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ABSTRACT

Supervised contrastive learning has achieved remarkable success by leveraging
label information; however, determining positive samples in multi-label scenar-
ios remains a critical challenge. In multi-label supervised contrastive learning
(MSCL), multi-label relations are not yet fully defined, leading to ambiguity in
identifying positive samples and formulating contrastive loss functions to con-
struct the representation space. To address these challenges, we: (i) systemat-
ically formulate multi-label relations in MSCL, (ii) propose a novel Similarity-
Dissimilarity Loss, which dynamically re-weights samples based on similarity
and dissimilarity factors, (iii) further provide theoretical grounded proofs for our
method through rigorous mathematical analysis that supports the formulation and
effectiveness, and (iv) offer a unified form and paradigm for both single-label and
multi-label supervised contrastive loss. We conduct experiments on both image
and text modalities and further extend the evaluation to the medical domain. The
results show that our method consistently outperforms baselines in comprehen-
sive evaluations, demonstrating its effectiveness and robustness. Moreover, the
proposed approach achieves state-of-the-art performance on MIMIC-III-Full.

1 INTRODUCTION

Supervised contrastive learning effectively utilizes label information to yield promising results in
single-label scenarios (Khosla et al., 2020; Zhang et al., 2022; Lin et al., 2023). However, identifying
positive samples in multi-label supervised contrastive learning (MSCL) remains a challenge (Zhang
& Wu, 2024). For example, consider a set of images containing cats and puppies, wherein an
anchor image depicts a cat; in the single-label paradigm, positive and negative instances can be
unambiguously delineated based on their corresponding taxonomic annotations. Conversely, MSCL
introduces inherent classification ambiguity when determining whether an image containing both
cats and puppies should be designated as a positive or negative sample in relation to the anchor.

A critical question arises: Should a sample be considered positive when its label set partially over-
laps with or exactly matches that of the anchor? Currently, three principal strategies1 exist for
identifying positive samples in multi-label scenarios (Zhang & Wu, 2024): (i) ALL considers only
samples with an exactly matching label set as positive; (ii) ANY identifies samples with any over-
lapping class with the anchor as positive, and (iii) MulSupCon (Zhang & Wu, 2024) conceptually
aligns with the ANY approach but treats each label independently, thereby generating multiple dis-
tinct positive sets for individual anchors.

However, these methods have inherent limitations, since previous research has overlooked the com-
plicated multi-label relations among samples in MSCL. As illustrated in Figure 1, we introduce five
distinct set relations among samples to facilitate a more comprehensive identification of positive
sets. The ALL method exclusively considers relation R2 while disregarding the potential contribu-
tions of R3, R4 and R5. Furthermore, long-tailed distributions, when tail samples serve as anchors,
the requirement of ALL for exact label matches significantly impedes these tail anchors from iden-
tifying adequate positive samples within a limited batch size, potentially degenerating the method
to unsupervised contrastive learning in extreme scenarios (Chen et al., 2020; He et al., 2020; Zhang
et al., 2023). Conversely, both ANY and MulSupCon approaches treat relations R2, R3, R4, and

1We have discussed related methods in Appendix H
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Relation 3
Anchor: [ 1 0 1 1 0 0 ]
Sample: [ 1 0 0 0 1 1 ]

Relation 2
Anchor: [ 1 0 1 1 0 0 ]
Sample: [ 1 0 1 1 0 0 ]

Relation 1
Anchor: [ 1 0 1 1 0 0 ]
Sample: [ 0 1 0 0 1 1 ]

Relation 4
Anchor: [ 1 0 1 1 0 0 ]
Sample: [ 1 0 1 0 0 0 ]

Relation 5
Anchor: [ 1 0 1 1 0 0 ]
Sample: [ 1 0 1 1 1 1 ]

𝜴

𝜴

𝜴

𝜴

𝜴

Figure 1: Five distinct multi-label relations between samples and a given anchor. Ω denotes a
universe that contains all label entities. Here is an example with five different relations between
sample p and anchor i, where the labels are represented as one-hot vectors.

R5 identically with equivalent weights in contrastive loss functions, which constitutes a suboptimal
approach given the inherent differences among these relations. A detailed mathematical analysis of
the limitations for these methods is presented in Section 2 and additional discussion of related work
in Appendix H.

To address the above ambiguities of inter-label relations in MSCL, we define multi-label relations
and propose a novel contrastive loss function. It is important to emphasize that this study focuses
exclusively on inter-label relations in MSCL, rather than on intra-label or hierarchical relations.
Accordingly, the term relation in this paper refers specifically to inter-label relations. Our contri-
butions are summarized as follows:

• We introduce the notion of multi-label relations in MSCL and propose the Similarity-
Dissimilarity Loss, which dynamically re-weights positive pairs based on relations.

• We establish the theoretical foundations of the loss, including formal derivation, bounds
of the weighting factor, and its generalization of supervised contrastive loss to both single-
and multi-label settings.

• We validate our approach on image, text, and medical benchmarks, achieving consistent
improvements and state-of-the-art performance on the MIMIC datasets.

2 METHODS

2.1 PRELIMINARIES

Given a batch of N randomly sample/label pairs, {(xi,yi)}i=1,...,N , where xi denotes the i-th
sample and yi its corresponding labels. Here, yi = {y(l)i }l=1,...,L represents the multi-labels of
sample i, where y(l)i denotes the l-th label of sample i and L is the total number of labels for sample
i. After data augmentation, the training batch consists of 2N pairs, {x̃j , ỹj}j=1,...,2N , where x̃2i

and x̃2i−1 are two random augmentations of xi (i = 1, . . . , N ) and ỹ2i−1 = ỹ2i = yi. For brevity,
we refer to this collection of 2N augmented samples as a ”batch” (Khosla et al., 2020).

2
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2.2 MULTI-LABEL SUPERVISED CONTRASTIVE LOSS

In MSCL, the formulation of supervised contrastive loss varies depending on the strategies employed
for determining positive samples relative to a given anchor. Let i ∈ I = {1, . . . , 2N} denote the
index of an arbitrary augmented sample. For the ALL strategy, the positive set is defined as follows:

P(i) = {p ∈ A(i)|∀p, ỹp = ỹi} (1)

where A(i) ≡ I \ {i} 2.

Subsequently, the positive set for the ANY strategy is defined as follows:

P(i) = {p ∈ A(i)|∀p, ỹp ∩ ỹi ̸= ∅} (2)

In MSCL, the form of contrastive loss function for ALL and ANY is identical. For each anchor i, the
loss function is formulated as follows:

Li =
−1

|P(i)|
∑

p∈P(i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(3)

Here, τ ∈ R+ represents a positive scalar temperature parameter (Chen et al., 2020), while zk =
Proj(Enc(x̃k)) ∈ RDP denotes the projected encoded representation (Khosla et al., 2020).

For a given batch of samples, the loss function is formulated as:

L =
∑
i∈I

Li (4)

Zhang & Wu (2024) propose an approach that considers each label ỹ(l)i independently, forming
multiple positive sets for a given anchor sample i. For each label ỹ(l)i ∈ ỹi, the positive set for the
MulSupCon is defined as:

P(i) = {p ∈ A(i)|∀p, ỹ(l)p ∈ ỹi} (5)

For each anchor i, the multi-label supervised contrastive loss for MulSupCon is represented as fol-
lows (Zhang & Wu, 2024):

Lmul
i =

∑
ỹ
(l)
p ∈ỹi

−1

|P(i)|
∑

p∈P(i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(6)

For a given batch of samples, the loss function is formulated as:

Lmul =
1∑
i |ỹi|

∑
i∈I

Lmul
i (7)

2.3 MULTI-LABEL RELATIONS

As illustrated in Figure 1, we denote each Relation as R, where, e.g., R1 stands for Relation 1. The
subscripted notation pj signifies that sample p corresponds to the j-th relation.

Let Ω denote a universal set containing all possible label entities. For any anchor i and sample p, let
S and T represent their respective label sets. The five fundamental multi-label relations are defined
as follows:

R1 : S ∩ T = ∅ (8)
R2 : S = T (9)

R3 : S ∩ T ̸= ∅,S ⊈ T , T ⊈ S (10)
R4 : S ⊋ T (11)
R5 : S ⊊ T (12)

2In contrastive learning, sample i is the anchor and is supposed to be excluded out of positive sets.
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Based on these relational definitions, we present a theoretical analysis of the limitations inherent in
the ALL, ANY, and MulSupCon methods, illustrated via an example in Figure 1.

In ALL, the optimization process aims to align with the mean representation of samples sharing
identical label sets (Zhang & Wu, 2024). As the example that is demonstrated in Figure 1, for a
given anchor i, the positive set of ALL is:

P(i) = {p2}

In ALL, the sample pj in R2 is designated as positive sample, while those in relations R3, R4 and
R5 are excluded from consideration. Specifically, despite their semantic similarity to anchor i that
those overlap labels, the feature representations of samples pj where j ∈ 3, 4, 5 are forced away
from the anchor in the embedding space, as they are treated as negative examples in the contrastive
learning paradigm. Consequently, the restricted size of the positive set |P(i)| results in a mean
representation susceptible to statistical variance. Furthermore, the ALL method may inadvertently
treat semantically related samples as negative instances in certain scenarios.
Lemma 1. (Vector Similarity Under Label Equivalence). Let i be an anchor and p be any sample in
the feature space, where ỹi, ỹp ∈ Rd denote their respective label vectors. If ỹp = ỹi, then under the
contrastive learning framework (Chen et al., 2020), their corresponding projected representations
zi, zp ∈ Rm satisfy zi ≃ zp.

As per ANY’s definition, the positive set of the example in Figure 1 is:

P(i) = {p2, p3, p4, p5}

By applying Lemma 1, the corresponding loss terms in Equation 3 for samples in different relations
exhibit approximate equality:

L(R2) ≈ L(R3) ≈ L(R4) ≈ L(R5)3

It is evident that R2, R3, R4 and R5 represent fundamentally distinct relations, each characterized
by different labels and semantic information. However, ANY fails to differentiate these subtle label
hierarchies, introducing substantial semantic ambiguity. Moreover, in scenarios where samples pre-
dominantly share common classes, the averaging mechanism disproportionately emphasizes these
shared classes while diminishing the significance of distinctive features (Zhang & Wu, 2024).

MulSupCon employs a positive sample identification mechanism analogous to ANY, samples pj ,
where j ∈ 3, 4, 5 are designated as positive instances. However, MulSupCon distinguishes itself
by evaluating each label individually and forming multiple positive sets for a single anchor sample.
This approach aggregates positive samples based on the number of overlapping labels between the
positive samples and the anchor, thereby expanding the space of positive sets:

P(i) = {p2, p2, p2, p3, p4, p4, p5, p5, p5}

Subsequently, the loss for pj in Equqation 6 are as follows by Lemma 1:

L(R2) ≈ L(R5) ̸= L(R3) ̸= L(R4)

For this example (see Figure 1), MulSupCon successfully discriminates R3 and R4 from R2 and
R5; however, it fails to establish a distinction between R2 and R5. This limitation arises primarily
because MulSupCon exclusively considers the overlapping regions (Similarity 4) between anchor i
and sample p (i.e., The intersection of sets S and T ), while disregarding the complementary non-
intersecting domains (Dissimilarity 5). That is to say, the similarity between positive samples and
anchors is considers, but not yet dissimilarity, which is one of critical information for representation
learning in MSCL.

Leveraging the proposed multi-label relations, our theoretical analysis systematically elucidates the
limitations of existing methods and establishes a rigorous foundation for investigating the profound
exploration of concepts of similarity and dissimilarity, and the design of contrastive loss function.

3The approximation notation is used instead of equality due to vector similarity in Lemma 1 and the inherent
uncertainty in deep learning’s non-linear transformations.

4The definition of Similarity is introduced in Section 2.4
5The definition of Dissimilarity is introduced in Section 2.4
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2.4 SIMILARITY-DISSIMILARITY LOSS

To address the aforementioned challenges, we introduce the concepts of similarity and dissimilarity
based on set-theoretic relations: (i) As depicted in Figure 1, Similarity represents the intersection of
sets (i.e., S∩T ), and (ii) we define Dissimilarity as the set difference between T and the intersection
S ∩ T with respect to sample p (i.e., T \ S ∩ T ). For each anchor i, we formulate the Similarity-
Dissimilarity Loss as:

Lour
i =

−1

|P(i)|
∑

p∈P(i)

log
Ks

i,pKd
i,p exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(13)

Here, we define Ks
i,p and Kd

i,p that quantify the Similarity and Dissimilarity factors for a given
anchor i and a positive sample p, respectively. These factors are formally defined as follows:

Ks
i,p =

|ỹs
p|

|ỹi|
=

|S ∩ T |
|S|

(14)

and
Kd

i,p =
1

1 + |ỹd
p |

=
1

1 + |T \ (S ∩ T )|
(15)

where we define the following set-theoretic quantities:

• |ỹi| = |S| denotes the cardinality of the label space ỹi.
• |ỹs

p| = |S ∩ T | measures the cardinality of the intersection of sets S and T .

• |ỹd
p | = |T \ (S ∩ T )| represents the cardinality of the relative complement with respect to

sample p.

The product of Ks
i,p and Kd

i,p is termed as similarity-dissimilarity factor. Moreover, the following
relation holds:

|ỹd
p | = |ỹp| − |ỹs

p| ≥ 0 (16)

where |ỹp| represents the cardinality of the label space associated with sample p.

Importantly, a detailed and mathematical explanation of re-weighting mechanism for the Similarity-
Dissimilarity Loss is provided in Section 2.7. Additionally, Appendix A includes the scaling hyper-
parameter temperature τ (Appendix A.1), and the rationale for selecting the dissimilarity penalty
function (Appendix A.2).

2.4.1 A UNIFIED FORM OF SUPERVISED CONTRASTIVE LOSS

Specifically, the Similarity-Dissimilarity Loss reduces to Equation 3, when the following conditions
are simultaneously satisfied: {

|ỹi| = |ỹs
p|

|ỹd
p | = 0

(17)

Accordingly, our proposed loss function constitutes a generalized form of the basic supervised con-
trastive loss (see Equation 3). In particular, Equation 3 represents a particular case of the Similarity-
Dissimilarity Loss. Moreover, our contrastive loss unifies both single-label and multi-label super-
vised contrastive loss functions within a comprehensive form and paradigm.

2.5 CASE ANALYSIS

Let us examine the behavior of our loss function through a detailed analysis of five distinct relational
cases illustrated in Figure 1. Consider the following sequences of cardinalities:{

|ỹs
pj
| = {0, 3, 1, 2, 3}j=1,2,3,4,5

|ỹd
pj
| = {3, 0, 2, 0, 2}j=1,2,3,4,5

5
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Applying these values to Equation 14 and 15, we obtain:
Ks

i,p = {0, 1, 1
3
,
2

3
, 1}

Kd
i,p = {1

4
, 1,

1

3
, 1,

1

3
}

Consequently, the product of these measures yields:

Ks
i,pKd

i,p = {0, 1, 1
9
,
2

3
,
1

3
}

When evaluating Equation 13, these distinct relations (R2 through R5) generate unique loss values,
establishing the following inequalities:

L(R2) ̸= L(R3) ̸= L(R4) ̸= L(R5)

The proposed loss function effectively discriminates among the five distinct relations through a
principled re-weighting mechanism, as formulated in Equation 13, 14, and 15, comparing to existing
methods in MSCL.

Furthermore, in contrast to MulSupCon, the Similarity-Dissimilarity Loss preserves the cardinality
of positive sets while maintaining computational efficiency, as it requires no additional computa-
tional overhead.

2.6 THEORETICAL ANALYSIS

The proposed loss function incorporates a weighting mechanism through the product of factors Ks
i,p

and Kd
i,p. By construction, the similarity-dissimilarity factor Ks

i,pKd
i,p is constrained to the closed

interval [0, 1] (i.e., the upper and lower bounds) across all possible relational configurations. Hence,
it is written as:

Ks
i,pKd

i,p ∈ [0, 1] (18)

For notational conciseness, let us denote the product of Similarity and Dissimilarity factors across
the five relations as {Ks

mKd
m}m=1,2,3,4,5.

Theorem 1. Let Ks
m and Kd

m be the Similarity and Dissimilarity operators, respectively, as defined
in Eq. (14) and (15). For the case m = 1, their product vanishes:

Ks
mKd

m = 0, when m = 1 (19)

Proof. See Appendix B.1.

Theorem 2. Consider the Similarity operator Ks
m and Dissimilarity operator Kd

m as defined in Eq.
(14) and (15). For the case m = 2, their product equals unity:

Ks
mKd

m = 1, when m = 2 (20)

Proof. See Appendix B.2.

Theorem 3. Let Ks
m and Kd

m be the Similarity and Dissimilarity operators as defined in Eq. (14)
and (15), respectively. For m ∈ {3, 4, 5}, their product is strictly bounded between 0 and 1:

0 < Ks
mKd

m < 1 (21)

Proof. See Appendix B.3.

Based on Theorem 1, 2, and 3, the product of weighting factors Ks
i,p and Kd

i,p is bounded within
the interval [0, 1], which aligns with fundamental principles of loss functions and set-theoretic rela-
tions. The non-negative lower bound adheres to the essential property of loss functions being strictly

6
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positive (LeCun et al., 2015). Given that our proposed loss function generalizes the supervised con-
trastive loss (Khosla et al., 2020) and incorporates multi-label relation definitions, the upper bound
naturally equals 1. Furthermore, this mathematical framework demonstrates that our proposed con-
trastive loss can dynamically adjust the weighting factor within [0, 1], effectively differentiating
sample features with rigorous mathematical justification for both the formulation and efficacy of the
loss function.
Theorem 4. Let i ∈ I be a fixed anchor sample, and let p3, p4 ∈ P(i) be positive samples cor-
responding to relations R3 and R4, respectively. Suppose their label spaces satisfy the cardinality
constraint:

|ỹp3
| = |ỹp4

| (22)
Then, the product of similarity and dissimilarity operators satisfies the strict inequality:

Ks
4Kd

4 > Ks
3Kd

3 (23)

Proof. See Appendix B.4.

Theorem 5. Let i ∈ I be a fixed anchor sample, and let p3, p5 ∈ P(i) be positive samples corre-
sponding to relations R3 and R5, respectively. Suppose:

|ỹd
p5
| ≤ |ỹd

p3
| (24)

Then, the product of Similarity and Dissimilarity operators satisfies the strict inequality:

Ks
5Kd

5 > Ks
3Kd

3 (25)

Proof. See Appendix B.5.

Theorem 4 and 5 establish strict dominance relations between relation types R3, R4, and R5,
demonstrating that Ks

4Kd
4 > Ks

3Kd
3 when |ỹp3

| = |ỹp4
| and Ks

5Kd
5 > Ks

3Kd
3 when |ỹd

p5
| ≤ |ỹd

p3
|.

These inequalities, proved through careful mathematical derivation using set cardinality proper-
ties and fundamental principles of real analysis, reveal a well-defined hierarchical structure in the
weighting factors. This hierarchical relations ensures that our loss function appropriately modu-
lates the contribution of different relation types during the learning process, providing theoretical
guarantees for the effectiveness of our proposed approach in capturing complex relations within the
data.

Our theoretical analysis establishes a comprehensive mathematical foundation for the proposed
loss function through five key theorems. These theoretical guarantees, derived through rigorous
set-theoretic analysis, demonstrate that our loss function effectively modulates the contribution of
different relation types while maintaining proper mathematical bounds, thereby providing a solid
theoretical foundation for its application in multi-label contrastive learning.

2.7 RE-WEIGHTING MECHANISM

The proposed re-weighting mechanism is designed to assign soft weights to positive pairs in multi-
label contrastive learning, ensuring that the contribution of each positive to the objective function
reflects the degree of semantic alignment with the anchor. Formally, the weighting factor for a
positive sample p associated with anchor i is given by the product

wi,p = Ks
i,p Kd

i,p, wi,p ∈ [0, 1],

where Ks
i,p captures similarity based on shared labels, and Kd

i,p penalizes mismatches due to addi-
tional labels.

The similarity component Ks
i,p is monotonically increasing with respect to the number of shared

labels between i and p. Let L(i) denote the set of labels associated with sample i. Then,

Ks
i,p = f

(
|L(i) ∩ L(p)|

)
,

where f(·) is a non-decreasing mapping that promotes stronger alignment when p and i share more
labels, thereby reflecting higher semantic agreement.

7
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The dissimilarity component Kd
i,p instead captures the penalty incurred by extraneous labels present

in p but absent in i. Specifically,

Kd
i,p = g

(
|L(p) \ L(i)|

)
,

where g(·) is a monotonically decreasing function, ensuring that positives with many additional
labels contribute less, since these labels may correspond to irrelevant or noisy semantics.

The resulting product wi,p quantifies the relational quality between i and p. Several important cases
arise:

1. Perfect alignment (R2): If L(i) = L(p), then Ks
i,p is maximized and Kd

i,p = 1, yielding
wi,p ≈ 1.

2. Partial overlap (R3–R5): If L(i) ∩ L(p) ̸= ∅ but L(i) ̸= L(p), then Ks
i,p is non-zero but

Kd
i,p < 1, leading to an intermediate weight 0 < wi,p < 1.

3. Disjoint labels (R1): If L(i) ∩ L(p) = ∅, then Ks
i,p = 0 and wi,p = 0, ensuring no

contribution to the loss.

This formulation provides a principled mechanism for modulating the contrastive signal. High-
quality positives, characterized by substantial semantic overlap and minimal extraneous labels, are
emphasized in the embedding space. Conversely, positives with excessive label mismatches are
downweighted, thereby mitigating the risk of noisy or misleading training signals. Importantly, the
continuous nature of wi,p allows the model to smoothly calibrate the pulling force across a spectrum
of semantic relationships, rather than making binary inclusion–exclusion decisions.

Such a mechanism is particularly critical under long-tailed and ambiguous multi-label distributions,
where the frequency of classes and the degree of label co-occurrence vary significantly. By balancing
similarity and mismatch in a mathematically grounded manner, the re-weighting scheme ensures that
the learned representations remain both semantically faithful and robust to noise.

3 EXPERIMENTS AND RESULTS

We conduct the experiments to compare Similarity-Dissimilarity Loss with current contrastive loss
functions (ALL, ANY, and MulSupCon) in a comprehensive evaluation, considering: (i) Data modal-
ity: image and text data; (ii) Domain-specific: general text data (AAPD) and medical domain
(MIMIC III and IV); (iii) Data distribution: full setting (extreme long-tailed distribution) and top-50
frequent labels setting; (iv) ICD code versions: ICD-9 and ICD-10, and (v) Models: ResNet-50,
RoBERTa-based, Llama-3.1-8B, and PLM-ICD. For comprehensive information, please refer to
computing cost analysis in Appendix C, detailed dataset descriptions and evaluation metrics in Ap-
pendix D, baseline models and encoder architectures in Appendix E, and implementation details in
Appendix F

3.1 EVALUATION ON IMAGE

The experimental results in Table 1 demonstrate that our proposed loss function outperforms base-
lines across all metrics on image datasets. The substantial improvements in macro-F1 (Figure 2a)
provide compelling evidence that our method demonstrates exceptional efficacy in addressing long-
tailed distribution challenges, a capability particularly crucial in multi-label scenarios. However, on
the PASCAL dataset, the method yields only marginal gains due to its low average label cardinality
(approximately 1.5), which causes the task to approximate single-label classification; consequently,
multi-label loss functions exert limited influence, consistent with prior findings that label cardinal-
ity is a significant determinant of MSCL performance (Audibert et al., 2024). Moreover, Figure
2b shows that PASCAL exhibits much lower variance across methods compared to MS-COCO and
NUS-WIDE, indicating that specialized multi-label loss functions become less effective when label
cardinality approaches one. This observation supports the theoretical analysis in Section 2, where
the Similarity–Dissimilarity Loss reduces to single-label cases (Equation 17). A detailed analysis
and discussion the results on image data is provided in Appendix G.1

8
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Table 1: Results on image datasets. We compare our method with baselines (ALL, ANY and Mul-
SupCon). µ-F1 and ν-F1 present as micro-F1 and macro-F1, respectively.

Method
MS-COCO PASCAL NUS-WIDE

µ-F1 ν-F1 mAP µ-F1 ν-F1 mAP µ-F1 ν-F1 mAP

ALL 68.93 63.32 64.11 82.53 79.87 79.32 70.25 52.84 51.35
ANY 64.80 57.37 56.90 82.31 79.65 79.15 68.42 50.65 49.28
MulSupCon 71.33 66.25 67.69 82.75 80.26 79.58 71.88 54.36 52.47
Ours 73.40 70.03 69.20 83.63 81.10 79.75 73.35 57.49 56.74

MS-COCO PASCAL NUS-WIDE
0

1

2

3

4

Im
pr

ov
em

en
t

2.07
(2.9%)

0.88
(1.1%)

1.47
(2.0%)

3.78
(5.7%)

0.84
(1.0%)

3.13
(5.8%)

Micro-F1
Macro-F1

(a)

Micro-F1 Macro-F1 mAP

50

55

60

65

70

75

80

85

Av
er

ag
e 

Pe
rfo

rm
an

ce
 S

co
re

= 3.69

= 5.34 = 5.48

= 0.58

= 0.64
= 0.27

= 2.12

= 2.87
= 3.14

MS-COCO
PASCAL
NUS-WIDE

(b)

Figure 2: (a) Comparison of performance improvements between Similarity-Dissimilarity Loss and
MulSupCon with micro- and macro-F1 metrics. (b) Comparison standard deviation of image datasets
on micro-F1, macro-F1 and mAP metrics.

3.2 EVALUATION ON TEXT AND MEDICAL DOMAIN

We conduct comprehensive evaluations on several text datasets, including AAPD, MIMIC-III, and
MIMIC-IV, with the MIMIC datasets belonging to the medical domain. Detailed results and anal-
yses on AAPD are provided in Appendix G.2, while the extensive evaluation and discussion of
the medical domain are presented in Appendix G.3. Furthermore, our proposed method achieves
state-of-the-art performance on MIMIC-III-Full by employing the MSCL framework with Similar-
ity–Dissimilarity Loss and the PLM-ICD encoder (see Table 6 and Appendix G.3).

4 CONCLUSION

In this paper, by systematically formulating multi-label relations, we establish a principled frame-
work for sample identification in MSCL. Building on this foundation, we propose the Similar-
ity–Dissimilarity Loss, which dynamically re-weights samples based on similarity and dissimilarity
factors, supported by rigorous theoretical analysis that establishes its mathematical soundness and
generalizability to both single-label and multi-label settings. Extensive experiments across image,
text, and medical domains demonstrate that our method consistently outperforms strong baselines,
achieving state-of-the-art results on the MIMIC datasets. These findings highlight the effectiveness,
robustness, and broad applicability of the proposed approach, offering a unified paradigm that ad-
vances the study and practice of contrastive learning in complex multi-label scenarios. Moreover,
the limitations of this work is discussed in Appendix I.

ETHICS STATEMENT

We use the publicly available clinical dataset MIMIC-III and IV, which contain de-identifed patient
information. We do not see any ethics issues here in this paper.
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REPRODUCIBILITY STATEMENT

Implementation details for reproducing the experimental results are provided in Appendix F, while
the data description and access information are presented in Appendix D.
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A FURTHER EXPLANATION OF SIMILARITY-DISSIMILARITY LOSS

A.1 EXPLANATION OF SCALING TEMPERATURE

We now explain why we introduce the similarity–dissimilarity weighting by multiplying the factor
Ks

i,pKd
i,p directly into the numerator of the log-softmax loss (Equation 13), rather than scaling the

temperature parameter τ as the formulation is given by

Lour
i =

−1

|P(i)|
∑

p∈P(i)

log
exp

(
(zi · zp)/τ · Ks

i,pKd
i,p

)∑
a∈A(i) exp((zi · za)/τ)

. (26)

Theoretical Generalization of Supervised Contrastive Loss. Our formulation (Equation 13) di-
rectly generalizes the standard supervised contrastive loss (SupCon) (Khosla et al., 2020), which
uniformly weights all positives. When Ks

i,p = 1 and Kd
i,p = 1 (see Equation 17), it reduces exactly

to Equation 3. This structural compatibility would be lost if we instead redefined or modulated the
temperature.

Role and Effectiveness of Temperature in Contrastive Loss. In the original contrastive learning
framework, the temperature hyperparameter τ controls the sharpness of the softmax distribution over
similarity scores. As demonstrated in prior works such as SimCLR (Chen et al., 2020) and further
analyzed by Wang & Liu (2021), τ regulates the concentration level of learned representations: a
smaller τ increases sensitivity to similarity differences, while a larger τ smooths the gradient signal.

Crucially, temperature τ acts globally, affecting all pairwise comparisons, including both positive
and negative samples. This global effect makes τ unsuitable for capturing fine-grained, relation-
specific weightings such as the similarity–dissimilarity factor, which we intend to apply only to
positive samples based on their multi-label relations to the anchor.

From a mathematical perspective, applying the similarity–dissimilarity factor to scaling τ introduces
several issues:

• Global impact on loss structure: Scaling τ alters contributions of both positive and negative
samples, contradicting our objective of selectively modulating the weights of positive pairs
based on semantic relations (R2–R5).

• Instability of the loss function: Contrastive loss is highly sensitive to variations in τ . Al-
lowing τ to vary with each pair according to the similarity–dissimilarity factor may lead to
unstable gradients, particularly when the factor approaches 0.

• Theoretical inconsistency: Since Ks
i,pKd

i,p ∈ [0, 1] but τ ̸= 0 by definition, scaling τ by
this factor is mathematically problematic.

A.2 CHOICE OF DISSIMILARITY PENALTY FUNCTION

Motivation for Using Kd(x) = 1
1+x .

The dissimilarity factor is intended to softly penalize positive samples that contain additional labels
not present in the anchor. Our goals in selecting the function Kd(x) = 1

1+x were to ensure the
following properties:

• Boundedness: The function maps dissimilarity to the closed interval (0, 1], which ensures
that the contrastive weight remains numerically stable during training.

• Monotonic decay: As dissimilarity increases (x ↑), the penalty decreases smoothly, dis-
couraging high-variance positives from dominating the loss.

• No hyperparameter sensitivity: The function is parameter-free, making it robust across
datasets without the need to tune decay rates or thresholds.

These properties collectively ensure stable gradients, interpretability, and alignment with the goal of
penalizing semantically distant positives without completely discarding them.

Comparison to exponential decay function Kd = exp(−αx):
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• While this offers a sharper decay, it introduces a sensitive hyperparameter α

• For small values of x, the decay may be too aggressive or too mild depending on α, making
behavior inconsistent across datasets with different label cardinalities.

• It can result in vanishing gradients for large x, reducing the contribution of moderately
dissimilar positives more than desired.

Simplicity, Interpretability, and Compatibility. The chosen form Kd(x) = 1
1+x offers several

advantages:

• Simplicity: no tuning required;

• Smoothness: continuous, differentiable, non-zero everywhere. Because x ≥ 0 and 1
1+x is

only non-differentiable when x = −1.

• Compatibility with our similarity term Ks, which also scales linearly in set cardinality.

Together, the similarity-dissimilarity factor Ks
i,pKd

i,p maintains closed-form interpretability, avoids
numerical instability, and allows for clean theoretical analysis, as seen in Theorems 1–5.

B THEOREM PROOFS

B.1 PROOF OF THEOREM 1

Theorem 1. Let Ks
m and Kd

m be the Similarity and Dissimilarity operators, respectively, as defined
in Eq. (14) and (15). For the case m = 1, their product vanishes:

Ks
mKd

m = 0, when m = 1 (19)

Proof. Consider the case where m = 1. By definition, we have S ∩ T = ∅. This implies:

|ỹs
p| = |S ∩ T | = |∅| = 0

∴ Ks
1 =

|ỹs
p|

|ỹi|
=

0

|ỹi|
= 0

Since Ks
1 = 0 and Kd

1 is finite by construction, we conclude:

Ks
1Kd

1 = 0 · Kd
1 = 0 (27)

B.2 PROOF OF THEOREM 2

Theorem 2. Consider the Similarity operator Ks
m and Dissimilarity operator Kd

m as defined in Eq.
(14) and (15). For the case m = 2, their product equals unity:

Ks
mKd

m = 1, when m = 2 (20)

Proof. Consider the case where m = 2. By hypothesis, we have S = T . This equality implies:

Ks
2 =

|S ∩ T |
|S|

=
|S|
|S|

= 1

Kd
2 =

1

1 + |T \ (S ∩ T )|
=

1

1 + |∅|
= 1

where we have used the fact that T \ (S ∩ T ) = ∅ when S = T . Thus, we conclude:

Ks
2Kd

2 = 1 · 1 = 1 (28)
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B.3 PROOF OF THEOREM 3

Theorem 3. Let Ks
m and Kd

m be the Similarity and Dissimilarity operators as defined in Eq. (14)
and (15), respectively. For m ∈ {3, 4, 5}, their product is strictly bounded between 0 and 1:

0 < Ks
mKd

m < 1 (21)

Proof. Consider m ∈ {3, 4, 5}. Under these cases, we have:

S ∩ T ̸= ∅ (29)
S ̸= T (30)

We first establish the strict positivity. Given |S| > 0 and conditions 29-30, we have:

Ks
m =

|S ∩ T |
|S|

> 0

Kd
m =

1

1 + |T \ (S ∩ T )|
> 0

For the upper bound, we consider three cases:

Case 1 (m = 3): By Equation 10, we have three conditions: S ∩T ̸= ∅, S ⊈ T , and T ⊈ S. These
conditions lead to:

|S ∩ T | < |S| =⇒ Ks
3 < 1

|T \ (S ∩ T )| > 0 =⇒ Kd
3 < 1

Therefore, Ks
3Kd

3 < 1.

Case 2 (m = 4): When m = 4, by Equation 11, we have S ⊇ T . This subset relation implies:

Ks
4 =

|S ∩ T |
|S|

=
|T |
|S|

< 1

Kd
4 =

1

1 + |T \ (S ∩ T )|
=

1

1 + |∅|
= 1

where the strict inequality Ks
4 < 1 follows from |T | < |S| (since S ⊋ T ), and Kd

4 = 1 is a
consequence of T \ (S ∩ T ) = ∅ when S ⊋ T . Therefore:

Ks
4Kd

4 = Ks
4 · 1 = Ks

4 < 1

Case 3 (m = 5): When m = 5, by Equation 12, we have S ⊊ T . This subset relation implies:

Ks
5 =

|S ∩ T |
|S|

=
|S|
|S|

= 1

Kd
5 =

1

1 + |T \ (S ∩ T )|
=

1

1 + |T \ S|
< 1

where Ks
5 = 1 follows from the fact that S ∩ T = S when S ⊊ T . The strict inequality Kd

5 < 1
holds because:

S ⊊ T =⇒ |T \ S| > 0

=⇒ 1 + |T \ S| > 1

=⇒ 1

1 + |T \ S|
< 1

Therefore, we can conclude:
Ks

5Kd
5 = 1 · Kd

5 = Kd
5 < 1

Combining the results with Propositions 1 and 2, we obtain complete ordering for all m ∈
{1, 2, 3, 4, 5}. The products Ks

mKd
m satisfy:

0 = Ks
1Kd

1 < Ks
mKd

m < Ks
2Kd

2 = 1, m ∈ {3, 4, 5} (31)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 PROOF OF THEOREM 4

Theorem 4. Let i ∈ I be a fixed anchor sample, and let p3, p4 ∈ P(i) be positive samples cor-
responding to relations R3 and R4, respectively. Suppose their label spaces satisfy the cardinality
constraint:

|ỹp3
| = |ỹp4

| (22)
Then, the product of similarity and dissimilarity operators satisfies the strict inequality:

Ks
4Kd

4 > Ks
3Kd

3 (23)

Proof. Let us establish the strict inequality Ks
4Kd

4 > Ks
3Kd

3 through direct comparison. From defi-
nitions 14 and 15, we have:

Ks
4Kd

4 =
|ỹp4

|
|ỹi|

> Ks
3Kd

3 =
|ỹp3 − ỹd

p3
|

|ỹi|
· 1

1 + |ỹd
p3
|

⇒
|ỹp4

|(1 + |ỹd
p3
|)

|ỹi|(1 + |ỹd
p3
|)

>
|ỹp4

− ỹd
p3
|

|ỹi|(1 + |ỹd
p3
|)

⇒
|ỹp4

|(1 + |ỹd
p3
|) > |ỹp3

− ỹd
p3
|

By the cardinality constraint 22 in the theorem:

|ỹp3 |(1 + |ỹd
p3
|) > |ỹp3 − ỹd

p3
|

where the strict inequality follows from the fact that for any positive real numbers a, b > 0:

a(1 + b) > a− b

This inequality holds trivially, thereby establishing the original claim Ks
4Kd

4 > Ks
3Kd

3 .

B.5 PROOF OF THEOREM 5

Theorem 5. Let i ∈ I be a fixed anchor sample, and let p3, p5 ∈ P(i) be positive samples corre-
sponding to relations R3 and R5, respectively. Suppose:

|ỹd
p5
| ≤ |ỹd

p3
| (24)

Then, the product of Similarity and Dissimilarity operators satisfies the strict inequality:

Ks
5Kd

5 > Ks
3Kd

3 (25)

Proof. From definitions 14 and 15, we have:

Ks
3Kd

3 =
|ỹp3 − ỹd

p3
|

|ỹi|
· 1

1 + |ỹd
p3
|

Ks
5Kd

5 =
1

1 + |ỹd
p5
|

Taking the ratio:
Ks

5Kd
5

Ks
3Kd

3

=
|ỹi|(1 + |ỹd

p3
|)

|ỹp3
− ỹd

p3
|(1 + |ỹd

p5
|)

By the properties of cardinality and set difference:

|ỹp3
− ỹd

p3
| ≤ |ỹi|

Given the constraint 24, |ỹd
p5
| ≤ |ỹd

p3
|, we have:

|ỹi|(1 + |ỹd
p3
|)

|ỹp3
− ỹd

p3
|(1 + |ỹd

p5
|)

> 1

Therefore, Ks
5Kd

5 > Ks
3Kd

3 .
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C COMPUTING COST ANALYSIS

The key computation in all supervised contrastive loss functions, including ours, is the similarity
between representations and the size of the positive set P(i) for each anchor i. All methods share
the same core structure:

Li =
−1

|P(i)|
∑

p∈P(i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)

Our method introduces a reweighting factor Ks
i,pKd

i,p ∈ [0, 1] only in the numerator of the positive
terms:

Lour
i =

−1

|P(i)|
∑

p∈P(i)

log
Ks

i,pKd
i,p exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)

Importantly:

• The denominator (negative set) is unchanged across ALL, ANY, MulSupCon, and our
method.

• The positive set P(i) for our method is structurally identical to ANY, typically larger than
ALL but smaller or equal to MulSupCon, which forms multiple sets.

• The computation of Ks
i,p = |S∩T |

|S| and Kd
i,p = 1

1+|T \(S∩T )| involves simple set operations
on one-hot label vectors, which are efficient and linear in the number of labels.

• No additional encoder forward passes or model parameters are introduced.

Empirically, memory and runtime cost for the Similarity-Dissimilarity Loss:

• Does not increase memory usage, as it does not alter the encoder architecture or increase
feature dimensionality.

• Adds minimal runtime cost, primarily due to lightweight scalar computations per positive
pair (i.e., computing Ks

i,pKd
i,p).

In contrast, methods like MulSupCon may require repeated label-wise positive sets and multiple
forward loss computations per label, depending on implementation. Thus, our method maintains
comparable or better efficiency while offering a more principled weighting mechanism.

D DATASETS AND METRICS

To rigorously evaluate the efficacy of our proposed loss function, we conducted comprehensive ex-
periments across three distinct data modalities: visual data, textual data, and specialized medical
corpus data (MIMIC datasets). The MIMIC datasets are particularly noteworthy for their excep-
tionally large label space and pronounced long-tailed distributions (Huang et al., 2024a). This long-
tailed characteristic, which is especially prevalent in multi-label classification scenarios, facilitates
a robust assessment of the performance of our loss function across heterogeneous data distributions.
Comprehensive statistical analyses of all experimental datasets are presented in Table 2.

• MS-COCO (Microsoft Common Objects in Context) (Lin et al., 2014) consists of over
330,000 images annotated across 80 object categories, providing rich semantic information
for object detection, segmentation, and captioning tasks that has significantly advanced
computer vision research since its introduction by Microsoft.

• PASCAL VOC (Everingham et al., 2010) contains 9,963 natural images with standardized
annotations spanning 20 object categories, enabling rigorous evaluation of classification
(Huang et al., 2019), detection, and segmentation algorithms in computer vision.

• NUS-WIDE (Chua et al., 2009) is a large-scale web image collection comprising approx-
imately 269,000 Flickr images annotated with 81 concept categories and user tags, widely
used as a benchmark for multi-label image classification.
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Table 2: Statistics of datasets.

Dataset Train Val Test Total # labels Avg # labels

MS-COCO 82.0k 20.2k 20.2k 80 2.9
PASCAL 5.0k 2.5k 2.5k 20 1.5
NUS-WIDE 125.4k 41.9k 41.9k 81 2.4

AAPD 37.8k 6.7k 11.3k 54 2.4

MIMIC-III-Full 47,723 1,631 3,372 8,692 15.7
MIMIC-III-50 8,066 1,573 1,729 50 5.7
MIMIC-IV-ICD9-Full 188,533 7,110 13,709 11,145 13.4
MIMIC-IV-ICD9-50 170,664 6,406 12,405 50 4.7
MIMIC-IV-ICD10-Full 110,442 4,017 7,851 25,230 16.1
MIMIC-IV-ICD10-50 104,077 3,805 7,368 50 5.4

• AAPD (Arxiv Academic Paper Dataset) (Yang et al., 2018) is a text corpus containing
55,840 scientific paper abstracts from arXiv with multi-label annotations across various
subject categories, designed specifically for benchmarking multi-label text classification
and document categorization algorithms.

• MIMIC-III 6 (Johnson et al., 2016) includes records labeled with expert-annotated ICD-9
codes, which identify diagnoses and procedures. We adhere to the same splits as in previous
works (Mullenbach et al., 2018), employing two settings: MIMIC-III-Full, which includes
all ICD-9 codes, and MIMIC-III-50, which includes only the 50 most frequent codes.

• MIMIC-IV 7 (Johnson et al., 2020) contains records annotated with both ICD-9 and ICD-
10 codes, where each code is subdivided into sub-codes that often capture specific cir-
cumstantial details. we follow prior studies (Nguyen et al., 2023) and utilize four set-
tings: MIMIC-IV-ICD9-Full, MIMIC-IV-ICD9-50, MIMIC-IV-ICD10-Full, and MIMIC-
IV-ICD10-50.

Metrics. Consistent with prior research (Mullenbach et al., 2018; Nguyen et al., 2023), we report
macro/micro-AUC, macro/micro-F1, and precision at K (P@K) metrics on MIMIC datasets, where
K = {5, 8} for different settings. Moreover, micro/macro-F1 and mAP are used for image datasets
following (He et al., 2020; Zhang & Wu, 2024; Audibert et al., 2024).

E BASELINE LOSS FUNCTIONS AND ENCODERS

This study evaluates the proposed Similarity-Dissimilarity Loss in comparison with three estab-
lished baseline loss functions: (i) ALL, (ii) ANY, and (iii) MulSupCon (Zhang & Wu, 2024), all
implemented within the MSCL framework.

For experimental evaluation, we employ modality-specific encoder architectures tailored to each
data type. For image data, ResNet-50 (He et al., 2016) serves as the encoder architecture, consistent
with established previous studies (He et al., 2020; Chen et al., 2020; Zhang & Wu, 2024), which is a
main and common encoder in previous works. For textual data, we utilize pre-trained large language
models (LLMs), specifically RoBERTa-base (Liu et al., 2019) and Llama-3.1-8B (Grattafiori et al.,
2024) with Low-Rank Adaptation (LoRA) (Hu et al., 2022). Additionally, for the specialized task of
ICD coding on MIMIC datasets, we implement PLM-ICD (Huang et al., 2022), a model specifically
designed for ICD coding using LLMs.

6We are granted access to MIMIC-III Clinical Database (v1.4)
7We are granted access to MIMIC-IV (v2.2)
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F IMPLEMENTATION DETAILS

Within the MSCL framework, we implement a two-phase training method as established by Khosla
(Khosla et al., 2020): (i) encoder training, wherein the model learns to generate vector representa-
tions that maximize similarity between instances of the same class while distinguishing them from
other classes; and (ii) classifier training, which utilizes the trained encoder and freeze it to train the
classifier. All the experiments are conducted on 2 × Nvidia A6000 48GB.

In the representation training, we use a standard cosine learning rate scheduler with a 0.05 warm-
up period and set the temperature τ = 0.07. The projection head comprises two MLP layers with
ReLU activation function and employs contrastive loss function for the training, where the projected
representation zk = Proj(Enc(x̃k)) ∈ RDP . Here h = Enc(x̃k) denotes the encoded feature
vectors and the projection dimension DP = 256. For subsequent classifier training, the projection
head is removed, a linear layer is appended to the frozen encoder, and binary cross-entropy (BCE)
loss is utilized for optimization.

For image data, we employ ResNet-50 using stochastic gradient descent (SGD) with momentum.
The input images are set up at a resolution of 224 × 224 pixels. For text data, RoBERTa-base
and Llama-3.1-8B serve as backbone encoders implemented via Huggingface platform (Wolf et al.,
2020). RoBERTa configures with a dropout rate of 0.1 and AdamW optimizer with a weight decay of
0.01, exempting bias and LayerNorm from weight decay. Compared with full-parameter fine-tuning,
we employ LoRA (Hu et al., 2022) to efficiently fine-tune large model Llama. LoRA configures with
the low-rank dimension r = 16, scaling factor α = 32 and dropout as 0.1. There is no KV cache to
save memory during training. To enhance computational efficiency, BFloat16 precision is used for
the training. The hyperparameters and detailed configuration are shown our code. 8

G MORE EXPERIMENT RESULTS AND ANALYSIS

G.1 DETAILED RESULTS AND ANALYSIS ON IMAGE

The experimental results in Table 1 demonstrate that our proposed loss function outperforms base-
lines across all metrics, including micro-F1, macro-F1, and mAP, on all image datasets (MS-COCO,
PASCAL, and NUS-WIDE). Compared to MulSulCon, our method achieves significant improve-
ments of 2.07/3.78/1.51 in micro-/macro-F1/mAP on MS-COCO and 1.47/3.13/4.27 on NUS-
WIDE.

Figure 2a illustrates the comparison between Similarity-Dissimilarity Loss and MulSupCon as mea-
sured by micro- and macro-F1 metrics. The results indicate that our method yields substantially
greater improvements in macro-F1 compared to micro-F1 across all image datasets. Specifically,
macro-F1 increases by 5.7% on MS-COCO and 5.8% on NUS-WIDE, whereas micro-F1 exhibits
more modest improvements of 2.9% and 2.0%, respectively. Macro-F1 assigns equal importance
to each class regardless of its frequency, rendering it particularly appropriate for evaluating perfor-
mance on imbalanced datasets where minority class prediction accuracy is critical (LeCun et al.,
2015; Zhang et al., 2023). In contrast, micro-F1 places more considerable weight on classes with
more samples, making it more appropriate when larger classes should have a more potent influence
on the overall score (LeCun et al., 2015; Lin et al., 2017). Multi-label classification inherently faces
more pronounced challenges with long-tailed distributions than single-label classification due to ex-
ponential output space complexity, intricate label co-occurrence patterns, and high annotation costs
(Zhang et al., 2023). The observed superior improvement in macro-F1 metrics provides compelling
evidence that our method demonstrates exceptional efficacy in addressing long-tailed distribution
challenges, a capability particularly crucial in multi-label scenarios.

However, on the PASCAL dataset, our method demonstrates mere marginal improvements, with
gains of 0.88/0.84/0.17 in micro/macro-F1/mAP, respectively. This limited enhancement can be
attributed to the structural characteristics of PASCAL, wherein the average number of labels per
instance is approximately 1.5 (as detailed in Table 2), causing the task to approximate single-label
classification, particularly when the batch size is limited (Khosla et al., 2020). Consequently, loss
functions specifically designed for multi-label scenarios exert minimal influence on model perfor-

8https://github.com/anonymous/similarity-dissimilarity-loss
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mance under these conditions. As Audibert et al. (2024) have demonstrated, the cardinality of the
label space constitutes a significant determinant of model efficacy within MSCL .

Furthermore, Figure 2b reveals that the standard deviation across four methods for PASCAL equals
0.58/0.64/0.27 in micro/macro-F1/mAP, which are considerably lower than the corresponding stan-
dard deviations observed for the MS-COCO and NUS-WIDE. This statistical finding suggests that
the efficacy of specialized multi-label loss functions diminishes significantly when the average la-
bel cardinality per instance approaches 1 in MSCL. This finding further corroborates our theoreti-
cal analysis and hypothesis in the Section 2, wherein Similarity-Dissimilarity Loss degenerates to
single-label scenarios (see Equation 17).

G.2 EVALUATION ON TEXT

We further evaluate our method on general text data, and the results demonstrate that our pro-
posed loss function consistently surpasses baseline methods for both RoBERTa and Llama models
across all metrics on the AAPD dataset (See Table 3). In contrast to the significant performance
gains observed on image data, Similarity-Dissimilarity Loss achieves more modest enhancements
of 0.90/1.79 in micro/macro-F1 scores on RoBERTa, and 0.89/1.84 on Llama. This attenuated
performance differential can be attributed to the extensive knowledge already encoded within LLMs
through their comprehensive pre-training paradigms (Yang et al., 2024).

Moreover, as illustrated in Figure 3, performance variations of contrastive loss functions for MSCL
on both RoBERTa and Llama models are relatively minimal. Specifically, the standard deviations
in micro-F1 are 0.80 and 0.79 on RoBERTa and Llama, respectively, while the corresponding stan-
dard deviations for macro-F1 metrics are 1.41 and 1.42. Unlike image classification in MSCL
paradigm, performance improvements in text classification are predominantly attributable to the in-
trinsic representational capabilities of model architecture of LLMs. Consequently, while fine-tuning
the pre-trained weights of LLMs during the contrastive learning phase can yield marginal perfor-
mance improvements, this methodological approach demonstrates substantially greater efficacy for
visual classification tasks compared to textual classification.

Table 3: Results on AAPD Dataset. We compare our proposed Similarity-Dissimilarity Loss with
baselines on general text data using RoBERTa-based and Llama-3.1-8B models

Method
RoBERTa Llama

Micro-F1 Macro-F1 Micro-F1 Macro-F1

ALL 73.23 59.41 74.32 60.47
ANY 72.31 58.55 73.41 59.63
MulSupCon 73.64 60.52 74.72 61.58
Ours 74.54 62.31 75.61 63.42

RoBERTa Llama
72.0

72.5

73.0

73.5

74.0
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 = 0.80

 = 0.79

Micro-F1

RoBERTa Llama
58

59

60
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Figure 3: Comparison of RoBERTa and Llama across micro- and macro-F1 on AAPD Dataset.
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G.3 EVALUATION ON MEDICAL DOMAIN

We extend and evaluate our method on the medical domain, specifically for ICD coding. The re-
sults in Tables 4 and 4 demonstrate that our proposed loss function consistently surpasses base-
lines across all metrics in a comprehensive evaluation, considering: (i) Diverse data distribution:
full setting (long-tailed distribution) and top-50 frequent labels setting; (ii) Model architectures:
RoBERTa, LLaMA, and domain-specialized PLM-ICD; and (iii) ICD code versions: ICD-9 and
ICD-10. The consistent performance improvements observed across these multidimensional eval-
uation criteria provide substantial empirical evidence for the efficacy and generalizability of our
proposed approach.

In the full setting, macro-F1 performance exhibits considerably lower compared to micro-F1,
whereas the top-50 setting achieves approximately equal macro and micro-F1 scores. This disparity
indicates that extreme long-tailed distributions remain challenging for both the MSCL framework
and our method, despite the improvements achieved.

Table 4 reports that our method achieves superior results on MIMIC-IV-ICD9-Full compared to
MIMIC-III-Full, despite both datasets employing identical ICD-9 coding standards. This marked
performance differential can be attributed primarily to the more extensive training corpus avail-
able in MIMIC-IV-ICD9-Full (see in Table 2). While MIMIC-IV-ICD10-Full similarly comprises
a substantial volume of clinical data, its considerably expanded label taxonomy introduces in-
creased representational sparsity and presents additional computational and methodological chal-
lenges (Nguyen et al., 2023). Moreover, the MIMIC-IV-ICD10-50 dataset demonstrates consistent
performance metrics in this restricted setting, providing empirical evidence that label space dimen-
sionality constitutes a critical determinant of model training efficacy.

Comparative analysis of model performance reveals that Llama significantly outperforms RoBERTa
across evaluation metrics, a finding attributable to scaling laws of LLMs and the extensive knowl-
edge and training corpus during the pre-training phase (Kaplan et al., 2020; Bahri et al., 2024; Huang
et al., 2024b). Although LLMs demonstrate considerable efficacy in domain-specific applications
(Nori et al., 2023), our results indicate that PLM-ICD consistently surpasses both RoBERTa and
Llama across all experimental configurations. This hierarchical performance pattern aligns with
theoretical expectations, as PLM-ICD incorporates architecture and training paradigms specifically
optimized for automated ICD coding tasks (Huang et al., 2022). Despite the increasing generaliza-
tion capabilities of foundation models in diverse applications, significant questions persist regarding
their capacity to achieve state-of-the-art performance on highly specialized tasks, particularly within
the medical domain, without substantial domain-specific training or parameter-efficient adaptation
techniques (Saab et al., 2024). Contemporary research on foundation model applications in biomed-
ical domain has predominantly relied on specialized adaptation methods tailored to specific domain
requirements. The comparative advantages of domain-specific pre-training becomes particularly ev-
ident following the development of initial foundation model architectures, as exemplified by widely
implemented medical models such as Med-PaLM (Singhal et al., 2023) and Med-Gemini(Saab et al.,
2024).

Therefore, compared with the enhancements via the contrastive training phase, the intrinsic knowl-
edge within LLMs contributes substantially more to ICD coding efficacy. In particular, domain-
specific knowledge representations emerge as critical factors of LLMs performance in medical ap-
plications.

H ADDITIONAL DISCUSSION OF RELATED WORK

Multi-label classification presents significant challenges due to its inherent label correlations, ex-
treme and sparse label spaces, and long-tailed distributions. For instance, in the International Clas-
sification of Diseases (ICD) (Edin et al., 2023; Ji et al., 2024), the presence of one label (e.g.,
”Pneumococcal pneumonia”) may increase the probability of co-occurring labels (e.g., ”fever” or
”cough”). Furthermore, multi-label datasets frequently exhibit long-tailed distributions, where a
small subset of labels occurs with high frequency while the majority appear rarely. This imbal-
ance typically results in models that perform adequately on common labels but underperform on
infrequent ones (Zhang et al., 2023; Huang et al., 2023; Wang et al., 2024a). Additionally, the num-
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Table 6: Comparison with previous state-of-the-art methods. MRR and AKIL rely on DRG codes,
CPT codes, and medications, which are manually annotated for each sample by human coders. These
methods are included for reference, although a direct comparison with our approach is not strictly
fair. Our method adopts the MSCL framework with Similarity–Dissimilarity Loss and a PLM-ICD
encoder.

Models AUC F1 P@8
Macro Micro Macro Micro

CAML (Mullenbach et al., 2018) 89.5 98.6 8.8 53.8 70.9
MSATT-KG (Xie et al., 2019) 91.0 99.2 9.0 55.3 72.8
MSMN (Yuan et al., 2022) 95.0 99.2 9.4 58.4 75.2
KEPTLongformer (Yang et al., 2022) - - 11.8 59.9 77.1
PLM-ICD (Huang et al., 2022) 92.6 98.9 10.4 59.8 77.1
PLM-CA (Edin et al., 2024) 91.6 98.9 8.9 57.3 74.5
CoRelation (Luo et al., 2024) 95.2 99.2 10.2 59.2 76.2
GKI-ICD (Zhang et al., 2025) 96.2 99.3 12.3 62.3 77.7
Our 94.5 99.4 12.5 62.3 78.4
MRR (Wang et al., 2024b) 94.9 99.5 11.4 60.3 77.5
AKIL (Wang et al., 2024c) 94.8 99.4 11.2 60.6 78.4

ber of potential label combinations increases exponentially with the number of labels, resulting in
heightened computational complexity and substantial memory requirements.

Contrastive learning aims to learn a representation of data such that similar instances are close
together in the representation space, while dissimilar instances are far apart. Compared to self-
supervised contrastive learning, such as SimCLR (Chen et al., 2020) and MoCo (He et al., 2020),
Khosla et al. (2020) proposed supervised contrastive learning, which fully leverages class anno-
tation information to enhance representations within the contrastive learning framework. Recent
studies have extended supervised contrastive learning from single-label to multi-label scenarios by
exploiting the additional information inherent in multi-label tasks. Zhang et al. (2022) proposed a
hierarchical multi-label representation learning framework specifically designed to utilize compre-
hensive label information while preserving hierarchical inter-class relationships.

In subsequent research, Zhang & Wu (2024) developed Multi-Label Supervised Contrastive Learn-
ing (MulSupCon), featuring a novel contrastive objective function that expands the positive sample
set based on label overlap proportions. Similarly, the Jaccard Similarity Probability Contrastive
Loss (JSPCL) (Lin et al., 2023) employed the Jaccard coefficient (Jaccard, 1912) to calculate label
similarity between instances, sharing conceptual foundations with MulSupCon (Zhang & Wu, 2024)
and MSC loss (Audibert et al., 2024) that those approaches primarily focus on similarity only, but
ignoring dissimilarity.

Despite these advancements, the intricate relationships and dependencies between multi-label sam-
ples have yet to be fully elucidated. To address this gap, we introduce multi-label relations and
formalize the concepts of similarity and dissimilarity. Inspired by the idea of re-weighting of logit
adjustment (Menon et al., 2021), focal loss (Lin et al., 2017) and class-balanced loss (Cui et al.,
2019), we leverage the similarity and dissimilarity factors to re-weight the contrastive loss, thereby
enhancing discriminative power in multi-label scenarios.

I LIMITATIONS

Our experimental analysis on the PASCAL dataset reveals a crucial insight: the significant advan-
tages of the proposed method appear primarily in multi-label dense scenarios. On PASCAL, where
the average number of labels per instance is only approximately 1.5, the observed performance im-
provements are marginal compared to datasets such as MS-COCO or NUS-WIDE, which exhibit
richer multi-label structures. This outcome is consistent with the theoretical underpinnings of our
approach.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The limited gains can be attributed to the structural characteristics of PASCAL. With relatively
few labels per instance, the task effectively reduces to a near single-label classification problem,
particularly under constrained batch sizes. As demonstrated in Equation 17, under such conditions
the proposed Similarity–Dissimilarity Loss degenerates to the standard supervised contrastive loss,
thereby diminishing the benefit of re-weighting.

More broadly, in datasets with low label cardinality, the scarcity of relational diversity limits the
expressiveness of our framework. Consequently, the advantages of dynamically re-weighted con-
trastive objectives become less pronounced, underscoring the dependence of our method on datasets
that exhibit complex and diverse multi-label interactions.

J THE USE OF LLMS STATEMENT

We use LLMs for spelling, grammar and typo checking.

27


	Introduction
	Methods
	Preliminaries
	Multi-label Supervised Contrastive Loss
	Multi-label Relations
	Similarity-Dissimilarity Loss
	A Unified Form of Supervised Contrastive Loss

	Case Analysis
	Theoretical Analysis
	Re-weighting Mechanism

	Experiments and Results
	Evaluation on Image
	Evaluation on Text and Medical Domain

	Conclusion
	Appendix
	Further Explanation of Similarity-Dissimilarity Loss
	Explanation of Scaling Temperature
	Choice of dissimilarity penalty function

	Theorem Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Computing Cost Analysis
	Datasets and Metrics
	Baseline Loss Functions and Encoders
	Implementation Details
	More Experiment Results and Analysis
	Detailed Results and Analysis on Image
	Evaluation on Text
	Evaluation on Medical Domain

	Additional Discussion of Related Work
	Limitations
	The Use of LLMs Statement


