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ABSTRACT

The Gromov-Wasserstein (GW) distance has gained increasing interest in the ma-
chine learning community in recent years, as it allows for the comparison of mea-
sures in different metric spaces. To overcome the limitations imposed by the equal
mass requirements of the classical GW problem, researchers have begun exploring
its application in unbalanced settings. However, Unbalanced GW (UGW) can only
be regarded as a discrepancy rather than a rigorous metric/distance between two
metric measure spaces (mm-spaces). In this paper, we propose a particular case
of the UGW problem, termed Partial Gromov-Wasserstein (PGW). We establish
that PGW is a well-defined metric between mm-spaces and discuss its theoretical
properties, including the existence of a minimizer for the PGW problem and the
relationship between PGW and GW, among others. We then propose two variants
of the Frank-Wolfe algorithm for solving the PGW problem and show that they
are mathematically and computationally equivalent. Moreover, based on our PGW
metric, we introduce the analogous concept of barycenters for mm-spaces. Finally,
we validate the effectiveness of our PGW metric and related solvers1 in applica-
tions such as shape matching, shape retrieval, and shape interpolation, comparing
them against existing baselines.

1 INTRODUCTION

The classical optimal transport (OT) problem (Villani, 2009) seeks to match two probability mea-
sures while minimizing the expected transportation cost. At the heart of classical OT theory lies
the principle of mass conservation, which aims to optimize the transfer between two probability
measures, assuming they have the same total mass and strictly preserving it. Statistical distances
that arise from OT, such as Wasserstein distances, have been widely applied across various machine
learning domains, ranging from generative modeling (Arjovsky et al., 2017; Gulrajani et al., 2017)
to domain adaptation (Courty et al., 2017) and representation learning (Kolouri et al., 2020). Re-
cent advancements have extended the OT problem to address certain limitations within machine
learning applications. These advancements include: 1) facilitating the comparison of non-negative
measures that possess different total masses via unbalanced (Chizat et al., 2018c) and partial OT (Fi-
galli, 2010), and 2) enabling the comparison of probability measures across distinct metric spaces
through Gromov-Wasserstein distances (Mémoli, 2011), with applications spanning from quantum
chemistry (Gilmer et al., 2017) to natural language processing (Alvarez-Melis & Jaakkola, 2018).

Regarding the first aspect, many applications in machine learning involve comparing non-negative
measures (often empirical measures) with varying total amounts of mass, e.g., domain adaptation
(Fatras et al., 2021). Moreover, OT distances (or dissimilarity measures) are often not robust against
outliers and noise, resulting in potentially high transportation costs for outliers. Many recent publi-
cations have focused on variants of the OT problem that allow for comparing non-negative measures
with unequal mass. For instance, the optimal partial transport problem (Figalli, 2010; Caffarelli &
McCann, 2010; Figalli & Gigli, 2010; Nguyen et al., 2024; Georgiou et al., 2008; Piccoli & Rossi,
2014), Kantorovich–Rubinstein norm (Guittet, 2002; Heinemann et al., 2023; Lellmann et al., 2014),
and the Hellinger–Kantorovich distance (Chizat et al., 2018a; Liero et al., 2018). Recent works for-
mulating the metric properties of partial OT with total variation constraints include (Raghvendra
et al., 2024; Nietert et al., 2023). These methods fall under the broad category of “unbalanced opti-

1Rigorously speaking, due to the non-convexity of the GW problem and its variants, current methods achieve
only local minima rather than global minima. We use the term “solver” following the convention of previous
related works (Séjourné et al., 2021; Chapel et al., 2020), but it should be emphasized that the proposed methods
aim to find local minima rather than global minima, similar to related and classical computational GW works.
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mal transport.” In this regard, we also highlight (Balaji et al., 2020; Nguyen et al., 2023; Le et al.,
2021), which enhance OT’s robustness in the presence of outliers.

Regarding the second aspect, comparing probability measures across different metric spaces is es-
sential in many machine learning applications, ranging from computer graphics, where shapes and
surfaces are compared (Bronstein et al., 2006; Mémoli, 2009), to graph partitioning and matching
problems (Xu et al., 2019a). Source and target distributions often arise from varied conditions, such
as different times, contexts, or measurement techniques, creating substantial differences in intrinsic
distances among data points. The conventional OT framework necessitates a meaningful distance
across diverse domains, a requirement that is not always achievable. To circumvent this issue, the
Gromov-Wasserstein (GW) distances were proposed in (Mémoli, 2011; 2009) as an adaptation of the
Gromov-Hausdorff distance, which measures the discrepancy between two metric spaces (Edwards,
1975; Gromov, 1981b;a; Burago et al., 2001). The GW distance (Mémoli, 2011; Sturm, 2023) ex-
tends OT-based distances to metric measure spaces (mm-spaces) up to isometries. Its invariance
across isomorphic mm-spaces makes the GW distance particularly valuable for applications like
shape comparison and matching, where invariance to rigid motion transformations is crucial.

The main computational challenge of the GW metric is the non-convexity of its formulation
(Mémoli, 2011). The conventional computational approach relies on the Frank-Wolfe (FW) al-
gorithm (Frank et al., 1956; Lacoste-Julien, 2016). Optimal transport (OT) computational methods
(Guittet, 2002; Cuturi, 2013; Papadakis et al., 2014; Benamou et al., 2014; 2015; Peyré et al., 2019;
Chizat et al., 2018b; Bonneel & Coeurjolly, 2019; Bai et al., 2023), such as the Sinkhorn algorithm,
can be incorporated into FW iterations, which yields the classical GW solvers (Peyré et al., 2016;
Xu et al., 2019b; Titouan et al., 2019a).

Given that the GW distance is limited to the comparison of probability mm-spaces, recent works
have introduced unbalanced and partial variations (Séjourné et al., 2021; Chapel et al., 2020;
De Ponti & Mondino, 2022). These variations have been applied in diverse contexts, including
partial graph matching for social network analysis (Liu et al., 2020) and the alignment of brain
images (Thual et al., 2022). Although solving these unbalanced variants of the GW problem yields
notions of discrepancies between mm-spaces, their metric properties remain unclear in the literature.

Motivated by the emerging applications of the GW problem in unbalanced settings, this paper fo-
cuses on developing a metric between general (not necessarily probability) mm-spaces and providing
efficient solvers for its computation. Our proposed metric arises from formulating a variant of the
GW problem for unbalanced contexts, rooted in the framework provided by (Séjourné et al., 2021),
which we named the Partial Gromov-Wasserstein (PGW) problem. In contrast to (Séjourné et al.,
2021), which introduces a KL-divergence penalty and a Sinkhorn solver, we employ a total vari-
ation penalty, demonstrate the resulting metric properties, and provide novel, efficient solvers for
this problem. To the best of our knowledge, this paper presents the first metric for non-probability
mm-spaces based on the GW distance.

Contributions. Our specific contributions in this paper are:

• GW metric in unbalanced settings. We propose the Partial Gromov-Wasserstein (PGW)
problem and prove that it gives rise to a metric between arbitrary mm-spaces.

• PGW solver. Analogous to the technique presented in (Caffarelli & McCann, 2010), we
show that the PGW problem can be turned into a variant of the GW problem. Based on
this relation, we propose two mathematically equivalent, but distinct in numerical imple-
mentation, Frank-Wolfe solvers for the discrete PGW problem. Inspired by the results
of (Lacoste-Julien, 2016), we prove that similar to the Frank-Wolfe solver presented in
(Chapel et al., 2020), our proposed solvers for the PGW problem converge linearly to a
stationary point.

• Numerical experiments. We demonstrate the performance of our proposed algorithms in
terms of computation time and efficacy on a series of tasks: shape-matching with outliers
between 2D and 3D objects, shape retrieval between 2D shapes, and shape interpolation
using the concept of PGW barycenters. We compare the performance of our proposed
algorithms against existing baselines for each task.
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2 BACKGROUND

In this section, we review the basics of OT theory, one of its variants in unbalanced contexts called
Partial OT (POT), and their connection as established in (Caffarelli & McCann, 2010). We then
introduce the GW distance.
2.1 OPTIMAL TRANSPORT AND PARTIAL OPTIMAL TRANSPORT

Let Ω ⊆ Rd be, for simplicity, a compact subset of Rd, and P(Ω) be the space of probability
measures defined on the Borel σ-algebra of Ω.

The Optimal Transport (OT) problem for µ, ν ∈ P(Ω), with transportation cost c(x, y) : Ω×Ω→
R+ being a lower-semi continuous function, is defined as:

OT (µ, ν) := min
γ∈Γ(µ,ν)

γ(c), where γ(c) :=

∫
Ω2

c(x, y) dγ(x, y) (1)

and where Γ(µ, ν) denotes the set of all joint probability measures on Ω2 := Ω× Ω with marginals
µ, ν, i.e., γ1 := π1#γ = µ, γ2 := π2#γ = ν, where π1, π2 : Ω2 → Ω are the canonical projections
π1(x, y) := x, π2(x, y) := y. A minimizer for (1) always exists (Villani, 2009; 2021) and when
c(x, y) = ∥x−y∥p, for p ≥ 1, it defines a metric onP(Ω), which is referred to as the “p-Wasserstein
distance”:

W p
p (µ, ν) := min

γ∈Γ(µ,ν)

∫
Ω2

∥x− y∥pdγ(x, y). (2)

The Partial Optimal Transport (POT) problem (Chizat et al., 2018c; Figalli & Gigli, 2010; Pic-
coli & Rossi, 2014) extends the OT problem to the set of Radon measuresM+(Ω), i.e., non-negative
and finite measures. For λ > 0 and µ, ν ∈M+(Ω), the POT problem is defined as:

POT (µ, ν;λ) := inf
γ∈M+(Ω2)

γ(c) + λ(|µ− γ1|+ |ν − γ2|), (3)

where, in general, |σ| denotes the total variation norm of a measure σ, i.e., |σ| := σ(Ω). The
constraint γ ∈M+(Ω

2) in (3) can be further restricted to γ ∈ Γ≤(µ, ν):

Γ≤(µ, ν) := {γ ∈M+(Ω
2) : γ1 ≤ µ, γ2 ≤ ν},

denoting γ1 ≤ µ if for any Borel set B ⊆ Ω, γ1(B) ≤ µ(B) (respectively, for γ2 ≤ ν) (Figalli,
2010). Roughly speaking, the linear penalization indicates that if the classical transportation cost
exceeds 2λ, it is better to create/destroy’ mass (see (Bai et al., 2023) for further details).

The relationship between POT and OT. By using the techniques in (Caffarelli & McCann, 2010),
the POT problem can be transferred into an OT problem, and thus, OT solvers (e.g., network sim-
plex) can be employed to solve the POT problem.
Proposition 2.1. (Caffarelli & McCann, 2010; Bai et al., 2023) Given µ, ν ∈ M+(Ω), construct
the following measures on Ω̂ := Ω ∪ {∞̂}, for an auxiliary point ∞̂:

µ̂ = µ+ |ν|δ∞̂ and ν̂ = ν + |µ|δ∞̂. (4)

Consider the following OT problem

OT(µ̂, ν̂) = min
γ̂∈Γ(µ̂,ν̂)

γ̂(ĉ), where ĉ(x, y) :=

{
c(x, y)− 2λ if x, y ∈ Ω,

0 elsewhere.
(5)

Then, there exists a bijection F : Γ≤(µ, ν)→ Γ(µ̂, ν̂) given by

F (γ) := γ + (µ− γ1)⊗ δ∞̂ + δ∞̂ ⊗ (ν − γ2) + |γ|δ∞̂,∞̂. (6)

such that γ is optimal for the POT problem (3) if and only if F (γ) is optimal for the OT problem (5).

It is worth noting that instead of considering the same underlying space Ω for both measures µ and ν,
the OT and POT problems can be formulated in the scenario where µ and ν are defined on different
metric spaces X and Y , respectively. In this setting, one needs a cost function c : X × Y → R+ to
formulate the OT and POT problems. However, in practice it is usually difficult to define reasonable
‘distance’ or ground cost c(·, ·) between the two spaces X and Y . In particular, the p-Wasserstein
distance cannot be adopted if µ, ν are defined on different spaces. To relax this requirement, in the
next section, we will review the fundamentals of the Gromov-Wasserstein problem (Mémoli, 2011).
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2.2 THE GROMOV-WASSERSTEIN (GW) PROBLEM

A metric measure space (mm-space) consists of a set X endowed with a metric structure, that is, a
notion of distance dX between its elements, and equipped with a Borel measure µ. As in Mémoli
(2011, Ch. 5), we will assume that X is compact and that supp(µ) = X . Given two probability
mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), with µ ∈ P(X) and ν ∈ P(Y ), and a non-negative
lower semi-continuous cost function L : R2 → R+ (e.g., the Euclidean distance or the KL-loss), the
Gromov-Wasserstein (GW) matching problem is defined as:

GWL(X,Y) := inf
γ∈Γ(µ,ν)

γ⊗2(L(dX(·, ·), dY (·, ·))), (7)

where, for brevity, we employ the notation γ⊗2 for the product measure dγ⊗2((x, y), (x′, y′)) =
dγ(x, y)dγ(x′, y′). If L(a, b) = |a − b|p, for 1 ≤ p < ∞, we denote GWL(·, ·) simply by
GW p(·, ·). In this case, the expression (7) defines an equivalence relation ∼ among probability
mm-spaces, i.e., X ∼ Y if and only if GW p(X,Y) = 02. A minimizer of the GW problem (7)
always exists, and thus, we can replace inf by min. Moreover, similar to OT, the above GW problem
defines a distance for probability mm-spaces after taking the quotient under ∼. For details, we refer
to Mémoli (2011, Ch. 5 and 10).

3 THE PARTIAL GROMOV-WASSERSTEIN (PGW) PROBLEM

The Unbalanced Gromov-Wasserstein (UGW) problem for general (compact) mm-spaces X =
(X, dX , µ),Y = (Y, dY , ν), with µ ∈ M+(X), ν ∈ M+(Y ), studied in (Séjourné et al., 2021;
Kong et al., 2024) is defined as:

UGWL
λ (X,Y) := inf

γ∈M+(X×Y )
γ⊗2(L(dX , dY )) + λ(Dϕ(γ

⊗2
1 ∥ µ⊗2) +Dϕ(γ

⊗2
2 ∥ ν⊗2)), (8)

where λ > 0 is a fixed linear penalization parameter, and Dϕ is a Csiszár or ϕ-divergence. The
above formulation extends the classical GW problem (7) into the unbalanced setting (µ and ν are no
longer necessarily probability measures but general Radon measures).

We underline two points: First, as discussed in (Séjourné et al., 2021), while the above quantity
allows us to ‘compare’ the mm-spaces X and Y, its metric property is unclear. Secondly, when Dϕ

is the KL divergence, a Sinkhorn solver has been proposed in (Séjourné et al., 2021). However, a
solver for general ϕ-divergences has not yet been proposed.

In this paper, we will analyze the case when Dϕ is the total variation norm. Specifically, for q ≥ 1,
we consider the following problem, which we refer to as the Partial Gromov-Wasserstein (PGW)
problem:

PGWL
λ,q(X,Y) := inf

γ∈M+(X×Y )
γ⊗2(L(dqX , d

q
Y )) + λ(|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |). (9)

Remark 3.1. If γ ∈ Γ ≤ (µ, ν), the above cost functional can be rewritten as

γ⊗2(L(dqX , d
q
Y )) + λ(|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |) = γ⊗2 (L(dqX , d

q
Y )− 2λ) + λ

(
|µ|2 + |ν|2

)︸ ︷︷ ︸
does not depend on γ

.

Proposition 3.2. Given mm-spaces X = (X, dX , µ),Y = (Y, dY , ν), the minimization problem (9)
can be restricted to the set Γ≤(µ, ν) = {γ ∈M+(X × Y ) : γ1 ≤ µ, γ2 ≤ ν}. That is,

PGWL
λ,q(X,Y) = inf

γ∈Γ≤(µ,ν)
γ⊗2 (L(dqX , d

q
Y )− 2λ) + λ(|µ|2 + |ν|2). (10)

For the proof, inspired by (Piccoli & Rossi, 2014), we direct the reader to Appendix B.

We notice that a similar Partial Gromov-Wasserstein problem (and its solver) has been studied
(Chapel et al., 2020). Indeed, in (Chapel et al., 2020), the λ-penalization in the optimization prob-
lem (10) is avoided, but the constraint set is replaced by the subset of all γ ∈ Γ≤(µ, ν) such that
|γ| = ρ for a fixed ρ ∈ [0,min{|µ|, |ν|}]. We will call this formulation the Mass-Constrained Par-
tial Gromov-Wasserstein (MPGW) problem. In Appendix L, we explore the relations between PGW
and MPGW, and in Section 5 and Appendices O, Q, we analyze the performance of the different
solvers through different experiments.

2Moreover, given two probability mm-spaces X and Y, GW (X,Y) = 0 if and only if there exists a bi-
jective isometry ϕ : X → Y such that ϕ#µ = ν. In particular, the GW distance is invariant under rigid
transformations (translations and rotations) of a given probability mm-space.
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Proposition 3.3. If L(r1, r2) = |r1 − r2|p, for p ∈ [1,∞), we use PGW p
λ,q to denote PGWL

λ,q . In
this case, (9) and (10) admit a minimizer.

The proof is given in Appendix C: Its idea extends results from (Mémoli, 2011) from probability
mm-spaces to arbitrary mm-spaces.

Next, we state one of our main results: The PGW problem gives rise to a metric between mm-spaces.
The rigorous statement as well as its proof is given in Appendix D: The formal statement is based on
the definition of equivalence classes among mm-spaces (see Remark D.1). The most difficult part of
the proof is the triangle inequality and the main technique used relies on the relation between PGW
and GW (see Appendix D.3).

Proposition 3.4. Let λ > 0, 1 ≤ q, p < ∞ and L(r1, r2) = |r1 − r2|p. Then (PGW p
λ,q(·, ·))1/p

defines a metric between mm-spaces.

Finally, for consistency, we provide the following result when the penalization tends to infinity. Its
proof is given in Appendix E.

Proposition 3.5. Consider probability mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), that is, |µ| =
|ν| = 1. Assume that L is a continuous funtion. Then limλ→∞ PGWL

λ,q(X,Y) = GWL(X,Y).

4 COMPUTATION OF THE PARTIAL GW DISTANCE

In the discrete setting, consider mm-spaces X = (X, dX ,
∑n

i=1 p
X
i δxi

), Y = (Y, dY ,
∑m

j=1 q
Y
j δyj

),
where X = {x1, . . . , xn}, Y = {y1, . . . , ym}, the weights pXi , qYj are non-negative numbers, and
the distances dX , dY are determined by the matrices CX ∈ Rn×n, CY ∈ Rm×m defined by

CX
i,i′ := dqX(xi, xi′) ∀i, i′ ∈ [1 : n] and CY

j,j′ := dqY (yj , yj′) ∀j, j′ ∈ [1 : m]. (11)

Let p := [qX1 , . . . , q
X
n ]⊤ and q := [qY1 , . . . , q

Y
m]⊤ denote the weight vectors corresponding to the

given discrete measures. We view the sets of transportation plans Γ(p, q) and Γ≤(p, q) for the GW
and PGW problems, respectively, as the subsets of n×m matrices

Γ(p, q) := {γ ∈ Rn×m
+ : γ1m = p, γ⊤1n = q}, if |p| =

n∑
i=1

pXi = 1 =

m∑
j=1

qYj = |q|; (12)

Γ≤(p, q) := {γ ∈ Rn×m
+ : γ1m ≤ p, γ⊤1n ≤ q}, (13)

for any pair of non-negative vectors p ∈ Rn
+, q ∈ Rm

+ , where 1n is the vector with all ones in Rn

(resp. 1m), and γ1m ≤ p means that component-wise the ≤ relation holds.

Given by a non-negative function L : Rn×n × Rm×m → R+, the transportation cost M and the
‘partial’ transportation cost M̃ are represented by the n×m× n×m tensors:

Mi,j,i′,j′ = L(CX
i,i′ , C

Y
j,j′) and M̃ :=M − 2λ :=M − 2λ1n,m,n,m, (14)

where 1n,m,n,m is the tensor with ones in all its entries. For each n ×m × n ×m tensor M and
each n×m matrix γ, we define tensor-matrix multiplication M ◦ γ ∈ Rn×m by

(M ◦ γ)ij =
∑
i′,j′

(Mi,j,i′,j′)γi′,j′ .

Then, the Partial GW problem in (10) can be written as

PGWL
λ (X,Y) = min

γ∈Γ≤(p,q)
LM̃ (γ) + λ(|p|2 + |q|2), where (15)

LM̃ (γ) := M̃γ⊗2 :=
∑

i,j,i′,j′

M̃i,j,i′,j′γi,jγi′,j′ =
∑
ij

(M̃ ◦ γ)ijγij =: ⟨M̃ ◦ γ, γ⟩F , (16)

and ⟨·, ·⟩F stands for the Frobenius dot product. The constant term λ(|p|2 + |q|2) will be ignored in
the rest of this paper since it does not depend on γ.

5
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4.1 FRANK-WOLFE FOR THE PGW PROBLEM – SOLVER 1

In this section, we discuss the Frank-Wolfe (FW) algorithm for the PGW problem (15). A second
variant of the FW solver is provided in the Appendix G.

As a summary, in our proposed method, we address the discrete PGW problem (15), highlighting
that the direction-finding subproblem in the Frank-Wolfe (FW) algorithm is a POT problem for (15).
Specifically, (15) is treated as a discrete POT problem in our Solver 1, where we apply Proposition
2.1 to solve a discrete OT problem.

For each iteration k, the procedure is summarized in three steps detailed below.

The convergence analysis, detailed in Appendix K, applies the results from (Lacoste-Julien, 2016)
to our context, showing that the FW algorithm achieves a stationary point at a rate of O(1/

√
k) for

non-convex objectives with a Lipschitz continuous gradient in a convex and compact domain.

STEP 1. COMPUTATION OF GRADIENT AND OPTIMAL DIRECTION.

It is straightforward to verify that the gradient of the objective function (16) in (15) is given by

∇LM̃ (γ) = 2M̃ ◦ γ. (17)

The classical method to computeM ◦γ is the following: First, convertM into an (n×m)×(n×m)
matrix, denoted as v(M), and convert γ into an (n ×m) × 1 vector v(γ). Then, the computation
of M ◦ γ is equivalent to the matrix multiplication v(M)v(γ). The computational cost and the
required storage space are O(n2m2). In certain conditions, the above computation can be reduced
to O(n2 +m2). We refer to Appendices F and H for details.

Next, we aim to solve the following problem:

γ(k)
′
← arg min

γ∈Γ≤(p,q)
⟨∇LM̃ (γ(k)), γ⟩F ,

which is a discrete POT problem since it is equivalent to

min
γ∈Γ≤(p,q)

⟨2M ◦ γ(k), γ⟩F + λ|γ(k)|(|p|+ |q| − 2|γ|).

The solver can be obtained by firstly converting the POT problem into an OT problem via Proposition
2.1 and then solving the proposed OT problem.

STEP 2: LINE SEARCH METHOD.

In this step, at the k-th iteration, we need to determine the optimal step size:

α(k) = arg min
α∈[0,1]

{LM̃ ((1− α)γ(k) + αγ(k)
′
)}.

The optimal α(k) takes the following values (see Appendix I for details):

Let α(k) =


0 if a ≤ 0, a+ b > 0,

1 if a ≤ 0, a+ b ≤ 0,

clip(−b
2a , [0, 1]) if a > 0,

where


δγ(k) = γ(k)

′ − γ(k),
a = ⟨M̃ ◦ δγ(k), δγ(k)⟩F
b = 2⟨M̃ ◦ γ(k), δγ(k)⟩F .

, (18)

and clip(−b
2a , [0, 1]) = min{max{− b

2a , 0}, 1}.

STEP 3: UPDATE γ(k+1) ← (1− α(k))γ(k) + α(k)γ(k)
′
.

4.2 NUMERICAL IMPLEMENTATION DETAILS

The initial guess, γ(1). In the GW problem, the initial guess is simply set to γ(1) = pq⊤ if there
is no prior knowledge. In PGW, however, as µ, ν may not necessarily be probability measures
(i.e.,

∑
i p

X
i ,
∑

j q
Y
j ̸= 1 in general), we set γ(1) = pq⊤

max(|p|,|q|) . It is straightforward to verify that

γ(1) ∈ Γ≤(p, q) as

γ(1)1m =
|q|p

max(|p|, |q|)
≤ p, γ(1)⊤1n =

|p|q
max(|p|, |q|)

≤ q.
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Algorithm 1: Frank-Wolfe Algorithm for PGW, ver 1

Input: µ =
∑n

i=1 p
X
i δxi

, ν =
∑m

j=1 q
Y
j δyj

, γ(1)

Output: γ(final)
Compute CX , CY

for k = 1, 2, . . . do
G(k) ← 2M̃ ◦ γ(k) // Compute gradient
γ(k)

′ ← argminγ∈Γ≤(p,q)⟨G(k), γ⟩F // Solve the POT problem.
Compute α(k) ∈ [0, 1] via (18) // Line search
γ(k+1) ← (1− α(k))γ(k) + α(k)γ(k)

′
// Update γ

if convergence, break
end for
γ(final) ← γ(k)

Column/Row-Reduction. According to the interpretation of the penalty weight parameter in the
Partial OT problem (e.g. see Lemma 3.2 in (Bai et al., 2023)), during the POT solving step, for each
i ∈ [1 : n] (or j ∈ [1 : m]), if the ith row (jth column) of M̃ ◦ γ(k) contains a non-negative entry,
all the mass of pXi (qYj ) will be destroyed (created). Thus, we can remove the corresponding row
(column) to improve the computational efficiency.

5 EXPERIMENTS
5.1 TOY EXAMPLE: SHAPE MATCHING WITH OUTLIERS

We use the moon dataset and synthetic 2D/3D spherical data in this experiment. Let
{xi}ni=1, {yj}nj=1 denote the source and target point clouds. In addition, we add ηn (where
η = 20%) outliers to the target point cloud. See Figure 1 for visualization.

We visualize the transportation plans given by the GW (Mémoli, 2011), MPGW (Chapel et al.,
2020), UGW (Séjourné et al., 2021), and our proposed PGW problems. For MPGW, UGW, and
PGW, we set the mass to be 1 for each point in the source and target point clouds. For GW, we
normalize the mass of these points so that the source and target have the same total mass. From
Figure 1, we observe that PGW and MPGW induce a one-by-one relation in both cases and no
outlier points are matched to the source point cloud. Meanwhile, GW matches all of the outliers.
For UGW, as it applies the Sinkhorn algorithm, we observe mass-splitting transportation plans in
both cases. Moreover, we observe that some mass from the outliers has been matched, which is not
desired.

Figure 1: The set of red points comprises the source point cloud. The union of the dark blue
(outliers) and light blue points comprises the target point cloud. For UGW, MPGW, and PGW, we
set the mass for each point to be the same. For GW, we normalize the mass for the balanced mass
constraint setting.
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Figure 2: In each row, the first figure visualizes an example shape from each class, and the second
figure visualizes the resulting pairwise distance matrices. The first row corresponds to Dataset I, and
the second corresponds to Dataset II.

5.2 SHAPE RETRIEVAL

Experiment setup. We now employ the PGW distance to distinguish between 2D shapes, as done
in (Beier et al., 2022), and use GW, MPGW, and UGW as baselines for comparison. Given a series
of 2D shapes, we represent the shapes as mm-spaces Xi = (R2, ∥·∥2, µi), where µi =

∑ni

k=1 α
iδxi

k
.

For the GW method, we normalize the mass for the balanced mass constraint setting (i.e. αi = 1
ni ),

and for the remaining methods we let αi = α for all the shapes, where α > 0 is a fixed constant. In
this manner, we compute the pairwise distances between the shapes.

We then use the computed distances for nearest neighbor classification. We do this by choosing a
representative at random from each class in the dataset and then classifying each shape according
to its nearest representative. This is repeated over 10,000 iterations, and we generate a confusion
matrix for each distance used. Finally, using the approach given by (Beier et al., 2022; Titouan
et al., 2019b), we combine each distance with a support vector machine (SVM), applying stratified
10-fold cross validation. In each iteration of cross validation, we train an SVM using exp(−σD)
as the kernel, where D is the matrix of pairwise distances (w.r.t. one of the considered distances)
restricted to 9 folds, and compute the accuracy of the model on the remaining fold. We report the
accuracy averaged over all 10 folds for each model.

Dataset setup. We test two datasets in this experiment, which we refer to as Dataset I and Dataset
II. We construct Dataset I by adapting the 2D shape dataset given in (Beier et al., 2022), consisting
of 20 shapes in each of the classes bone, goblet, star, and horseshoe. For each class, we augment
the dataset with an additional class by selecting either a subset of points from each shape of that
class (rectangle/bone, trapezoid/goblet, disk/star) or adding additional points to each shape of that
class (annulus/horseshoe). Hence, the final dataset consists of 160 shapes across 8 total classes. This
dataset is visualized in Figure 9a.

For Dataset II, we generate 20 shapes for each of the classes rectangle, house, arrow, double arrow,
semicircle, and circle. These shapes were generated in pairs, such that each shape of class rectangle
is a subset of the corresponding shape of class house, and similarly for arrow/double arrow and
semicircle/circle. This dataset is visualized in Figure 9b.

Performance analysis. We refer to Appendix O for full numerical details, parameter settings, and
the visualization of the resulting confusion matrices. We visualize the two considered datasets and
the resulting pairwise distance matrices in Figure 2. For the SVM experiments, GW achieves the
highest accuracy on Dataset I, 98.13%, while the second best method is PGW, 96.25%. For Dataset
II, PGW achieves the highest accuracy, correctly classifying 100% of the samples. The complete set
of accuracies for all considered distances on each dataset is reported in Table 1a.
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Distance Dataset I Dataset II

GW 0.9813 0.8083
MPGW 0.2375 0.2500
UGW 0.89375 0.9000
PGW (ours) 0.9625 1.0000

(a) Mean accuracy of SVM using each dis-
tance in kernel.

Distance Dataset I Dataset II

GW 49.02s 137.12s
MPGW 49.10s 93.90s
UGW 1484.49s 519.91s
PGW (ours) 35.92s 79.27s

(b) Wall-clock time comparison.

Table 1: Accuracy and wall-clock time comparision for shape retrieval experiment.

In addition, we report the wall-clock time required to compute all pairwise distances for each dis-
tance in Table 1b. We observe that GW, MPGW, and PGW have similar wall-clock times across
both experiments (30-50 seconds for Dataset I, 80-140 seconds for Dataset II), with PGW admit-
ting a slightly faster runtime in both cases. Meanwhile, UGW requires almost 1500 seconds on the
experiment with Dataset I and over 500 seconds on the experiment with Dataset II.

5.3 PARTIAL GROMOV-WASSERSTEIN BARYCENTER AND SHAPE INTERPOLATION

By (Peyré et al., 2016), Gromov-Wasserstein can be applied to interpolate two shapes via the con-
cept of Gromov-Wasserstein Barycenters. In this paper, we introduce Partial Gromov-Wasserstein
Barycenters by extending the GW Barycenter to the setting of PGW as follows.

Consider the discrete mm-spaces X1, . . . ,XK , where Xk = (Xk, ∥·∥Rdk ,
∑nk

i=1 p
k
i δxk

i
), withXk =

{xki }
nk
i=1 ⊂ Rdk . We denoteCk = [∥xki −xki′∥2]i,i′ and pk = [pk1 , . . . , p

k
nk
]. Given positive constants

λ1, . . . , λK > 0, the PGW Barycenter is defined by:

min
C,γk

∑
k

ξk⟨M(C,Ck) ◦ γk, γk⟩ − 2λk|γk|2 (19)

where each γk ∈ Γ≤(p,p
k). We refer to Appendix M for the solver of (19) and details.

Experiment setup. We apply the PGW barycenter to the following problem: Given two shapes
X = {xi}ni=1 ⊂ Rd1 and Y = {yi}mi=1 ⊂ Rd2 , modeled as mm-spaces X = (X, ∥ ·∥Rd1 ,

∑n
i=1 δxi)

and Y = (Y, ∥ · ∥Rd2 ,
∑m

i=1 δyi), we wish to find interpolations between them. In addition, we
assume Y is corrupted by noise, i.e., Y is redefined as Y = (Ỹ , ∥ · ∥Rd2 ,

∑m
i=1 δyi +

∑mη
i=1 δỹi)

with Ỹ = Y ∪ {ỹi}mi=1, where η ∈ [0, 1] is the noise level and each ỹi is randomly selected from a
particular regionR ⊂ Rd2 .

GW
,5

%
PG

W
,5

%
GW

,1
0%

data

PG
W

,1
0%

t = 0/7 t = 1/7 t = 2/7 t = 3/7 t = 4/7 t = 5/7 t = 6/7 t = 7/7

Figure 3: In the first column, the first and second figures are the source and target point clouds in
the first experiment (η = 5%); the third and fourth figures are the source and target point clouds in
the second experiment (η = 10%).
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Dataset setup. We adapt the dataset given in (Peyré et al., 2016). See Appendix M.1 for further
details on the dataset. In this experiment, we test η = 5%, 10%. We visualize the barycenter
interpolation from t = 0/7 to t = 7/7, where (1− t), t are the weight of the source X and the target
Y, respectively, in the barycenter (19). The visualization given in Figure 3 is obtained by applying
SMACOF MDS (multidimensional scaling) of the minimizer C.

Performance analysis. From Figure 3, we observe that in this two scenarios, the interpolation
derived from GW is clearly disturbed by the noise data points. For example, in rows 1, 3, columns
t = 1/7, 2/7, 3/7, we see that the point clouds reconstructed by MDS have significantly different
width-height ratios from those of the source and target point clouds. In contrast, PGW is significantly
less disturbed, and the interpolation is more natural. The width-height ratio of the point clouds
generated by the PGW barycenter is consistent with that of the source/target point clouds.

6 SUMMARY

In this paper, we propose the Partial Gromov-Wasserstein (PGW) problem and introduce two Frank-
Wolfe solvers for it. As a byproduct, we provide pertinent theoretical results, including the relation
between PGW and GW, the metric property of PGW, and the PGW barycenter formulation. Further-
more, we demonstrate the efficacy of the PGW solver in solving shape matching, shape retrieval,
and shape interpolation tasks. For the shape retrieval experiment, we observe that due to their metric
property, PGW and GW have similar accuracy and outperform the other methods evaluated. In the
shape matching and point cloud interpolation experiments, we demonstrate that PGW admits a more
robust result when the data are corrupted by outliers/noisy data.
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A NOTATION AND ABBREVIATIONS

• OT: Optimal Transport.

• POT: Partial Optimal Transport.

• GW: Gromov-Wasserstein.

• PGW: Partial Gromov-Wasserstein.

• FW: Frank-Wolfe.

• MPGW: Mass-Constrained Partial Gromov-Wasserstein.

• ∥ · ∥: Euclidean norm.

• X2 = X ×X .

• M+(X): set of all positive (non-negative) Randon (finite) measures defined on X .

• P2(X): set of all probability measures defined on X , whose second moment is finite.

• R+: set of all non-negative real numbers.

• Rn×m: set of all n×m matrices with real coefficients.

• Rn×m
+ (resp. Rn

+): set of all n × m matrices (resp., n-vectors) with non-negative coeffi-
cients.

• Rn×m×n×m: set of all n×m× n×m tensors with real coefficients.

• 1n, 1n×m, 1n×m×n×m: vector, matrix, and tensor of all ones.

• 1E : characteristic function of a measurable set E

1E(z) =

{
1 if z ∈ E,
0 otherwise.

• X,Y: metric measure spaces (mm-spaces): X = (X, dX , µ), Y = (Y, dY , ν).

• CX : given a discrete mm-space X = (X, dX , µ), whereX = {x1, . . . , xn}, the symmetric
matrix CX ∈ Rn×n is defined as CX

i,i′ = dqX(xi, x
′
i).

• µ⊗2: product measure µ⊗ µ.

• T#σ: T : X → Y is a measurable function and σ is a measure on X . T#σ is the push-
forward measure of σ, i.e., its is the measure on Y such that for all Borel set A ⊂ Y ,
T#σ(A) = σ(T−1(A)).

• γ, γ1, γ2: γ is a joint measure defined in a product space having γ1, γ2 as its first and second
marginals, respectively. In the discrete setting, they are viewed as matrices and vectors, i.e.,
γ ∈ Rn×m

+ , and γ1 = γ1m ∈ Rn
+, γ2 = γ⊤1n ∈ Rm

+ .

• π1 : X × Y → X , canonical projection mapping, with (x, y) 7→ x. Similarly, π2 :
X × Y → Y is canonical projection mapping, with (x, y) 7→ y.

• π1,2 : S × X × Y → X × Y , canonical projection mapping, with (s, x, y) → (x, y).
Similarly, π0,1 maps (s, x, y) to (s, x); π0,2 maps (s, x, y) to (s, y).

• Γ(µ, ν), where µ ∈ P2(X), ν ∈ P2(Y ) (where X,Y may not necessarily be the same set):
it is the set of all the couplings (transportation plans) between µ and ν, i.e., Γ(µ, ν) :=
{γ ∈ P2(X × Y ) : γ1 = µ, γ2 = ν}.

• Γ(p, q): set of all the couplings between the discrete probability measures µ =∑n
i=1 p

X
i δxi

and ν =
∑m

j=1 q
Y
j δyj

with weight vectors

p = [pX1 , . . . , p
X
n ]⊤ and q = [qY1 , . . . , q

Y
m]⊤. (20)

That is, Γ(p, q) coincides with Γ(µ, ν), but it is viewed as a subset of n × m matrices
defined in (12).

• p, q: real numbers 1 ≤ p, q <∞.

• p, q: vectors of weights as in (20).

• p = [p1, . . . , pn] ≤ p′ = [p′1, . . . , p
′
n] if pj ≤ p′j for all 1 ≤ j ≤ n.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• |p| =
∑n

i=1 pi for p = [p1, . . . , pn].
• c(x, y) : X × Y → R+ denotes the cost function used for classical and partial optimal

transport problems. lower-semi continuous function.
• OT (µ, ν): it is the classical optimal transport (OT) problem between the probability mea-

sures µ and ν defined in (1).
• Wp(µ, ν): it is the p-Wasserstein distance between the probability measures µ and ν de-

fined in (2), for 1 ≤ p <∞.
• POT (µ, ν;λ): the Partial Optimal Transport (OPT) problem defined in (3).
• |µ|: total variation norm of the positive Randon (finite) measure µ defined on a measurable

space X , i.e., |µ| = µ(X).
• µ ≤ σ: denotes that for all Borel set B ⊆ X we have that the measures µ, σ ∈ M+(X)

satisfy µ(B) ≤ σ(B).
• Γ≤(µ, ν), where µ ∈M+(X), ν ∈M+(Y ): set of all “partial transportation plans”

Γ≤(µ, ν) := {γ ∈M+(X × Y ) : γ1 ≤ µ, γ2 ≤ ν}.

• Γ≤(p, q): set of all the “partial transportation plans” between the discrete probability mea-
sures µ =

∑n
i=1 p

X
i δxi

and ν =
∑m

j=1 q
Y
j δyj

with weight vectors p = [pX1 , . . . , p
X
n ] and

q = [qY1 , . . . , q
Y
m]. That is, Γ≤(p, q) coincides with Γ≤(µ, ν), but it is viewed as a subset

of n×m matrices defined in (13).
• λ > 0: positive real number.
• ∞̂: auxiliary point.

• X̂ = X ∪ {∞̂}.
• µ̂, ν̂: given in (4).
• p̂, q̂: given in (53).
• γ̂: given in (6).

• ĉ(·, ·) : X̂ × Ŷ → R+: cost as in (5).
• L : R× R→ R: cost function for the GW problems.
• D : R× R→ R: generic distance on R used for GW problems.
• GWL(·, ·): GW optimization problem given in (7).
• GW p(·, ·): GW optimization problem given in (7) when L(a, b) = |a− b|p.
• GWL

q (·, ·): general GW optimization problem for g ≥ 1 given in (33).

• GW p
q (·, ·): general GW optimization problem for q ≥ 1 and L(a, b) = |a − b|p given in

(34).
• GW p

λ,q(·, ·): generalized GW problem given in (39).

• ĜW : GW-variant problem given in (51) for the general case, and in (55) for the discrete
setting.

• L̂: cost given in (16) for the GW-variant problem.

• d : X̂ × X̂ → R+ ∪ {∞}: “generalized” metric given in (50) for X̂ .
• X ∼ Y: equivalence relation in for mm-spaces, X ∼ Y if and only if they have the same

total mass and GW p
q (X,Y) = 0.

• PGWL
λ,q(·, ·): partial GW optimization problem given in (9) or, equivalently, in (10).

• PGW p
λ,q(·, ·): partial GW optimization problem given in (10) when L(a, b) = |a− b|p.

• PGWλ(·, ·): is is the PGW problem PGW p
λ,q(·, ·) for the case when p = 2 = q.

• µ(ϕ): given a measure µ and a function ϕ,

µ(ϕ) :=

∫
ϕ(x)dµ(x).
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• C(γ;λ, µ, ν): the transportation cost induced by transportation plan γ ∈ Γ≤(µ, ν) in the
Partial GW problem 10,

C(γ;λ, µ, ν) := γ⊗2(L(dqX , d
q
Y )) + λ(|µ|2 + |ν|2 − 2|γ|2).

• L: functional for the optimization problem PGWλ(·, ·).

• M , M̃ , and M̂ : see (14), and (54). Notice that, (M − 2λ)i,i′,j,j′ :=Mi,i′,j,j′ − 2λ.

• ⟨·, ·⟩F : Frobenius inner product for matrices, i.e., ⟨A,B⟩F = trace(A⊤B) =∑n,m
i,j Ai,jBi,j for all A,B ∈ Rn×m.

• M ◦ γ: product between the tensor M and the matrix γ.

• ∇: gradient.

• [1 : n] = {1, . . . , n}.
• α: step size based on the line search method.

• γ(1): initialization of the algorithm.

• γ(k), γ(k)
′
: previous and new transportation plans before and after step 1 in the k−th

iteration of version 1 of our proposed FW algorithm.

• γ̂(k), γ̂(k)
′
: previous and new transportation plans before and after step 1 in the k−th

iteration of version 2 of our proposed FW algorithm.

• G = 2M̃ ◦ γ, Ĝ = 2M̂ ◦ γ̂: Gradient of the objective function in version 1 and version 2,
respectively, of our proposed FW algorithm for solving the discrete version of partial GW
problem.

• (δγ, a, b) and (δγ̂, a, b): given in (18) and (56) for versions 1 and 2 of the algorithm,
respectively.

• C1-function: continuous and with continuous derivatives.

• MPGWρ(·, ·): Mass-Constrained Partial Gromov-Wasserstein defined in (77).

• Γρ
≤(µ, ν): set transportation plans defined in (78) for the Mass-Constrained Partial

Gromov-Wasserstein problem.

B PROOF OF PROPOSITION 3.2

The idea of the proof is inspired by the proof of Proposition 1 in (Piccoli & Rossi, 2014).

The goal is to verify that

PGWL
λ,q(X,Y)

:= inf
γ∈M+(X,Y )

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

︸ ︷︷ ︸
transport GW cost

+λ
(
|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |
)︸ ︷︷ ︸

mass penalty

= inf
γ∈Γ≤(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2 + λ

(
|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |
)
. (21)

Consider γ ∈ M+(X × Y ) such that γ1 ≤ µ does not hold. Then we can write the Lebesgue
decomposition of γ1 with respect to µ:

γ1 = fµ+ µ⊥,

where f ≥ 0 is the Radon-Nikodym derivative of γ1 with respect to µ, and µ⊥, µ are mutually
singular, that is, there exist measurable sets A,B such that A ∩ B = ∅, X = A ∪ B and µ⊥(A) =
0, µ(B) = 0. Without loss of generality, we can assume that the support of f lies on A, since

γ1(E) =

∫
E∩A

f(x) dµ(x) + µ⊥(E ∩B) ∀E ⊆ X measurable.
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Define A1 = {x ∈ A : f(x) > 1}, A2 = {x ∈ A : f(x) ≤ 1} (both are measurable, since f is
measurable), and define µ̄ = min{f, 1}µ. Then,

µ̄ ≤ µ and µ̄ ≤ fµ ≤ fµ+ µ⊥ = γ1.

There exists a γ̄ ∈ M+(X × Y ) such that γ̄1 = µ̄, γ̄ ≤ γ, and γ̄2 ≤ γ2. Indeed, we can construct
γ̄ in the following way: First, let {γx}x∈X be the set of conditional measures (disintegration) such
that for every measurable (test) function ψ : X × Y → R we have∫

ψ(x, y) dγ(x, y) =

∫
X

∫
Y

ψ(x, y) dγx(y) dγ1(x).

Then, define γ̄ as

γ̄(U) :=

∫
X

∫
Y

1U (x, y) dγ
x(y) dµ̄(x) ∀U ⊆ X × Y Borel.

Then, γ̄ verifies that γ̄1 = µ̄, and since µ̄ ≤ γ1, we also have that γ̄ ≤ γ, which implies γ̄2 ≤ γ2.

Since |γ1| = |γ2| and |γ̄1| = |γ̄2|, then we have |γ⊗2
1 − γ̄⊗2

1 | = |γ
⊗2
2 − γ̄⊗2

2 |.
We claim that

|µ⊗2 − γ⊗2
1 | ≥ |µ⊗2 − γ̄⊗2

1 |+ |γ
⊗2
1 − γ̄⊗2

1 |. (22)

• Left-hand side of (22): Since {A,B} is a partition of X , we first split the left-hand side of
(22) as

|µ⊗2 − γ⊗2
1 | = (µ⊗2 − γ⊗2

1 )(A×A)︸ ︷︷ ︸
(I)

+(µ⊗2 − γ⊗2
1 )(A×B) + (µ⊗2 − γ⊗2

1 )(B ×A)︸ ︷︷ ︸
(II)

+ (µ⊗2 − γ⊗2
1 )(B ×B)︸ ︷︷ ︸
(III)

.

Then we have

(III) = (µ⊗2 − γ⊗2
1 )(B ×B) = µ⊥ ⊗ µ⊥(B ×B) = |µ⊥|2,

(II) = (µ⊗2 − γ⊗2
1 )(A×B) + (µ⊗2 − γ⊗2

1 )(B ×A) = 2|µ⊥|(µ− γ1)(A).

Since γ1 = fµ in A, then γ̄1 = γ1 in A2 and γ̄1 = µ in A1, so we have

(µ− γ1)(A) = (µ− γ1)(A1) + (µ− γ1)(A2) = (γ1 − γ̄1)(A1) + (µ− γ̄1)(A2)

= (γ1 − γ̄1)(A) + (µ− γ̄1)(A).

Thus,

(II) = 2|µ⊥|((γ1 − γ̄1)(A) + (µ− γ̄1)(A)),

and we also get that

(I) = (µ⊗2 − γ⊗2
1 )(A×A)

= (µ⊗2 − γ⊗2
1 )(A1 ×A1) + (µ⊗2 − γ⊗2

1 )(A2 ×A2) + (µ⊗2 − γ⊗2
1 )(A1 ×A2)

+ (µ⊗2 − γ⊗2
1 )(A2 ×A1)

= (γ⊗2
1 − γ̄⊗2

1 )(A1 ×A1) + (µ⊗2 − γ̄⊗2
1 )(A2 ×A2)+

+ |γ̄1 ⊗ µ− γ1 ⊗ γ̄1|(A1 ×A2) + |µ⊗ γ̄1 − γ̄1 ⊗ γ1|(A2 ×A1)

= (γ⊗2
1 − γ̄⊗2

1 )(A1 ×A1) + (µ⊗2 − γ̄⊗2
1 )(A2 ×A2) + 2(γ̄1 − γ1)(A1)(µ− γ̄1)(A2)

= (γ⊗2
1 − γ̄⊗2

1 )(A×A) + (µ⊗2 − γ̄⊗2
1 )(A×A) + 2(γ̄1 − γ1)(A1)(µ− γ̄1)(A2)︸ ︷︷ ︸

≥0

.

• Right-hand side of (22): First notice that

(γ1 − γ̄1)(B) = (γ1 − γ̄1)(B) ≤ γ1(B) = |µ⊥|,
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and since γ̄1 ≤ µ and µ(B) = 0, we have

(µ− γ̄1)(B) = 0.

Then,

|µ⊗2 − γ̄⊗2
1 |+ |γ

⊗2
1 − γ̄⊗2

1 | =
= (µ⊗2 − γ̄⊗2

1 )(A×A) + (γ⊗2
1 − γ̄⊗2

1 )(A×A) + (µ⊗2 − γ̄⊗2
1 )(B ×B)

+ (γ⊗2
1 − γ̄⊗2

1 )(B ×B) + (µ⊗2 − γ̄⊗2
1 )(A×B) + (γ⊗2

1 − γ̄⊗2
1 )(A×B)

+ (µ⊗2 − γ̄⊗2
1 )(B ×A) + (γ⊗2

1 − γ̄⊗2
1 )(B ×A)

≤ (µ⊗2 − γ̄⊗2
1 )(A×A) + (γ⊗2

1 − γ̄⊗2
1 )(A×A)︸ ︷︷ ︸

≤(I)

+ |µ⊥|2︸ ︷︷ ︸
=(III)

+2|µ⊥|(γ1 − γ̄1)(A)︸ ︷︷ ︸
=(II)

.

Thus, (22) holds.

We finish the proof of the proposition by noting that

|µ⊗2 − γ̄⊗2
1 |+ |ν⊗2 − γ̄⊗2

2 | ≤ |µ⊗2 − γ⊗2
1 | − |γ

⊗2
1 − γ̄⊗2

1 |+ |ν⊗2 − γ̄⊗2
2 |

= |µ⊗2 − γ⊗2
1 | − |γ

⊗2
2 − γ̄⊗2

2 |+ |ν⊗2 − γ̄⊗2
2 |

≤ |µ⊗2 − γ⊗2
1 |+ |ν⊗2 − γ⊗2

2 |

where the first inequality follows from (22), and the second inequality holds from the fact the total
variation norm | · | satisfies triangular inequality. Therefore γ̄ induces a smaller transport GW cost
than γ (since γ̄ ≤ γ), and also γ̄ decreases the mass penalty in comparison that corresponding to
γ. Thus, γ̄ is a better GW transportation plan, which satisfies γ̄1 ≤ µ. Similarly, we can further
construct γ̄′ based on γ̄ such that γ̄′1 ≤ µ, γ̄′2 ≤ ν. Therefore, we can restrict the minimization in (9)
fromM+(X × Y ) to Γ≤(µ, ν). Thus, the equality (21) is satisfied.

Proof of Remark 3.1. Given γ ∈ Γ≤(µ, ν), since γ1 ≤ µ, γ2 ≤ ν, and γ1(X) = |γ1| = |γ| =
|γ2| = γ2(Y ), we have

|µ⊗2 − γ⊗2
1 |+ |ν⊗2 − γ⊗2

2 | = µ⊗2(X2)− γ⊗2
1 (X2) + ν⊗2(Y 2)− γ⊗2

2 (Y 2)

= |µ|2 + |ν|2 − 2|γ|2,

and so the transportation cost in partial GW problem (10) becomes

C(γ;λ, µ, ν)

:=

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) dγ(x, y)dγ(x′, y′) + λ

(
|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |
)

=

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) dγ(x, y)dγ(x′, y′) + λ

(
|µ|2 + |ν|2 − 2|γ|2

)
=

∫
(X×Y )2

(L(dqX(x, x′), dqY (y, y
′)− 2λ) dγ(x, y)dγ(x′, y′) + λ

(
|µ|2 + |ν|2

)︸ ︷︷ ︸
does not depend on γ

. (23)

C PROOF OF PROPOSITION 3.3

In this section, we discuss the minimizer of the Partial GW problem (9). Trivially, Γ≤(µ, ν) ⊆
M+(X × Y ) and by using Proposition 3.2 it is enough to show that a minimizer for problem (10)
exists.

We refer the reader to Mémoli (2011, Chapters 5 and 10) for similar ideas.
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C.1 FORMAL STATEMENT OF PROPOSITION 3.3

Suppose X,Y are compact sets, then exists compact set [0, β] ⊂ R, such that

d(x, x′), d(y, y′) ∈ [0, β], ∀x, x′ ∈ X, y, y′ ∈ Y
Let A = [0, βq]. Let LA2 denote the restriction of L on A2, i.e. LA2 : A2 → R with LA2(r1, r2) =
L(r1, r2), ∀r1, r2 ∈ A. Suppose L satisfies the following: there exists 0 < K < ∞ such that for
every r1, r′1, r2, r

′
2 ∈ A,

|LA2(r1, r2)− LA2(r′1, r2)| ≤ K|r1 − r′1|, |LA2(r1, r2)− LA2(r1, r
′
2)| ≤ K|r2 − r′2| (24)

(i.e., LA2 is Lipschitz on each variable). Then PGWL
λ (·, ·) admits a minimizer.

Note, the condition (24) contains the case L(r1, r2) = |r1 − r2|p as a special case:
Lemma C.1. If L(r1, r2) = |r1 − r2|p, for 1 ≤ p <∞, then L satisfies the condition (24).

Proof. Assume that L is defined on an interval of the form [0,M ], for some M > 0. Consider
r1, r

′
1, r2, r

′
2 ∈ [0,M ]. If p = 1, by triangle inequality we have

|L(r1, r2)− L(r′1, r2)| = ||r1 − r2| − |r′1 − r2|| ≤ |r1 − r′1|
and similarly,

|L(r1, r2)− L(r1, r′2)| ≤ |r2 − r′2|.
From Mémoli (2011, page 473), since for 1 ≤ p < ∞, the function t 7→ tp, for t ∈ [0,M ], is
Lipschitz with constant bounded by pMp−1, we have

|L(r1, r2)− L(r′1, r2)| ≤ pMp−1|r1 − r′1|.
and similarly,

|L(r1, r2)− L(r1, r′2)| ≤ pMp−1|r2 − r′2|.

Lemma C.2. Given q ≥ 1, consider β > 0. Then [0, β] ∋ c 7→ cq ∈ [0, βq] is a Lipschitz function.

Proof. Given c1, c2 ∈ [0, β], we have

|cq1 − c
q
2| ≤ qβq−1|c1 − c2| (25)

Thus, c 7→ cq is a Lipschitz function.

C.2 CONVERGENCE AUXILIARY RESULT

If a sequence {γn} converges weakly to γ, we write γn w
⇀ γ. In this setting, if γn w

⇀ γ, it does not
imply that (γn)⊗2 w

⇀ γ⊗2. Thus, the technique used in classical OT for proving the existence of a
minimizer for the optimal transport optimization problem as a consequence of the Stone-Weierstrass
theorem does not apply directly in the Gromov-Wasserstein context.

Inspired by (Mémoli, 2011), we introduce the following lemma.
Lemma C.3. Given metric space (Z, dZ), suppose ϕ : Z2 → R is a Lipschitz continuous function
with respect to (Z2, d+Z ), where

d+Z ((z1, z2), (z
′
1, z

′
2)) := dZ(z1, z

′
1) + dZ(z2, z

′
2), ∀(z1, z2), (z′1, z′2) ∈ Z2.

Given γ ∈M+(Z), and a sequence {γn}n≥1 ∈M+(Z) such that converges weakly to γ,

γn
w
⇀ γ (n→∞).

Finally, consider the mapping

Z ∋ z 7→ γ(ϕ(z, ·)) :=
∫
Z

ϕ(z, z′)dγ(z′) ∈ R.

Then we have the following results:
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(1) γn(ϕ(z, ·))→ γ(ϕ(z, ·)) uniformly (when n→∞).

(2) (γn)⊗2(ϕ(·, ·))→ γ⊗2(ϕ(·, ·)) (when n→∞).

(3) IfM⊂M+(Z) is compact for the weak convergence, then infγ∈M γ⊗2(ϕ(·, ·)) admits a
minimizer.

Proof. The main idea of the proof is similar to Mémoli (2011, Lemma 10.3): we extend it from
P+(Z) toM+(Z).

(1) Since γn w
⇀ γ, and Z is compact, we have |γn| → |γ|. Then, given ϵ > 0, for n sufficiently

large we have |γn| ≤ |γ|+ ϵ.

Let us denote by ∥ϕ∥Lip the Lipschitz constant of ϕ. For any z1, z2 ∈ Z, we have:

|γn(ϕ(z1, ·))− γn(ϕ(z2, ·))| ≤
∫
Z

|ϕ(z1, z)− ϕ(z2, z)|γn(z)

≤ max
z∈Z
|ϕ(z1, z)− ϕ(z2, z)|(|γ|+ ϵ)

≤ (|γ|+ ϵ)∥ϕ∥Lip dZ(z1, z2) = KdZ(z1, z2),

where K = (|γ| + ϵ)∥ϕ∥Lip is a finite positive value. Note that the above inequality also
holds if we replace γn by γ.

Since (Z, dZ) is compact, Z =
⋃N

i=1B(zi, ϵ/K) for some z1, . . . , zN ∈ Z, where
B(zi, ϵ/3K) = {z ∈ Z : dZ(z, zi) ≤ ϵ/3K} is the closed ball centered at zi, with
radius ϵ/K. By definition of weak convergence, when n is sufficiently large,

|γn(ϕ(zi, ·))− γ(ϕ(zi, ·))| < ϵ/3, for each i ∈ [1 : N ].

Given z ∈ Z, then z ∈ B(zi) for some zi. For sufficiently large n, we have:

|γn(ϕ(z, ·))− γ(ϕ(z, ·))|
≤ |γn(ϕ(z, ·))− γn(ϕ(zi, ·))|+ |γn(ϕ(zi, ·))− γ(ϕ(zi, ·))|+ |γ(ϕ(zi, ·))− γ(ϕ(z, ·))|
≤ Kd(z, zi) + ϵ/3 +Kd(z, zi) = ϵ/3 + ϵ/3 + ϵ/3 = ϵ. (26)

Thus we prove the first statement.

(2) We recall that we do not have (γn)⊗2 w
⇀ γ⊗2.

Consider an arbitrary ϵ > 0. We have,

0 ≤ lim sup
n→∞

|(γn)⊗2(ϕ)− (γ)⊗2(ϕ)| (27)

≤ lim sup
n→∞

|(γn ⊗ γn)(ϕ)− (γ ⊗ γn)(ϕ)|︸ ︷︷ ︸
An

+ lim sup
n→∞

|(γn ⊗ γ)(ϕ)− (γ ⊗ γ)(ϕ)|︸ ︷︷ ︸
Bn

.

For the first term, when n is sufficiently large, by statement (1), we have:

An =

∫
(γn(ϕ(z, ·))− γ(ϕ(z, ·)) dγn(z)

≤ max
z
|γn(ϕ(z, ·))− γ(ϕ(z, ·)||γn|

≤ ϵ(|γ|+ ϵ) (28)

Thus, lim supnA = limnA = 0.

Similarly, for the second term, when n is sufficiently large, we have

Bn :=

∫
(γn(ϕ(z, ·))− γ(ϕ(z, ·)))dγ(z) ≤ ϵ|γ|. (29)

Thus, lim supnBn = limnBn = 0.

Therefore, from (27), (28) and (29), we obtain

lim sup
n→∞

|(γn)⊗2(ϕ)− (γ)⊗2(ϕ)| = lim
n→∞

|(γn)⊗2(ϕ)− (γ)⊗2(ϕ)| = 0. (30)
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(3) Let γn ∈ M be a sequence such that (γn)⊗2(ϕ) (weakly) converges to infγ∈M γ⊗2(ϕ).
Since M is compact, there exists a sub-sequence γnk

w
⇀ γ for some γ ∈ M. Then, by

statement (2), we have:

γ⊗2(ϕ) = lim
k
(γnk)⊗2(ϕ) = inf

γ∈M
γ⊗2(ϕ),

and we complete the proof.

C.3 PROOF OF THE FORMAL STATEMENT FOR PROPOSITION 3.3

The proof follows the ideas of Mémoli (2011, Corollary 10.1).

Define (Z, dZ) as Z := X × Y , with dZ((x, y), (x′, y′)) := dX(x, x′) + dY (y, y
′).

We claim that the following mapping

(X × Y )2 = Z2 → R
((x, y), (x′, y′)) 7→ ϕ((x, y), (x′, y′)) := L(dqX(x, x′), dqY (y, y

′))− 2λ

is a Lipschitz function with respect to d+Z , where L satisfies (24). Indeed, given
((x1, y1), (x

′
1, y

′
1)), ((x2, y2), (x

′
2, y

′
2)) ∈ Z2, we have:

|ϕ((x1, y1), (x′1, y′1))− ϕ((x2, y2), (x′2, y′2))|
= |L(dX(x1, x

′
1), dY (y1, y

′
1))− L(dX(x2, x

′
2), dY (y2, y

′
2))|

≤ |L(dX(x1, x
′
1), dY (y1, y

′
1))− L(dX(x2, x

′
2), dY (y1, y

′
1))|

+ |L(dX(x2, x
′
2), dY (y1, y

′
1))− L(dX(x2, x

′
2), dY (y2, y

′
2))|

≤ K|dqX(x1, x
′
1)− d

q
X(x2, x

′
2)|+K|dqY (y1, y

′
1)− d

q
Y (y2, y

′
2)|

≤ K ′|dX(x1, x
′
1)− dX(x2, x

′
2)|+K ′|dY (y1, y′1)− dY (y2, y′2)| (31)

≤ K ′(dX(x1, x
′
2) + dX(x′1, x

′
2)) +K ′(dY (y1, y2) + dY (y

′
1, y

′
2)) (32)

= K ′ [((dX(x1, x2) + dY (y1, y2)) + ((dX(x′1, x
′
2) + dY (y

′
1, y

′
2))]

= K ′ [dZ((x1, y1), (x2, y2)) + dZ((x
′
1, y

′
1), (x

′
2, y

′
2))]

= K ′d+Z (((x1, y1), (x2, y2)), ((x1, y1), (x2, y2)))

where in (31), K ′ = qβq−1K; the inequality holds by lemma C.2; The inequality (32) follows from
the triangle inequality:

dX(x1, x
′
1)− dX(x2, x

′
2) ≤ dX(x1, x2) + dX(x2, x

′
2) + dX(x′2, x

′
1)− dX(x2, x

′
2)

= dX(x1, x2) + dX(x′1, x
′
2),

and similarly,
dX(x2, x

′
2)− dX(x1, x

′
1) ≤ dX(x1, x2) + dX(x′1, x

′
2).

LetM = Γ≤(µ, ν). From Liu et al. (2023, Proposition B.1), we have that Γ≤(µ, ν) is a compact
set with respect to the weak convergence topology.

By Lemma (C.3) part (3), we have the PGW problem, which can be written as

inf
γ∈Γ≤(µ,ν)

γ⊗2(ϕ) + λ(|µ|2 + |ν|2)

admits a solution, i.e., a minimizer γ ∈ Γ≤(µ, ν). Therefore, we end the proof of Proposition 3.3.

D PROOF OF PROPOSITION 3.4: METRIC PROPERTY OF PARTIAL GW

Let L(r1, r2) = Dp(r1, r2) for a metric D on R, and since all the metrics in R are equivalent, for
simplicity, consider D(r1, r2) = |r1 − r2|. (Notice that this satisfies the hypothesis of Proposition
H.1 used in the experiments).
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Consider the GW problem, for q ≥ 1,

GWL
q (X,Y) := inf

γ∈Γ(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) dγ⊗2, (33)

or, in particular,

GW p
q (X,Y) := inf

γ∈Γ(µ,ν)

∫
(X×Y )2

|dqX(x, x′)− dqY (y, y
′)|p dγ⊗2. (34)

For probability mm-spaces we have the equivalence relation X ∼ Y if and only if GW p
q (X,Y) = 0.

By Mémoli (2011, Chapter 5), X ∼ Y is equivalent to the following: there exists a bijective isometry
mapping ϕ : X → Y , such that

dX(x, x′)− dY (ϕ(x), ϕ(x′)) = 0, µ⊗2 − a.s.
ϕ#µ = ν.

Remark D.1. In the literature, the case where q = 1 is the most frequently considered problem.
In particular, in (Mémoli, 2011) it is stated the equivalence relation X ∼ Y if and only if there
exists ϕ : X → Y such that ϕ#µ = ν and dX(x, x′) = dY (ϕ(x), ϕ(x

′)) µ⊗2 − a.s. if and only
if GW p

1 (X,Y) = 0. Thus, X ∼ Y is also equivalent to have ϕ : X → Y such that ϕ#µ = ν and
dX(x, x′) = dY (y, y

′) γ⊗2 − a.s. where γ is a minimizer for GW p
1 (X,Y). So, in this situation we

also have dqX(x, x′) = dqY (y, y
′) γ⊗2 − a.s. for any given q ≥ 1. Therefore, X ∼ Y if and only if

GW p
q (X,Y) = 0.

D.1 FORMAL STATEMENT OF PROPOSITION 3.4

We first introduce the formal statement of Proposition 3.4. To do so, we extend the equiva-
lence relation ∼ to all mm-spaces (not only probability mm-spaces): Given arbitrary mm-spaces
X = (X, dX , µ), Y = (Y, dY , ν), where X,Y are compact and µ ∈ M+(X), ν ∈ M+(Y ), we
write X ∼ Y if and only if they have the same total mass (i.e., |µ| = µ(X) = ν(Y ) = |ν|) and
GW p

q (X,Y) = 0.

Formal statement of Proposition 3.4: Given λ > 0, 1 ≤ p, q <∞, then (PGW p
λ,q(·, ·))1/p defines

a metric among mm-spaces under taking quotient with respect to the equivalence relation ∼.

Next, we discuss its proof.

D.2 NON-NEGATIVITY AND SYMMETRY PROPERTIES

It is straightforward to verify PGW p
λ,q(X,Y) ≥ 0, and that PGW p

λ,q(X,Y) = PGW p
λ,q(Y,X). In

what follows, we will concentrate on proving PGW p
λ,q(X,Y) = 0 if and only if X ∼ Y:

If X ∼ Y, then |µ| = |ν|, and we have

0 ≤ PGW p
λ,q(X,Y) ≤ GW

p
q (X,Y) = 0,

where the inequality follows from the fact Γ(µ, ν) ⊆ Γ≤(µ, ν). Thus, PGW p
λ,q(X,Y) = 0.

For the other direction, suppose that PGW p
λ,q(X,Y) = 0. We claim that |µ| = |ν| and that there

exist an optimal plan γ for PGW p
λ,q(X,Y) such that |µ| = |γ| = |ν|. Let us prove this by contra-

diction. Assume |µ| < |ν|. For convenience, suppose |µ|2 ≤ |ν|2 − ϵ, for some ϵ > 0. Then, for
each γ ∈ Γ≤(µ, ν), we have |γ⊗2| ≤ |µ|2 ≤ |ν|2 − ϵ, and so

PGW p
λ,q(X,Y) ≥ λ(|µ|

2 + |ν|2 − 2|γ|2) ≥ λ(|ν2| − |γ|2) ≥ λϵ > 0.

Thus, PGW p
λ,q(X,Y) > 0, which is a contradiction. So, |µ| = |ν|. In addition, if γ ∈ Γ≤(µ, ν)

is optimal for PGW p
λ,q(X,Y), we have |γ| = |µ| = |ν|, thus γ ∈ Γ(µ, ν). Therefore, since

PGW p
λ,q(X,Y) = 0, and for such optimal γ we have |γ| = |µ| = |ν|, we obtain∫

(X×Y )2
|dqX(x, x′)− dqY (y, y

′)|pdγ⊗2 = 0.

As a result, dqX(x, x′) = dqY (y, y
′) γ⊗2 − a.s., which implies that GW p

q (X,Y) = 0, and so X ∼ Y.
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D.3 TRIANGLE INEQUALITY – STRATEGY: CONVERT THE PGW PROBLEM INTO A GW
PROBLEM

Consider three arbitrary mm-spaces S = (S, dS , σ), X = (X, dX , µ), Y = (Y, dY , ν). We define
Ŝ = (Ŝ, dŜ , σ̂), X̂ = (X̂, dX̂ , µ̂), Ŷ = (Ŷ , dŶ , ν̂) in a similar way to that of Proposition G.1 but
now aiming to have new spaces with equal total mass:

First, introduce auxiliary points ∞̂0, ∞̂1, ∞̂2 and set
Ŝ = S ∪ {∞̂0, ∞̂1, ∞̂2},
X̂ = X ∪ {∞̂0, ∞̂1, ∞̂2},
Ŷ = Y ∪ {∞̂0, ∞̂1, ∞̂2}.

Define σ̂, µ̂, ν̂ as follows: 
σ̂ = σ + |µ|δ∞̂1

+ |ν|δ∞̂2
,

µ̂ = µ+ |σ|δ∞̂0
+ |ν|δ∞̂2

,

ν̂ = ν + |σ|δ∞̂0 + |µ|δ∞̂1 .

(35)

Note that σ̂ is not supported on point ∞̂0, similarly, µ̂ is not supported on ∞̂1, ν̂ is not supported
on ∞̂2. In addition, we have |µ̂| = |ν̂| = |σ̂| = |µ| + |ν| + |σ|. (For a similar idea in classical
unbalanced optimal transport see, for example, (Heinemann et al., 2023).)

Finally, define dŜ : Ŝ2 → R ∪ {∞} as follows:

dŜ(s, s
′) =

{
dS(s, s

′) if (s, s′) ∈ S2,

∞ elsewhere.
(36)

Note, dŜ(·, ·) is not a rigorous metric in Ŝ since we allow dŜ = ∞. Similarly, define dX̂ , dŶ . As a
result, we have constructed new spaces

Ŝ = (Ŝ, dŜ , σ̂), X̂ = (X̂, dX̂ , µ̂), Ŷ = (Ŷ , dŶ , ν̂). (37)

We define the following mapping Dλ : (R ∪ {∞})× (R ∪ {∞})→ R+:

Dp
λ(r1, r2) =


|r1 − r2|p if r1, r2 <∞,
λ if r1 =∞, r2 <∞ or vice versa,
0 if r1 = r2 =∞.

(38)

Note that Dλ is not a rigorous metric since it may sometimes violate triangle inequality. See the
following lemma for a detailed and precise explanation.
Lemma D.2. Let Dλ(·, ·) denote the function defined in (38). For any r0, r1, r2 ∈ R ∪ {∞}, we
have the following:

• Dλ(r1, r2) ≥ 0. Dλ(r1, r2) = 0 if and only if r1 = r2, where r1 = r2 denotes that
r1 = r2 ∈ R or r1 = r2 =∞.

• Except the case r1, r2 ∈ R, r0 =∞, for all other cases, we have

Dλ(r1, r2) ≤ Dλ(r1, r0) +Dλ(r2, r0).

Proof of Lemma D.2. It is straightforward to verify Dλ(·, ·) ≥ 0.

Now, consider r0, r1, r2 ∈ R ∪ {∞}. If r1 = r2 ∈ R or r1 = r2 = ∞, we have Dλ(r1, r2) = 0.
Otherwise, Dλ(r1, r2) > 0. So, Dλ(r1, r2) = 0 if and only if r1 = r2.

For the second item, we have the following cases:

Case 1: r1, r2, r0 ∈ R,

Dλ(r1, r2) = |r1 − r2|
≤ |r1 − r2|+ |r2 − r0|
= Dλ(r0, r1) +Dλ(r0, r2)
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Case 2: r1, r2 ∈ R, r0 =∞. We do not need to verify the inequality in this case.

Case 3: r1 ∈ R, r2, r0 =∞, or r1 =∞, r2 ∈ R, r0 =∞. In this case, we have

Dλ(r1, r2) = Dλ(r1, r0) =
√
λ,Dλ(r2, r0) = 0

and it is straightforward to verify the inequality.

Case 4: r1, r2 =∞, r3 ∈ R. In this case, we have Dλ(r1, r2) = 0 ≤ Dλ(r0, r1) +Dλ(r0, r2).

Case 5: r1, r2, r0 =∞. In this case, we have

Dλ(r1, r2) = Dλ(r1, r0) = Dλ(r2, r0) = 0

and it is straightforward to verify the inequality.

We construct the following generalized GW problem:

GW p
λ,q(X̂, Ŷ) := inf

γ̂∈Γ(µ̂,ν̂)

∫
(X̂×Ŷ )2

Dp
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂⊗2

︸ ︷︷ ︸
Ĉ(γ̂;λ,µ̂,ν̂)

. (39)

Similarly, we define GW p
λ,q(X̂, Ŝ), and GW p

λ,q(Ŝ, Ŷ).

The mapping (6) is modified as:

Γ≤(σ, µ) ∋ γ01 7→ γ̂01 ∈ Γ(σ̂, µ̂),

γ̂01 := γ01 + (σ − γ011 )⊗ δ∞̂0
+ δ∞̂1

⊗ (µ− γ012 ) + |γ|δ∞̂1,∞̂0
+ |ν|δ∞̂2,∞̂2

;

Γ≤(σ, ν) ∋ γ02 7→ γ̂02 ∈ Γ(σ̂, ν̂),

γ̂02 := γ02 + (σ − γ021 )⊗ δ∞̂0
+ δ∞̂2

⊗ (ν − γ022 ) + |γ|δ∞̂2,∞̂0
+ |µ|δ∞̂1,∞̂1

;

Γ≤(µ, ν) ∋ γ12 7→ γ̂12 ∈ Γ(µ̂, ν̂),

γ̂12 := γ12 + (µ− γ121 )⊗ δ∞̂1
+ δ∞̂2

⊗ (ν − γ122 ) + |γ|δ∞̂2,∞̂1
+ |µ|δ∞̂0,∞̂0

. (40)

It is straightforward to verify the above mappings are well-defined. In addition, we can observe that,
for each γ01 ∈ Γ≤(σ, µ), γ

02 ∈ Γ≤(σ, ν), γ
12 ∈ Γ≤(µ, ν),

γ̂01({∞̂2} ×X) = γ̂01(S × {∞̂2}) = 0, (41)

γ̂02({∞̂1} × Y ) = γ̂02(S × {∞̂1}) = 0, (42)

γ̂12({∞̂0} × Y ) = γ̂12(X × {∞̂0}) = 0.

Proposition D.3. If γ12 ∈ Γ≤(µ, ν) is optimal in PGW problem PGW p
λ,q(X,Y), then γ̂12 de-

fined in (40) is optimal in generalized GW problem GW p
λ,q(X̂, Ŷ). Furthermore, Ĉ(γ̂12;λ, µ̂, ν̂) =

C(γ12;λ, µ, ν), and thus,

PGW p
λ,q(X,Y) = GW p

λ,q(X̂, Ŷ).

Proof of Proposition D.3. For each γ ∈ Γ≤(µ, ν), define γ̂ by (40).

Note that if we merge the points ∞̂1, ∞̂2, ∞̂3 as ∞̂, i.e.

∞̂ = ∞̂1 = ∞̂2 = ∞̂3,

the value Ĉ(γ̂;λ, µ̂, ν̂) will not change. Thus, we merge these three auxiliary points.
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We have:

Ĉ(γ̂;λ, µ̂, ν̂) =

∫
(X̂×Ŷ )2

Dp
λ(d

q

X̂
(x, x′), dq

Ŷ
(x, x′))dγ̂⊗2

=

∫
(X×Y )2

|dqX(x, x′)− dqY (y, y
′)|pdγ̂⊗2 +

∫
({∞̂}×Y )2

λdγ̂⊗2 +

∫
(X×{∞̂})2

λγ̂⊗2

+ 2

∫
({∞̂}×Y )×(X×Y )

λdγ̂⊗2 + 2

∫
(X×{∞̂})×(X×Y )

λdγ̂⊗2 +

∫
({∞̂}×{∞̂})2

Dp
λ(∞,∞)dγ̂⊗2

+ 2

∫
({∞̂}×Y )×(X×{∞̂})

Dp
λ(∞,∞)dγ̂⊗2 + 2

∫
({∞̂}×{∞̂})×(X×Y )

Dp
λ(∞,∞)dγ̂⊗2

+ 2

∫
({∞̂}×{Y })×{∞̂}2

Dp
λ(∞,∞)dγ̂⊗2 + 2

∫
(X×{∞̂})×{∞̂}2

Dp
λ(∞,∞)dγ̂⊗2

=

∫
(X×Y )2

|dqX(x, x′)− dqY (y, y
′)|pdγ⊗2

+ 2λ(|ν| − |γ|)|γ|+ λ(|ν| − |γ|)2 + 2λ(|µ| − |γ|)|γ|+ λ(|µ| − |γ|)2

=

∫
(X×Y )2

|dqX(x, y′)− dqY (y, y
′)|p dγ⊗2) + λ(|ν2|+ |µ|2 − 2|γ|2) = C(γ;λ, µ, ν).

As we merged the points ∞̂1, ∞̂2, ∞̂3, by Bai et al. (2023, Proposition B.1.), the mapping γ 7→ γ̂
defined in (40) is a bijection. Then, if γ ∈ Γ≤(µ, ν) is optimal for the PGW problem PGW p

λ,q(X,Y)
(defined in (10)), γ̂ ∈ Γ(µ̂, ν̂) is optimal for generalized GW problem GW p

λ,q(X̂, Ŷ) (defined in
(39)). Therefore,

GW p
λ,q(X̂, Ŷ) = PGW p

λ,q(X,Y).

Proposition D.4 (Triangle inequality for GW p
λ,q(·, ·)). Consider the generalized GW problem (39).

Then, for any p ∈ [1,∞), we have

GW p
λ,q(X̂, Ŷ) ≤ GW

p
λ,q(Ŝ, X̂) +GW p

λ,q(Ŝ, Ŷ).

Proof of Proposition D.4. We prove the case p = 2. For general p ≥ 1, it can be proved similarly.

Choose an optimal γ12 ∈ Γ≤(µ, ν) for PGW 2
λ,q(X,Y), an optimal γ01 ∈ Γ≤(σ, µ) for

PGW 2
λ,q(S,X), and an optimal γ02 ∈ Γ≤(σ, ν) for PGW 2

λ,q(S,Y). Construct γ̂12, γ̂01, γ̂02 by
(40).

By Proposition D.3, we have that γ̂12, γ̂01, γ̂02 are optimal for GW 2
λ,q(X̂, Ŷ), GW 2

λ,q(Ŝ, X̂),
GW 2

λ,q(Ŝ, Ŷ), respectively.

Define canonical projection mapping

π0,1 :(Ŝ × X̂ × Ŷ )→ (Ŝ × X̂)

(s, x, y) 7→ (s, x).

Similarly, we define π0,2, π1,2.

By gluing lemma (see Lemma 5.5 (Santambrogio, 2015)), there exists γ̂ ∈M+(Ŝ × X̂ × Ŷ ), such
that (π0,1)#γ̂ = γ̂01, (π0,2)#γ̂ = γ̂02. Thus, (π1,2)#γ̂ is a coupling between µ̂, ν̂. We have

GW 2
λ,q(X,Y) =

∫
(X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))d(γ̂12)⊗2

≤
∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ̂⊗2. (43)

The inequality holds since (π1,2)#γ̂, γ̂
12 ∈ Γ(µ̂, ν̂), and γ̂12 is optimal.
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Next, we will show that

∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ̂⊗2

≤
∫
(Ŝ×X̂×Ŷ )2

(Dλ(d
q

Ŝ
(s, s′), dq

X̂
(x, x′)) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′)))2dγ̂⊗2.

Let ((s, x, y), (s′, x′, y′)) ∈ (Ŝ, X̂, Ŷ )2, and assume that

Dλ(d
2
X̂
(x, x′), d2

Ŷ
(y, y′)) > Dλ(d

2
Ŝ
(s, s′), d2

X̂
(x, x′)) +Dλ(d

2
Ŝ
(s, s′), d2

Ŷ
(y, y′)). (44)

By Lemma D.2, (44) implies dX̂(x, x′), dŶ (y, y
′) ∈ R, dŜ(s, s

′) = ∞. Thus, by definition (36), it
also implies

(x, x′) ∈ X2, (y, y′) ∈ Y 2, (s, s′) ∈ Ŝ2 \ S2. (45)

Define the following sets:

Aα = Ŝ ×X × Y,
A0 = {∞̂0} ×X × Y,
A1 = {∞̂1} ×X × Y,
A2 = {∞̂2} ×X × Y.

Notice that, (44) =⇒ (45) is equivalent to

(44) =⇒ ((s, x, y), (s, x′, y′)) ∈ A :=

2⋃
i=0

(Ai ×Aα) ∪
2⋃

i=0

(Aα ×Ai). (46)

Next, we will show γ̂⊗2(A) = 0. Indeed,

γ̂(A0) ≤ γ̂({∞0} × X̂ × Ŷ ) = σ̂({∞0}) = 0 by definition (35) of σ̂ ,

γ̂(A1) ≤ γ̂({∞1} × X̂ × Y ) = γ̂02({∞̂1 × Y }) = 0 by (42),

γ̂(A2) ≤ γ̂({∞2} ×X × Ŷ ) = γ̂01({∞̂2 ×X}) = 0 by (41).

Thus, γ̂⊗2(A) = 0. By considering B = (Ŝ × X̂ × Y )2 \A, we obtain

∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ⊗2

=

∫
B

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ⊗2 since γ⊗2(A) = 0

≤
∫
B

(
Dλ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))

)2
dγ⊗2 by (46)

≤
∫
(Ŝ×X̂×Ŷ )2

(
Dλ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))

)2
dγ⊗2. (47)
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Following (43) and (47), we have

GW 2
λ,q(X̂, Ŷ) ≤

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ̂⊗2

)1/2

≤

(∫
(Ŝ×X̂×Ŷ )2

(
Dλ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′)) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))

)2
dγ⊗2

)1/2

≤

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′))dγ⊗2

)1/2

+

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))dγ⊗2

)1/2

(48)

=

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′))d(γ01)⊗2

)1/2

+

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))d(γ02)⊗2

)1/2

= GW 2
λ,q(Ŝ, X̂) +GW 2

λ,q(Ŝ, Ŷ),

where in the third inequality (48) we used the Minkowski inequality in L2((Ŝ×X̂× Ŷ )2, γ̂⊗2).

Now, we can complete the proof of Proposition 3.4: By the Propositions D.3, we have

PGW p
λ,q(X,Y) = GW p

λ,q(X̂, Ŷ)

and similarly for PGW p
λ,q and (S,X), PGW p

λ,q(S,Y). By the Proposition D.4, GW p
λ,q(·, ·) satisfies

the triangle inequality, thus we complete the proof:

PGW p
λ,q(X,Y) = GW p

λ,q(X̂, Ŷ)

≤ GW p
λ,q(Ŝ, X̂) +GW p

λ,q(Ŝ, Ŷ)
= PGW p

λ,q(S,X) + PGW p
λ,q(S,Y).

E PROOF OF PROPOSITION 3.5: PGW CONVERGES TO GW AS λ→∞.

In the main text, we set λ ∈ R. In this section, we discuss the limit case that when λ→∞.
Lemma E.1. Suppose |µ| ≤ |ν|, for each γ ∈ Γ≤(µ, ν), there exists γ′ ∈ Γ≤(µ, ν) such that γ ≤ γ′
and (π1)#γ

′ = µ.

Proof. Let γ ∈ Γ≤(µ, ν).

If |γ| = |µ|, then we have (π1)#γ = µ.

If |γ| < |µ|, let µr = µ−(π1)#γ, νr = ν−(π2)#γ. We have that µr, νr are non-negative measures,
with |µr| = |µ| − |γ| > 0. If we define

γ′ := γ +
1

|ν| − |γ|
µr ⊗ νr,

we obtain γ ≤ γ′. In addition, we have:

(π1)#γ
′ = (π1)#γ + µr |νr|

|ν| − |γ|
= (π1)#γ + µr = µ,

(π2)#γ
′ = (π2)#γ + νr

|µr|
|ν| − |γ|

≤ (π2)#γ + νr
|νr|
|ν| − |γ|

= ν.

Thus, γ′ ∈ Γ≤(µ, ν) and (π1)#γ
′ = µ.
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Lemma E.2. Given general mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), where µ, ν are supported
on bounded sets (in general, it is assumed that X and Y are compact, and that supp(µ) = X ,
supp(ν) = Y ), consider the problem the problem PGWL

λ,q(X,Y) with L(r1, r2) a continuous func-
tions. If λ is sufficiently large, in particular:

λ ≥ max
x,x′∈supp(µ)
y,y′∈supp(ν)

L(dX(x, x′), dY (y, y
′)),

then there exists optimal γ for PGWλ(X,Y) such that |γ| = min(|µ|, |ν|).
Furthermore, when

λ > max
x,x′∈supp(µ)
y,y′∈supp(ν)

L(dX(x, x′), dY (y, y
′)),

the for all optimal γ ∈ Γ≤(µ, ν), we have |γ| = min(|µ|, |ν|).

Proof. We prove it for q = 1, for a general q ≥ 1, it can be proved similarly.

Without loss of generality, suppose |µ| ≤ |ν|.
Since µ, ν are supported on bounded sets, there exists A = [0,M ] such that dX(x, x′), dY (y, y

′) ∈
A for all x, x′ ∈ supp(µ), y, y′ ∈ supp(ν).

Thus, the restriction of L on A2, denoted as LA2 , is continuous on A2, and thus it is bounded. So,
consider

m := max
r1,r2∈A

(L(r1, r2)) ≥ L(dX(x, x′), dY (y, y
′)), ∀x, x′ ∈ supp(µ), y, y′ ∈ supp(ν).

Suppose 2λ ≥ m+ 1, and assume that there exists a optimal γ ∈ Γ≤(µ, ν) such that |γ| < |µ|. By
Lemma E.1, there exists γ′ such that γ ≤ γ′, (π1)#γ′ = µ. Thus, we have

C(γ′;λ, µ, ν)− C(γ;λ, µ, ν) =
∫
(X×Y )

L(dX(x, x′), dY (y, y
′))− 2λ d((γ′)⊗2 − (γ)⊗2)

≤
∫
(X×Y )

m− 2λ d((γ′)⊗2 − (γ)⊗2)

= −(|γ′|2 − |γ|2) = −(|µ|2 − |γ|2) < 0,

which is contradiction since γ is optimal, and so we have completed the proof.

Lemma E.3. Consider probability mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), that is, with
|µ| = |ν| = 1. Then, for each λ > 0, we have

PGWL
λ,q(X,Y) ≤ GWL

q (X,Y).

Proof. In this setting, we have Γ(µ, ν) ⊂ Γ≤(µ, ν), and thus

PGWL
λ,q(X,Y)

= inf
Γ∈Γ≤(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2 + λ(|µ|2 + |ν|2 − 2|γ|2)

≤ inf
γ∈Γ(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) + λ(|µ|2 + |ν|2 − 2|γ|2)dγ⊗2

= inf
γ∈Γ(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

= GWL
q (X,Y).

Based on the above properties, we can now prove Proposition 3.5:
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Proposition E.4 (Generalization of Proposition 3.5). Consider general probability mm-spaces X =
(X, dX , µ), Y = (Y, dY , ν), that is, with |µ| = |ν| = 1, where X,Y are bounded. Assume that L is
continuous. Then

lim
λ→∞

PGWL
λ,q(X,Y) = GWL

q (X,Y).

Proof. When λ is sufficiently large, by Lemma E.2, for each optimal γλ ∈ Γ≤(µ, ν) of the min-
imization problem PGWL

λ,q(X,Y), we have |γλ| = min(|µ|, |ν|) = 1. That is, γλ ∈ Γ(µ, ν).
Plugging γλ into C(γλ;λ, µ, ν), we obtain:

PGWL
λ,q(X,Y) =

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

λ + λ(12 + 12 − 2 · 12)

=

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

λ ≥ GW (X,Y).

By Lemma E.3, we also have PGWL
λ,q(X,Y) ≤ GWL

q (X,Y) and we complete the proof.

F TENSOR PRODUCT COMPUTATION

Lemma F.1. Given a tensor M ∈ Rn×m×n×n and γ, γ′ ∈ Rn×m, the tensor product operator
M ◦ γ satisfies the following:

(i) The mapping γ 7→M ◦ γ is linear with respect to γ.

(ii) If M is symmetric, in particular, Mi,j,i′,j′ =Mi′,j′,i,j ,∀i, i′ ∈ [1 : n], j, j′ ∈ [1 : m], then

⟨M ◦ γ, γ′⟩F = ⟨M ◦ γ′, γ⟩F .

Proof.

(i) For the first part, consider γ, γ′ ∈ Rn×m and k ∈ R. For each i, j ∈ [1 : n] × [1 : m], we
have we have

(M ◦ (γ + γ′))ij =
∑
i′,j′

Mi,j,i′,j′(γ + γ′)i′j′

=
∑
i′,j′

Mi,j,i′,j′γi′j′ +
∑
i′,j′

Mi,j,i′,j′γ
′
i′j′

= (M ◦ γ)ij + (M ◦ γ)i′j′ ,

(M ◦ (kγ))ij =
∑
i′,j′

Mi,j,i′,j′(kγ)ij

= k
∑
i′,j′

Mi,j,i′,j′γij

= k(M ◦ γ)ij .
Thus, M ◦ (γ + γ′) =M ◦ γ +M ◦ γ′ and M ◦ (kγ) = kM ◦ γ. Therefore, γ 7→M ◦ γ
is linear.

(ii) For the second part, we have

⟨M ◦ γ, γ′⟩F =
∑
iji′j′

Mi,j,i′,j′,γijγ
′
i′j′

=
∑

i,j,i′,j′

Mi′,j′,i,jγi′,j′γi,j (49)

= ⟨Mγ′, γ⟩
where (49) follows from the fact that M is symmetric.
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G ANOTHER ALGORITHM FOR COMPUTING PGW DISTANCE – SOLVER 2

Our Algorithm 2 for solving the proposed PGW problem is based on a theoretical result that relates
GW and PGW. The details of our computational method, as well as the proof of Proposition G.1
stated below, are provided in Appendix G.1. Based on such proposition, we extend the PGW prob-
lem to a discrete GW-variant problem (55), leading to a solution for the original PGW problem by
truncating the GW-variant solution.
Proposition G.1. Let X = (X, dX , µ) be a mm-space. Consider an auxiliary point ∞̂ and let
X̂ = (X̂, dX̂ , µ̂), where X̂ = X ∪ {∞̂}, µ̂ is constructed by (4), and considering∞ as an auxiliary
point to R such that x ≤ ∞ for every x ∈ R, we extend dX into dX̂ : X̂2 → R ∪ {∞} and define
Lλ : R ∪ {∞} → R as follows:

dX̂(x, x′) =

{
dX(x, x′) if x, x′ ∈ X
∞ otherwise

, Lλ(r1, r2) :=

{
L(r1, r2)− 2λ if r1, r2 ∈ R
0 elsewhere

. (50)

Consider the following GW-variant3 problem:

ĜW
Lλ

(X̂, Ŷ) = inf
γ̂∈Γ(µ̂,ν̂)

γ̂⊗2(Lλ(d
q

X̂
, dq

Ŷ
)) (51)

Then, when considering the bijection γ 7→ γ̂ defined in (6) we have that γ is optimal for PGW
problem (10) if and only if γ̂ is optimal for the GW-variant problem (51).
Remark G.2. Intuitively, the above proposition states that, by introducing auxiliary points ∞̂, we
can build an equivalent relation between PGW and GW problem. This idea is firstly discussed in
(Cagniart et al., 2010) in classical optimal partial transport setting. In this paper, we extend the
technique to the partial GW setting. However, this technique cannot be extended to the MPGW
setting; we refer to Chapel et al. (2020, Appendix A.3) for details.

Proof. The mapping F defined by (6) well-defined bijection, as shown in(Bai et al., 2023; Caffarelli
& McCann, 2010).

Given γ ∈ Γ≤(µ, ν), we have γ̂ = F (γ) ∈ Γ(µ̂, ν̂). Let Ĉ(γ̂;µ, ν) denote the transportation cost in
the GW-variant problem (51), that is,

Ĉ(γ̂;µ, ν) :=

∫
(X̂×Ŷ )2

Lλ(d
q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂(x, y)dγ̂(x′, y′)

Then, we have
C(γ;λ, µ, ν)

=

∫
(X×Y )2

(L(dqX(x, x′), dqY (y, y
′))− 2λ) dγ⊗2 + λ(|µ|+ |ν|)︸ ︷︷ ︸

does not depend on γ

=

∫
(X×Y )2

(L(dqX(x, x′), dqY (y, y
′))− 2λ) dγ̂⊗2 + λ(|µ|+ |ν|) (since γ̂|X×Y = γ)

=

∫
(X×Y )2

(L(dq
X̂
(x, x′), dq

Ŷ
(y, y′))− 2λ) dγ̂⊗2 + λ(|µ|+ |ν|) (as dX̂ |X×X = dX , dŶ |Y×Y = dY )

=

∫
(X×Y )2

Lλ(d
q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂⊗2 + λ(|µ|+ |ν|) (since L̂|R×R(·, ·) = (L(·, ·)− 2λ))

=

∫
(X̂×Ŷ )2

Lλ(d
q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂⊗2 + λ(|µ|+ |ν|)︸ ︷︷ ︸

does not depend on γ̂

. (since L̂ assigns 0 to ∞̂)

Combining this with the fact that F : γ 7→ γ̂ is a bijection, we have that γ is optimal for (10) if
and only if γ̂ is optimal for (51). Under the assumptions of Proposition 3.3, there exists an optimal
γ ∈ Γ≤(µ, ν) for the PGW problem exists, and so we have:

arg min
γ̂∈Γ(µ̂,ν̂)

Ĉ(γ̂;µ, ν) = arg min
γ∈Γ≤(µ,ν)

C(γ;λ, µ, ν). (52)

3ĜW
Lλ

(X̂, Ŷ) is not a rigorous GW problem since dX̂ = ∞ is possible, thus it is not a metric. Also, X, Y
are not necessarily probability mm-spaces
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Remark G.3. Both algorithms (Algorithm 1, and 2) are mathematically and computationally equiv-
alent, owing to the equivalence between the POT problem in Solver 1 and the OT problem in Solver
2.

G.1 FRANK-WOLFE FOR THE PGW PROBLEM – SOLVER 2

Similarly to the discrete PGW problem (15), consider the discrete version of (4):

p̂ = [p; |q|] ∈ Rn+1, q̂ = [q; |p|] ∈ Rm+1, (53)

and, in a similar fashion, we define M̂ ∈ R(n+1)×(m+1)×(n+1)×(m+1) as

M̂i,j,i′,j′ =

{
M̃i,j,i′,j′ if i, i′ ∈ [1 : n], j, j′ ∈ [1 : m],

0 elsewhere.
(54)

Then, the GW-variant problem (51) can be written as

ĜW (X̂, Ŷ) = min
γ̂∈Γ(p̂,q̂)

LM̂ (γ̂). (55)

Based on Proposition G.1 (which relates PGWL
λ (·, ·) with ĜW (·, ·)), we propose two versions

of the Frank-Wolfe algorithm (Frank et al., 1956) that can solve the PGW problem (15). Apart
from Algorithm 1 in (Chapel et al., 2020), which solves a different formulation of partial GW, and
Algorithm 1 in (Séjourné et al., 2021), which applies the Sinkhorn algorithm to solve an entropic
regularized version of (8), to the best of our knowledge, a precise computational method for the
discrete PGW problem (15) has not been studied.

Here, we discuss another version of the FW Algorithm for solving the PGW problem (15). The main
idea relies on solving first the GW-variant problem (51), and, at the end of the iterations, by using
Proposition G.1, convert the solution of the GW-variant problem to a solution for the original partial
GW problem (15).

First, construct p̂, q̂, M̂ as described in Proposition G.1. Then, for each iteration k, perform the
following three steps.

Step 1: Computation of gradient and optimal direction. Solve the OT problem:

γ̂(k)
′
← arg min

γ̂∈Γ(p̂,q̂)
⟨LM̂ (γ̂(k)), γ̂⟩F .

The gradient LM̂ (γ(k)) can be computed in a similar way as described in Lemma H.2. We refer to
Section H for details.

Step 2: Line search method. Find optimal step size α(k):

α(k) = arg min
α∈[0,1]

{LM̂ ((1− α)γ̂(k) + αγ̂(k)
′
)}.

Similar to Solver 1, let 
δγ̂(k) = γ̂(k)

′ − γ̂(k),
a = ⟨M̂ ◦ δγ̂(k), δγ̂(k)⟩F ,
b = 2⟨M̂ ◦ δγ̂(k), γ̂(k)⟩F .

(56)

Then the optimal α(k) is given by formula (18). See Appendix J for a detailed discussion.

Step 3. Update γ̂(k+1) ← (1− α(k))γ̂(k) + α(k)γ̂(k)
′
.

H GRADIENT COMPUTATION IN ALGORITHMS 1 AND 2

In this section, we discuss the computation of Gradient ∇LM̃ (γ) in Algorithm 1 and ∇LM̂ (γ̂) in
Algorithm 2.
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Algorithm 2: Frank-Wolfe Algorithm for partial GW, ver 2

Input: µ =
∑n

i=1 p
X
i δxi

, ν =
∑m

j=1 q
Y
j δyj

, γ(1)

Output: γ(final)
Compute CX , CY , p̂, q̂, γ̂(1)

for k = 1, 2, . . . do
Ĝ(k) ← 2M̂ ◦ γ̂(k) // Compute gradient
γ̂(k)

′ ← argminγ̂∈Γ(p̂,q̂)⟨Ĝ(k), γ̂⟩F // Solve the OT problem
Compute α(k) ∈ [0, 1] via (56), (18) // Line search
γ̂(k+1) ← (1− α(k))γ̂(k)

′
+ αγ̂(k)// Update γ̂

if convergence, break
end for
γ(final) ← γ̂(k)[1 : n, 1 : m]

Proposition H.1 (Proposition 1 (Peyré et al., 2016)). If the cost function can be written as

L(r1, r2) = f1(r1) + f2(r2)− h1(r1)h2(r2) (57)

then
M ◦ γ = u(CX , CY , γ)− h1(CX)γh2(C

Y )⊤, (58)
where u(CX , CY , γ) := f1(C

X)γ11
⊤
m + 1nγ

⊤
2 f2(C

Y ).

Additionally, the following lemma builds the connection between M̃ ◦ γ and M ◦ γ.
Lemma H.2. For any γ ∈ Rn×m, we have:

M̃ ◦ γ =M ◦ γ − 2λ|γ|1n,m. (59)

Proof. For any γ ∈ Rn×m, we have

M̃ ◦ γ = (M1n,n,m,m − 2λ) ◦ γ
= (M − 2λ1n,n,m,m) ◦ γ
=M ◦ γ − 2λ1n,m,n,m ◦ γ
=M ◦ γ − 2(⟨1n,m, γ⟩F )1n,m
=M ◦ γ − 2λ|γ|1n,m

where the second equality follows from Lemma F.1.

Next, in the setting of Algorithm 2, for any γ̂ ∈ R(n+1)×(m+1), we have

∇LM̂ (γ̂) = 2M̂ ◦ γ̂ (60)

and M̂ ◦ γ̂ can be computed by the following lemma.

Lemma H.3. For each γ̂ ∈ R(n+1)×(m+1), we have M̂ ◦ γ̂ ∈ R(n+1)×(m+1) with the following:

(M̂ ◦ γ̂)ij =
{
(M̃ ◦ γ̂[1 : n, 1 : m])ij if i ∈ [1 : n], j ∈ [1 : m]

0 elsewhere
. (61)

Proof. Recall the definition of M̂ is given by (54), choose i ∈ [1 : n], j ∈ [1 : m], we have

(M̂ ◦ γ̂)ij =
n∑

i′=1

m∑
j′=1

M̂i,j,i′,j′ γ̂i′,j′ +

m∑
j′=1

M̂i,j,n+1,j γ̂n+1,j′ +

n∑
i′=1

M̂i,j,i′,m+1γ̂i,m+1

+ M̂i,j,n+1,m+1γ̂n+1,m+1

=

n∑
i′=1

m∑
j′=1

M̂i,j,i′,j′ γ̂i′,j′ + 0 + 0 + 0 =

n∑
i′=1

m∑
j′=1

M̃i,j,i′,j′ γ̂i′,j′

= (M̃ ◦ (γ̂[1 : n, 1 : m]))ij
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If i = n+ 1, we have

(M̂ ◦ γ̂)n+1,j =

n+1∑
i′=1

m+1∑
j′=1

M̂n+1,j,i′,j′ γ̂i′,j′ = 0

Similarly, (M̂ ◦ γ̂)i,m+1 = 0. Thus, we complete the proof.

I LINE SEARCH IN ALGORITHM 1

In this section, we discuss the derivation of the line search algorithm.

We observe that in the partial GW setting, for each γ ∈ Γ≤(µ, ν), the marginals of γ are not fixed.
Thus, we can not directly apply the classical algorithm (e.g. (Titouan et al., 2019a)).

In iteration k, let γ(k), γ(k)
′

be the previous and new transportation plans from step 1 of the algo-
rithm. For convenience, we denote them as γ, γ′, respectively.

The goal is to solve the following problem:

min
α∈[0,1]

L(M̃, (1− α)γ + αγ′) (62)

where L(M̃, γ) = ⟨M̃ ◦ γ, γ⟩F . By denoting δγ = γ′ − γ, we have

L(M̃, (1− α)γ + αγ′) = L(M̃, γ + αδγ).

Then,

⟨M̃ ◦ (γ + αδγ), (γ + αδγ)⟩F

= ⟨M̃ ◦ γ, γ⟩F + α
(
⟨M̃ ◦ γ, δγ⟩F + ⟨M̃ ◦ δγ, γ⟩F

)
+ α2⟨M̃ ◦ δγ, δγ⟩F

Let

a =⟨M̃ ◦ δγ, δγ⟩F ,
b =⟨M̃ ◦ γ, δγ⟩F + ⟨M̃ ◦ δγ, γ⟩F = 2⟨M̃ ◦ γ, δγ⟩F , (63)

c =⟨M̃ ◦ γ, γ⟩F ,

where the second identity in (63) follows from Lemma F.1 and the fact that M̃ = M1n,n,m,m −
2λ1n,m,n,m is symmetric.

Therefore, the above problem (62) becomes

min
α∈[0,1]

aα2 + bα+ c.

The solution is the following:

α∗ =


1 if a ≤ 0, a+ b ≤ 0,

0 if a ≤ 0, a+ b > 0,

clip(−b
2a , [0, 1]) if a > 0,

(64)

where

clip(
−b
2a
, [0, 1]) = min

{
1,max{0, −b

2a
}
}

=


−b
2a if −b

2a ∈ [0, 1],

0 if −b
2a < 0,

1 if −b
2a > 1.

We can further discuss the difference in computation of a and b in PGW setting and the classical
GW setting. If the assumption in Proposition H.1 holds, by (58) and (59), we have
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a = ⟨M̃ ◦ δγ, δγ⟩F
= ⟨(M ◦ δγ − 2λ|δγ|In,m), δγ⟩F
= ⟨M ◦ δγ, δγ⟩F − 2λ|δγ|2 (65)

=
〈
u(CX , CY , δγ)− h1(CX)δγh2(C

Y )⊤, δγ
〉
F
− 2λ|δγ|2,

b = 2⟨M̃ ◦ γ, δγ⟩F
= 2⟨M ◦ γ − 2λ|γ|In,m, δγ⟩
= 2(⟨M ◦ γ, δγ⟩F − 2λ|δγ||γ|) (66)

Note that in the classical GW setting (Titouan et al., 2019a), the term u(CX , CY , δγ) = 0n×m and
|δγ| = 0. Therefore, in such line search algorithm (Algorithm 2 in (Titouan et al., 2019a)), the terms
u(CX , CY , δγ), 2λ|δγ|1n×m are not required. In addition, in equation (66), M ◦γ, 2λ|γ| have been
computed in the gradient computation step, thus these two terms can be directly applied in this step.

J LINE SEARCH IN ALGORITHM 2

Similar to the previous section, in iteration k, let γ̂(k), γ̂(k)
′

denote the previous transportation plan
and the updated transportation plan. For convenience, we denote them as γ̂, γ̂′, respectively.

Let δγ̂ = γ̂ − γ̂′.
The goal is to find the following optimal α:

α = arg min
α∈[0,1]

L(M̂, (1− α)γ̂, αγ̂′) = arg min
α∈[0,1]

L(M̂, αδγ̂ + γ̂), (67)

where M̂ ∈ R(n+1)×(m+1)×(n+1)×(m+1), with M̂ [1 : n, 1 : m, 1 : n, 1 : m] = M̃ = M −
2λ1n×m×n×m.

Similar to the previous section, let

a = ⟨M̂ ◦ δγ̂, δγ̂⟩F ,
b = ⟨M̂ ◦ δγ̂, γ̂⟩F + ⟨M̂ ◦ γ̂, δγ̂⟩F = 2⟨M̂ ◦ δγ̂, γ̂⟩F , (68)

c = ⟨M̂ ◦ γ̂, γ̂⟩F ,

where (68) holds since M̂ is symmetric. Then, the optimal α is given by (64).

It remains to discuss the computation. By Lemma F.1, we set γ = γ̂[1 : n, 1 : m], δγ = δγ̂[1 : n, 1 :
m]. Then,

a = ⟨(M̂ ◦ δγ̂)[1 : n, 1 : m], δγ⟩F = ⟨(M̃ ◦ δγ, δγ⟩F ,
b = ⟨(M̂ ◦ δγ̂)[1 : n, 1 : m], γ⟩F = ⟨(M̃ ◦ δγ, γ⟩F .

Thus, we can apply (65), (66) to compute a, b in this setting by plugging in γ = γ̂[1 : n, 1 : m] and
δγ = δγ̂[1 : n, 1 : m].

K CONVERGENCE

As in (Chapel et al., 2020) we will use the results from (Lacoste-Julien, 2016) on the convergence
of the Frank-Wolfe algorithm for non-convex objective functions.

Consider the minimization problems

min
γ∈Γ≤(p,q)

LM̃ (γ) and min
γ̂∈Γ(p̂,q̂)

LM̂ (γ̂) (69)

that corresponds to the discrete partial GW problem, and the discrete GW-variant problem (used in
version 2), respectively. The objective functions γ 7→ LM̂ (γ) = M̃γ⊗2 (where M̃ =M − 2λ1n,m
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for a fixed matrix M ∈ Rn×m and λ > 0), and γ̂ 7→ LM̂ (γ̂) = M̂γ̂⊗2 (where M̂ is given by
(54)) are non-convex in general (for λ > 0, the matrices M̃ and M̂ symmetric but not positive
semi-definite), but the constraint sets Γ≤(p, q) and Γ(p̂, q̂) are convex and compact on Rn×m (see
Proposition B.2 (Liu et al., 2023)) and on R(n+1)×(m+1), respectively.

From now on we will concentrate on the first minimization problem in (69) and the convergence
analysis for the second one will be analogous.

Consider the Frank-Wolfe gap of LM̃ at the approximation γ(k) of the optimal plan γ:

gk = min
γ∈Γ≤(p,q)

⟨∇LM̃ (γ(k)), γ(k) − γ⟩F . (70)

It provided a good criterion to measure the distance to a stationary point at iteration k. Indeed, a
plan γ(k) is a stationary transportation plan for the corresponding constrained optimization problem
in (69) if and only if gk = 0. Moreover, gk is always non-negative (gk ≥ 0).

From Theorem 1 in (Lacoste-Julien, 2016), after K iterations we have the following upper bound
for the minimal Frank-Wolf gap:

gK := min
1≤k≤K

gk ≤
max{2L1,Lip · (diam(Γ≤(p, q)))

2}√
K

, (71)

where
L1 := LM̃ (γ(1))− min

γ∈Γ≤(p,q)
LM̃ (γ)

is the initial global sub-optimal bound for the initialization γ(1) of the algorithm; Lip is the Lipschitz
constant of function γ 7→ ∇LM̃ ; and

diam(Γ≤(p, q)) = sup
γ,γ′∈Γ≤(µ,ν)

∥γ − γ′∥F

is the ∥ · ∥F diameter of Γ≤(p, q) in Rn×m.

The important thing to notice is that the constant max{2L1, DL} does not depend on the iteration
step k. Thus, according to Theorem 1 in (Lacoste-Julien, 2016), the rate in g̃K is O(1/

√
K). That

is, the algorithm takes at most O(1/ε2) iterations to find an approximate stationary point with a gap
smaller than ε.
Lemma K.1. In discrete PGW problem, we have

diam(Γ≤(p, q)) ≤ 2s := 2min(|p|, |q|) (72)

Proof. Choose γ, γ′ ∈ Γ≤(p, q), we apply the property

(a− b)2 ≤ 2a2 + 2b2,∀a, b ∈ R (73)

and obtain

∥γ − γ′∥2F =

n,m∑
i,j

|γi,j − γ′i,j |2

≤
n,m∑
i,j

2|γi,j |2 + 2|γ′i,j |2

≤ 2

(∑
i,j

γi,j)
2 + (

∑
i,j

γ′i,j)
2


= 2(|γ|2 + |γ′|2) (74)

≤ 2min(|p|, |q|)2 + 2min(|p|, |q|)2

= 4min(|p|, |q|)2

and thus we complete the proof.
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Lemma K.2. For the Lip term in (71) can be bounded as following:

Lip ≤ nm max
i,i,j,j′

(2(CX
i,i′)

2 + 2(CY
j,j′)

2, 2λ) (75)

Proof. Pick γ, γ′ ∈ Γ≤(p, q) we have,

∥∇LM̃ (γ)−∇LM̃ (γ′)∥2F
= ∥M̃ ◦ γ − M̃ ◦ γ′∥2F
= ∥[M − 2λ] ◦ (γ − γ′)∥2F

=
∑
i,j

(
[(M − 2λ) ◦ (γ − γ′)]i,j

)2

=
∑
i,j

∑
i′,j′

(Mi,j,i′,j′ − 2λ)(γi′,j′ − γ′i′,j′)

2

≤
∑
i,j

∑
i′,j′

|Mi,j,i′,j′ − 2λ||γi′,j′ − γ′i′,j′ |

2

≤
(

max
i,j,i′,j′

{Mi,j,i′,j′ − 2λ}
)2

︸ ︷︷ ︸
A

·
n,m∑
i,j

n,m∑
i′,j′

|γi′,j′ − γ′i′,j′ |

2

︸ ︷︷ ︸
B

For the first term, we have:

A ≤ max{2(CX)2 + 2(CY )2, 2λ}2

where
max{2(CX)2 + 2(CY )2, 2λ} := max{ max

i,i′,j′,j′
2(CX

i,i′)
2 + 2(CY

j,j′)
2, 2λ}

For the second term, we have:

n,m∑
i,j

n,m∑
i′,j′

|γi′,j′ − γ′i′,j′ |

2

≤
n,m∑
i,j

nm n,m∑
i′,j′

∣∣γi′,j′ − γ′i′,j′ ∣∣2


≤ n2m2∥γ − γ′∥2F
Thus we obtain

Lip ≤ max(2(CX)2 + 2(CY )2, 2λ)nm∥γ − γ′∥F
∥γ − γ′∥F

= nmmax(2(CX)2 + 2(CY )2, 2λ)

and we complete the proof.

Combined the above two lemmas, we derive the convergence rate of Frank-Wolf gap (70):

Proposition K.3. When L(r1, r2) = |r1 − r2|2 in the PGW problem, the Frank-Wolfe gap of algo-
rithm 1, defined in (70) at iteration k satisfies the following:

gk ≤
max

{
2L1, 4min(|p|, |q|)2 · nm(max{2(CX)2 + 2(CY )2, 2λ})

}
√
k

(76)
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Proof. The proof directly follows from the upper bounds (72),(75) and the inequality (71).

Remark K.4. Note, if the cost function in PGW is defined by |r1 − r2|p for some p ̸= 2, it is
straightforward to verify that, the upper bound of gk is obtained by replacing the term max((CX)2+
(CY )2, 2λ) should be replaced by

max
i,j,i′,j′

[
2p−1((CX)p + (CY )p), 2λ

]
.

Remark K.5. It is straight-forward to verify that, the Frank-Wolf gap for algorithm 2 is also upper
bounded by (76).

Remark K.6. From the proposition (K.3), to achieve an ϵ−accurate solution, the required number
of iterations is

max

{
2L1, 2min(|p|, |q|) · n2m2 max({2(CX)2 + 2(CY )2, 2λ})

}2

ϵ2

In practice, by lemma E.2, when λ is large, it is equivalent to set λ = max((CX)2 − (CY )2) and
thus, the value λ will not affect the number of iterations.

Remark K.7. In this remark, we compare the upper (40) and the upper bounds in previous works,
including (Chapel et al., 2020) and cang2024supervised. We observe that:

If we ignore the term λ (or equivalently, set λ = maxi,i′,j,j′(2(C
X)2 + 2(CY )2)), the upper bound

(76) aligns with the upper bound for the Frank-Wolfe Gap in Mass-constraint PGW (see Chapel
et al. (2020, Eq. (10))) and balanced GW (see Cang et al. (2024, p. 18).

However, there exists several differences in details between our result and the result in (Chapel et al.,
2020).

• First, in (Chapel et al., 2020), the term nm is omitted. We suspect this omission is a typo,
as nm term is contained in (Cang et al., 2024).

• In (Chapel et al., 2020), “s” plays the role of min(|p|, |q|) in our result. The assumption
in Chapel et al. (2020, Lemma 1) is

|γ| = |γ′| = 1

If we normalize p, q such that max(|p|, |q|) ≤ 1, we will obtain

2min(|p|, |q|)2 ≤ 2min(|p|, |q|),

and our result will induce the upper bound in Chapel et al. (2020, Lemma 1).

L RELATED WORK: MASS-CONSTRAINED PARTIAL
GROMOV-WASSERSTEIN

Partial Gromov-Wasserstein is first introduced in (Chapel et al., 2020). To distinguish the PGW
problem in (Chapel et al., 2020) and the PGW problem in this paper, we call the former one the
Mass-Constrained Gromov-Wasserstein problem (MPGW):

MPGWρ(X,Y) := inf
γ∈Γρ

≤(µ,ν)
γ⊗2(L(dqX , d

q
Y )), (77)

where ρ ∈ [0,min{|µ|, |ν|}], and

Γρ
≤(µ, ν) := {γ ∈M+(X × Y ) : γ1 ≤ µ, γ2 ≤ ν, |γ| = ρ}. (78)

Unlike the relation between Partial OT and OT, it is not rigorous to say that the PGW and the MPGW
problems are equivalent, since the objective function

γ 7→
∫
(X×Y )2

L(d2X(x, x′), d2Y (y, y
′))dγ⊗2 (79)
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is not a convex function even if (r1, r2) 7→ L(r1, r2) is convex (Peyré et al., 2019): If the problems
were convex, MPGW, as the ‘Lagrangian formulation’ of PGW—adding the constraint of PGW
in the functional à la Lagrange Multipliers—would be equivalent to PGW. However, since these
problems are not convex, we cannot claim that they are equivalent in principle.

We can still investigate their relationship by the following lemma, based on which we design the
wall-clock time experiment in Section Q.
Proposition L.1. For each λ ≥ 0, there exists ρ ∈ [0,min(|µ|, |ν|)] such that, for each γ ∈
Γ≤(µ, ν) with |γ| = ρ, γ is optimal in PGWλ(X,Y) iff γ is optimal in MPGWρ(X,Y). Further-
more,

PGWλ(µ, ν) =MPGWρ(µ, ν) + λ(|µ|2 + |ν|2 − 2ρ2).

Proof. Pick γ′ ∈ Γρ
≤(µ, ν) ⊂ Γ≤(µ, ν), since γ is optimal in PGWλ(µ, ν), we have

0 ≤ C(γ;λ, µ, ν)− C(γ′;λ, µ, ν)

=

∫
(X×Y )2

L(d2X(x, x′), d2Y (y, y
′))d(γ⊗2 − γ′⊗2)

Thus, γ is optimal in Γρ
≤(µ, ν) for MPGWρ(X,Y) and we complete the proof.

Remark L.2. The above proposition clarifies a connection between PGW and MPGW . Specif-
ically, it implies that an optimal transportation plan for PGW can be derived from MPGW by
appropriately setting ρ. However, it is important to note that MPGW and PGW admit distinct
transportation costs. MPGW does not define a metric, whereas PGW does. Therefore, in experi-
ments that require transportation cost, such as the shape retrieval experiment described in the main
text, the results produced by the two methods will differ significantly.
Example L.3. Consider the following three mm-spaces

X1 =

(
R3, ∥ · ∥,

1000∑
i=1

αδxi

)
, X2 =

(
R3, ∥ · ∥,

800∑
i=1

αδxi

)
, X3 =

(
R3, ∥ · ∥,

400∑
i=1

αδxi

)
,

where α > 0 is the mass of each point. For numerical stability reasons, we set α = 1/1000. On the
one hand, if we compute MPGW, the mass is fixed to be a value ρ ∈ [0, 0.4], since the total mass in
X3 is 0.4. For our experiment, we set ρ = 0.4, and we observe:

MPGWρ(X1,X2; ρ = 0.4) =MPGWρ(X2,X3; ρ = 0.4) =MPGWρ(X1,X3; ρ = 0.4) = 0

On the other hand, if we compute our PGW, considering any λ > 0, (in particular, we set λ = 10),
we obtain

PGWλ(X1,X2;λ = 10) = 3.6

PGWλ(X2,X3;λ = 10) = 4.8

PGWλ(X1,X3;λ = 10) = 8.4

In particular, one can verify the triangular inequality.

As a conclusion, in this example, MPGW can not describe the dissimilarity of any two datasets taken
from {X1,X2,X3}. They are three distinct datasets, but MPGW returns zero for each pair. On the
contrary, our PGW can measure dissimilarity.

In addition, the discrepancy provided by our PGW formulation is consistent with the follow-
ing intuitive observation: One expects the dissimilarity between X1 and X3 to be larger than
the difference X1 and X2, and than the difference between X1 and X2. This is because we
are considering discrete measures, with the same mass at each point concentrated on the sets
{x1, . . . , x400} ⊂ {x1, . . . , x400, . . . , x800} ⊂ {x1, . . . , x400, . . . , x800, . . . , x1000} for the datasets
X3,X2,X1, respectively.
Remark L.4. Moreover, there may, in fact, exist instances of the two problems for which the solution
sets are not equal for any value of the hyperparameters λ and ρ; we illustrate this in the following
example:
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Consider the mm-spaces given by

X1 =

(
Rd1 , ∥ · ∥,

n∑
i=1

δxi

)
and X2 =

Rd2 , ∥ · ∥,
m∑
j=1

δyj

 .

If we let λ = 0, then PGW0(X1,X2) has δ(xi,yj) as a solution for all (i, j), as well as the zero
measure.

Now, we observe that for ρ = 0, δ(xi,yj) is not a solution of MPGWρ(X1,X2); meanwhile, for any
ρ > 0, the zero measure is not a solution of MPGWρ(X1,X2).

Hence, we see that the set of solutions between PGW0(X1,X2) and MPGWρ(X1,X2) are distinct
for all ρ.

Remark L.5. The other direction of the “equivalence relation” between PGW and MPGW given by
Proposition L.1 may not hold. In particular, there exists a problem MPGWρ(X1,X2) for some ρ >
0, such that for all λ > 0, each solution to MPGWρ(X1,X2) is not a solution to PGWλ(X1,X2),
and each solution to PGWλ(X1,X2) is not a solution to MPGWρ(X1,X2).

As an example, consider X1 =
(
Rd, ∥ · ∥,

∑100
i=1 δxi

)
and X2 =

(
Rd, ∥ · ∥,

∑200
i=1 δxi

)
, where

x1, . . . x200 are distinct. Then for each ρ ∈ (0, 100], any solution to MPGWρ(X1,X2) is not a
solution for PGWλ(X1,X2) and vice versa.

M PARTIAL GROMOV-WASSERSTEIN BARYCENTER

We first introduce the classical Gromov-Wasserstein problem (Peyré et al., 2016): Consider finite
discrete probability measures µ1, . . . , µK , where µk =

∑nk

i=1 p
k
i δxk

i
and each xki ∈ Rdk for some

dk ∈ N. Let Ck = [∥xki − xki′∥2]i,i′∈[1:nk] and pk = [pk1 , . . . , p
k
nk
]⊤. Given p ∈ Rn

+ with |p| = 1

for some n ∈ N and ξ1, . . . , ξK ≥ 0 with
∑K

k=1 ξk = 1, the GW barycenter problem is defined by:

min
C,γk

K∑
k=1

ξk⟨L(C,Ck) ◦ γk, γk⟩, (80)

where the minimization is over all matrices C ∈ Rn×n, γk ∈ Γ(p,pk),∀k ∈ [1 : K].

Similarly, we can extend the above definition into PGW setting. In particular, we relax the assump-
tions |p| = 1 and |pk| = 1 for each k ∈ [1 : K]. Given λ1, . . . , λK > 0, the PGW barycenter is the
follow problem:

min
C,γk

∑
k

ξk⟨M(C,Ck) ◦ γk, γk⟩ − 2λk|γk|2 (81)

where each γk ∈ Γ≤(p,p
k).

The problem (81) can be solved iterative by two steps:

Minimization with respect to C: For each k, we solve the PGW problem

min
γk∈Γ≤(p,pk)

⟨M(C,Ck) ◦ γk, γk⟩ − 2λk|γk|2

via solver 1 or 2.

Minimization with respect to {γk}k:

min
C

∑
k

ξk⟨M(C,Ck) ◦ γk, γk⟩ (82)

Note, we can ignore the −2λk|γk|2 terms as γk is fixed in this case.

It has closed form solution due to the following lemma and proposition:
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Lemma M.1. Given matrices A ∈ Rn,m, B ∈ Rm,l, C ∈ Rn,l, let

L = ⟨AB,C⟩,

then dL
dA = CB⊤.

Proof. For any i ∈ [1 : n], j ∈ [1 : m], we have

dL
dAij

:=
∑
i′,j′

d

dAij
Ci′,j′(AB)i′,j′

=
∑
i′,j′

Ci′,j′
d(
∑

k Ai′,kBk,j′)

dAij

=
∑
j′

Ci,j′Bk,j′ = (CB⊤)ij .

Proposition M.2. If L satisfies (57), and f ′1/h
′
1 is invertible, then (82) can be solved by

C =

(
f ′1
h′1

)−1(∑
k ξkγ

kh2(C
k)(γk)

⊤∑
k ξkγ

k
1 (γ

k
1 )

⊤

)
, (83)

where
A

B
=

[
Aij

Bij

]
ij

,with convention
0

0
= 0.

Special case: if |p| ≤ |pk|,∀k, when λ is sufficiently large, (83) and Peyré et al. (2016, Proposition
3) coincide.

Proof. From Proposition H.1, the objective in (82) becomes

L =
∑
k

ξk⟨f1(C)γ111⊤nk
+ 1n(γ

k
2 )

⊤f2(C
k)− h1(C)γkh2(Ck)⊤, γk⟩

=
∑
k

ξk⟨f1(C)γ111⊤nk
, γk⟩+

∑
k

ξk⟨1n(γk2 )⊤f2(Ck), γk⟩︸ ︷︷ ︸
constant

−
∑
k

ξk⟨h1(C)γkh2(Ck)⊤, γk⟩

We set dL
dC = 0. From Lemma M.1, we have:

0 =
dL
dC

=
∑
k

ξkf
′
1(C)⊙ γk1nk

(γk1 )
⊤ −

∑
k

ξkh
′
1(C)⊙ γkh2(Ck)(γk)⊤

= f ′1(C)⊙
∑
k

ξkγ
k1nk

(γk1 )
⊤ − h′1(C)⊙

∑
k

ξkγ
kh2(C

k)(γk)⊤

= f ′1(C)⊙
∑
k

ξkγ
k
1 (γ

k
1 )

⊤

︸ ︷︷ ︸
B

−h′1(C)⊙
∑
k

ξkγ
kh2(C

k)(γk)⊤︸ ︷︷ ︸
A

. (84)

We claim A
B is well-defined, i.e., if Bij = 0, then Aij = 0.

For each i, j ∈ [1 : n], if Bij = 0, we have two cases:

Case 1: ∀k ∈ [1 : K], we have γk1 [i] = 0.

Thus, γk[i, :] = 0⊤nk
. So A[i, :] = (γkh2(C

k)(γk)⊤)[i, :] = 0⊤nk
.

Case 2: ∀k ∈ [1 : K], we have γk1 [j] = 0.
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Algorithm 3: Partial Gromov-Wasserstein Barycenter

Input: {Ck,pk, λk}Kk=1,p
Output: C
Initialize C.
for i = 1, 2, . . . do

compute γk ← argminγ∈Γ≤(p,pk)⟨L(C,Ck)− 2λk, γ⟩,∀k ∈ [1 : K].
Update C by (83).
if convergence, break

end for

It implies (γk)⊥[:, j] = 0n, thus A[:, j] = (γkh2(C
k))(γk)⊤[:, j] = 0nk

. Therefore, Aij = 0.

Thus A
B is well-defined.

In addition, in these two cases, if we change the value Ck
ij , L will not change.

From (84), we have: (
f ′1
h′1

(C)

)
ij

=

(∑
k ξkγ

kh2(C
k)(γk)⊤

)
ij(∑

k ξkγ
k
1 (γ

k
1 )

⊤
)
ij

if Bij > 0. In addition, if Bij = 0, there is no constraint for Cij .

Combining it with the fact that if Bi,j = 0, then Ci,j has no effect on L. Thus,

we have the following is a solution:

C =

(
f ′1
h′1

)−1(∑
k ξkγ

kh2(C
k)(γk)⊤∑

k ξkγ
k
1 (γ

k
1 )

⊤

)
.

In particular case: |p| ≤ |pk|,∀k, suppose λ > max{c2 : c ∈
⋃

k C
k ∪ C}, by lemma E.1, we have

for each k, |γk| = min(|p|, |p|k) = |p|, that is γk1 = p.

Thus, ∑
k

ξkγ
k
1 (γ

1
1)

⊤ =
∑
k

ξkγ
k
1 (γ

k
1 )

⊤ =
∑
k

ξkpp
⊤ = pp⊤

Thus, C =
(

f ′
1

h′
1

)−1 (∑
k ξkγ

kh2(C
k)(γk)⊤

pp⊤

)
.

Remark M.3. In l2 loss case, i.e. L(r1, r2) = |r1 − r2|2, (83) becomes

C =

∑
k ξkγ

kCk(γk)⊤∑
k ξkγ

k
1 (γ

k
1 )

⊤ . (85)

Since in this case, we can set

f1(x) = x2, f2(y) = y2, h1(x) = 2x, h2(y) = y.

Thus f ′
1

h′
1
(x) = 2x

2 = x and
(

f ′
1

h′
1

)−1

(x) = x. Therefore, (83) becomes (85).

Similarly, we can also extend the above PGW Barycenter into the MPGW setting:

min
C,γk

K∑
k=1

ξk⟨L(C,Ck) ◦ γk, γk⟩,

where, for each k ∈ [1 : K], ρk ∈ [0,min(|p|, |pk|)], and the optimization is over C ∈ Rn and
γk ∈ Γρk

≤ (p,pk) for k ∈ [1 : K].

It can be solved by the following algorithm 4.
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Algorithm 4: Mass-Constrained Partial Gromov-Wasserstein Barycenter

Input: {Ck,pk, λk}Kk=1,p
Output: C
Initialize C.
for i = 1, 2, . . . do

compute γk ← argminγ∈Γ
ρk
≤ (p,pk)⟨L(C,Ck), γ⟩,∀k ∈ [1 : K].

Update C by (83).
if convergence, break

end for

Figure 4: We visualize the dataset in point cloud interpolation. The first row is the original images
in Link. The second row is the point clouds obtained by the k-mean method, where k = 1024.

M.1 DETAILS OF POINT CLOUD INTERPOLATION EXPERIMENT

Dataset and data processing. We apply the dataset in (Peyré et al., 2016) with download link. The
original data are images, which we convert into a point cloud using the k-mean algorithm, where
k = 1024 (see the second row of Figure 4).

Suppose D ⊂ R2 is a region that contains these point clouds. Let R ⊂ R2 denote another region.
In R, we randomly select and add nη noise points to these point clouds. In particular, we consider
noise corruption in the following three cases:

Case 1: R is a rectangle region which is disjoint to D. See the third row in Figure 4.

Case 2: R = R1 ∪R2, where R1,R2 are rectangles which are disjoint to D. See the fourth row in
Figure 4.

Case 3: R contains D. See the fifth row in Figure 4.

GW Barycenter and PGW Barycenter methods. We select t1, . . . , tK with 0 = t1 < t2 < . . . <
tK = 1. For each t ∈ {t1, . . . , tK}, we compute the GW Barycenter

arg min
C,γ1,γ2

(1− t)⟨L(C,C1) ◦ γ1, γ1⟩+ t⟨L(C,C2) ◦ γ2, γ2⟩, (86)

where γ1 ∈ Γ(p,p1), γ2 ∈ Γ(p,p2). Apply Smacof-MDS to the minimizer C, the resulting embed-
ding, denoted as Xt ∈ Rn×2 (where n = 1024) is the GW-based interpolation.
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Figure 5: We test interpolation tasks in 3 scenarios: source data is clean, target data is selected from
three cases as described in section dataset and data processing. In each scenario, we test η =
5%, 10% respectively. In the first column, we present the source and target point cloud visualization
in each task. In columns 2-9, we present GW, PGW barycenter for t = 0/7, 1/7, . . . , 7/7.
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Replacing the GW Barycenter with the PGW Barycenter

arg min
C,γ1,γ2

(1− t)(⟨L(C,C1) ◦ γ1, γ1⟩+ λ1|γ1|2) + t(⟨L(C,C2) ◦ γ2, γ2⟩+ λ2|γ2|), (87)

where λ1, λ2 > 0, γ1 ∈ Γ≤(p,p
1), γ2 ∈ Γ≤(p,p

2). Then we obtain PGW-based interpolation.

Problem setup. We select one point cloud from the clean dataset denoted as X = {xi}ni=1 (source
point cloud), n = 1024.

Next, we select one noise-corrupted point cloud, as described in Case 1, Case 2, and Case 3, re-
spectively. In these three scenarios, we test η = 0.5% and η = 10% where η is the noise level.
Therefore, we test 3 ∗ 2 = 6 different interpolation tasks for these two methods. The size of the
target point cloud is then m = n+ nη. See Figure 5 for details.

Numerical details. In the GW-barycenter method, because of the balanced mass setting, we set

p1 =
1

n
1n,p

2 =
1

m
1m,p =

1

n
1n.

In PGW-barycenter, we set

p1 =
1

n
1n,p

2 =
1

n
1m,p =

1

n
1n.

In addition, we set λ1, λ2 such that 2λ1, 2λ2 ≥ max(max(C1)
2,max(C2)

2). We compute
GW/PGW barycenter for t = 0/7, 1/7, . . . , 7/7.

In both GW and PGW barycenter algorithms, we set the largest number of iterations to be 100. The
threshold for convergence is set to be 1e-5.

Performance analysis. Each interpolation task is essentially unbalanced: the source point cloud
contains clean data, while the target point cloud contains clean and noise points. We observe that
in the first two scenarios, the interpolation derived from GW is clearly disturbed by the noise data
points. For example, in rows 1, 3, 5, 7, columns t = 1/7, 2/7, 3/7, we see that the point clouds
reconstructed by MDS have significantly different width-height ratios from those of the source and
target point clouds.

In contrast, PGW is significantly less disturbed, and the interpolation is more natural. The width-
height ratio of the point clouds generated by the PGW barycenter is consistent with that of the
source/target point clouds.

In the third scenario, the noise data is uniformly selected from a large region that contains the
domain of all clean point clouds. In this case, we observe that the GW and PGW barycenters
perform similarly. However, at t = 1/7, 2/7, 4/7, GW-barycenters present more noise points than
PGW-barycenters in the same truncated region.

Limitations and future work. The main issue of the above GW/PGW techniques arises from the
MDS method:

Given minimizer C ∈ Rn×n of GW/PGW barycenter problem (86) (or (87)), MDS studies the
following problem:

min
X∈Rn×d

n∑
i,i′=1

∣∣∣C1/2
i,i′ − ∥Xi −Xi′∥

∣∣∣2 (88)

Let O(n) denote the set of all n × n orthonormal matrices. Suppose X∗ is a minimizer, then RX∗

is also a minimizer for the above problem for all R ∈ O(n).

In practice, this means manually setting suitable rotation and flipping matrices for each method at
each step, especially for the GW method.

However, we understand that this issue stems from the inherent properties of the GW/PGW method.
GW can be seen as a tool that describes the similarity between two graphs, which are rotation-
invariant and flipping-invariant. Therefore, the GW/PGW barycenter essentially describes the inter-
polation between two graphs rather than two point clouds.
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M.2 MULTI-SHAPES INTERPOLATION.

In this section we present the interpolation between 4 different shapes. In addition, let η be the
percentage of outliers, we test η = 0 and 5%.

Experiment setup We select 4 shapes (bird, cat, human and rooster) from the 2D clouds dataset.
Two of them, i.e. cat, rooster is embedded into 4D space and are randomly rotated. The goal is to
find the interporlation between them.

Baselines We select 4 baselines, optimal transport barycenter (Cuturi & Doucet, 2014), partial
optimal transport barycenter (Bonneel & Coeurjolly, 2019), GW barycenter (Peyré et al., 2016) and
our PGW barycenter.

Note, OT and partial OT barycenter can not be directly applied into this setting. We firstly embed
the 2D shapes into 4D space via mapping

R2 ∋ x 7→ [x; 0; 0] ∈ R4,

and then compute the OT/POT barycenter. Finally, we apply PCA to project the result back to 2D
space for visualization.

Result anlysis We present the result in the following

(a) OT barycenter (b) Partial OT barycenter

(c) GW barycenter (d) Partial GW barycenter

Figure 6: We visulize of multi-shapes interpolation, where the proposition of noise η is 0.
“bird”,“human” shapes are distributed in 2D space, “cat”, “rooster” are distributed in 4D space.
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(a) OT barycenter (b) Partial OT barycenter

(c) GW barycenter (d) Partial GW barycenter

Figure 7: We visulize of multi-shapes interporlation. “bird”,“human” shapes are distributed in 2D
space, “cat”, “rooster” are distributed in 4D space. The noise level, η is 5%.

When η = 0, from figure 6, we observe that OT/POT admits good interporlation result between 2D
shapes (bird and human). However, the OT/POT interporlation between 2D and 4D is not as good
as GW/PGW. The main reason is that the OT/POT barycenter incorporates the absolute coordinates
of these shapes for interpolation, which is affected by random rotation. However, GW/PGW is not
affected by the absolute coordinate of the shapes.

In second figure, we demonstrate the result for η = 5%. Two shapes are corrupted by the noise
points (cat and rooster). We observe the GW’s interporlation is affected by the outliers (see e.g.
from bird to human, or from cat to rooster), while PGW is less affected by these outlier points and
admits much better/smoother interpolation.

N DETAILS OF POINT CLOUD MATCHING

Dataset setup. In the Moon dataset (see link), we apply n = 200 and set Gaussian variance to be
0.2. The outliers are sampled from region [[−2,−1.5]× [−3.5,−3]].
In the second experiment, the circle data is uniformly sampled from 2D circle

S1 = {s ∈ R2 : ∥s∥2 = 1}

and spherical data is uniformly sampled from 3D sphere

S2 = {s+ [0, 0, 4] ∈ R2 : ∥s∥2 = 1},
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Figure 8: Pairwise distance matrices computed for each dataset.

where the shift [0, 0, 4] is applied for visualization.

We set sample size n = 200 for both 2D and 3D samples.

In both experiment, the number of outliers is ηn = 0.2n = 40.

Numerical details. In GW, we normalize the two point clouds as

X = (X, dX ,

n∑
i=1

1

n
δxi

),Y = (Y, dY ,

n+nη∑
j=1

1

n+ nη
δyj

).

In PGW, MPGW, UGW, we define the point clouds as

X = (X, dX ,

n∑
i=1

1

n
δxi

),Y = (Y, dY ,

n+nη∑
j=1

1

n
δyj

).

In PGW, we choose λ such that λ ≥ max(max((CX)2),max((CY )2)), in particular, λ = 10.0. In
addition, we tested λ = 0.01, 0.1, 1.0, 10.0.

In MPGW, we tested ρ = 0.3, 0.5, 0.8, 1.0 and selected ρ = 1.0

In UGW, we tested [1e− 10, 1e− 1, 1.0, 10] and selected ρ1 = ρ2 = 1.0, ϵ = 0.05.

We also refer the following figure for the visulization of all tested parameters.

O DETAILS OF SHAPE RETRIEVAL EXPERIMENT

Dataset details. We test two datasets in this experiment, which we refer to as Dataset I and Dataset
II. We visualize Dataset I in Figure 9a and Dataset II in Figure 9b. The complete datasets can be
accessed from the supplementary materials.

Numerical details. We represent the shapes in each dataset as mm-spaces Xi =(
R2, ∥ · ∥2, µi =

∑ni

k=1 α
iδxi

k

)
. We use αi = 1

ni to compute the GW distances for the bal-

anced mass constraint setting. For the remaining distances, we set α = 1
N , where N is the
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bone goblet star horseshoe

rectangle trapezoid disk annulus

(a) Dataset I

rectangle arrow semicircle

house double arrow circle

(b) Dataset II

Figure 9: Visualization of a representative shape from each class of the two datasets.

median number of points across all shapes in the dataset. For the SVM experiments, we use
exp(−σD) as the kernel for the SVM model. Here, we normalize the matrix D and choose the
best σ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000} for each method used in order to facilitate a fair
comparison of the resulting performances. We note that the resulting kernel matrix is not necessarily
positive semidefinite.

In computing the pairwise distances, for the PGW method, we set λ such that λ ≤ λmax =
maxi (|Ci|2). In particular, we compute λmax for each dataset and use λ = 1

5λmax for each exper-
iment. For UGW, we use ε = 10−1 and ρ1 = ρ2 = 1 for both experiments. Finally, for MPGW,
we set the mass-constrained term to be ρ = min(|µi|, |µj |) when computing the similarity between
shape Xi and Xj .

Performance analysis. The pairwise distance matrices are visualized for each dataset in Figure
8, and the confusion matrices computed with each dataset are given in Figure 13. Finally, the
classification accuracy with the SVM experiments is reported in Table 1a. The results indicate that
the PGW distance is able to consistently obtain high performance across both datasets.

In addition, from Figure 8, we observe that PGW qualitatively admits a more reasonable similarity
measure compared to other methods. For example, in Dataset I, class “bone” and “rectangle” should
have relatively smaller distance than “bone” and “annulus”. Ideally, a reasonable distance should
satisfy the following:

0 < d(bone, rectangle) < d(bone, anulus).

However, we do not observe this relation in GW and UGW4, and for the MPGW method,
MPGW (bone, rectangle) ≈ 0, which is also undesirable. For PGW, however, we do observe this
relation. Additionally, we report the wall-clock time comparison in Table 1b.

O.1 ADDITIONAL EXPERIMENT WITH OT/UT BASELINES.

In this subsection, we incorporate optimal transport distance (Villani, 2003) and unbalanced optimal
transport distance (Chizat et al., 2018c) into the shape retrieval experiment.

Dataset Setup We perform shape retrieval experiments in two scenarios: the original 2D dataset
and a 4D dataset. For the 4D scenario, we embed the shapes into 4D space and then apply a random
rotation to each shape.

Baselines We evaluate the performance of the following methods: Optimal Transport distance
(OT) (Villani, 2003), Unbalanced Optimal Transport (UOT) distance (Chizat et al., 2018c), Gromov-
Wasserstein distance (GW) (Gromov, 2001), Mass-constrained Gromov-Wasserstein discrepancy
(MPGW) (Chapel et al., 2020), Unbalanced Gromov-Wasserstein discrepancy (UGW) (Séjourné
et al., 2021), and our Partial Gromov-Wasserstein (PGW) distance.

4For UGW, this is due to the Sinkhorn regularization term.
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Method Dataset I Dataset II

OT (d = 2) 95.6% 55.8%
OT (d = 4) 79.3% 50.8%
UOT (d = 2) 73.5% 73.3%
UOT (d = 4) 56.9% 63.3%
GW (d = 2, 4) 98.1% 80.8%
MPGW (d = 2, 4) 23.7% 25.0%
UGW (d = 2, 4) 89.4% 90.0%
PGW (ours, d = 2, 4) 96.2% 100%

Table 2: Performance comparison across different methods and datasets.

The parameter settings for GW, MPGW, UGW, and PGW are described in the previous section. For
the UOT method, we set the weight of Sinkhorn regularization to 0.1 and the weight of the marginal
penalty to 0.2.

Result. In Dataset 1, when data is in the 2D space, OT achieves an accuracy of 95.6%, while UOT
achieves 73.5%. OT’s accuracy is slightly lower than GW/PGW, but it remains a strong classifier in
this setting. In Dataset 2, UOT outperforms OT with an accuracy of 73.3% compared to 55.8%.

When the shapes are embedded into 4D space, the accuracy of OT and UOT drops significantly,
ranging from 56.9% to 79.3%, far below the performance of GW and PGW. This decline highlights
the reliance of OT/UOT on absolute coordinates, which becomes more problematic in higher dimen-
sions. In contrast, GW-based methods (GW, MPGW, UGW, PGW) remain unaffected, as they are
invariant to absolute locations. Overall, regardless of whether the data is in 2D or 4D space, OT and
UOT consistently perform worse than GW and its variants. The gap in performance becomes even
more pronounced in 4D space.

P OTHER NUMERICAL IMPLEMENTATIONS

P.1 INITIAL METHODS.

In this experiment, we discuss several different methods to define the initial guess in the Frank-
Wolfe algorithm proposed in this paper. Note some of these methods have been applied in FW
algorithms/Sinkhorn solvers in classical GW (Mémoli, 2011), Mass-constraint GW (Chapel et al.,
2020) and Unbalanced GW (Séjourné et al., 2021)

Given two mm-spaces X = (X, dX , µ),X = (Y, dY , ν), we consider the two cases:

Case 1: Dimensions of X and Y are same. Note, in this case, we can define classical OT/partial
OT/unbalanced OT between µ and ν. Thus, (Chapel et al., 2020) proposed the following “POT
initilization” method:

γ(1) ← arg min
γ∈Γ≤,π(p,q)

⟨L(X,Y ), γ⟩F , (89)

where L(X,Y ) ∈ Rn×m, (L(X,Y ))ij = ∥xi − yj∥p for some fixed p ≥ 1 and

Γ≤,π(p, q) := {γ ∈ Rn×m
+ : (γ⊤1n)j ∈ {qYj , 0},∀j; γ1m ≤ p, |γ| = π}. (90)

The above problem can be solved by a Lasso (L1 norm) regularized OT solver.

Case 2: Dimension of X and Y are different. The above technique can not be applied since the
problem (89) (in particular L(X,Y )) is not well-defined.

In this case, (Séjourné et al., 2021) introduced the “FLB-UOT” method:

γ(1) ← arg min
γ∈Γ≤(p,q)

∫
X×Y

|sX,p(x)− sY,p(y)|pdγ(x, y) + λ(DKL(γ1,p) +DKL(γ2, q)),

(91)
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where sX,p(x) =
∫
X
|x − x′|pdµ(x) and sY,p is defined similarly. The problem (91) is called

Hellinger Kantorovich, which is a classical unbalanced optimal transport problem. It can be solved
by the Sinkhorn solver (Chizat et al., 2018b).

Analog to the above method, we propose the third method, called “FLB-POT” (first lower bound-
partial optimal transport)

γ(1) ← arg min
γ∈Γ≤(p,q)

∫
X×Y

|sX,p(x)− sY,p(y)|2dγ(x, y) + λ(|p− γ1|+ |q− γ2|). (92)

The above problem is a partial OT problem and can be solved by classical linear programming
(Caffarelli & McCann, 2010).

P.2 PARAMETER SETTING FOR PGW

Setting parameter λ in PGW is important in the numerical implementation. There are two scenarios
to consider:

• Both source and target measures contain outliers:
the parameter λ acts as an upper bound for the transported distance. Specifically, if

∥dX(x, x′)− dY (y, y′)∥2 ≥ 2λ,

then either (x, y) or (x′, y′) will not be transported. - When the distance between outliers
and clean data is large, and the pairwise distances within the clean data are relatively small,
λ should be set to lie between these two scales.

• Only one measure contains outliers:
As stated in Lemma E.2, λ can be set sufficiently large to satisfy:

2λ ≥ max
x,x′∈X,y,y′∈Y

∥dX(x, x′)− dY (y, y′)∥2.

In the interpolation and shape retrieval experiments, we fall under the second scenario,
which does not require signficant parameter tuning.
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(a) 2D and 2D matching

(b) 2D and 3D matching

Figure 10: We visulize the shape matching result for all tested parameters.
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bone goblet star horseshoe

rectangle trapezoid disk annulus

(a) Dataset I

rectangle arrow semicircle
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(b) Dataset II

Figure 11: Visualization of a representative shape from each class of the two datasets.
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(a) Dataset I
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(b) Dataset II

Figure 12: Pairwise distance matrices computed for each dataset.
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Figure 13: Confusion matrices computed from nearest neighbor classification experiments.
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Q WALL-CLOCK TIME COMPARISON FOR PARTIAL GW SOLVERS

In this section, we present the wall-clock time comparison between our method Algorithms 1, 2,
the Frank-Wolf algorithm proposed in (Chapel et al., 2020), and its Sinkhorn version (Peyré et al.,
2016; Chapel et al., 2020). Note that these two baselines solve a mass constraint version of the
PGW problem, which we refer to as the “MPGW” problem. The proposed PGW formulation in this
paper can be regarded as a “Lagrangian formulation” of MPGW5 formulation to the PGW problem
defined in (10). In this paper, we call these two baselines as “MPGW algorithm” and “Sinkhorn
PGW algorithm”.

Numerical details. The data is generated as follows: let µ = Unif([0, 2]2) and ν =
Unif([0, 2]3), we select i.i.d. samples {xi ∼ µ}ni=1, {yj ∼ ν}mj=1, where n is selected from
[10, 50, 100, 150, ..., 10000] and m = n + 100, p = 1n/m, q = 1m/m. For each n, we set
λ = 0.2, 1.0, 10.0. The mass constraint parameter for the algorithm in (Chapel et al., 2020), and
Sinkhorn is computed by the mass of the transportation plan obtained by Algorithm 1 or 2. The
runtime results are shown in Figure 14.

Regarding the acceleration technique, for the POT problem in step 1, our algorithms and the MPGW
algorithm apply the linear programming solver provided by Python OT package (Flamary et al.,
2021), which is written in C++. The Sinkhorn algorithm from Python OT does not have an acceler-
ation technique. Thus, we only test its wall-clock time for n ≤ 2000. The data type is 64-bit float
number.

From Figure 14, we can observe the Algorithms 1, 2 and MPGW algorithm have a similar order
of time complexity. However, using the column/row-reduction technique for the POT computation
discussed in previous sections, and the fact the convergence behaviors of Algorithms 1 and 2 are
similar to the MPGW algorithm, we observe that the proposed algorithms 1, 2 admits a slightly
faster speed than MPGW solver.
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Figure 14: We test the wall-clock time of our Algorithm 1 and Algorithm 2, the MPGW solver
(Algorithm 1 in (Chapel et al., 2020)) , and the Sinkhorn algorithm (Peyré et al., 2016). We denote
these methods as v1, v2, m, s respectively. The linear programming solver applied in the first three
methods is from POT (Flamary et al., 2021), which is written in C++. The maximum number of
iterations for all the methods is set to be 1000. The maximum iteration for OT/OPT solvers is set
to be 300n. The maximum Sinkhorn iteration is set to be 1000. The convergence tolerance for
the Frank-Wolfe algorithm and the Sinkhorn algorithm are set to be 1e − 5. To achieve their best
performance, the number of dummy points is set to be 1 for MPGW and PGW.

5Due to the non-convexity of GW, we do not have a strong duality in some of the GW representations. Thus,
the Lagrangian form is not a rigorous description.
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R POSITIVE UNLABELED PROBLEM

R.1 PROBLEM SETUP.

Positive unlabeled (PU) learning (Bekker & Davis, 2020; Elkan & Noto, 2008; Kato et al., 2018)
is a semi-supervised binary classification problem for which the training set only contains positive
samples. In particular, suppose there exists a fixed unknown overall distribution over triples (x, o, l),
where x is data, l ∈ {0, 1} is the label of x, o ∈ {0, 1} where o = 1, o = 0 denote that l is observed
or not, respectively. In the PU task, the assumption is that only positive samples’ labels can be
observed, i.e., Prob(o = 1|x, l = 0) = 0. Consider training labeled data Xpu = {(xpui , l)}ni=1 ⊂
{x : o = 1} and testing data Xun = {xunj }mj=1 ⊂ {x : o = 0}, where xipXi ∈ Rd1 , xuj ∈ Rd2 .
In the classical PU learning setting, d2 = d1. However, in (Séjourné et al., 2021) this assumption
is relaxed. The goal is to leverage Xp to design a classifier l̂ : xu → {0, 1} to predict l(xu) for all
xu ∈ Xu.6

Following (Elkan & Noto, 2008; Chapel et al., 2020; Séjourné et al., 2021), in this experiment,
we assume that the “select completely at random” (SCAR) assumption holds: Prob(o = 1|x, l =
1) = Prob(o = 1|l = 1). In addition, we use π = Prob(l = 1) ∈ [0, 1] to denote the ratio of
positive samples in testing set7. Following the PU learning setting in (Kato et al., 2018; Hsieh et al.,
2019; Chapel et al., 2020; Séjourné et al., 2021), we assume π is known. In all the PU learning
experiments, we fix π = 0.2.

R.2 OUR METHOD.

Similar to (Chapel et al., 2020) our method is designed as follows: We set p ∈ Rn, q ∈ Rm as
pXi = π

n , i ∈ [1 : n]; qYj = 1
m , j ∈ [1 : m]. Let Xp = (Xp, ∥ · ∥d1

,
∑n

i=1 p
X
i δxi

),Xu =

(Xu, ∥ · ∥d2 ,
∑n

j=1 q
Y
j δyj ). We solve the partial GW problem PGWλ(Xp,Xu) and suppose γ is a

solution. Let γ2 = γ⊤1n. The classifier l̂ is defined by the indicator function
l̂γ(x

u) = 1{xu: γ2(xu)≥quantile}, (93)
where quantile is the quantile value of γ2 according to 1− π.

Regarding the initial guess γ(1), (Chapel et al., 2020) proposed a POT-based approach when X and
Y are sampled from the same domain, i.e., d1 = d2, which we refer to as “POT initialization.”

When X,Y are sampled from different spaces, that is, d1 ̸= d2, the above technique (89) is not
well-defined. Inspired by (Mémoli, 2011; Séjourné et al., 2021), we propose the following “first
lower bound-partial OT” (FLB-POT) initialization:

γ(1) = arg min
γ∈Γ≤(p,q)

∫
X×Y

|sX,2(x)− sY,2(y)|2dγ(x, y) + λ(|p− γ1|+ |q− γ2|),

where sX,2(x) =
∫
X
|x − x′|2dµ(x) and sY,2 is defined similarly. The above formula is analog to

Eq. (7) in (Séjourné et al., 2021), which is designed for the unbalanced GW setting. To distinguish
them, in this paper we call the Eq. (7) in (Séjourné et al., 2021) as “FLB-UOT initilization”.

R.3 DATASET.

The datasets include MNIST, EMNIST, and the following three domains of Caltech Office: Amazon
(A), Webcam (W), and DSLR (D) (Saenko et al., 2010). For each domain, we select the SURF fea-
tures (Saenko et al., 2010) and DECAF features (Donahue et al., 2014). For MNIST and EMNIST,
we train an auto-encoder, respectively, and the embedding space dimension is 4 and 6, respectively.
See Figure 15 for the TSNE visualization of these datasets.

R.4 NUMERICAL DETAILS AND PERFORMANCE.

Accuracy Comparison. In Table 4 and 6, we present the accuracy results for the MPGW, UGW,
6In the classical setting, the goal is to learn a classifier for all x. In this experiment, we follow the setting in

(Séjourné et al., 2021).
7In the classical setting, the prior distribution π is the ratio of positive samples of the original dataset. For

convenience, we ignore the difference between this ratio in the original dataset and the test dataset.
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(a) MNIST (b) EMNIST

(c) Surf(A) (d) Decaf(A)

(e) Surf(D) (f) Decaf(D)

(g) Surf(W) (h) Decaf(w)

Figure 15: TSNE visulization for datasets MNIST,EMNIST,Caltech Office.

57

https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html
https://pytorch.org/vision/main/generated/torchvision.datasets.EMNIST.html
https://faculty.cc.gatech.edu/~judy/domainadapt/#datasets_code


3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

DATASET INIT MPGW UGW PGW

M → M POT, 99% 99% 96% 99%
M → M FLB-U, 75% 96% 96% 96%
M → M FLB-P, 75% 99% 96% 98%
EM → EM POT, 99% 99% 96% 99%
EM → EM FLB-U, 78% 93% 95% 93%
EM → EM FLB-P, 78% 95% 95% 95%
M → EM FLB-U, 78% 94% 65% 94%
M → EM FLB-P, 78% 94% 95% 94%
EM → M FLB-U, 74% 97% 97% 97%
EM → M FLB-P, 75% 97% 97% 97%

Table 3: In this table we present the accuracy of primal-PPW, UGW, PGW. In the “Init” column, the
first entry is the initialization method, the second entry is the accuracy percentage. We test 5 times
and present the average accuracy for each method and initial method.

and the proposed PGW methods when using three different initialization methods: POT, FLB-UOT,
and FLB-POT.

Following (Chapel et al., 2020), in the MPGW and PGW methods, we incorporate the prior knowl-
edge π into the definition of p and q. Thus it is sufficient to set mass = π for MPGW and choose a
sufficiently large value for λ in the PGW method. This configuration ensures that the mass matched
in the target domain Y is exactly equal to π. However, in the UGW method (Séjourné et al., 2021),
the setting is p = 1

n1n and q = 1
m1m.

Overall, all methods show improved performance in MNIST and EMNIST datasets. One possible
reason for this could be the better separability of the embeddings in MNIST and EMNIST, as illus-
trated in Figure 15. Additionally, since MPGW and PGW incorporate information from r into their
formulations, they exhibit slightly better accuracy in many experiments.

Numerical details. In this experiment, to prevent unexpected convergence to local minima in the
Frank-Wolf algorithms, we manually set α = 1 during the line search step for both MPGW and
PGW methods.

For the convergence criteria, we set the tolerance term for Frank-Wolfe convergence and the main
loop in the UGW algorithm to be 1e − 5. Additionally, the tolerance for Sinkhorn convergence
in UGW was set to 1e − 6. The maximum number of iterations for the POT solver in PGW and
MPGW was set to 500n. In addition, for MPGW, we set mass = 0.2 and for PGW method, based
on lemma E.2, we set λ to be constant such that 2λ ≥ (max(|CX |)2 + max(|CY |)2). For UGW,
as we directly apply the numerical method in (Séjourné et al., 2023), where the prior knowledge

DATASET INIT METHOD INIT ACCURACY MPGW UGW PGW (OURS)

M→ M POT 100% 100% 95% 100%
M→ M FLB-U 75% 96% 95% 96%
M→ M FLB-P 75% 99% 95% 99%
M→ EM FLB-U 78% 94% 95% 94%
M→ EM FLB-P 78% 94% 95% 94%
EM→ M FLB-U 75% 97% 96% 97%
EM→ M FLB-P 75% 97% 96% 97%
EM→ EM POT 100% 100% 95% 100%
EM→ EM FLB-U 78% 94% 95% 94%
EM→ EM FLB-P 78% 95% 95% 95%

Table 4: Accuracy comparison of the MPGW, UGW, and the proposed PGW method on PU learning.
Here, ‘M’ denotes MNIST, and ‘EM’ denotes EMNIST.
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π = 0.2 is not Incorporated in the setting of p qnd q. Thus, in each experiment, we test different
parameters (ρ, ρ2, ϵ) and select the ones that result in transported mass close to π.

Regarding data types, we used 64-bit floating-point numbers for MPGW and PGW, and 32-bit
floating-point numbers for UGW.

For the MNIST and EMNIST datasets, we set n = 1000 and m = 5000. In the Surf(A) and
Decaf(A) datasets, each class contained an average of 100 samples. To ensure the SCAR assumption,
we set n = 1/2 ∗ 100 = 50 and m = 250. Similarly, for the Surf(D) and Decaf(D) datasets, we set
n = 15 and m = 75. Finally, for Surf(W) and Decaf(W), we used n = 20 and m = 100.

Wall-clock time In Table 5, we provide a comparison of wall-clock times for the MNIST and EM-
NIST datasets.

SOURCE TARGET INIT METHOD INIT TIME MPGW UGW PGW (OURS)

M(1000) M(5000) POT 0.5 7.2 152.0 7.4
M(1000) M(5000) FLB-U 0.02 30.5 152.6 27.8
M(1000) M(5000) FLB-P 0.5 27.8 144.9 26.9

EM(1000) EM(5000) POT 0.5 7.3 157.3 7.5
EM(1000) EM(5000) FLB-U 0.02 30.0 181.8 29.9
EM(1000) EM(5000) FLB-P 0.5 22.2 155.1 22.3
M(1000) EM(5000) FLB-U 0.02 34.0 157.9 34.4
M(1000) EM(5000) FLB-P 0.5 34.9 155.5 35.0

EM(1000) M(5000) FLB-U 0.02 24.3 139.3 22.2
EM(1000) M(5000) FLB-P 0.5 32.0 162.7 29.9
M(2000) M(10000) POT 1.7 31.1 1384.8 32.1
M(2000) M(10000) FLB-U 0.1 209.0 1525.8 192.5
M(2000) M(10000) FLB-P 1.7 208.0 1418.4 192.1
M(2000) EM(10000) FLB-U 0.1 165.1 1606.1 164.2
M(2000) EM(10000) FLB-P 1.7 224.1 1420.7 223.7

EM(2000) M(10000) FLB-U 0.1 149.1 1426.5 138.1
EM(2000) M(10000) FLB-P 1.7 113.9 1407.6 103.9
EM(2000) EM(10000) POT 1.6 32.4 1445.9 33.4
EM(2000) EM(10000) FLB-U 0.1 233.0 1586.3 233.9
EM(2000) EM(10000) FLB-P 1.8 142.1 1620.6 142.1

Table 5: In this table, we present the wall-clock time for the MPGW, UGW, and the proposed
PGW method, as well as three different initialization methods (POT, FLB-UOT, FLB-POT). In the
“Source” (or “Target”) columm, M (or EM) denotes the MNIST (or EMNIST) dataset, the value
1000 (or 5000) denotes the sample size of X (or Y ). The units of all reported wall-clock times is
seconds.
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DATASET INIT METHOD INIT ACCURACY MPGW UGW PGW (OURS)

SURF(A)→ SURF(A) POT 81.2% 74.7% 66.5% 74.7%
SURF(A)→ SURF(A) FLB-U 64.9% 65.7% 66.5% 65.7%
SURF(A)→ SURF(A) FLB-P 63.3% 66.5% 66.5% 66.5%
DECAF(A)→ DECAF(A) POT 95.1% 95.1% 60.8% 95.1%
DECAF(A)→ DECAF(A) FLB-U 78.0% 67.4% 83.7% 67.4%
DECAF(A)→ DECAF(A) FLB-P 78.0% 74.7% 88.6% 74.7%
SURF(D)→ SURF(D) POT 100% 100% 89.3% 100%
SURF(D)→ SURF(D) FLB-U 62.7% 73.3% 84.0% 73.3%
SURF(D)→ SURF(D) FLB-P 60.0% 60.0% 78.7% 60.0%
DECAF(D)→ DECAF(D) POT 100% 100% 100% 100%
DECAF(D)→ DECAF(D) FLB-U 76.0% 68.0% 70.7% 68.0%
DECAF(D)→ DECAF(D) FLB-P 73.3% 73.3% 86.7% 73.3%
SURF(W)→ SURF(W) POT 100.0% 100.0% 81.3% 100.0%
SURF(W)→ SURF(W) FLB-U 76.0% 70.7% 81.3% 70.7%
SURF(W)→ SURF(W) FLB-P 73.3% 68.0% 78.7% 68.0%
DECAF(W)→ DECAF(W) POT 100% 100% 100% 100%
DECAF(W)→ DECAF(W) FLB-U 73.3% 68.0% 62.7% 68.0%
DECAF(W)→ DECAF(W) FLB-P 70.7% 70.7% 73.3% 70.7%

SURF(A)→ DECAF(A) FLB-U 73.9% 83.7% 91.8% 83.7%
SURF(A)→ DECAF(A) FLB-P 73.9% 83.7% 87.8% 83.7%
DECAF(A)→ SURF(A) FLB-U 67.3% 67.3% 69.0% 67.3%
DECAF(A)→ SURF(A) FLB-P 67.3% 68.2% 71.4% 68.2%
SURF(D)→ DECAF(D) FLB-U 76.0% 76.0% 65.3% 76.0%
SURF(D)→ DECAF(D) FLB-P 76.0% 76.0% 65.3% 76.0%
DECAF(D)→ SURF(D) FLB-U 73.3% 62.7% 73.3% 62.7%
DECAF(D)→ SURF(D) FLB-P 73.3% 73.3% 73.3% 73.3%
SURF(W)→ DECAF(W) FLB-U 70.7% 70.7% 76.0% 70.7%
SURF(W)→ DECAF(W) FLB-P 70.7% 70.7% 76.0% 70.7%
DECAF(W)→ SURF(W) FLB-U 68.0% 68.0% 65.3% 68.0%
DECAF(W)→ SURF(W) FLB-P 68.0% 68.0% 70.7% 68.0%

Table 6: In this table, we present the accuracy comparison of the MPGW, UGW, and the proposed
PGW method. We report the initialization method and its accuracy, followed by the accuracy of
each of the methods MPGW, UGW, and PGW. The prior distribution π = p(l = 1) is set to be 0.2
in all experiments. To guarantee the SCAR assumption, for Surf(A) and Decaf(A), we set n = 50,
which is the half of the total number of data in one single class. m is set to be 250. Similarly, we set
suitable n,m for Surf(D), Decaf(D), Surf(W), Decaf(W).
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DATASET INIT METHOD INIT TIME MPGW UGW PGW (OURS)

SURF(A)→ SURF(A) POT 1.4E-3 1.9E-2 3.8 2.0E-2
SURF(A)→ SURF(A) FLB-U 2.2E-3 1.8E-2 3.6 1.9E-2
SURF(A)→ SURF(A) FLB-P 1.7E-3 1.8E-2 3.8 1.5E-2
DECAF(A)→ DECAF(A) POT 1.7E-3 1.9E-2 7.3 1.9E-2
DECAF(A)→ DECAF(A) FLB-U 9.6E-3 1.8E-2 6.8 1.5E-2
DECAF(A)→ DECAF(A) FLB-P 2.0E-3 1.8E-2 6.7 1.6E-2
SURF(D)→ SURF(D) POT 2.9E-4 5.8E-4 3.1 3.8E-4
SURF(D)→ SURF(D) FLB-U 1.4E-3 3.0E-3 5.4 2.2E-3
SURF(D)→ SURF(D) FLB-P 3.1E-4 2.9E-3 5.4 2.1E-3
DECAF(D)→ DECAF(D) POT 3.1E-4 6.0E-4 3.3 3.6E-4
DECAF(D)→ DECAF(D) FLB-U 1.4E-3 2.9E-3 5.8 2.1E-3
DECAF(D)→ DECAF(D) FLB-P 3.4E-4 2.8E-3 5.3 2.0E-3
SURF(W)→ SURF(W) POT 3.0E-4 6.0E-4 5.2 3.6E-4
SURF(W)→ SURF(W) FLB-U 1.3E-3 2.9E-3 5.1 2.1E-3
SURF(W)→ SURF(W) FLB-P 3.3E-4 2.9E-3 5.1 2.1E-3
DECAF(W)→ DECAF(W) POT 3.3E-4 6.2E-4 3.3 3.4E-4
DECAF(W)→ DECAF(W) FLB-U 1.2E-3 2.9E-3 5.8 2.1E-3
DECAF(W)→ DECAF(W) FLB-P 3.3E-4 2.8E-3 5.4 2.0E-3

SURF(A)→ DECAF(A) FLB-U 1.1E-1 2.8E-2 6.7 2.6E-2
SURF(A)→ DECAF(A) FLB-P 1.9E-3 2.2E-2 0.2 2.1E-2
DECAF(A)→ SURF(A) FLB-U 0.1 5E-2 6.7 4E-2
DECAF(A)→ SURF(A) FLB-P 2E-3 1.8 6.8 1.5
SURF(D)→ DECAF(D) FLB-U 1.8E-3 5.3E-3 6.0 2.3E-3
SURF(D)→ DECAF(D) FLB-P 3.5E-4 3.9E-4 5.9 3.8E-4
DECAF(D)→ SURF(D) FLB-U 1.8E-3 0.296 5.6 0.165
DECAF(D)→ SURF(D) FLB-P 3.3E-4 0.218 5.6 0.170
SURF(W)→ DECAF(W) FLB-U 1.8E-3 5.3E-3 5.0 2.3E-3
SURF(W)→ DECAF(W) FLB-P 3.4E-4 4.1E-4 5.0 3.9E-4
DECAF(W)→ SURF(W) FLB-U 1.8E-3 5.1E-3 5.8 2.1E-3
DECAF(W)→ SURF(W) FLB-P 3.4E-4 2.9E-3 5.6 2.2E-3

Table 7: In this table, we present the wall-clock time comparison of the MPGW, UGW, and the
proposed PGW method. We report the initialization method and its wall-clock time, followed by
the wall-clock time of each of the methods MPGW, UGW, and PGW. The units of all reported wall-
clock times is seconds. The prior distribution π = p(l = 1) is set to be 0.2 in all experiments. To
guarantee the SCAR assumption, for Surf(A) and Decaf(A), we set n = 50, which is the half of
the total number of data in one single class. m is set to be 250. Similarly, we set suitable n,m for
Surf(D), Decaf(D), Surf(W), Decaf(W).

S COMPUTE RESOURCES

All experiments presented in this paper are conducted on a computational machine with an AMD
EPYC 7713 64-Core Processor, 8 × 32GB DIMM DDR4, 3200 MHz, and a NVIDIA RTX A6000
GPU.
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