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ABSTRACT

Recent studies have indicated that effectively utilizing inference-time compute is
crucial for attaining better performance from large language models (LLMs). In
this work, we propose a novel inference-aware fine-tuning paradigm, in which the
model is fine-tuned in a manner that directly optimizes the performance of the
inference-time strategy. We study this paradigm using the simple yet effective
Best-of-N (BoN) inference strategy, in which a verifier selects the best out of a set
of LLM-generated responses. We devise the first imitation learning and reinforce-
ment learning (RL) methods for BoN-aware fine-tuning, overcoming the challeng-
ing, non-differentiable argmax operator within BoN. We empirically demonstrate
that our BoN-aware models implicitly learn a meta-strategy that interleaves best
responses with more diverse responses that might be better suited to a test-time
input—a process reminiscent of the exploration-exploitation trade-off in RL. Our
experiments demonstrate the effectiveness of BoN-aware fine-tuning in terms of
improved performance and inference-time compute. In particular, we show that
our methods improve the Bo32 performance of Gemma 2B on Hendrycks MATH
from 26.8% to 30.8%, and pass@32 from 60.0% to 67.0%, as well as the pass@16
on HumanEval from 61.6% to 67.1%.

1 INTRODUCTION

An effective method for improving the performance of large language models (LLMs) is to leverage
additional computation at inference-time: various works (Lightman et al., 2023; Wu et al., 2024;
Kumar et al., 2024; Hosseini et al., 2024) have shown that by using search, re-ranking, multi-turn
revision, and more generally, any approach that makes use of more tokens and inference-time com-
pute, the performance of LLMs on various tasks can be significantly improved—so much that in-
vesting in improving inference-time computation might prove more beneficial than increasing model
pre-training compute (Snell et al., 2024).

Despite this promise, existing work largely considers using inference-time computation as an op-
tional post-hoc design choice, after conventional pre-training and fine-tuning. However, decoupling
training and inference-time computation is not optimal; for example, if we knew that an LLM is
allowed to make multiple attempts to solve a math problem, then it may be better to fine-tune it to
explore diverse problem-solving strategies, rather than simply generating the candidates that rep-
resent the model’s best attempt at solving the problem. Within the context of reasoning problems,
these performance gains may be significant, as LLMs often fail due to their inability to draw complex
inferences about the input and their internal knowledge (Chen et al., 2024).

We argue that the effectiveness of inference-time computation can be substantially increased by
explicitly considering the inference procedure during training. We study this inference-aware fine-
tuning paradigm using the Best-of-N (BoN) inference strategy, where the LLM generates multiple
candidate responses, and a verifier selects the best one according to some scoring function (Cobbe
et al., 2021). When this verifier is the ground-truth scoring function, BoN is equivalent to pass@N,
a widely-used method for inference-time compute scaling (Brown et al., 2024). In contrast with
traditional fine-tuning methods such as supervised fine-tuning (SFT) or reinforcement learning (RL),
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which are agnostic to the inference strategy used at test-time, our inference-aware (BoN-aware)
methods directly optimize the performance of the BoN policy, and lead to significantly improved
BoN performance at test time.

Our work makes several key contributions to the understanding and optimization of batch-of-
neighbors (BoN) inference. (1) We formally define the inference-aware and BoN-aware problem
setting, recognizing the crucial role of the inference strategy during training. (2) We establish a co-
scaling behavior for BoN, quantifying the inherent trade-off between exploration and exploitation
governed by the temperature (T ) and the number of samples (N ). This analysis directly informs
the design and optimization of our BoN-aware algorithms. By understanding how these interactions
influence performance, we can effectively tune these parameters to achieve an optimal balance be-
tween exploration and exploitation in both our supervised and reinforcement learning settings. (3)
We develop a BoN-aware supervised fine-tuning algorithm that aligns the target distribution with
the BoN policy distribution. (4) We extend our method to a general BoN-aware RL framework, en-
abling the policy to learn and solve downstream tasks under the BoN inference strategy. To further
enhance BoN-aware fine-tuning, we devise specialized algorithms inspired by methods optimizing
pass@N accuracy, which promote implicit exploration and connect with established self-supervised
learning techniques, particularly in scenarios where the environment reward can be used for verifi-
cation. (5) Empirically, our experiments demonstrate the effectiveness of BoN-aware fine-tuning in
terms of improved performance and inference-time compute. In particular, we show that our meth-
ods improve the Bo32 performance of Gemma 2B on Hendrycks MATH from 26.8% to 30.8%, and
pass@32 from 60.0% to 67.0%, as well as the pass@16 on HumanEval from 61.6% to 67.1%.

2 INFERENCE-AWARE FINE-TUNING: A CASE STUDY WITH BEST-OF-N
Standard fine-tuning methods typically train LLMs to produce the best response for a given prompt.
In LLM fine-tuning, a model (or policy) is trained via supervised fine-tuning (SFT), by maximizing
the likelihood w.r.t. ground-truth data. Formally, we search for a policy π : X 7→ ∆Y that maxi-
mizes the likelihood Ex∼P,y∼π∗(y|x)[log π (y|x)], where here, X and Y are the space of prompts
and outputs of an LLM, P is the prompt distribution, and π∗ is a distribution of expert responses.
Alternatively, the policy can be fine-tuned via reinforcement learning (RL) (Schulman et al., 2017):
maxπ∈Π Ex∼P,y∼π(x)[R(x, y)], to align the LLM’s behaviors with the reward function R(x, y).
While popular, these methods have not taken the LLM’s inference-time strategies into the account.

Inference-Aware Fine-Tuning. To address the gap between how LLMs are trained and how they
are used at inference time, we develop inference-aware fine-tuning. During inference, the learned
policy π is often not directly used; rather some inference strategy I : Π × X 7→ ∆Y is applied to
it. For example, I can be the BoN strategy, which samples multiple candidate responses, and selects
the best using the score function of some verifier; or I might be a search mechanism (Lightman
et al., 2023) or self-correction (Kumar et al., 2024). To account for this inference strategy I , we alter
the objective SFT and RL objectives to be “aware” of the inference strategy:

max
π∈Π

Ex∼P,y∼π∗(y|x)[log I(π, x) (y)], and (Inference-Aware SFT)

max
π∈Π

J(π) := Ex∼P,y∼I(π,x)[R(x, y)], (Inference-Aware RL)

Indeed, Inference-Aware SFT and Inference-Aware RL are aware of the strategy I . In what follows,
we focus on the case where the inference strategy is BoN (i.e., I ≡ BoN), in both the SFT and RL
setups. As we will later see, this brings about new algorithms for training the policy.

BoN-Aware Problem Formulation. We begin by defining the BoN strategy. This inference strat-
egy samples N resposnes from a model with some temperature T , and then selects the best one,
based on some verifier score. Formally, the BoN inference policy can be written as:

I(π, x)(y) = πbon(y|x;π, r,N, T ) := arg max
y′∈{y1,...,yN}

r(x, y′), s.t. yi
T∼ π(·|x), x ∈ X , (1)

where T∼ is a sample with temperature T , and r : X × Y 7→ R is a verifier score1. In what
follows, when r,N, T are clear from context, we write πbon(y|x;π). We see that the above strategy
defines a class of BoN policies that is different from the learned policy π, demonstrating the gap

1The verifier score r and the true reward R can be related, or even equal, yet we do not make that assumption
here. Usually, r is a model trained to predict R, and therefore serves as a proxy of the true reward.
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between training and inference. We inject this class of BoN polices into the Inference-Aware SFT
and Inference-Aware RL frameworks to derive the instantiation of inference-aware fine-tuning.

Besides closing the gap between training and inference and mitigating potential discrepancies be-
tween the verifier score r and the true reward R, BoN policies provide further benefits. The BoN
mechanism introduces implicit exploration during training, bypassing the computational burden of
explicit exploration (Cen et al., 2024). Selecting the best of N samples allows the base policy to
explore output variations, inducing a controlled exploration that can lead to more robust and gener-
alizable policies, particularly in scaling behavior w.r.t. temperature T and number of samples N .

Optimizing the BoN policy class is notoriously difficult due to the non-differentiability of the
argmax operator. Although several differentiable top-k operators (Cuturi et al., 2019; Xie et al.,
2020) might be exploited in πbon, they induce approximation error, and more importantly, increase
the computational cost dramatically. In our work, we derive a variational formulation of the learning
problem w.r.t. πbon without top-k operators, allowing us to construct novel algorithms for inference-
aware BoN, using both standard supervised imitation learning (Section 3) and RL (Section 4).

Figure 1: The relationship between the op-
timal number of samples (N∗) and optimal
temperature (T ∗) in BoN. The size of each
marker at a given (T,N ) coordinate indi-
cates the frequency of problems for which
the (T,N ) pair resulted in the best BoN per-
formance. The plot reveals a trade-off: “eas-
ier” problems have small T ∗ and N∗, while
“harder” problems require a larger T ∗ for
exploration and consequently a larger N∗.

Exploration-Exploitation with BoN Sampling. BoN
sampling offers a natural mechanism for balancing explo-
ration and exploitation in response generation. Adding
BoN inference to the base model effectively explore
the diverse possibilities within the model’s output space
while also exploiting its knowledge to generate high-
quality candidates. This exploration-exploitation trade-
off is crucial for solving various tasks and improving gen-
eralizability. To quantify such a trade-off, we empirically
verify the implicit exploration and exploitation properties
of BoN. We do this by revealing optimal co-scaling w.r.t.
temperature T and number of samples N . Specifically,
for a fixed base policy π, at any prompt x ∈ X there is an
optimal temperature T ∗(x) and optimal number of sam-
ples N∗(x) which maximize performance of BoN:

N∗(x;π),T ∗(x;π)∈argmax
N,T

Ey∼πbon(y|x;π,r,N,T )[R(x, y].

To understand the connection betweenN∗(x) and T ∗(x),
we assess the performance of Gemma 2B (Team et al.,
2024) on the MATH benchmark (Hendrycks et al., 2021),
when applying the BoN inference strategy. Figure 1
shows empirical frequencies of problems, when varying
T ∗(x) andN∗(x) (larger marker size signifies higher fre-
quency). The figure depicts a tradeoff between T and N ,
reminiscent of the exploration-expoitation trade-off. When T ∗(x) is small, any N is optimal (and
particularly also a small N ). These “easier” problems do not require heavy exploration (small T ∗)
and can therefore be more exploitative (small N∗). On the other hand, as T ∗ increases, the base
policy π becomes more stochastic, resulting in more diversity and exploration. These more “diffi-
cult” problems, require more exploration (larger T ∗), hence less exploitation (larger N∗). Indeed,
in such cases, the distribution of N∗ shifts to high values. Our results suggest a tradeoff between
exploration and exploitation, and further motivates the BoN-aware setup, which can account for this
tradeoff uniformly across all samples.

Figure 1 also uncovers a cost-effective recipe for adjusting T and N for optimal BoN performance:
we can learn how to fine-tune the model for better inference by simply adjusting these accessible
parameters. However, it is important to note that relying solely on model selection has limitations.
While this approach offers a computationally inexpensive way to improve BoN’s inference-time per-
formance, it may not fully capture the nuances of the LLM’s behavior. With sufficient computational
resources, general BoN-aware fine-tuning can further unlock performance gains by directly training
the LLM to optimize for the exploration-exploitation trade-off of the BoN inference process.

3 SUPERVISED BON-AWARE FINE-TUNING

We begin by developing the BoN-aware SFT framework. Under this setting we assume we do not
have access to the true reward, and only wish to maximize the likelihood of a dataset of expert
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examples. Recall the definition of the BoN policy πbon in Equation (1). The Inference-Aware SFT
version of BoN becomes:

max
π∈Π

E(x,y)∼D[ log πbon(y | x;π) ], (2)

A major difficulty in solving Equation (2) is the non-differentiability of the argmax operator in the
BoN procedure. To address this, we can use the variational approximation of πbon (see Section A.1)

πbon(y|x) ∝ [π(y|x) · exp (λNQπ(x, y))], (3)

where Qπ (x, y) = Ey′∼π(·|x)
[
1r(x,y)⩾r(x,y′)

]
is the expected win-rate over base policy π, charac-

terizing the probability for which a response y outperforms the responses generated by the base over
the verifier score r. The constant λN > 0 is a solution of a 1D-search problem (Gui et al., 2024) (see
details in Appendix A.1). It can be shown that λN is monotonically increasing in N , and λN ∝ N
approximately for large N . Plugging the variational form of Equation (3) into Equation (2) yields:

max
π∈Π

E(x,y)∼D [log πbon(y|x)] := E(x,y)∼D

log π (y|x)︸ ︷︷ ︸
Likelihood

+ λN ·Qπ (x, y)−logZπ(x)︸ ︷︷ ︸
Inference-Awareness

 , (4)

where Zπ(x) = Eπ(y|x) [exp (λN ·Qπ (x, y))] is the partition function.

The above optimization problem reveals two term. While the first term tries to push the base pol-
icy π into maximizing the likelihood of the data, the second term regularizes the policy to be more
exploratory by increasing the data win rate over the policy. This in turn accounts for the sampling
in BoN. For data efficiency when estimating the win rate Qπ (x, y) we leverage a common practice
in modeling pairwise preferences (Rafailov et al., 2023) to approximate the win rate with its “soft-
ened” counterpart: Qπ (x, y) ≈ Ey′∼π(·|x) [σ (r(x, y)− r(x, y′))], where σ is the sigmoid function.
Next, we exploit properties of policy gradient (Sutton et al., 1999) and the gradient of energy-based
policies (Rafailov et al., 2024) to derive the gradient for Equation (4) (see Appendix A.2 for proof):

Lemma 1 (BoN-SFT). The gradient of Equation (4) w.r.t. LLM parameters θ ∈ Θ of π is given by
E(x,y)∼D [∇θf (x, y; θ)]− Ex∼D,y∼πbon(·|x) [∇θf (x, y; θ)], where

∇θf (x, y; θ) :=∇θ log πθ (y|x)− λN · Ey′∼πθ
[∇θ log πθ (y′|x)·1{r(x, y) < r(x, y′)}] . (5)

Our formulation circumvents the non-differentiability of the BoN distribution, allowing solution of
BoN-SFT via standard gradient-ascent algorithms. The individual terms of the gradient imply the
following: (1) π clones the expert behavior by maximizing its likelihood over D; (2) it aligns with
the verifier score ranking, which assigns a high win-rate to the expert over the base; (3) it avoids
over-fitting by limiting its likelihood over the BoN sample; and (4) it maintains overall response
quality by reducing the win rate between its best and average samples.

4 BON-AWARE FINE-TUNING USING REINFORCEMENT LEARNING

Training LLMs that are amenable to BoN sampling can be framed within the RL paradigm, which
trains an agent (LLM) that optimizes its actions within an environment. In this context, the LLM
generates N responses (candidates actions) for a given prompt (contexts). A separate macro agent
(verifier) selects the candidate deemed most suitable according to a predefined criterion (e.g., prob-
ability of success). This action is then deployed to the environment, yielding a reward (e.g., task
completion). The key challenge in training this agent lies in achieving two objectives simultane-
ously: (i) Enhancing agent’s exploration capabilities to generate diverse candidates that cover the
space of potential solutions and align with the verifier’s preferences; (ii) Maximizing the environ-
ment reward of the final response. Motivated by this observation, we utilize RL for BoN-aware
fine-tuning, enabling the development of more robust and adaptable LLMs. A schematic of the
BoN-Aware RL framework is shown in Figure 2.

The BoN-Aware RL problem takes the following form:

max
π∈Π

J(π) := Ex∼P,y∼πbon(·|x;π,r,N,T )[R(x, y)]. (6)

We train the BoN policy πbon (paramterized by π) to attain a high environment reward. Apart from
enabling better exploration, using the environment rewardR(x, y) in BoN-RL allows the base policy
to tolerate potential errors in the verifier r(x, y). We first develop a general algorithm for solving
the BoN-aware RL problem. We then study an important subclass which assumes a binary reward,
a common feature of many reasoning problems (e.g., math, code).
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argmaxVerifier
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Figure 2: BoN-Aware RL fine-tuning, where N independent samples are first drawn from base π and ranked
by the verifier r. The BoN policy then optimizes the environment reward of the BoN samples (Lemma 2).

We begin with deriving a gradient estimator to the objective in Equation (6). Exploiting the con-
nection between the BoN policy and its energy-based policy counterpart in Equation (10), and using
derivations analogous to those in Lemma 1, we compute the gradient of J(θ), which leads to a
REINFORCE-style algorithm (Williams, 1992) (see Appendix A.3 for proof):
Lemma 2 (BoN-RL). The gradient of Equation (6) w.r.t. LLM parameters θ ∈ Θ of π is given by

∇θJ(θ) = Ex∼D,y∼πbon(·|x) [∇θ log πθ (x, y) · (R(x, y)− b(x))]
− λN · Ex∼D,y∼πbon(·|x),y′∼πθ

[∇θ log πθ (y′|x)·1{r(x, y) < r(x, y′)} · (R(x, y)− b(x))] , (7)

where b(x) = Ey∼πbon(·|x)[R(x, y)] is a baseline for variance reduction (Schulman et al., 2015).

This formulation resembles the standard REINFORCE gradient with the main difference of drawing
samples from the BoN policy (instead from the base policy π). This allows one to solve BoN-RL
via actor-critic methods (Sutton et al., 2009a). In practice, one can replace b(x) with a learned value
baseline bψ(x) parameterized by ψ, for which ψ is updated by gradient descent w.r.t. the critic value
loss. While BoN-RL inherits the benefits of verifier alignment from BoN-SFT, and can be viewed
as a reward-weighted variant of the popular STaR method (Zelikman et al., 2022), generally it can
be rather sample inefficient (especially when N is large), as estimating both the value function b(x)
and the policy gradient in BoN-RL require samples from the BoN distribution. See Appendix C for
a discussion on alleviation using BoN distillation (Sessa et al., 2024).

BoN-RL with Binary Reward and Verifier. While Lemma 2 provides a general method for BoN-
aware RL, the policy gradient estimator in Equation (7) is sample ineffiecient for a general rewards
and verifiers. However, many domains admit binary success/failure metrics (e.g., reasoning tasks,
math, coding) which allow an efficient gradient estimator, obviating the need for value estimation.
Specifically, with a binary reward known to the verifier, i.e., R(x, y) = r(x, y) ∈ {0, 1}, Theorem 1
of Sessa et al. (2024) implies the following closed-form solution of the BoN policy πbon:

πbon(y|x) =

{
π(y|x) · Pfail(x)

N−1 if R(x, y) = 0
π(y|x)

1−Pfail(x)
·
(
1− Pfail(x)

N
)

if R(x, y) = 1
, (8)

where Pfail(x) := Ey′∼π(·|x)
[
1R(x,y′)=0

]
is the fraction of problems on which the base policy π is

incorrect. Under the binary assumption, πbon is a weighted distribution of the base policy π, whose
importance sampling ratio depends on the its failure probability Pfail(x). Introducing this closed
form of πbon to Lemma 2, we obtain the following policy gradient (see Appendix A.4 for proof):
Lemma 3 (BoN-RLB). Assume R(x, y) ∈ {0, 1}. The gradient of Equation (6) w.r.t. LLM param-
eters θ ∈ Θ of π is given by

Ex∼D

[
Ey∼πbon,R=1 [∇θ log πθ(y|x)] · g+N (Pfail(x)) + Ey∼πbon,R=0 [∇θ log πθ(y|x)] · g−(Pfail(x))

]
,

where the positive and negative sample-dependent weights are given by

g+N (p) =
N · pN−1

1− pN
, g−(p) =

N · p
1− p

. (9)

Lemma 3 not only reveals an efficient policy gradient estimator for binary reward, but more impor-
tantly demonstrates how BoN-RLB balances positive and negative examples in its gradient update. It
proposes novel way to re-weigh BoN-RLB’s training examples, which prioritizes harder examples
(as Pfail(x) → 1) by giving their positive samples exponentially more influence and aggressively
redistributing log likelihood away from incorrect responses. The significance of this asymmetric
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Table 1: Summary of Our Best-of-N-Aware Fine-Tuning Methods

Method Offline
Data

Reward
(R)

Verifier
(R ̸=r)

Binary
(R=r)

Positive
Only

Closed
Form

BoN-SFT ✓ × ✓ × ✓ ×
BoN-RL-V × ✓ ✓ ✓ × ×
BoN-RL-S × ✓ × ✓ × ×
BoN-RLB × ✓ × ✓ × ✓
BoN-RLB(P) × ✓ × ✓ ✓ ✓

weighting scheme is that it infuses implicit exploration capabilities to the base policy. As Tajwar
et al. (2024) observed, when the model reduces the likelihood of negative responses, it shifts that
probability mass towards a mode of the learned policy – essentially reinforcing existing successful
strategies (exploitation). However, if these high-likelihood regions later produce errors, the resulting
negative gradient redistributes this mass again, pushing the model to explore other potential solu-
tions. This iterative process of concentrating probability mass and subsequent redistribution through
negative gradients drives a form of exploration: as long as the model can produce correct solutions,
it need not devote most of its sampling budgetN on that but can also explore more diverse solutions.

Positive-only Weighting. Although we have illustrated the benefits of an asymmetric weighting
scheme in BoN-RLB for exploration, training with both positive and negative examples may be
infeasible (e.g., in a data-limited online RL system that only records positive examples). To tackle
this, we apply a change of measure to Lemma 3 with the BoN distribution to derive a policy gradient
that only involves positive examples (see Appendix A.5 for proof):
Corollary 4 (BoN-RLB(P)). Assume R(x, y) ∈ {0, 1}. The gradient of Equation (6) w.r.t. LLM
parameters θ ∈ Θ of π is given by Ex∼D[Ey∼πbon,R=1[∇θ log πθ(y|x)] · g+N (Pfail(x))], where

g+N (p) := N ·pN−1·(1−p)
(1−pN )

.

Notice that the weighting g+(p,N) is monotonically increasing in p ∈ [0, 1] and lies within [0, 1]
for any N . Using this gradient update, BoN-RLB(P) resembles a weighted version of BoN-STaR
(see Remark C.3 in the appendix), where it clones positive examples generated by the current BoN
policy and up-weights the more difficult ones, where Pfail(x) is close to 1.

Table 1 summarizes different BoN-aware fine-tuning methods including: (1) BoN-SFT from Lemma
1, (2) BoN-RL from Lemma 2 with a verifier, BoN-RL-V, (3) BoN-RL with environment reward
as verifier, BoN-RL-S, (4) BoN-RLB from Lemma 3, and (5) BoN-RLB(P) from Corollary 4.
These methods are designed to leverage the BoN selection strategy during model fine-tuning, under
different settings mentioned in Sections 3 and 4. BoN-SFT uses expert data but doesn’t involve
explicit reward learning. It relies on a verifier to select the best output and only trains with positive
examples. BoN-RL-V and BoN-RL-S employ RL to optimize BoN performance, with the former
using a verifier for response selection while the latter relying solely on a reward signal. BoN-RLB
and BoN-RLB(P) also utilize RL on the special case of binary reward feedback (R = r ∈ {0, 1}).
They both have closed-form solutions, which can lead to more efficient learning. BoN-RLB(P) only
learns from positive examples, which might be beneficial for (e.g., safety-critical) situations where
collecting negative data is difficult.

5 EXPERIMENTS

In this section we address the following questions: (1) Can we quantify the co-scaling relationship
between the BoN number of samples N and temperature T , enabling joint optimization of these
parameters? (2) Do inference-aware fine-tuning methods (SFT and RL) enhance the effectiveness of
BoN sampling? (3) Do these improvements generalize across problem domains and BoN settings?

5.1 CO-SCALING ANALYSIS OF SAMPLE SIZE N AND TEMPERATURE T IN BON
We study the co-scaling behaviors of BoN and pass@N performance over varying N and
T by experimenting pre-trained Gemma 2B and 9B models on the Hendrycks MATH bench-
mark (Hendrycks et al., 2021). Our experiments showed consistent co-scaling behaviors across
different model sizes, therefore we summarize the results of 2B model below and include the 9B
findings in Appendix D.1. As illustrated in Figure 3 (Figure 9, Figure 10 in Appendix D.1), pass@N
consistently increases with higher N , as commonly observed (Brown et al., 2024). Our analy-
sis suggests that this relationship can be captured by a power-law function of the following form:
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Figure 3: BoN and pass@N performance of Gemma 2B policy and reward models w.r.t. varying N and T .
pass@N monotonically improves with N ; BoN shows inflection points as N increases. Colored dashed lines
denote predictions of scaling functions; black dashed lines in BoN plot denote the last inflection points.

pass@N(T ) ≈ exp(a(T )N b(T )), where the parameters a(T ) and b(T ) are temperature-dependent
and derived by fitting the model to data at a specific temperature T . Further analysis of this scaling
behavior (detailed in Appendix D.1) indicates that there is a strong positive correlation between the
optimal temperature and N , which aligns with the intuition that larger N benefits from broader ex-
ploration (higher T ), while smaller N favors focused exploitation (constant T ). This relationship is
straightforward, as there are no verifier errors confounding the selection of best responses.

Our experiments demonstrate an intriguing relationship between BoN accuracy, T , and N . We find
that lower temperatures generally yield better BoN accuracy. Furthermore, BoN accuracy generally
decreases as N increases, but degrades more rapidly with higher temperatures.With larger N and
T , the increased randomness in the base policy inherently generates more “bad” samples (with poor
accuracy). This phenomenon suggests that the verifier is sensitive to noise and may mistakenly
select random outputs generated at higher temperatures as the best responses due to misalignment
with the true reward (Type II error). Conversely, at very low temperatures, BoN accuracy improves
withN , indicating the algorithm remains in an exploitation phase. Optimal performance is observed
at moderate N values, striking a balance between exploration and exploitation.

5.2 INFERENCE-AWARE FINE-TUNING WITH BON SAMPLING

Experimental setup. We study 2B and 9B Gemma 2 models (Team et al., 2024) on canonical
mathematical problem-solving and code generation benchmarks. For math, we train and evaluate on
Hendrycks MATH benchmark (Hendrycks et al., 2021), and additionally evaluate on two held-out
math benchmarks: Functional MATH (Srivastava et al., 2024) and MathOdyssey (Fang et al., 2024).
For coding, we train on MBPP (Austin et al., 2021), and evaluate on HumanEval (Chen et al., 2021).
More details of our experiments can be found in Appendix D.2.

Our main evaluation metrics are BoN and pass@N accuracies, i.e. the accuracies of the policies
defined in Equation (1) with a learned verifier and ground-truth reward respectively. For math, we
consider both metrics, using a learned verifier for BoN, and for coding, we consider only pass@N
because test-case feedback is usually available.

We benchmark our proposed methods BoN-SFT, BoN-RL-V, BoN-RL-S, BoN-RLB, and BoN-
RLB(P) against several baselines: (1) STaR from Remark C.3, which uses self-training over cor-
rectly generated responses; (2) RL (Lee et al., 2023) with verifier feedback (RL-V); (3) RL with
environment feedback (RL-S); (4) standard SFT of the base policy (SFT, N ′ = 1); and (5) BoN
with the pre-trained model (Base model). We denote by (N ′, T ′) and (N , T ) the number of samples
and temperature used in training and evaluation, respectively. We use T = T ′ = 1.0 unless speci-
fied otherwise. Similar to co-scaling, our experiments show similar trends with 2B and 9B models,
therefore we summarize that of the 2B model below and defer the 9B results to Appendix D.3.

BoN-aware supervised fine-tuning. We first evaluate the BoN and pass@N performance of of-
fline SFT methods, including BoN-SFT with various N ′, and base SFT (N ′ = 1), with results
shown in Figure 4. We find that base SFT significantly degrades upon the base model, indicating
that it causes overfitting or lack of generalization. BoN-SFT is able to improve the BoN accuracy
significantly, especially with increasing N ′. We find that BoN-SFT with N ′ = 32 achieves the best
performance for both BoN accuracy and pass@N , suggesting that it is able to produce both high-
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Figure 4: BoN Accuracy and pass@N accuracy for BoN-SFT with Gemma 2B models.

0 5 10 15 20 25 30
N

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Bo
N 

Ac
cu

ra
cy

Base model
BoN-RL-S N ′=32
BoN-RL-V N ′=32
BoN-RLB N ′=32
RL-V N=1

(a) Comparison of different methods.

0 5 10 15 20 25 30
N

0.22

0.24

0.26

0.28

0.30

Bo
N 

Ac
cu

ra
cy

Base model
BoN-RL-V N ′=4
BoN-RL-V N ′=8

BoN-RL-V N ′=16
BoN-RL-V N ′=32

(b) BoN-RL-V with various N ′ values.

Figure 5: BoN accuracy on BoN-RL methods and baselines, with Gemma 2B model on MATH.

quality and exploratory responses. To improve substantively over the base model, we next turn to
RL, which should be more effective by virtue of being on-policy.

BoN-RL-V improves BoN Accuracy. Our BoN RL algorithm, BoN-RL-V, with N ′ = 32, sig-
nificantly outperforms several baselines (Figure 5a). Specifically, it boosts the Bo-32 accuracy of
our base model from 26.8% to 30.8%. As expected, the inference-unaware RL-V method performs
poorly, likely due to common reward hacking issues (Jinnai et al., 2024). We also find that training
with the same verifier used as test-time is critical - our other proposed inference-aware methods that
use the environment reward instead of the verifier (BoN-RL-S and BoN-RLB) show improvement
over the base model but are substantially worse than BoN-RL-V.

We plot the performance of BoN-RL-V with different training N ′ in Figure 5b, and observed the
best performance when training with 32 samples (N ′ = 32). Interestingly, although the gains are
more pronounced at higherN values, training with largeN ′ leads to consistent improvements across
all N = 1 to 32. This suggests that RL-BoN-V not only optimizes the specific BoN setting it was
trained on, but also generalizes to other BoN configurations, including large improvements on direct
N = 1 accuracy (from 22% to 26%). We hypothesize that the RL-BoN-V method significantly
enhances BoN accuracy by effectively exploring a larger sample space during training. Training with
a large N ′ allows the base policy to explore a wider range of responses to generate higher-quality
responses, similar to how effective exploration in RL leads to better performance and generalization
across different scenarios.

BoN-RL-S, BoN-RLB, and BoN-RLB(P) improve pass@N . We next analyze the pass@N per-
formance of various methods on math and coding benchmarks, aiming to understand how differ-
ent training approaches impact the models’ ability to generate diverse and correct solutions. As
shown in Figure 6, our inference-aware methods designed to explicitly optimize pass@N during
training (BoN-RL-S, BoN-RLB, or BoN-RLB(P)) can lead to better test-time pass@N across both
domains, highlighting the importance of directly considering the desired evaluation metric during
training. Notably, in the MATH domain (Figure 6a), BoN-RL-S significantly improves the pass@32
of Gemma 2B from 60.0% to 67.0%. This suggests that by encouraging the model to explore a
wider range of solution strategies during training, we can substantially enhance its ability to gener-
ate correct answers. Conversely, standard RL with N ′ = 1 slightly degrades pass@32, indicating
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Figure 6: pass@N of BoN-RL methods with binary reward as verifier, with Gemma 2B models.
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Figure 7: pass@N of BoN-RL and baselines on held-out benchmarks with Gemma 2B models.

that over-optimizing for immediate performance can actually hinder the model’s exploration capa-
bilities and limit its overall problem-solving ability. Interestingly, BoN-RL-V does not significantly
improve pass@N , likely because its training objective focuses on robustness to a verifier, which may
not perfectly align with generating diverse correct solutions. Similar trends are observed on coding
benchmarks (Figure 6b), where pass@N -aware methods, particularly BoN-RLBP, significantly out-
perform the base model, increasing the pass@16 performance of Gemma 2B from 61.6% to 67.1%.
Again, standard RL fine-tuning (N ′ = 1) negatively impacts performance, reducing pass@16 to
59.8%, demonstrating the downsides of solely focusing on reward maximization during training

Generalization of BoN-RL to held-out benchmarks and other temperatures. To further assess
the generalization capabilities of our BoN aware fine-tuned models, we evaluate their performance
on two challenging, held-out benchmarks: Functional Math (Srivastava et al., 2024) and Math-
Odyssey (Fang et al., 2024). As shown in Figure 7, our fine-tuned models demonstrate clear im-
provements on both benchmarks. Our BoN-aware policies also generalize well to different sampling
settings. As shown in Figure 8, BoN-RL-V (trained with T ′ = 1.0) consistently outperform the base
model across all evaluation temperatures (T ∈ {0.1, 1.0, 1.5}). Similarly, BoN-RL-S show superior
performance for pass@N at all temperatures, with increasing gains at higher temperatures. This
highlights the benefits of broader exploration, even after BoN-aware training. For BoN-accuracy,
lower temperatures favored both models, but BoN-RL-V consistently excelled, particularly at lower
temperatures, demonstrating its generalizability across different exploration-exploitation regimes.
Furthermore, BoN-RL-V show greater resilience to accuracy degradation at higher temperatures,
suggesting an enhanced ability to adapt to verifier failure modes and mitigate Type-II errors.

6 RELATED WORK

Large language models (LLMs) can leverage inference-time computation to improve the quality
of their generated outputs (Welleck et al., 2024), particularly on reasoning tasks. One common
approach is to use chain-of-thought (Wei et al., 2022), where the model generates a step-by-step
rationale before generating the final output. Another useful approach that can be combined with
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Figure 8: BoN and pass@N over various temperatures. BoN-RL with verifier and exact reward (solid lines)
are trained with T = 1.0. Dashed and solid lines show the base (Gemma 2B) and finetuned models respectively.

chain-of-thought is Best-of-N rejection sampling (Charniak & Johnson, 2005; Stiennon et al., 2020),
which is our focus in this work. In Best-of-N, we generate multiple candidate outputs from an LLM
and select the best output. BoN re-ranking can be done either using oracle information, such as
checking final answers for solving math problems, which is also known as pass@N (Chen et al.,
2021), or learned verifiers (Cobbe et al., 2021; Lightman et al., 2023; Hosseini et al., 2024; Zhang
et al., 2024). Recent work also empirically analyzes strategies that optimally trade off additional
test-time compute for improved performance (Wu et al., 2024; Snell et al., 2024).

Closely related to our approach is prior work that fine-tunes LLMs to improve their self-correction
capabilities (Kumar et al., 2024; Snell et al., 2024) or search capabilities on planning tasks (Gandhi
et al., 2024; Lehnert et al., 2024), which allows for more efficient scaling with test-time compute.
By contrast, our work focuses on inference-aware fine-tuning that directly optimizes for Best-of-N
performance, instead of an intermediate capability that be used at test-time.

To make an LLM amenable to test-time scaling, techniques like STaR (Zelikman et al., 2022) or
ReSTEM (Singh et al., 2023) have been employed to fine-tune the model using on-policy data. This
process leverages BoN sampling to iteratively generate better responses, and fine-tunes on this cu-
rated data, for which the LLM learns to improve its proposal distribution, effectively increasing the
likelihood of generating high-quality outputs during inference.

Finally, our work is related to recent work on leveraging tree search to enhance decision-making in
RL (Dalal et al., 2021). A key challenge in both BoN sampling and tree search lies in mitigating the
impact of imperfect value estimation. Dalal et al. (2021) address this in tree search by penalizing
actions leading to states with high Q-value error, making inference more pessimistic for out-of-
distribution samples. In contrast, we address BoN verifier error during training, learning responses
robust to these errors and aligning training with inference. Our framework extends to tree search,
using the verifier as an approximate Q-function and optimizing policy robustness to its errors.

7 CONCLUSION

We introduced inference-aware fine-tuning, a novel paradigm that bridges the gap between training
and inference for LLMs. Specifically for the Best-of-N inference strategy, we discovered a co-
scaling law for BoN that guides the optimization of temperature and sample size, developed a gamut
of fine-tuning algorithms that handle various imitation learning and reinforcement learning settings,
training LLMs to generate diverse and high-quality outputs tailored for BoN inference, demonstrated
the efficacy of these methods by significantly improving on BoN accuracy and pass@N on the
standard MATH reasoning benchmark over state-of-the-art baselines, highlighting the robustness
and generalizability of our approaches across various BoN configurations.

Our work exemplified how BoN-aware fine-tuning learns a meta-strategy, which interleaves best re-
sponses with more diverse responses that might be better suited for BoN sampling. These findings
underscore the potential of inference-aware fine-tuning to unlock previously undiscovered capa-
bilities in LLMs through aligning training methodologies with inference-time compute strategies.
Future work includes extending this framework to incorporate more complex, inference algorithms
(e.g., reasoning, critique-and-revise, MCTS), developing contextual BoN-aware algorithms that can
generalize to various tasks, investigating the interplay between the co-scaling of temperature, sample
size, and BoN-aware fine-tuning, and applying our algorithms to more larger-scale problems.
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Reproducibility Statement. We utilize the publicly available Gemma 2B and 9B language mod-
els, the Hendrycks MATH benchmark, and the HumanEval coding benchmark – all accessible to the
research community. Our experimental setup is described in detail in Section 5. Furthermore, the
appendix provides comprehensive pseudo-code (Algorithms 1 to 4) and implementation details for
our BoN-aware fine-tuning algorithms (BoN-SFT, BoN-RL, BoN-RLB, and BoN-RLB(P)). We also
delve into the theoretical underpinnings of our methods in the main text and the appendix, enabling
a thorough understanding of our approach.
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Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In International Conference on Machine Learning (ICML),
2009a.

Richard S. Sutton, Hamid Reza Maei, and Csaba Szepesvári. A convergent o(n) temporal-difference
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berger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang,
Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin,
Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen
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A THEORETICAL DERIVATIONS

A.1 VARIATIONAL APPROXIMATION OF BON

We assume that the verifier score r(x, y) is unique for all x, y, and the base model π has a finite set
of possible outcomes for each context (Beirami et al., 2024).
Proposition 5 (Theorem 2 in Gui et al. (2024)). With negligible error, one may effectively approxi-
mate πbon as the solution to the following optimization problem:

πbon (y|x)∈ argmax
µ(·|x)∈∆Y

Ey∼µ [Qπ (x, y)]−
1

λN
KL (µ||π) (x), (10)

where Qπ (x, y) = Ey′∼π(·|x)
[
1r(x,y)⩾r(x,y′)

]
is the expected win-rate over π, and

(λN − 1) exp (λN + 1)

exp (λN − 1)
− log

(
expλN − 1

λN

)
= logN − N − 1

N
, (11)

through λN scaling sub-linearly with BoN number of samples N .

We can show the optimal solution to Equation (10) has a closed form π∗
bon ∝ [π · exp (λNQπ)](y|x).

This can also be revealed by viewing Equation (10) as the variational form of Bayes’ rule (Williams,
1980; Zellner, 1988; Zhu et al., 2014; Dai et al., 2016), whose optimal solution is the posterior. This
implies πbon can be represented by an exponential-twisting policy (Gerber et al., 1993) over base pol-
icy π with energy function λN ·Qπ(y, x), partition functionZπ(x) = Eπ(y|x) [exp (λN ·Qπ (x, y))],
and an appropriate λN from Equation (11).

In this section we will provide proofs for the technical results in this paper.

A.2 PROOF OF LEMMA 1

Therorem 2 of Gui et al. (2024) shows that, with negligible error, one may effectively approximate
πbon as the solution to the following optimization problem:

πbon (y|x)∈ argmax
µ(·|x)∈∆Y

Ey∼µ [Qπ (x, y)]−
1

λN
KL (µ||π) (x), (12)

where Qπ (x, y) = Ey′∼π(·|x)
[
1r(x,y)⩾r(x,y′)

]
is the expected win-rate over π, and this yields the

variational form πbon ∝ [π · exp (λNQπ)](y|x). Plugging the variational form of πbon into (2) yields
the learning problem for π:

max
π∈Π

E(x,y)∼D [log πbon(y|x)] := E(x,y)∼D

log π (y|x)︸ ︷︷ ︸
Likelihood

+λN ·Qπ (x, y)−logZπ(x)︸ ︷︷ ︸
Inference-Awareness

 , (13)

Taking gradient of this objective function over θ ∈ Θ implies
∇θE(x,y)∼D [log πθ (y|x)+λN ·Qπθ

(x, y)−logZπθ
(x)]

=E(x,y)∼D [∇θ log πθ (y|x)]+λN · ∇θE(x,y)∼D [Qπθ
(x, y)]−∇θEx∼D [logZπθ

(x)]

=E(x,y)∼D [∇θ log πθ (y|x)]+λN · E(x,y)∼D [Ey′∼πθ
[∇θ log πθ(y′|x) · σ (r(x, y)− r(x, y′))]]

−Ex∼D
[
∇θ logEπθ(y|x) [exp (λN ·Qπθ

(x, y))]
]

=E(x,y)∼D [∇θ log πθ (y|x)]+λN · E(x,y)∼D [Ey′∼πθ
[∇θ log πθ(y′|x) · σ (r(x, y)− r(x, y′))]]

−Ex∼D

[Eπθ(y|x) [∇θ log πθ(y|x) · exp (λN ·Qπθ
(x, y))] + Eπθ(y|x) [∇θ exp (λN ·Qπθ

(x, y))]

Eπθ(y|x) [exp (λN ·Qπθ
(x, y))]

]
.

This further implies that
∇θ E(x,y)∼D [log πθ (y|x)+λN ·Qπθ

(x, y)−logZπθ
(x)]

=E(x,y)∼D [∇θf (x, y; θ)]− Ex∼D

[
Eπθ(y|x)

[
exp (λN ·Qπθ

(x, y))

Eπθ(y|x) [exp (λN ·Qπθ
(x, y))]

· ∇θf (x, y; θ)
]]
,

through collecting terms from the above expression and recalling the definition of∇θf (x, y; θ) as
∇θf (x, y; θ) :=∇θ log πθ (y|x) + λN · Ey′∼πθ

[∇θ log πθ (y′|x)·σ (r(x, y)− r(x, y′))] .
This further implies that

∇θ E(x,y)∼D [log πθ (y|x)+λN ·Qπθ
(x, y)−logZπθ

(x)]

=E(x,y)∼D [∇θf (x, y; θ)]− Ex∼D,y∼πbon [∇θf (x, y; θ)] ,
completing the proof of this lemma.
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A.3 PROOF OF LEMMA 2

Recall the RL objective function
max
π∈Π

J(π) := Ex∼P,y∼πbon(·|x;π,r,N,T )[R(x, y)]. (14)

Applying the REINFORCE trick (Sutton et al., 2009b) to this problem over the BoN policy class
and using the analgous argument from the proof of Lemma 1, we have the following expression for
the policy gradient:
Ey∼πbon(·|x),x∼D [∇θ log πbon(y|x) ·R(x, y)]

=Ex∼D,y∼πbon(·|x) [∇θf (x, y; θ) ·R(x, y)]− Ex∼D,y∼πbon [∇θf (x, y; θ)] · Ey∼πbon(·|x),x∼D [R(x, y)]

=Ex∼D,y∼πbon(·|x) [∇θfθ (x, y) · (R(x, y)− b(x))]
=Ex∼D,y∼πbon(·|x) [∇θ log πθ (y|x) · (R(x, y)− b(x))]

+ λN · Ex∼D,y∼πbon(·|x),y′∼πθ
[∇θ log πθ (y′|x)·1{r(x, y) ⩾ r(x, y′)} · (R(x, y)− b(x))]

=Ex∼D,y∼πbon(·|x) [∇θ log πθ (y|x) · (R(x, y)− b(x))]
− λN · Ex∼D,y∼πbon(·|x),y′∼πθ

[∇θ log πθ (y′|x)·1{r(x, y) < r(x, y′)} · (R(x, y)− b(x))] .
This completes the proof of this lemma.

A.4 PROOF OF LEMMA 3

Using the log-likelihood trick, and plugging in the BoN distribution from Equation (8), the gradient
of Equation (6) can be computed as
Ey∼πbon(·|x),x∼D [∇θ log πbon(y|x) ·R(x, y)] = Ey∼πbon(·|x),R(x,y)=1,x∼D [∇θ log πbon(y|x)]

=Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1,

[
∇θ log πθ(y|x)

]
+ (1− Ey′∼π(·|x)

[
1R(x,y′)=0

]N
)∇θ log

1− Ey′∼π(·|x)
[
1R(x,y′)=0

]N
1− Ey′∼π(·|x)

[
1R(x,y′)=0

] ]
=Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1

[
∇θ log πθ(y|x)

]
−

1− Ey′∼π(·|x)
[
1R(x,y′)=0

]N
1− Ey′∼π(·|x)

[
1R(x,y′)=0

] Ey′∼π
[
∇θ log πθ(y′|x) · 1R(x,y′)=1

]
+ Ey′∼π

[
∇θ log πθ(y′|x) · 1R(x,y′)=1

]
·N · Ey′∼π(·|x)

[
1R(x,y′)=0

]N−1
]

=Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1 [∇θ log πθ(y|x)] ·

NIref(x)
N−1(1− Iref(x))

1− Iref(x)N

]
.

=Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1 [∇θ log πθ(y|x)] ·

N · Iref(x)
N−1

1− Iref(x)N

− (−1) · Ey∼πbon(·|x),R(x,y)=0 [∇θ log πθ(y|x)] ·
N · Iref(x)

1− Iref(x)

]
A.5 PROOF OF COROLLARY 4

Using the log-likelihood trick, and plugging in the BoN distribution from Equation (8), the gradient
of problem Equation (6) can be computed as

Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1 [∇θ log πθ(y|x)] ·

N · Iref(x)
N−1

1− Iref(x)N

+ Ey∼πbon(·|x),R(x,y)=0 [∇θ log πθ(y|x)] ·
N · Iref(x)

1− Iref(x)

]
=Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1 [∇θ log πθ(y|x)] ·

NIref(x)
N−1(1− Iref(x))

1− Iref(x)N

]
.
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Algorithm 1 BoN-SFT
1: Input: Verifier score r, environment reward R, expert dataset D
2: for t = 1, 2, . . . do
3: Sample a batch of prompts and solutions {xi, yi}Bi=1 from the expert data D.
4: for i = 1, . . . , B do
5: Sample N responses {yi,j}Nj=1 from πθ(·|xi).
6: Select the BoN response y∗i = argmaxj r(xi, yi,j).
7: Compute the gradient∇θfθ(xi, yi) using Equation (5).
8: end for
9: Update θ by following the gradient in Theorem 1 at learning rate α > 0, i.e.,

θ ← θ + α

(
1

N

N∑
i=1

[∇θf (xi, yi; θ)]− [∇θf (xi, y∗i ; θ)]

)
10: end for

B PSEUDO-CODE AND IMPLEMENTATION DETAILS

Pseudo-code for all our SFT and RL methods is presented in Algorithms 1 to 4. Our implementation
follows the standard use of an anchor policy, updated using exponential moving average. The policy
is trained via BoN-aware losses, with additional KL divergence loss to the anchor policy. Table 2
shows the hyper-parameters used for all of our experiments.

We use linear annealing for the KL-coefficient. For all our RL experiments, we use a value baselines
to reduce variance of our reward estimates. We normalize our advantage estimates w.r.t. the batch.
For BoN-RLB the value network estimates Pfail(x). We add additional clipping of the coefficients
g+N , g

−
N by clipping the value estimates for Pfail.

Table 2: Hyperparameters used in experiments.

Hyperparameter Value
Base model Gemma 2b v2
Optimizer AdamW
Learning rate policy 3e-6
Policy warmup steps 100
Learning rate value 1e-5
Anchor EMA 0.01
Training steps 2500
Batch size 32
Sampling temperature 1.0
KL coefficient anneal steps 2500
KL coefficient anneal range 1.0→ 0.075
KL coefficient anneal delay 10
Clipping values for Pfail {0.01, 0.99}

B.1 ANALYSIS OF BON-RLB WEIGHTS

The shifting balance between g+N (p) and g−(p) with varying p directly reflects the exploration-
exploitation trade-off. As p approaches 1, signifying very difficult problems, both g+N (p) and g−(p)
increase, but g+N (p) rises more dramatically, especially for larger values of N . This sharp increase
in g+N (p) highlights the algorithm’s increasing emphasis on learning from the few correct responses
that are available in challenging scenarios. The effect is amplified by larger sample sizes: the more
attempts are made, the more valuable the scarce successes become. The g+N (p) weight, used when
only positive feedback is available, exhibits a similar upward trend with p but with a less pronounced
increase. This more moderate behavior can be attributed to the subtraction term in its formula, which
tempers the influence of the positive samples and promotes a more balanced learning approach.

Finally, the potentially very large values of g+N (p) for hard problems and larger N introduce chal-
lenges for estimation. These high weights amplify the impact of individual positive samples, making
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Algorithm 2 BoN-RLB(P)
1: Input: Environment reward R, dataset D
2: for t = 1, 2, . . . do
3: Sample a batch of prompts {xi}Bi=1 from D.
4: for i = 1, . . . , B do
5: Sample N responses {yi,j}Nj=1 from πθ(·|xi).
6: Sample rewards for all candidate responses {R(xi, yi)}Ni=1 from environment.
7: Select the BoN response y∗i = argmaxj R(xi, yi,j).
8: Empirically estimate the base failure probability for each xi, i ∈ {1, . . . , B},

P̂fail(xi) :=
1

N

N∑
j=1

1R(xi,yi,j)=0.

9: end for
10: Update θ by following the gradient in Corollary 4 at learning rate α > 0, i.e.,

θ ← θ + α

(
1

B

B∑
i=1

∇θ log πθ(y∗,+i |xi) · g
+(Pfail(xi), N)

)
where y∗,+i represents the BoN sample that achieves a reward of 1.

11: end for

Algorithm 3 BoN-RLB
1: Input: Environment reward R, dataset D
2: for t = 1, 2, . . . do
3: Sample a batch of prompts {xi}Bi=1 from D.
4: for i = 1, . . . , B do
5: Sample N responses {yi,j}Nj=1 from πθ(·|xi).
6: Sample rewards for all candidate responses {R(xi, yi)}Ni=1 from environment.
7: Select the BoN response y∗i = argmaxj R(xi, yi,j).
8: Empirically estimate the base failure probability for each xi, i ∈ {1, . . . , B},

P̂fail(xi) :=
1

N

N∑
j=1

1R(xi,yi,j)=0.

9: end for
10: Update θ by following the gradient in Lemma 3 at learning rate α > 0, i.e.,

θ ← θ+α

(
1

B

B∑
i=1

∇θ log πθ(y∗,+i |xi) · g
+(Pfail(xi), N)−∇θ log πθ(y∗,−|xi) · g−(Pfail(xi))

)
where y∗,+i , y∗,−i represent the BoN samples that achieve rewards of 1 and 0 respectively.

11: end for

the training more vulnerable to noise and potentially hindering convergence to a stable optimal pol-
icy. This underscores the need for techniques like gradient clipping or regularization to mitigate the
destabilizing effects of high weight values and ensure robust learning, or alternatively, using g+N (p)
with Corollary 4 to ensure boundness of the gradient weights.
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Algorithm 4 BoN-RL
1: Input: Verifier score r, environment reward R, dataset D
2: for t = 1, 2, . . . do
3: Sample a batch of prompts {xi}Bi=1 from D.
4: for i = 1, . . . , B do
5: Sample N responses {yi,j}Nj=1 from πθ(·|xi).
6: Select the BoN response y∗i = argmaxj r(xi, yi,j).
7: (If environment reward R is available to the BoN algorithm, we replace verifier r with

that.)
8: Sample the reward R(xi, y∗i ) from environment.
9: Compute the gradient∇θfθ(xi, yi) using Equation (5).

10: end for
11: Update θ by following the gradient in Lemma 2 at learning rate α > 0, i.e.,

θ ← θ + α

(
1

B

B∑
i=1

∇θfθ (xi, y∗i ) · (R(xi, y∗i )− b(xi))

)
where bψ(xi), i = 1, . . . , B is a learned baseline value function of πbon, i.e.,

ψ∗ ∈ argmin
ψ

1

B

B∑
i=1

[R(xi, y
∗
i )− bψ(xi)]2

12: Update value estimate ψ using the current environment reward target and BoN policy tra-
jectories.

13: end for

C ALGORITHMIC EXTENSIONS

C.1 ENTROPY-REGULARIZED RL

We would like to study an entropy-regularized RL problem for the πbon policy. Recall that generally
in entropy-regularized RL, we solve

max
π(·|x)∈∆

Ex∼D
[
Ey∼π(·|x) [R(x, y)]− β ·KL(π||πβ)(x)

]
, (15)

where R(x, y) is the environment reward (that is not necessarily identical to the verifier score
model), πβ is a baseline policy, and β > 0 is the weight for the KL regularization term. Using
the consistency condition of KL-regularized MDP, solving for the optimal policy of this problem is
equivalent to finding a solution pair of V and π ∈ ∆ of the following equation:

V (x) = R(x, y) + β log πβ(y|x)− β log π(y|x), ∀x ∈ D, ∀y (16)
Now, we further parameterize the policy variable π with the BoN policy πbon, then with the suffi-
ciency part of the consistency condition one can show that πbon is an optimal RL policy of Equa-
tion (15) if there exists a pair of V and π that satisfies the following equation
V (x) = R(x, y) + β log πβ(y|x)− β (log π(y|x) + λN ·Qπ (y, x)− logZπ(x)) , ∀x ∈ D, ∀y

(17)

There are two ways to approximately find the solution in Equation (17). The first way is to refor-
mulate the above equation with a condition that equates the values between any pairwise states and
outputs (x, y, y′):

R(x, y′)+β log
πβ(y

′|x)
π(y′|x)

+βλN ·Qπ (y′, x) = R(x, y)+β log
πβ(y|x)
π(y|x)

+βλN ·Qπ (y, x) , ∀x ∈ D, ∀y, y′.

(18)
Suppose one have access to pairwise labels in the data-set, then this formulation eliminates any
terms that are independent to y and circumvents the need of solving for the value function V . One
may approximately solve Equation (18) by minimizing the following ℓ2 loss:

min
π∈∆

E(x,y,y′)∈D
[
(g(x, y;π)− (g(x, y′;π))2

]
,

g(x, y;π) := R(x, y) + β log
πβ(y|x)
π(y|x)

+ βλN ·Qπ (y, x) .

This formulation is similar to that in IPO (Azar et al., 2024). However, unlike IPO, where the term
g(x, y;π) is linear in the logits of π and therefore one can show that its ℓ2 minimization problem
has a unique solution, in this case g(x, y;π) also depends on Qπ , which is a function of π (and

19



Published as a conference paper at ICLR 2025

thus a nonlinear function of its logits), preventing us from drawing similar conclusions that the
ℓ2 minimization problem has a unique solution. Therefore, even if one can exactly solve this ℓ2
minimization problem (and make the loss zero), there is no guarantee that the solution policy π∗

corresponds to the base policy of an optimal πbon policy to the KL-regularized RL problem.

For the second approach, consider the following linear programming reformulation of Equation (17):
min
V,π∈∆

Ex∈D[V (x)]

s.t. V (x) ⩾ R(x, y) + β log πβ(y|x)− β (log π(y|x) + λN ·Qπ (y, x)− logZπ(x)) , ∀x ∈ D, ∀y
(19)

Since the inequality constraint is a convex function in π and an affine function in V , by strong duality
it has the following equivalent Lagrangian-dual formulation:

max
κ(·,·)⩾0

min
V,π∈∆

E(x,y)∈D

[
V (x) + κ(x, y) ·

(
R(x, y) + β

πβ(y|x)
π(y|x)

− β (λN ·Qπ (y, x)− logZπ(x)− V (x))

)]
= max
κ(·,·)⩾0

min
V

ED
[
(1− κ(x, y)) · V (x) + κ(x, y) · (R(x, y) + β · πβ(y|x))

]
−max

π∈∆
ED [κ(x, y) · log πbon(y|x;π)]

(20)
This formulation can be viewed as an weighted-SFT approach that iteratively updates (i) the base
policy π that maximizes the likelihood of πbon over data D, weighted with importance weights
κ(x, y), and (ii) the importance weight function κ itself. Here, the value function V (x) is simply an
auxiliary variable.

C.2 IMPROVED EFFICIENCY WITH BON DISTILLATION

While Lemma 1 provides a recipe for training a base policy to adapt to the BoN inference strategy,
a key challenge lies in the computational cost and data inefficiency associated with BoN sampling,
especially when N is large. Particularly, each gradient update requires generating N samples from
the current base policy, which can be prohibitively expensive. Furthermore, using these samples
solely for a single gradient update may deem wasteful.

To alleviate this issue, leveraging the recent advances in BoN Distillation (BoND) (Sessa et al.,
2024), an RLHF algorithm that distills BoN behaviors into a standard LLM, we approximate the
BoN distribution of the current π. This results in an iterative, two-step procedure. First, we
estimate a BoND policy πBoND (parameterized by weights ϕ) of π by solving the distribution-
matching problem: minϕ Ex∼D[KL(πϕ||πbon)(x)], where the backward-KL metric induces quantile-
based advantage and mode-seeking behaviors to πBoND. Utilizing the variational form πbon(y|x) ∝
π · exp (λNQπ) (y|x), this problem can be further reformulated as

πBoND(y|x) ∈ argmax
ϕ

Ex∼D[Ey∼πϕ(·|x)[Qπ(y, x)]−
1

λN
KL(πϕ||π)(x)]. (21)

Second, equipped with the BoND policy, we change the gradient of Lemma 1 with the approximate
gradient E(x,y)∼D [∇θf (x, y; θ)] − Ex∼D,y∼πBoND(·|x) [∇θf (x, y; θ)]. In general, this approach is
also well-connected with Contrastive Divergence (Carreira-Perpinan & Hinton, 2005) in energy-
based learning, which promotes the idea of approximately sample from the current target distribution
(πbon in our case). It shows that the learning algorithm can still converge to an optimum w.r.t. the
original objective function as long as the gradient estimated by the approximate samples still points
at an ascending direction.

C.3 CONNECTION TO STAR

Consider the popular STaR method (Zelikman et al., 2022) applied for training πbon, which updates
θ by following the reward-weighted gradient:

Ex∼D,y∼πbon(·|x) [∇θ log πθ(y|x) ·R(x, y)] . (22)

Notice that the policy gradient of BoN-RL is a sum of two terms: ∇θJ(θ) = g1(θ) + g2(θ), where
g1(θ) = Ex∼D,y∼πbon(·|x) [∇θ log πθ(y|x) ·R(x, y)] is equivalent to that of BoN-STaR, updating
π via weighted supervised fine-tuning over the responses and the rewards obtained by the cur-
rent BoN policy, and g2(θ) = Ex∼D,y∼πbon(·|x) [∇θ(λNQπ − logEπexp(λNQπ))(x, y) ·R(x, y)]
accounts for the gradient effect of the importance sampling term (expλNQπ/Zπ)(x, y) between π
and πbon, emphasizing on how much it can improve the reward. The additional g2(θ) component

20



Published as a conference paper at ICLR 2025

(a) pass@N (b) BoN

Figure 9: Scaling of exponent w.r.t temperature in pass@N and optimal N w.r.t. temperature in
BoN. Dashed curves denote in-training predictions, stars denote extrapolation values for the corre-
sponding temperatures.

pass@N BoN MajorityVoting
Gemma-9B 0.986 0.989 0.89
Gemma-2B 0.998 0.998 0.784

Table 3: R-squared values for different language models and inference algorithms.

makes BoN-RL amenable to the distributional shifts introduced by the BoN procedure, enabling the
base policy to be adept at utilizing the BoN exploration mechanism to optimize the reward.

D EXPERIMENTAL DETAILS

D.1 ADDITIONAL SCALING RESULTS WITH GEMMA 9B VERIFIER AND POLICY MODELS

Similar to Gemma2B co-scaling experiments, for Gemma 9B co-scaling, we present additional re-
sults in Figure 9. We analyze the optimal exponent b∗(T ) w.r.t different temperatures (see co-scaling
in Section 5) and find that a power law functional form can explain the relationship very accurately,
achieving very low extrapolation error for pass@N and BoN, i.e., 2.75e−05 and 2.87, respectively.
Results for pass@N suggest that exponent can be accurately predicted from just temperature. We
also inspect how optimal N∗ scales with T in BoN. We fit a power law function plus a linear term
which accurately predicts optimal N for unseen temperatures. Predictions of the fitted model can be
used to achieve close to optimal performance, achieving less than 0.001 point drop in BoN perfor-
mance. This suggests that our predictive model makes accurate predictions that keeps the optimal
performance.

Generalization of scaling predictions. In Table 3, we compare various inference algorithms and
LLMs of different sizes. For MajorityVoting algorithm, we use MC estimation to simulate different
sample sizes. We use the same functional form used for co-scaling experiments in Section 5 for
MajorityVoting. Our results remark the strong generalization performance of our predictive models
across different LLMs (both policy and reward models) and inference algorithms. The same power-
law function with a linear trend term applies well to both BoN and MajorityVoting. While we use
unbiased estimates for pass@N and BoN, we use MC estimation for MajorityVoting which leads to
less smooth curves and slightly lower prediction performance.

Gemma-9B Results. In Figure 10, we present results for Gemma-9B policy and reward models.
Using Gemma-9B improves both pass@N and BoN significantly compared to Gemma-2B. We ob-
serve that the gap between using large temperatures (0.7 or 1.0) and very small temperatures (0.1)
also increased. While Gemma-2B showed very strong reward model overoptimization for larger N
and temperatures, we see a lesser overoptimization for Gemma-9B models.
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Figure 10: pass@N (left) and BoN (right) performance for Gemma-9B. While curves show similar
shape as Gemma-2B models, overall performance is globally improved and overoptimization is
reduced.
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Figure 11: BoN and pass@N Accuracy Results on Hendrycks MATH with Gemma 9B.

D.2 DETAILS OF BON-AWARE FINE-TUNING EXPERIMENTS

For the MATH benchmark, we trained the Gemma 2B and 9B models with the Hendrycks MATH
dataset. Following Lightman et al. (2023), we augment the original 7500 MATH training problems
with 4500 problems from the test set, evaluating performance on the remaining 500 problems. In
the supervised setting, we leverage a larger Gemini 1.5 Flash model (Reid et al., 2024) to generate
MATH solutions with answers and steps (32 candidates for each of the MATH problems), sub-
sampling only the correct responses and distilling knowledge into the Gemma 2B model. In the
RL setting, we use a binary environment reward denoting whether the model’s answer matches the
ground truth answer. The verifier used in all BoN experiments is a separate pre-trained Gemma 2B
model that predicts the probability of a correct response given the prompt. The verifier is trained
with the data collected from the Gemini 1.5 Flash model.

Alternatively, to benchmark our models on code generation, we train on MBPP (Austin et al., 2021)
and evaluate on the HumanEval benchmark (Chen et al., 2021), following the standard procedures
delineated in Kumar et al. (2024).

D.3 ADDITIONAL BON-AWARE FINE-TUNING RESULTS

We now present additional results on BoN-aware fine-tuning (both SFT and RL).

D.3.1 HENDRYCKS MATH WITH GEMMA 9B

We additionally benchmark a larger model, GemmaV2 9B, on Hendrycks MATH, with results shown
in Figure 11. We observe that, similar to the trends of the experiments run with the Gemma 2B coun-
terpart, BoN-RLV achieves the best BoN performance, while BoN-RL-S achieves the best pass@N
performance, with both substantially improving over the base model.
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Figure 12: pass@N of BoN-RL and baselines on held-out benchmarks with Gemma 9B models.
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Figure 13: pass@N of various methods with N ′ = 16

D.3.2 HELD-OUT MATH BENCHMARKS WITH GEMMA 9B

To evaluate the generalization capabilities of our BoN-aware finetuned models, we additionally eval-
uate on two completely held-out and challenging benchmarks, Functional Math (Srivastava et al.,
2024) and MathOdyssey (Fang et al., 2024). We present the results of these held-out benchmarks
with 9B models in Figure 12, and observe that our fine-tuned models improve on both BoN and
pass@N for these held-out benchmarks similarly as in the case of Gemma 2B.

D.3.3 PASS@N ACCURACY WITH DIFFERENT TRAINING SAMPLES, WITH GEMMA 2B

Similar to the experiments in Figure 6a, our BoN-RL-S, BoN-RLB, and BoN-RLB(P) models also
demonstrate superior performance over the baseline methods in pass@N evaluations with N ′ = 16
(Figure 13). In this case, STaR performs the worst (55% in pass@32) as it fails to (i) utilize negative
samples in training for implicit exploration (unlike BoN-RLB, 60% pass@32), (ii) re-weight sam-
ples based on difficulty, prioritizing learning from challenging problems and avoiding overfitting to
simpler ones (unlike BoN-RLB(P), 60% pass@32), and (iii) account for the importance sampling
factor between the base policy and the BoN policy (unlike BoN-RL-S, 58% pass@32). BoN-RLB
and BoN-RLB(P) are superior to BoN-RL-S on N ′ = 16 (Figure 13), but worse on N ′ = 32 (Fig-
ure 6a), suggesting that they suffer from instability with increasing N ′. This is potentially due to
the following observations: (i) The asymmetry between the positive (g+) and negative (g−) weights
in BoN-RLB increases with N ′, destabilizing its learning at larger N ′ values; (ii) RL-BoN-S uti-
lizes the variational approximation of πbon in its gradient update, introducing approximation errors
that may cause its sub-optimal performance (relative to a stable instance of BoN-RLB trained at
N ′ = 16); BoN-RLB(P) only uses positive samples, which inherits the shortcomings of STaR (lack
of implicit exploration), yet it re-balances the examples with the difficulty of the problems. Overall,
it leads to consistent yet mild performance degradation over BoN-RLB.

D.3.4 COMPARING BON-RL WITH BASE-BON DISTILLATION BASELINES, WITH GEMMA
2B

We consider various alternative methods to improve Gemma 2B BoN accuracy through various
data generation methods. We distill the Gemma 2B model using these datasets and compare to the
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Figure 14: BoN Accuracy on MATH comparing Base Gemma 2B and BoN RL-V with other fine-
tuning techniques: (1) BoN-SFT: Distillation of BoN sample for N=16; (2) All-SFT: Distillation
of all N=16 samples (i.e., average sample); (3) Weighted-SFT: Distillation of all N=16 samples by
average re-sampling w.r.t. verifier scores; and (4) Maj-SFT: Distillation of majority voting strategy.
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Figure 15: Verifier Mismatch. Plots show BoN accuracy under verifier-reward mismatch using
Gemma 2B on MATH. During training verifier was used for BoN. On test, environment reward was
used as verifier of the BoN strategy, inducing a mismatch in verifiers.

base Gemma 2B model and our BoN-RL-V method. We consider the following four distillation
benchmarks (all run over Hendrycks MATH):

1. Base-BoN-SFT: In this method we generate a dataset of the best of N = 16 samples for
each example in the dataset. We use the best sample as target to distill Gemma 2B.

2. Base-All-SFT: We use the full range of N = 16 samples as targets. This dataset is used to
distill Gemma 2B to the average effective sample of the base model.

3. Base-Weighted-SFT: Similar to Base-All-SFT, we sample N = 16 samples for each exam-
ple. We then re-sample N = 16 examples (from these samples, with repetition), weighted
according to verifier scores. This dataset is used to distill Gemma 2B to the average effec-
tive sample, weighted by verifier scores.

4. Base-Maj-SFT: We use majority voting over N = 16 samples to select a target. We distill
Gemma 2B to predict the majority voted target.

We show the BoN accuracy results of these methods in Figure 10. While the aforementioned base-
lines do improve BoN performance over the Base Gemma 2B model, they are still out-performed
by our BoN-RL-V method, indicating the value of utilizing the inference BoN strategy explicitly
during training.
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