding experiments, with a learning rate of 5e-6 and batch size
512. After that, we extract the next steps (action) for each intermediate step (state) in the completion
datasets and compute the advantage using the critic for DAPO training. For all experiments, we use
the global batch size 2048, learning rate 5e-7 and β = 0.01 or 0.02. We also summarize some useful
tricks applied in all of the DAPO training in Appendix F.1

Baseline methods. We compare the performance of DAPO with PPO as the actor-critic method
baseline and GRPO as the response-level method baseline on mathematical tasks using the 7.5K
problems from MATH [18] as the training queries. We conduct experiments on four base models :
Llama-3.1-8B-Instruct, OpenO1-Llama-8B-v0.1,Qwen2-Math-7B-Instruct and Qwen2.5-Math-7B-
Instruct. We train PPO and GRPO until the training accuracy curve converges. The more training
details of our baseline methods are in Appendix F.2.

4.2 Main results

Math. Our results, presented in Table 1, Table 3 and Table 4.2, demonstrate that DAPO consistently
enhances the performance of the base model across all tested models on the in-domain benchmark
MATH [18], through DAPO training, Skywork-Math-Llama, Llama-3.1-8B-Instruct, OpenO1-Llama-
8B-v0.1, and Qwen2.5-72B-instruc achieve 50.54%, 53.62%, 60.27%, 84.55% greedy decoding
accuracy respectively. For RL models, Qwen2-Math-7B-Instruct,Skywork-O1-Open-Llama3.1-8B
and Qwen2.5-Math-7B-Instruct achieve 76.40%, 79.81%,and 84.86% greedy decoding accuracy
respectively, indicating that DAPO can further enhance the performance even the base model are
already trained by RL methods previously. Table 3 shows that DAPO has a greater improvement than
PPO and GRPO on various base models in our experiments. In Figure 3, we present the accuracy
curve on the MATH TEST during the training process of DAPO. As can be clearly observed, DAPO
steadily enhances the accuracy throughout the training until it stabilizes.

Code generation. Our results for the code generation task are shown in Table 2. DAPO improves the
coding performance of both Llama-3.1-8B-Instruct and OpenO1-Llama-8B-v0.1 on multiple wildly
used benchmarks. For Llama-3.1-8B-Instruct, DAPO has increased by 3.0% and 2.4% respectively on
HumanEval [7] and HumanEval+ [22], by 5.0% and 9.2% respectively on MBPP [4] and MBPP+ [5],
and by 2.1% on LiveCodeBench [21]. For OpenO1-Llama-8B-v0.1, DAPO has increased by 2.5%
and 3.6% respectively on HumanEval [7] and HumanEval+ [22], by 6.1% and 5.0% respectively on
MBPP [4] and MBPP+ [5], and decreased by 2.4% on LiveCodeBench [21]. Overall, these results
strongly demonstrate the effectiveness of DAPO.

On the iterative DAPO. As suggested by our theoretical results (Theorem 3.2), there still remains the
room for performance improvement if πref is not the optimal policy. Thus we conduct two iterative
DAPO experiments on Skywork-Math-Llama and Qwen2-Math-7B-Instruct. At iteration 2, we use
the model optimized by DAPO at iteration 1 as πref. Our experiment results are summarized in Table

8

4.2 and Table 10. We can conclude from both tables that DAPO can further improves the performance
of Skywork-Math-Llama and Qwen2-Math-7B-Instruct.

Model Base +DAPO iter1 +DAPO iter2

Skywork-Math-Llama 41.90+2.99 46.88+4.98 50.54+8.64

Qwen2-Math-7B-Instruct 74.46+2.99 75.41+0.95 76.40+1.94

Table 4: Performance of iterative DAPO on 5K test samples from MATH [18]. Both Skywork-Math-
Llama and Qwen2-Math-7B-Instruct show score improvement with additional iterations.

Ablation studies of hyperparameters. We conduct some preliminary ablation studies on the different
components of DAPO. For the choice of KL coefficient β, we test different β in the experiments
on Skywork-Math-Llama and the results are reported in Table 4.2. It can be seen that a suitable
choice of β yields best improvement. We find β = 0.01 generally performs well on various models.
Regarding the number of completions n used for MC value estimation, we test n = 8 and n = 16 in

Model \ β Base β = 0.002 β = 0.01 β = 0.02 β = 0.05 β = 0.1

Skywork-Math-Llama 41.90 44.52 46.88 46.70 45.56 44.50

Table 5: Performance of DAPO on 5K test samples from MATH [18] with different β.

the experiments on Qwen2-Math-7B-Instruct and the results are reported in Table 4.2. We find that
the difference is not significant between n = 8 and n = 16 in our experiment. However, to make
sure a larger performance gain as possible, we use n = 16 in all our experiments.

Model \ n Base n = 8 n = 16

Qwen2-Math-7B-Instruct 74.46 75.30 75.41

Table 6: Performance of DAPO on 5K test samples from MATH [18] with different number of
completions for MC value estimation.

On the computation cost of DAPO. One major limitation that may hinder the efficient training-time
scaling of DAPO is the high computation cost, particularly during the critic pre-training stage. We
leave it as a future work for us to find a more efficient and scalable method for critic training. Please
refer Section E for more discussions. That being said, given similar computation resources budget to
the response-level baseline method, i.e. GRPO, we find that DAPO still outperforms GRPO in our
experiment. We run GRPO experiment on Meta-Llama-3.1-8B-Instruct to more than 1000 training
steps. The training and test curves can be found in Figure 4. It can be observed that the model exhibits
serve overfitting after around 300 steps and the test performance begins to drop quickly. In contrast,
as shown in Figure 3, DAPO improves the test performance steadily without exhibiting overfitting,
ultimately achieving better performance gains compared to GRPO. This validates the effectiveness of
granular policy optimization enabled by estimating step-level advantages.

5 Conclusion

In this work, we propose an offline step-level RLHF method called Direct Advantage-Based Policy
Optimization (DAPO), which aims to optimize the generation of reasoning steps. DAPO significantly
improves performance on both mathematical and coding benchmarks, demonstrating its effectiveness.
Compared with response-level algorithms, DAPO leverages the critic function for more fine-grained
policy optimization. Compared with standard actor-critic methods, DAPO separates the training of
the actor and critic into two distinct stages, stabilizing the RL training process while obtaining a
good value function estimation. As we discussed before, the main limitation of DAPO is the high
computation cost, indicating a need to find a more efficient implementation method. Besides, it also
remains a great interest to see whether using a larger set of high-quality training queries would yield
greater performance improvements.

9

References

[1] Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of
policy gradient methods: Optimality, approximation, and distribution shift. Journal of Machine
Learning Research, 22(98):1–76, 2021.

[2] Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier
Pietquin, Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization
for learning from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

[3] Hessa Abdulrahman Alawwad, Areej Alhothali, Usman Naseem, Ali Alkhathlan, and Amani
Jamal. Enhancing textbook question answering task with large language models and retrieval
augmented. arXiv:2402.05128, 2024.

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and et al. Program synthesis with large
language models. arXiv:2108.07732, 2021.

[5] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and et al. Program synthesis with large
language models. arXiv:2108.07732, 2021.

[6] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath,
Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny
Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine
Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann,
and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from
human feedback. arXiv:2204.05862, 2022.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, and et al. Evaluating
large language models trained on code. arXiv:2107.03374, 2021.

[8] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. ArXiv, abs/2304.05128, 2023.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv:2110.14168, 2021.

[10] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z.F.
Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang,
Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong
Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang,
Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei
Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J.L. Cai, Jiaqi Ni, Jian Liang, Jin
Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua
Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang,
Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe
Pan, Runji Wang, R.J. Chen, R.L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang
Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S.S. Li, Shuang
Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng,
Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W.L. Xiao,
Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin
Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X.Q. Li, Xiangyue
Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou,
Xianzu Wang, Xinxia Shan, Y.K. Li, Y.Q. Wang, Y.X. Wei, Yang Zhang, Yanhong Xu, Yao
Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong,

10

Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan
Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang
You, Yuxuan Liu, Yuyang Zhou, Y.X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng,
Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z.Z. Ren, Zehui Ren, Zhangli
Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang
Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng
Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning. arXiv:2501.12948, 2025.

[11] Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

[12] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1582–1591. PMLR, 2018.

[13] Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju
Wang, and Yi Wu. On designing effective rl reward at training time for llm reasoning.
arXiv:2410.15115, 2024.

[14] Chengxi Li Guoxin Chen, Minpeng Liao and Kai Fan. Step-level value preference optimization
for mathematical reasoning. arXiv:2406.10858, 2024.

[15] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages 1856–1865. PMLR, 2018.

[16] Ji-Eun Han, Jun-Seok Koh, Hyeon-Tae Seo, Du-Seong Chang, , and Kyung-Ah Sohn. Psydial:
Personality-based synthetic dialogue generation using large language models. arXiv:2404.00930,
2024.

[17] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

[18] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Joaquin Vanschoren and Sai-Kit Yeung, editors, Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, virtual, 2021.

[19] Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models.
arXiv:2501.03262v1, 2025.

[20] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv:2503.24290, 2025.

[21] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang,
Armando Solar-Lezama, Koushik Sen, , and Ion Stoica. Livecodebench: Holistic and contami-
nation free evaluation of large language models for code. arXiv:2403.07974, 2024.

[22] Yuyao Wang Jiawei Liu, Chunqiu Steven Xia and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.
arXiv:2305.01210, 2023.

11

[23] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?
arXiv:2310.06770, 2023.

[24] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv:2503.01491, 2025.

[25] Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning
through refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

[26] Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo:
Step-wise preference optimization for long-chain reasoning of llms. arXiv:2406.18629, 2024.

[27] Deep Reinforcement Learning and the Deadly Triad. Hado van hasselt, yotam doron, florian
strub, matteo hessel, nicolas sonnerat and joseph modayil. arXiv:1812.02648, 2018.

[28] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving
quantitative reasoning problems with language models. Advances in Neural Information
Processing Systems, 35:3843–3857, 2022.

[29] Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin,
and Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv:2312.14852, 2023.

[30] Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo.
Remax: A simple, effective, and efficient reinforcement learning method for aligning large
language models. In Forty-first International Conference on Machine Learning, 2023.

[31] Weibin Liao, Xu Chu, and Yasha Wang. Tpo: Aligning large language models with multi-branch
multi-step preference trees. arXiv:2410.12854, 2024.

[32] Guanlin Liu, Kaixuan Ji, Renjie Zheng, Zheng Wu, Chen Dun, Quanquan Gu, and Lin Yan. En-
hancing multi-step reasoning abilities of language models through direct q-function optimization.
arXiv preprint arXiv:2410.09302, 2024.

[33] Jiacai Liu, Wenye Li, Dachao Lin, Ke Wei, and Zhihua Zhang. On the convergence of projected
policy gradient for any constant step sizes. arXiv:2311.01104, 2024.

[34] Jiacai Liu, Wenye Li, and Ke Wei. Elementary analysis of policy gradient methods.
arxiv:2404.03372, 2024.

[35] Yuliang Liu, Junjie Lu, Zhaoling Chen, Chaofeng Qu, Jason Klein Liu, Chonghan Liu, Zefan Cai,
Yunhui Xia, Li Zhao, Jiang Bian, Chuheng Zhang, Wei Shen, and Zhouhan Lin. Adaptivestep:
Automatically dividing reasoning step through model confidence. arXiv:2406.06592, 2025.

[36] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv:2503.20783v1,
2025.

[37] Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Sstep-controlled dpo: Leveraging stepwise error for enhanced mathematical
reasoning. arXiv:2407.00782, 2024.

[38] Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning
in language models by automated process supervision. arXiv:2406.06592, 2025.

[39] O1-OPEN. Open-source o1. https://huggingface.co/O1-OPEN, 2025. Accessed: 2025-
01-30.

[40] Skywork o1 Team. Skywork-o1 open series. https://huggingface.co/Skywork, Novem-
ber 2024.

12

https://huggingface.co/O1-OPEN
https://huggingface.co/Skywork

[41] Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue
Yang, Jiadai Sun, Shuntian Yao, Tianjie Zhang, Wei Xu, Jie Tang, and Yuxiao Dong. We-
brl: Training LLM web agents via self-evolving online curriculum reinforcement learning.
arXiv:2411.02337, 2024.

[42] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2024.

[43] Pierre Harvey Richemond, Yunhao Tang, Daniel Guo, Daniele Calandriello, Mohammad Ghesh-
laghi Azar, Rafael Rafailov, Bernardo Avila Pires, Eugene Tarassov, Lucas Spangher, Will
Ellsworth, Aliaksei Severyn, Jonathan Mallinson, Lior Shani, Gil Shamir, Rishabh Joshi, Tianqi
Liu, Remi Munos, and Bilal Piot. Offline regularised reinforcement learning for large language
models alignment. arXiv:2405.19107, 2024.

[44] Martin A. Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave,
Tom Van de Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning
by playing solving sparse reward tasks from scratch. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 4341–4350. PMLR, 2018.

[45] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arxiv:1506.02438,
2020.

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv:1707.06347, 2017.

[47] Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. arXiv:2410.08146, 2024.

[48] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Haowei Zhang Xiao Bi,
Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models. arXiv:2402.03300, 2024.

[49] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, pages 1057–1063, 1999.

[50] Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. In Forty-first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

[51] Qwen Team. Qwen2.5: A party of foundation models, September 2024.

[52] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, and et al.
Qwen2.5-math technical report: Toward mathematical expert model via self-improvement.
arXiv:2302.13971, 2023.

[53] Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An.
Q*: Improving multi-step reasoning for llms with deliberative planning. arXiv:2406.14283,
2024.

[54] Huaijie Wang, Shibo Hao, Hanze Dong, Shenao Zhang, Yilin Bao, Ziran Yang, and Yi Wu.
Offline reinforcement learning for llm multi-step reasoning. arXiv:2412.16145, 2024.

[55] Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang,
Linqi Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms
for enhanced mathematical reasoning. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

13

[56] Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9426–9439, 2024.

[57] Albert Wilcox, Ashwin Balakrishna, Jules Dedieu, Wyame Benslimane, Daniel Brown, and
Ken Goldberg. Monte carlo augmented actor-critic for sparse reward deep reinforcement
learning from suboptimal demonstrations. Advances in neural information processing systems,
35:2254–2267, 2022.

[58] Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv:2405.00451, 2024.

[59] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

[60] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, and et al. Qwen2.5-math technical report: Toward
mathematical expert model via self-improvement. arXiv:2409.12122, 2024.

[61] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

[62] Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What’s behind ppo’s collapse in
long-cot? value optimization holds the secret. arXiv:2503.01491, 2025.

[63] Liang Zeng, Liangjun Zhong, Liang Zhao, Tianwen Wei, Liu Yang, Jujie He, Cheng Cheng, Rui
Hu, Yang Liu, Shuicheng Yan, Han Fang, and Yahui Zhou. Skywork-math: Data scaling laws
for mathematical reasoning in large language models – the story goes on. arXiv:2407.08348,
2024.

14

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims match our theoretical results (see Theorem 3.2) in Section 3, the
experimental results in Section 4 and the discussion in Section D.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

15

Justification: We discuss the main limitation, i.e. high computational cost, in Section E
where we also discuss the potential approaches to address this issue.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions are stated in Section 2 and all proof are included in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: we provide detailed setting of our experiments in Section 4 and Section F. The
main code of our methods is included in our supplementary material.

16

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use the open-source training dataset and the main code of our methods is
included in our supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental setting in Section 4 and Section F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our evaluate our experimental results with greedy decoding, i.e. using temper-
ature 0. Thus there is no statistic random error in our experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computation cost in Section E.
Guidelines:

• The answer NA means that the paper does not include experiments.

18

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research confirms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: It is difficult to discuss the potential societal impacts of our paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:

19

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all used datasets in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

20

paperswithcode.com/datasets

Answer: [NA]
Justification: Our paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our method only involves standard usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Related work

By Theorem B.2, the the optimal policy π∗
β has the analytic solution given by

∀x, y : log
π∗
β (y|x)

πref (y|x)
=

1

β

(
r (x, y)− V̂ref (x)

)
, (16)

where

V̂ref (x) := β log

{
Ey′∼πref (·|x)

[
exp

{
1

β
r (x, y′)

}]}
.

In order to solve π∗
β , DPO [42] use the Bradley-Terry model to parametrize the reward model r and

infers the optimal policy directly from pair-wise data without accessing to V̂ref. DRO [43] takes a
straight way and solves the optimal policy directly by

min
θ

Ex,y

[(
log

πθ (y|x)
πref (y|x)

− 1

β

(
r (x, y)− V̂ref (x)

))2
]
.

one-step However, when it comes to the multi-step RLHF problem (4), the decision horizon T is
generally larger than one. In this case, by Theorem B.2, the optimal policy π∗

β satisfies

log
π∗
β (a|s)

πref (a|s)
=

1

β

(
r (s, a) + V ∗ (s′)− V ∗

β (s)
)
, (17)

where s is the current state, a is the action, s′ = f(s, a) is the successive state and V ∗
β is the optimal

value function of π∗
β defined in (3) that can be accessed in advance. Several policy gradient ascent

[49] based methods are applied to solve the optimal policy. PPO use GAE [45] to estimate the policy
gradient and a clip trick to keep the training process stable. Considering the computation efficiency,
GRPO [48], RLOO [2], Remax [30] remove the critic component and use the sampling rewards to
estimate the gradient. [26, 37, 14] adapt the DPO algorithm to the step-level setting, developing
a series of methods known as step-DPO. These methods also uses the BT model to parametrize
the reward model and infer the optimal policy from (17) without the knowledge of V ∗

β . However,
these methods still requires the collection of massive pairwise trajectory data. DQO [32] takes
the standard actor-critic route like PPO and solves the optimal policy using the Soft Actor-Critic
[15](SAC) Method. WebRL [41] directly solves equation (17) by using a MSE loss and replacing
V ∗ with the value function of some known behavior policy µ. OREO [54] also proposes an offline
actor-critic methods for LLM multi-step reasoning. [58] and TPO [31] uses MCTS and implicit
reward respectively to provide dense signals for policy optimization. [47] use the advantage function
of an additional prover policy µ as a PRM in the online policy gradient. In the below, we give a
holistic comparison between DAPO and other methods in Table 7.

Method DPO GRPO PPO DQO OREO [58] DAPO

Step-wise optimization × × ✓ ✓ ✓ ✓ ✓
Step signal provider NA NA critic critic critic MCTS critic
Learn from listwise samples × ✓ ✓ ✓ ✓ × ✓
interwoven update of actor-critic NA NA × × × NA ✓

Table 7: Comparison between DAPO and other methods

A significant difference between DAPO and other actor-critic methods is that DAPO decouples the
training of the actor and critic into two distinct stages. This separation offers the following advantages
during the actor training stage: Enhanced training stability. The non-stationary critic along with
the interwoven update between actor and critic bring more instability to the training process. DAPO
address this issue by removing the critic in the actor training stage. Substantially reduced memory
usage. During the actor training stage, DAPO only loads the actor model and the advantage dataset,
leading to significantly lower GPU memory consumption compared to PPO, DQO, and OREO.

22

B More on MDP

Bellman Optimality Operators We define the Bellman optimality operator Tβ as

∀s ∈ S : [TβV] (s) := max
π∈Π

[
T π
β V

]
(s)

Lemma B.1. Given any function V : S → R,

∀s ∈ S :[TβV] (s) = β logEa∼πref (·|s)

[
exp

{
1

β
(r (s, a) + V (f(s, a)))

}]
(18)

Optimal policy In the following we give the optimality conditions of the multi-step RL.

Theorem B.2 ([1, 34]). if a policy π̂ ∈ Π satisfies

∀s ∈ S : V π̂
β (s) = [TβV π̂

β] (s) ,

then π̂ = π∗
β . Besides, the optimal policy π∗

β has the unique analytic form of

∀s ∈ S, a ∈ A : log
π∗
β (a|s)

πref (a|s)
=

1

β

(
Q∗

β (s, a)− V ∗
β (s)

)
.

C Proofs

C.1 Proof of Lemma B.1

By the definition of Tβ , for any state s ∈ S, we define

πV
β (·|s) ∈ argmax

p∈∆(A)

Ea∼p

[
r (s, a) + V (f(s, a))− β log

p (a)

πref (a|s)

]
.

One can easily find that

∀s ∈ S, a ∈ A : πV
β (a|s) :=

πref (a|s) · exp
{

1
β (r (s, a) + V (f(s, a)))

}
Ea′∼πref (·|s)

[
exp

{
1
β (r (s, a′) + V (f(s, a)′))

}]
and we omit the proof of it here. Then

TβV (s) = T πV
β

β V (s)

= Ea∼πV
β (·|s)

[
r (s, a) + V (f(s, a))− β log

πV
β (a|s)

πref (a|s)

]

= Ea∼πV
β (·|s)

r (s, a) + V (f(s, a))− β log

 exp
{

1
β (r (s, a) + V (f(s, a)))

}
Ea′∼πref (·|s)

[
exp

{
1
β (r (s, a′) + V (f(s, a)′))

}]


= β log

(
Ea∼πref (·|s)

[
exp

{
1

β
(r (s, a) + V (f(s, a)))

}])
C.2 Proof of Lemma 2.2

Proof. Recall the definition of state value functions in (3). Then one has

V π
β (ρ)− V π̃

β (ρ) = E∀t∈N:at∼π(·|st)

[
T−1∑
t=0

(r (st, at)− βKL (π (·|st) , πref (·|st)))|s0 ∼ ρ

]
− V π̃

β (ρ)

23

= E∀t∈N:at∼π(·|st)

[
T−1∑
t=0

(r (st, at)− βKL (π (·|st) , πref (·|st)))|s0 ∼ ρ

]

− E∀t∈N:at∼π(·|st)

[
T−1∑
t=0

(
V π̃
β (st)− V π̃

β (st+1)
)
|s0 ∼ ρ

]

= E∀t∈N:at∼π(·|st)

[
T−1∑
t=0

(
r (st, at)− βKL (π (·|st) , πref (·|st)) + V π̃

β (st+1)− V π̃
β (st)

)
|s0 ∼ ρ

]

= E∀t∈N:at∼π(·|st)

[
T−1∑
t=0

(
T π
β V π̃

β (st)− V π̃
β (st)

)
|s0 ∼ ρ

]
.

Note that under assumption 2.1, the state space S is finite. Thus

V π
β (ρ)− V π̃

β (ρ) = E∀t∈N:at∼π(·|st)

[
T−1∑
t=0

(
T π
β V π̃

β (st)− V π̃
β (st)

)(∑
s∈S

I {st = s}

)
|s0 ∼ ρ

]

= E∀t∈N:at∼π(·|st)

[∑
s∈S

T−1∑
t=0

(
T π
β V π̃

β (st)− V π̃
β (st)

)
I {st = s}|s0 ∼ ρ

]

= E∀t∈N:at∼π(·|st)

[∑
s∈S

T−1∑
t=0

(
T π
β V π̃

β (s)− V π̃
β (s)

)
I {st = s}|s0 ∼ ρ

]

= E∀t∈N:at∼π(·|st)

[∑
s∈S
T π
β V π̃

β (s)− V π̃
β (s)

T−1∑
t=0

I {st = s}|s0 ∼ ρ

]

=
∑
s∈S

(
T π
β V π̃

β (s)− V π̃
β (s)

)
·E∀t∈N:at∼π(·|st)

[
T−1∑
t=0

I {st = s}|s0 ∼ ρ

]
(a)
=
∑
s∈S

dπρ (s) ·
(
T π
β V π̃

β (s)− V π̃
β (s)

)
= Es∼dπ

ρ

[
T π
β V π̃

β (s)− V π̃
β (s)

]
,

where (a) leverages the definition of visitation measure dπρ .

C.3 Proof of Lemma 3.1

Proof. Recall that

Hk
s (πθ, πref) =

1

2
Ea∼πθk

(·|s)

[(
1

β
Aπref (s, a)− log

πθ (a|s)
πref (a|s)

)2
]

A direct computation yields that

∇θHk
s (πθ, πref) =

1

2
Ea∼πθk

(·|s)

[
∇θ

(
1

β
Aπref (s, a)− log

πθ (a|s)
πref (a|s)

)2
]

= Ea∼πθk
(·|s)

[(
1

β
Aπref (s, a)− log

πθ (a|s)
πref (a|s)

)
∇θ

(
1

β
Aπref (s, a)− log

πθ (a|s)
πref (a|s)

)]
= −Ea∼πθk

(·|s)

[(
1

β
Aπref (s, a)− log

πθ (a|s)
πref (a|s)

)
∇θ log πθ (a|s)

]
.

Note that

Is (πθ, πref) = Ea∼πθ(·|s)

[
Aπref (s, a)− β log

πθ (a|s)
πref (a|s)

]
.

24

Then

∇θIs (πθ, πref) = ∇θEa∼πθ(·|s)

[
Aπref (s, a)− β log

πθ (a|s)
πref (a|s)

]
= Ea∼πθ(·|s)

[
∇θ log πθ (a|s)

(
Aπref (s, a)− β log

πθ (a|s)
πref (a|s)

)]
+ Ea∼πθ(·|s)

[
∇θ

(
Aπref (s, a)− β log

πθ (a|s)
πref (a|s)

)]
= βEa∼πθ(·|s)

[
∇θ log πθ (a|s)

(
1

β
Aπref (s, a)− log

πθ (a|s)
πref (a|s)

)]
− βEa∼πθ(·|s) [∇θ log πθ (a|s)]
(a)
= βEa∼πθ(·|s)

[
∇θ log πθ (a|s)

(
1

β
Aπref (s, a)− log

πθ (a|s)
πref (a|s)

)]
,

where (a) is due to

Ea∼πθ(·|s) [∇θ log πθ (a|s)] = ∇θEa∼πθ(·|s) [1] = ∇θ (1) = 0.

Thus it’s easy to verify that∇θIs (πθk , πref) = −β∇θHk
s (πθ, πref) and the proof is completed.

C.4 Proof of Theorem 3.2

Proof. Notice that ∀s ∈ S, νS(s) > 0. Then it’s obviously that for any state s ∈ S,

π+ (·|s) ∈ argmin
p∈∆(A)

Ea∼νA(·|s)

[(
1

β
Aπref (s, a)− log

p (a)

πref (a|s)

)2
]
.

Since ∀s ∈ S, a ∈ A, νA(a|s) > 0, πref(a|s) > 0, one has ∀s ∈ S, a ∈ A, π+(a|s) > 0 otherwise
the loss becomes infinity. For ease of notation, we define

us,a := log
p (a)

πref (a|s)
and As,a :=

1

β
Aπref (s, a) .

Then
{
u+
s,a := log π+(a|s)

πref (a|s) | a ∈ A
}

is the solution of the following optimization problem:

min
us:=(us,a)a∈A∈R|A|

: Ls (us) :=
1

2
· Ea∼νA(·|s)

[
(As,a − us,a)

2
]

s.t :
∑
a∈A

p (a) = Ea∼πref (·|s) [exp {us,a}] = 1.

Denote the Lagrangian function as

L̂s (us, λ) := Ls (us) + λ ·
(
Ea∼πref (·|s) [exp {us,a}]− 1

)
.

Since it’s a convex problem, by KKT conditions, there exists a λ∗
s ∈ R such that (u+

s , λ
∗
s) is the

solution of the equations: {
∇us
L̂s (u

+
s , λ

∗
s) = 0

Ea∼πref (·|s)
[
exp

{
u+
s,a

}]
= 1

(19)

Notice that

∇usL̂s (us, λ) = ∇usEa∼νA(·|s)

[
1

2
(As,a − us,a)

2
+ λ · πref (a|s)

ν (a|s)
· exp {us,a}

]
= νA (·|s)⊙

(
us −As + λ · πref (·|s)

νA (·|s)
· exp {us}

)
.

25

Plugging it into (19) yields that

∀a ∈ A : As,a − u+
s,a = λ∗

s ·
πref (a|s)
νA (a|s)

· exp
{
u+
s,a

}
. (20)

A direct computation yields that

λ∗
s = λ∗

s · Ea∼πref

[
exp

{
u+
s,a

}]
(a)
= Ea∼νA(·|s)

[
λ∗
s ·

πref (a|s)
ν (a|s)

· exp
{
u+
s,a

}]
= Ea∼νA(·|s)

[
As,a − u+

s,a

]
,

where (a) is due to (20). We now to show that λ∗
s ≥ 0. Notice that

Ea∼πref (·|s)
[
As,a − u+

s,a

]
= Ea∼πref (·|s)

[
1

β
Aπref (a|s)− log

π+ (a|s)
πref (a|s)

]
= Ea∼πref (·|s)

[
log

πref (a|s)
π+ (a|s)

]
= KL

(
πref (·|s) , π+ (·|s)

)
. (21)

Thus if λ∗
s < 0, one has ∀a ∈ A : As,a − u+

s,a < 0 due to (20) and

Ea∼πref

[
As,a − u+

s,a

]
< 0,

which contradicts to (21). Recall the definition of Is(π, πref). Thus

Is
(
π+, πref

)
= Ea∼π+(·|s)

[
Aπref (s, a)− β log

π+ (a|s)
πref (a|s)

]
= β · Ea∼π+(·|s)

[
As,a − u+

s,a

]
(a)
= β · Ea∼π+(·|s)

[
λ∗
s ·

πref (a|s)
νA (a|s)

· exp
{
u+
s,a

}]
= β · λ∗

s · Ea∼π+(·|s)

[
π+ (a|s)
νA (a|s)

]
= β · λ∗

s · Ea∼νA(·|s)

[(
π+ (a|s)
νA (a|s)

)2
]

= β · λ∗
s · Ea∼νA(·|s)

[(
π+ (a|s)
νA (a|s)

)2
]

≥ β · λ∗
s

:= λs(νA) (22)

where the last inequality is due to

Ea∼νA(·|s)

[(
π+ (a|s)
νA (a|s)

)2
]
≥
(
Ea∼νA(·|s)

[
π+ (a|s)
νA (a|s)

])2

=

(∑
a∈A

π+ (a|s)

)2

= 1.

Plugging (22) into Lemma 2.2 directly yields that

V π+

β (µ)− V πref

β (µ) = Edπ+
µ

[Is (π, πref)] ≥ Edπ+
µ

[λs (νA)] ≥ 0.

We now to show that V π+

β (µ) = V πref

β (µ) holds if and only if πref is already the optimal policy.
Notice that

V π+

β (µ) = V πref

β (µ) ⇔ ∀s ∈ S : λs (νA) = 0⇔ ∀s ∈ S, a ∈ A : u+
s,a −As,a = 0.

Thus plugging it into (21) yields that

KL
(
πref (·|s) , π+ (·|s)

)
= 0

26

and ∀s, a ∈ S ×A : Aπref (s, a) = β · log π+(a|s)
πref (a|s) = 0. Hence for any state s ∈ S,

TβV πref

β (s) = β logEa∼πref (·|s)

[
exp

{
1

β

(
r (s, a) + V πref

β (f (s, a))
)}]

= β logEa∼πref (·|s)

[
exp

{
1

β
Qπref

β (s, a)

}]
= β logEa∼πref (·|s)

[
exp

{
1

β
Qπref (s, a)

}]
= β logEa∼πref (·|s)

[
exp

{
1

β
Aπref (s, a) +

1

β
V πref (s)

}]
= β logEa∼πref (·|s)

[
exp

{
1

β
V πref (s)

}]
= V πref (s)

= V πref

β (s)

which means V πref

β is the fixed point of the Bellman optimality operator thus πref is the optimal policy
by Theorem B.2

D Discussion I : connection between DAPO and multi-step reasoning.

In this section, we give a detailed discussion on the connections between DAPO and multi-step
reasoning and show that DAPO indeed achieves step-level fine-grained policy optimization and
reduces the training variance.

Response-level policy gradient methods suffer from high training variance. Policy gradient
(PG) methods updates the parameter by applying gradient ascent w.r.t the objective (4) directly and
generally takes the form of

θ ← θ + η∇θV
π
β (µ) .

For simplicity of analysis, we assume β = 0. By policy gradient theorem [1],

∇θV
πθ (µ) = Ex∼DE∀t:at∼πθ(·|x)

[
T−1∑
t=0

∇θ log πθ (at|st)Aπθ (st, at)

]
. (23)

Current response-level PG methods mainly focus on the estimation of advantage in (23). Sup-
pose n responses y1, ..., yn are sampled from πθ(·|x) for each prompt x. We denote yi :=

Concat(x, a(i)0 , ..., a
(i)
Ti−1), s

(i)
t := Concat(x, a(i)0 , ..., a

(i)
t−1), where Ti is the number of reasoning

steps in response yi, and A
(i)
t as the estimation of advantage Aπθ (s

(i)
t , a

(i)
t). We summarize the

construction of A(i)
t of different methods in Table 8. It can be observed that all methods use r(x, yi)

Methods Advantage estimation A
(i)
t Sign of A(i)

t Does A(i)
t vary with t ?

REINFORCE r(x, y)
non-negative when r(x, yi) = 1 and
non-positive when r(x, yi) = 0

No

REINFORCE++ [19] r(x, y) with global batch normalization non-negative when r(x, yi) = 1 and
non-positive when r(x, yi) = 0

No

ReMax [30] r (x, yi)− r (x, ŷ) where ŷi is
sampled from the greedy policy

non-negative when r(x, yi) = 1 and
non-positive when r(x, yi) = 0

No

GRPO [48] r(x,yi)−p̂√
p̂(1−p̂)

, where p̂ := 1
n

∑n
j=1 r (x, yj)

non-negative when r(x, yi) = 1 and
non-positive when r(x, yi) = 0

No

ORZ [20] r (x, yi)− Vϕ

(
s
(i)
t

) non-negative when r(x, yi) = 1 and
non-positive when r(x, yi) = 0

No

DR.GRPO [36] r (x, yi)− p̂, where p̂ := 1
n

∑n
j=1 r (x, yj)

non-negative when r(x, yi) = 1 and
non-positive when r(x, yi) = 0

No

Table 8: Summary of advantage estimation of current response-level PG methods.

27

as the MC estimation of state-value function . Thus these methods generally try to increase the
probability of all the reasoning steps if the response y is correct and decrease the probability of all the
reasoning steps if y is incorrect. However, this update pattern indeed introduces high training variance
since the sign of the true advantage value, i.e. Aπθ (st, at), may mismatch the final reward of the
trajectory. Following is a concrete example. The trajectory shown in Figure 2 contains 14 reasoning
steps and is a correct trajectory sampled from Llama-3.1-8B-instruct. The values and advantages
of each reasoning step are also reported on the right-hand side of the figure. There is a noticeable
drop in value (accuracy) in step 11, decreasing from 0.94 to 0.41, resulting in an advantage of -0.53.
This means the model is more likely to make a mistake starting from step 11. A well-directed policy
update may reduce the likelihood of step 11, rather than increasing it, even if the final answer is
correct. Thus, there exists responses that yield correct answers while containing reasoning steps
from which the model is likely to make mistakes, and vice versa. Thus, using the same advantage
estimation for all reasoning steps in the entire response introduces high training variance.

Figure 2: A reasoning trajectory sampled from Llama-3.1-8B-instruct with the true state value and
advantage reported in the right hand side.

Step-level fine-grained policy optimization via DAPO. Even though the objective (1) optimized by
response-level algorithms can be reformulated to a multi-step decision problem (2) equivalently, it by
no means implies that these methods can achieve step-level optimization as illustrated above. For
DAPO, it can be directly observed from (12) that, given the previous reasoning steps (state s), DAPO
optimizes the distribution of the next reasoning step generation (action a) depends on the step-level
advantage estimation other than the final reward. Thus DAPO indeed enables fine-grained step-wise
learning by optimizing the actor using the advantage datasets. Our main theoretical result (Theorem
3.2) further shows that updating the actor’s probability in the direction of the advantage can indeed
yield policy improvement if the advantages are well-estimated.

E Discussion II : Computational cost of DAPO

In this section, we provide a detailed analysis of the computational cost of DAPO and discuss
potential approaches for efficient training-time scaling. Consider an actor model Mactor with N actor

model

28

non-embedding parameters is optimized by DAPO on an offline advantage dataset D with batch size
Bactor over Kactor training steps. For the critic pre-training, we first generate n initial responses from
which n1 responses are selected. For each reasoning step in these filtered responses, we then produce
m completions for MC value estimation. Then a critic model Mcritic with N critic

model non-embedding
parameters is optimized on the MC value dataset with batch size Bcritic over Kcritic training steps. To
simplify the analysis, we assume both the response length and the number of reasoning steps per
response remain constant at L and T respectively (each reasoning step is of length L/T). Following
[24], we estimate inference computational cost as 2NmodelNinfer and the training computational
cost can be estimated by 6NmodelNtrain, where Ninfer and Ntrain are inference and training tokens
respectively. We report Ninfer and Ntrain for our DAPO implementation in Table E.

Step Ninfer Ntrain
Computational cost

Nmodel(2Ninfer + 6Ntrain)

Generation n1L 0 2n1L ·N actor
model

Completion nmL
2 (T − 1) 0 nmL (T − 1) ·N actor

model
Critic Optimization 0 nT ·BcriticKcritic 6nT ·BcriticKcritic ·N critic

model
Making Advantage Dataset nmL 0 2nmL ·N critic

model
Actor Optimization 0 L/T ·BactorKactor 6L/T ·BactorKactor ·N actor

model

Table 9: Computational cost estimation of DAPO.

Suppose N actor
model = N critic

model = Nmodel. By Table E, the total computational cost c of DAPO is

c = Nmodel

(
L (2n1 + nm (T − 1) + 2nm) + 6

(
nTBcriticKcritic +

L

T
BactorKactor

))
= Nmodel · O

(
LTnm+

(
L

T
+ nT

)
BK

)
,

where B := max{Bactor, Bcritic} and K := max{Kactor,Kcritic}. In our implementation n1 =
32, n = 6,m = 16, T ≈ 20, L ≈ 2048.

Possible approaches to efficient training-time scaling. Suppose the length of reasoning step
Lstep := L

T is a constant. Then the computation cost c = Nmodel · Lstep · O
(
T 2nm+ nTBK

)
.

The computational cost c may explode due to square term T 2 as the response length L increased. A
potential approach to mitigate this issue is not to do MC value estimation for all reasoning steps as in
[38]. Another possible approach is to find an efficient and effective method for dividing reasoning
steps, ensuring that the total number of reasoning steps T does not increase too rapidly as in [35].

F More details of experiments

F.1 DAPO

Model In Domain Out of Domain
MATH GSM8K Minerva MATH Olympiad Bench College Math

Skywork-Math-LLama 41.90 61.49 5.51 18.68 24.85
+ DAPO iter 1 46.88+4.98 67.55+6.06 7.34+1.82 22.38 +3.70 25.87 +1.03

+ DAPO iter 2 50.54+8.64 69.04+7.55 8.09+2.58 23.86 +5.18 27.20 +2.35

Qwen2-Math-7B-Instruct 74.46 89.38 40.07 34.36 41.59
+ DAPO iter 1 75.41 +0.95 89.45+0.07 37.51−2.56 37.03 +2.67 42.23 +0.64

+ DAPO iter 2 76.40 +1.94 89.30−0.08 38.25−1.82 37.64 +3.27 41.16 −0.43

Table 10: Full Mathematical benchmark results of iterative DAPO using zero-shot greedy
inference.

29

Useful training tricks Following are some useful tricks applied in all of the DAPO experiments.

• State-wise learning. Notice that for each training state (intermediate step) s, there are
multiple actions (next step) for DAPO training. Rather than shuffling all state-action pairs,
we try to place different actions from the same state within the same batch for DAPO training
in order to provide contrastive gradients.

• Learning uniformly on approximate action space. Suppose we have n actions {ai}ni=1
for each training state s. Although the true action space A is extremely large for LLM,
we consider the unique actions of {ai}ni=1 as the approximate action space denoted as
Ãs. After computing the advantage for each action, we only add the unique actions to
the advantage dataset for DAPO training, which means the training action distribution is
νA(·|s) = Unif(Ãs) in our implementation.

• Learning on the states with large advantage gap. Considering that the approximation
error between the prediction of critic network and the true state value, we only learn those
states that have a large advantage gap to make sure the actions with higher advantage are
actually better than those actions with a lower advantage. We define the advantage gap as

∆s := max
ai∈Ãs

A (s, ai)− min
aj∈Ãs

A (s, aj) .

In our implementation, we only learn those states with ∆s >= 0.1

F.2 Baseline methods

Hyperparameter Value

actor learning rate 5e-7

critic learning rate 9e-6

KL coefficient β 0.01

discount factor γ 1

GAE factor λ 0.95

actor training epoch 1

critic training epoch 1

rollout max new tokens 2048
(4096 for OpenO1-Llama-8B-v0.1)

rollout temperature 1

rollout batch size 1024

global train batch size 1024

Table 11: The hyperparameters we employ to train PPO

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Num of Trained State-Action Pairs (Million)

0

2

4

6

8
Sc

or
e

0.00%

4.18% 4.22%

5.06%

4.30%

0.00%

2.18%

2.84%
3.18%

3.70%
4.20%

3.24%

0.00%

3.33%

6.15%
6.37%

7.00% 7.02%

7.60%

6.45%
6.67%

6.96%
6.50%

0.00%

0.99%
0.51%

0.78%

1.53% 1.71%

0.00%

1.05%1.25%
1.65%1.80%

0.00%

0.86% 0.90%
1.18%

1.44%
1.14%

MATH TEST Accuracy Absolute Improvement During Training
Skywork-Math-LLama
Meta-Llama-3.1-8B-Instruct
OpenO1-LLama-8B-v0.1
Skywork-O1-Open-LLama3.1-8B
Qwen2.5-72B-instruct
Qwen2.5-7B-math-instruct

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Num of Trained State-Action Pairs (Million)

0

2

4

6

8

10

12

14

16

Sc
or

e

0.00%

7.19% 7.26%

8.71%

7.40%

0.00%

4.31%

5.61%
6.29%

7.32%

8.30%

6.41%

0.00%

7.05%

13.00%
13.48%

14.80% 14.85%

16.07%

13.63%
14.11%

14.72%

13.74%

0.00%

4.51%

2.34%

3.54%

6.96%
7.82%

0.00%

6.14%

7.31%

9.65%
10.53%

0.00%

5.19% 5.43%

7.12%

8.69%

6.88%

MATH TEST Accuracy Relative Improvement During Training

Skywork-Math-LLama
Meta-Llama-3.1-8B-Instruct
OpenO1-LLama-8B-v0.1
Skywork-O1-Open-LLama3.1-8B
Qwen2.5-72B-instruct
Qwen2.5-7B-math-instruct

Figure 3: Accuracy curve on MATH TEST during training process. Let x be the accuracy of base
model on MATH TEST and y be the accuracy after DAPO training. Absolute improvement refers to
y − x and relative improvement refers to y−x

1−x .

31

Hyperparameter Value

query batch size 64

group size 16

KL coefficient β 0.01

rollout max new tokens 2048
(4096 for OpenO1-Llama-8B-v0.1)

rollout temperature 1

global train batch size 1024

actor learning rate 1e-6

Table 12: The hyperparameters we employ to train GRPO

Figure 4: Performance of Meta-Llama-3.1-8B-instruct optimized via GRPO. The model exhibits
serve overfitting after around 300 steps. Left: Accuracy on training batch during RL process. Right:
Performance improvement (in percentage points) on MATH 5K test problems.

G Pseudocode of DAPO

32

Algorithm 1 Direct Advantage-Based Policy Optimization
1: Input: Training problems D, initial actor πθ0 , initial critic Vϕ0

, maximum iteration number T ,
KL coefficient β.

2: for iteration i = 0, 1, ..., T − 1 do
3: [Step A.1 Generation]
4: Dgen ← ∅, πgen ← πθi , πref ← πθi .
5: for problem x ∈ D do
6: Sample multiple responses from the generator, i.e. G(x)← {y} iid∼ πgen(·|x).
7: For each response y ∈ G(x), split it into multiple reasoning steps (e.g. by using the line

break \n) so that y = (a0, ..., aT−1), and the construct the states

S (y)← {Concat (x, a0, ..., at)}T−1
t=0 .

8: Add the states derived from all responses into Dgen, i.e., Dgen ← Dgen +
⋃

y∈G(x) S (y).
9: Stop generation when certain criteria are met (e.g., when the computation budget is reached).

10: end for
11: [Step A.2 Completion]
12: Dcom ← ∅, DMC ← ∅.
13: for state s ∈ Dgen do
14: Sample multiple completions C(s)← {ỹ} iid∼ πref(·|s) using s as the context prefix.
15: Reward each completion and compute the MC value as

MC(s)← 1

|C (s)|
∑

ỹ∈C(s)

r (s, ỹ).

16: DMC.add ((s,MC(s))), Dcom.add ((s, C (s))).
17: end for
18: Update the critic (starting from ϕi) by optimizing (15) on MC value dataset DMC, i.e.

ϕi+1 ← argmin
ϕ

Es∼DMC
[LBCE (MC (s) , Vϕ (s))]

19: [Step B.1 Compute Advantages]
20: Dadv ← ∅
21: for (s, C(s)) ∈ Dcom do
22: Set action set A(s)← ∅.
23: For each completion ỹ ∈ C(s), extract the first reasoning step a from ỹ and add it into A(s).
24: Compute advantage for each action a in A(s) using optimized critic, i.e.,

∀a ∈ A (s) : Â (s, a)← Vϕi+1
(s ◦ a)− 1

|A (s)|
∑

ã∈A(s)

Vϕi+1 (s ◦ ã)

25: Add the estimated advantages into Dadv, i.e.,

Dadv ← Dadv +
{(

s, a, Â (s, a)
)
: a ∈ A (s)

}
26: end for
27: [Step B.2 Policy Optimization]
28: Update the actor (starting from θi) by optimizing (12) on the advantage dataset Dadv, i.e.,

θi+1 ← argmin
θ

1

2
E(s,a,Â)∼Dadv

[(
1

β
Â (s, a)− log

πθ (a|s)
πref (a|s)

)2
]

29: end for
30: Output: Last iterate actor πθT , last iterate critic VϕT

.

33

	Introduction
	Preliminaries
	Direct Advantage-Based Policy Optimization
	Policy objective
	Critic objective

	Experiments
	Experimental setup
	Main results

	Conclusion
	Related work
	More on MDP
	Proofs
	Proof of Lemma B.1
	Proof of Lemma 2.2
	Proof of Lemma 3.1
	Proof of Theorem 3.2

	Discussion I : connection between DAPO and multi-step reasoning.
	Discussion II : Computational cost of DAPO
	More details of experiments
	DAPO
	Baseline methods

	Pseudocode of DAPO

