
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEATURE OVERLAPPING: THE COMPUTATIONAL
REDUNDANCY CAUSED BY REPEATED FEATURES
ACROSS DIFFERENT TIME STEPS IN SNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking neural networks (SNNs) have the potential advantage of building large-
scale energy-efficient network. However, the high training cost caused by mul-
tiple time steps currently limits the application of SNNs. To address this, we
break away from the traditional approach of reducing the number of time steps
and investigate feature redundancy between time steps. By jointly unfolding the
computational process of SNNs across both temporal and spatial dimensions, we
are the first to discover the Feature Overlapping Phenomenon, providing new in-
sights for improving SNNs training paradigms. Our Temporal Differential Decou-
pling (TDD) method successfully separates dynamic and static features, reducing
redundant computations. By transforming the feature space into the differential
domain, it addresses the issue of the original computational domain’s inability to
effectively filter sensitive information. In the differential domain, we propose the
Gradient Sensitivity Criterion (GSC), which helps further reduce training costs
and avoids the loss of important feature information. This paper introduces the
Differential Domain Low-Sparsity Approximation (DDLA) algorithm, which sig-
nificantly reduces computational resource consumption while maintaining com-
putational accuracy by adjusting the filtering ratio. Experimental results show that
we achieved up to an 80.9% reduction in the number of spikes per timestep and a
total spike count reduction of up to 57.8%, significantly reduce the inference cost
of SNNs.

1 INTRODUCTION

Spiking Neural Networks (SNNs) process all spiking events to process and represent information,
offering advantages such as low power consumption and high biological fidelity compared to Arti-
ficial Neural Networks (ANNs) Allen et al. (2009); Guo et al. (2017). As a third-generation neural
network model, they have garnered widespread attention Kasabov & Capecci (2015); Zhang et al.
(2013). However, existing SNN networks rely on rate coding to encode features into spike se-
quences, compensating for quantization errors through joint expectations over multiple time steps
Yang et al. (2021). This results in computational cost that increases exponentially with the number
of time steps, posing significant challenges for inference and training in large-scale networks, which
hinders the application of SNNs.

Currently, to address the issue of high computational cost over time steps, existing work primarily
focuse on reducing the number of time steps. Li et al. Li et al. (2023) proposed SEENN-I and
SEENN-II, which explore fine-grained adjustments to the number of time steps during the inference
phase. Yao et al. Kim et al. (2023) studied the dynamics of temporal information, redistributing
time information to achieve delay-adaptive decision-making. However, these works mainly focus
on reducing the number of time steps through dynamic configuration Shen et al. (2024). Given
that the current SNNs already operate within five time steps, further reducing time steps results in
a significant loss of accuracy. Therefore, we believe that to address the high computational cost
of large-scale SNNs, the solution should not be to directly reduce time steps but rather to focus on
whether there is redundancy between time steps.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Through experiments, we found that between consecutive time steps, due to weight sharing and
identical image encoding, the firing patterns of neurons are often very similar. This led us to the
following thought:

• Are there redundant features in the multiple time steps of an SNN?

• How can we decouple effective features and redundant features?

• How can we reduce the computation associated with redundant features?

We present a frst-of-its-kind study to discover that certain feature information in the same time
sequence repeatedly appears across time steps, a phenomenon we define as ”feature shadowing”.
Previous works focus only on feature encoding and information representation capabilities. Due to
the inability to decouple redundant features, they believe that indiscriminate parallel computation
across multiple time steps is necessary for rate coding. Through clever Temporal Differential De-
coupling (TDD), we discover feature repetition and achieve redundancy separation. This provides
new possibilities for handling challenge of high training and inference costs in large-scale SNNs.

We propose the TDD method, which effectively decouples dynamic and static features. The features
vary with the time steps, are defined as dynamic features, representing the information gain for the
current time step. Transforming the feature space into the differential domain, making it possible
to filter out key features. In the original computational domain, crucial dynamic information could
be overlooked due to interference from static features. However, in the differential domain, sensi-
tive features are clearly identified, which avoids the negative impact of irrelevant features on result
accuracy. We propose the Gradient Sensitivity Criterion (GSC) to filtering Sensitivity Features.
Based on TDD and GSC, we propose Differential Domain Low-sparsity Approximation (DDLA)
algorithm. By adjusting the filtering ratio, our algorithm is possible to achieve any desired level of
computational precision while dramatically lowering the consumption of computational resources.

Our contributions are summarized as follows:

1. We are the first to discover the Feature Overlapping Phenomenon, which not only reveals
the issue of computational redundancy in SNN training paradigms but also provides new
insights for improving computational efficiency.

2. Temporal Differential Decoupling method effectively decouples dynamic and static fea-
tures by transforming the feature space into the differential domain, which allows for better
filtering of key features. We propose Differential Domain Low-sparsity Approximation al-
gorithm, which significantly reduces computational resource consumption while ensuring
computational precision.

3. We validated the effectiveness of our approach through comprehensive testing on both static
and event-based datasets across various network architectures. While ensuring accuracy
comparable to baseline models, we achieved up to an 80.9% reduction in the number of
spikes per timestep and a total spike count reduction of up to 57.8%, significantly enhancing
computational efficiency.

2 RELATED WORK

2.1 ANN-TO-SNN CONVERSION

The ANN-to-SNN conversion is a widely used method for obtaining SNNs by leveraging pre-trained
ANNs Ho & Chang (2021); Wang et al. (2024). This approach converts an ANN with ReLU acti-
vation functions into an SNN with spike-based activations, typically involving scaling the ANN’s
weights and biases to ensure compatibility with the spiking characteristics of SNNs Wang et al.
(2022). Conversion methods often include scaling operations, such as weight normalization and
threshold balancing, to better align the dynamic range of activations in SNNs with those in ANNs
Hwang & Kung (2024); Kundu et al. (2021). However, these conversion methods are challenged
by significant conversion errors and inference delays, which make it difficult to effectively handle
highly dynamic or deep neural network architectures.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 DIRECT TRAINING

Direct training of SNNs, without relying on pre-trained ANNs, has gained considerable attention
in recent years Lee et al. (2016); Yin et al. (2021), particularly for its advancements in reducing
time steps Bohte (2011), improving computational efficiency Sengupta et al. (2019), and enhancing
network performance Zheng et al. (2021). This approach typically involves using surrogate gradient
methods to overcome the challenges of gradient computation due to the discontinuity and non-
differentiability of spiking neurons Fang et al. (2021). Recent developments have made it possible
to achieve efficient training with fewer time steps by optimizing surrogate gradient, firing thresholds
and loss functions Fan et al. (2023). However, despite the reduction in time steps, the computational
cost per time step remains high. Reducing the computational cost is a critical focus for future
research.

2.3 DYNAMIC TIME STEP

The computational cost of SNNs increases exponentially due to their multiple steps processing of
spiking events Dominguez-Morales et al. (2018). To address this issue, current research has pri-
marily focused on two approaches: dynamically adjusting the number of time steps Li et al. (2023)
and dynamically redistributing temporal information Kim et al. (2023); Shen et al. (2024). Methods
that adjust the number of time steps aim to dynamically modify the time steps of SNNs based on
the characteristics of the input samples Meng et al. (2022). For example, SEENN-I uses confidence
scores, and SEENN-II employs a policy network to determine the inference time steps. Another
set of methods use Bayesian learning through deep ensembles or variational inference to aggregate
information across time steps. However, these approaches primarily focus on configuring time steps
and offer limited reductions in computational costs. We believe that, with the number of time steps
recently reduced to fewer than five, the focus should shift to targeting redundancy in computations
across time steps.

3 PRELIMINARY

In SNN, the membrane potential of Integrate-and-Fire(IF) neurons gradually changes based on the
input current it receives and the leaky characteristics of the membrane potential. The pre-activation
membrane potential of a neuron can be described as:

ũl(t) = ul(t− 1) +Wlsl−1(t) (1)

where ũl(t) denotes the pre-activation membrane potential of the neuron in l layer at time t, ul(t−1)
denotes the membrane potential of the neuron at the previous time step t−1, Wl denotes the synaptic
weight matrix between neurons in layer l− 1 and layer l, sl−1(t) denotes the spike from neurons in
layer at l − 1 time t, which is a binary value representing whether the neurons fired a spike (1) or
not (0).

When the membrane potential exceeds a certain threshold, the neuron fires a spike:

sl(t) = Hea (ũl(t)− Vth) (2)

where sl(t) denotes the spike output of the neuron in layer l at time t, which is a binary value. It
equals 1 if the neuron fires a spike and 0 if it does not. Hea(x) represents the Heaviside step func-
tion, determining whether the neuron fires a spike based on the difference between the membrane
potential and the threshold. Vth represents the firing threshold of the neuron.

The residual potential remaining after a neuron fires a spike can be described as:

ul(t) = ũl(t) (1− sl(t)) = ũl(t)− rl(t)sl(t) (3)

rl(t) =

{
ul(t) sl(t) = 1

0 sl(t) = 0
(4)

where ul(t) denotes the residual potential of the neuron in layer l at time t, rl(t) denotes the reset
potential of the neuron in layer l.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 1: Feature maps of SNN convolutional layers at different time steps. Figure (a) shows the
original image from the CIFAR-10 dataset, while Figures (b), (c), and (d) depict the feature maps
output by the first convolutional spiking layer at time steps t = 1, t = 2, and t = 3 during image
classification using ResNet-19 SNN. It can be observed that the feature maps at different time steps
are highly similar.

4 FEATURE OVERLAPPING PHENOMENON

Through experiments, we found that between adjacent time steps, due to weight sharing and similar
image encoding, the firing patterns of neurons are often very similar, as shown in figure 1. Given this
similarity, we hypothesize that there may be overlapping and redundant feature information across
different time steps.

In this section, we expand and derive the SNN computation process from both spatial and temporal
dimensions. Temporal Differential Decoupling (TDD) separate dynamic information from static
information. This leds to the discovery of the Feature Overlapping Phenomenon, which proves that
the current SNN training paradigm indeed contains computational redundancy.

4.1 TEMPORAL DIFFERENTIAL DECOUPLING

Figure 2: Illustration of the time-step unfolding process in SNN computation. This diagram demon-
strates the unfolding process of SNNs computation across time steps. The blue circles represent
neurons, with the first column depicting neurons with a IF mechanism. The orange arrows indicate
the transmission of signals between layers, while the green dashed lines show the flow of signals
across time steps.

From the spatial dimension, the core feature of information transmission between layers in SNN is
that each neuron’s output depends on the output of the previous layer and the accumulated residual

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

potential input from previous time steps. The output can be expressed as:

OT
l = F

(
fl
(
OT

l−1

)
+ UT−1

l

)
(5)

where Ot
l denotes the output of the neuron in layer l at time step t, U t−1

l denotes residual potential
from the previous time step t − 1, fl denotes the linear transformation applied to the output of the
previous layer, F is the nonlinear activation function.

From the temporal dimension, to capture the information about changes between time steps, the
output features at each time step are split into the overlapping part and the differential part. The
overlapping features, which do not change between two consecutive time steps, are defined as Static
Feature. The differential features represent those that change with the time steps and contribute to
the information gain at each time step, which we define as Dynamic Feature. The output can be
expressed as:

OT
l = OT−1

l︸ ︷︷ ︸
Static Feature

+ ∆T
l︸︷︷︸

Dynamic Feature

=

T∑
t=1

∆t
l (6)

where ∆t
l donates the diffierential part of the later time step relative to the previous time step.

Taking both the temporal and spatial dimensions into account, the neuron in layer l at time step t is
influenced by all the historical changes ∆T

l−1 passed from layer l − 1. Since fl is a linear function,
output can be expressed as:

OT
l = F

(
fl
(
OT

l−1

)
+ UT−1

l

)
= F

(
fl
(
O1

l−1

)
+ fl

(
∆2

l−1

)
+ fl

(
∆3

l−1

)
+ · · ·+ fl

(
∆T

l−1

)
+ U t−1

l

)
= F

(
T−1∑
t=1

fl
(
∆t

l−1

)
+ fl

(
∆t

l−1

)
+ U t−1

l

)
(7)

Here is an example of the computation process for l = 2 neurons of an SNN with t = 4, with and
without TDD, as shown in Table 1. The first equals sign represents the original SNN calculation
method, and the second equals sign shows the computation method after applying TDD.

Table 1: Time-step and feature component analysis in SNN computation process.

Output SNN computation model Feature overlapping part Feature
differential part

Residual
potential

O1
2 = F

(
f2
(
O1

1

))
= F (+f2

(
∆1

1

)
)

O2
2 = F

(
f2
(
O2

1

)
+ U1

2

)
= F

(
f2
(
∆1

1

)
+f2

(
∆2

1

)
+U1

2

)
O3

2 = F
(
f2
(
O3

1

)
+ U2

2

)
= F

(
f2
(
∆1

1

)
+ f2

(
∆2

1

)
+f2

(
∆3

1

)
+U2

2

)
O4

2 = F
(
f2
(
O4

1

)
+ U3

2

)
= F

(
f2
(
∆1

1

)
+ f2

(
∆2

1

)
+ f2

(
∆3

1

)
+f2

(
∆4

1

)
+U3

2

)
Ot

l = F
(
f2
(
Ot

l−1

)
+ U t−1

l

)
= F

(
f2
(
∆1

l−1

)
+ f2

(
∆2

l−1

)
+ f2

(
∆3

l−1

)
+ · · · +f2

(
∆t

l−1

)
+U t−1

l

)

4.2 DEFINITION OF FEATURE OVERLAPPING PHENOMENON

In the original SNN model, a full computation is performed at each time step to extract features
specific to that moment (i.e., the orange section of the table 1). Although each computation extracts
the feature information for that particular time step, due to weight sharing and the same input image,
there is significant overlap in the features extracted across different time steps. Performing an XOR
operation on the feature maps of two adjacent time steps defines the feature differential part (i.e., the
red section of the table 1), representing the change in features at the next time step relative to the
shifted features. This portion is the feature information that needs to be computed for the current
time step. Temporal feature components are often repeatedly calculated across multiple time steps
(i.e., the blue section of the table 1). These repeated computations do not introduce new information
but rather process the same information multiple times. We define this phenomenon as follows 1.
Definition 1. Let Ot

l represent the output feature map of layer l at time step t. Assume that this
feature map is generated from the input Ot−1

l and parameters Wl through the function f : Ot
l =

f
(
Ot−1

l ;Wl

)
. we define the feature difference between time steps t and t− 1 as ∆t

l = Ot
l ⊕Ot−1

l ,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Illustration of of the Differential Transformation in SNN. The left side shows the structure
of the SNN model and the temporal propagation of the input signals. The top right illustrates the
original feature sequence across different time steps (T=1 to T=4), where noticeable feature overlap-
ping occurs. The bottom right presents the image sequence after differential transformation, which
removes redundant features between time steps.

where⊕ represents XOR operation. Feature Overlapping occurs when, for certain l and t, the norm
of the difference ∆t

l is smaller than a certain threshold ϵ, i.e., ∥∆t
l∥ < ϵ, which indicates that there

is a significant overlap between the features at t and t− 1.

This phenomenon refers to the overlap or redundancy between neuron activities or features across
different time steps. For static features, the results from the previous time step can be directly
reused, thereby reducing the computation cost. Consequently, after transforming into the differen-
tial domain, the more zero elements in ∆t

l , the fewer dynamic features, and the more pronounced
the Feature Overlapping Phenomenon becomes, leading to a more effective reduction of redundant
computation through feature reuse.

The discovery of this new phenomenon reveals computational redundancy in the current SNN train-
ing paradigm, offering new insights for improving computational efficiency, adaptive computation,
and refining the training paradigm.

5 DIFFERENTIAL DOMAIN LOW-SPARSITY APPROXIMATION ALGORITHM

In the differential domain, zero elements have a clear meaning: they indicate no change between
adjacent time steps. After TDD, dynamic features focus on key changes rather than the absolute
values of the original features, avoiding ignoring crucial information about dynamic changes due to
interference from static features. Therefore, it is possible to directly assess which features have a
significant impact on the output, called Sensitive Features. Through sensitivity analysis, irrelevant or
less impactful features can be set to zero, further reducing the computational cost. This is especially
beneficial in resource-constrained systems, where it can significantly reduce power consumption and
latency.

5.1 GRADIENT SENSITIVITY CRITERION

Here, we propose the Gradient Sensitivity Criterion (GSC) for selecting sensitive features. Assum-
ing the selection of the top k sensitive features ∆′t

l = k∆t
l , it is necessary to minimize the error of

the loss function: ∣∣∆L (Ot
l

)∣∣ = ∣∣∣L (Ot
l |W

)
− L

(
O′t

l |W
)∣∣∣ (8)

where O′t
l represents the approximate value of the output, L(Ot

l) represents the loss function value
before sensitivity analysis and L(O′t

l |W) represents the loss function value after c certain features
to zero. The independence assumption during training helps in simplifying the optimization process,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

even though the true behavior of the network is more complex. Approximating L(O′t
l | W) with a

first-order Taylor polynomial near Ot
l,i = 0 based on the Taylor expansion method, we have:

L
(
O′t

l |W
)
= L

(
Ot

l |W
)
− δL

δOt
l,i

Ot
l,i +R1

(
Ot

l,i = 0
)

(9)

where R1

(
Ot

l,i = 0
)

is the first order remainder. By substituting Eq. 9 into Eq. 8 and ignoring the

remainder, we have ζ
(
Ot

l,i

)
: RH×W×T → R+:

ζ
(
Ot

l,i

)
=
∣∣∆L (Ot

l

)∣∣ = ∣∣∣∣∣L (Ot
l |W

)
− δL

δOt
l,i

Ot
l,i − L

(
Ot

l |W
)∣∣∣∣∣ =

∣∣∣∣∣ δL
δOt

l,i

Ot
l,i

∣∣∣∣∣ (10)

Finally, we propose the Gradient Sensitivity Criterion as follows.
Definition 2. Let the model’s output at time t be Ot

l,i, and the corresponding loss function be
L (Ot

l |W), where W are the parameters of the model. To measure the impact of an output fea-

ture Ot
l,i on the loss functionL (Ot

l |W), define the Gradient Sensitivity Criterion as: ζ
(
Ot

l,i

)
=∣∣∣ δL

δOt
l,i
Ot

l,i

∣∣∣
When a neuron’s gradient is large, it indicates that it has a stronger response to the task as a feature
detector and should be retained during inference. This criterion requires accumulating the gradients
of the features fed into the neuron at that moment, gradually selecting the features that contribute
most to the task, thereby optimizing network computation.

5.2 OVERALL ALGORITHM

We propose a novel Differential Domain Low Sparsity Approximation algorithm (DDLA) based on
TDD , complemented by GSC. The process begins with the transformation of feature maps from
SNNs into the differential domain, where the focus is primarily on the differential increments of
information. These increments are crucial as they represent the additional information that can in-
fluence subsequent layers. Our method specifically targets sensitive neurons that have a significant
impact on the outputs of subsequent layers, while ignoring those with minimal influence. The ratio-
nale behind this approach is that if the output of a layer is insensitive to the next layer’s response, it
implies that any output from the current layer does not affect the subsequent layer, allowing us to set
the output of insensitive neurons to zero to reduce computational load. Additionally, the discrepancy
between the actual and expected outputs at each layer is incorporated into the overall loss function
for optimization. Through iterative refinement, the algorithm ensures that the output from each layer
significantly affects the following layer, thereby enhancing the overall efficiency and performance
of the network. The detailed algorithm 1 is shown in the appendix.

6 TRAINING APPROXIMATION ERROR

Ignoring feature dependencies, the process of passing dynamic features while reusing static features
and the process of setting features to zero after sensitivity analysis are sources of accuracy loss.
Based on the error analysis formula of Taylor’s theorem, we can derive the following theorem 1.
The detailed derivation can be found in the appendix.
Theorem 1. Given an L-layered SNN intended to inference T time-steps, For layer l, according to
Feature Overlapping and Taylor expansion to approximate the nonlinear activation function F , it
satisfies:

Ot
l ≈ F

(
fl
(
Ot−1

l−1

)
+ U t−1

l

)
+∇f̂⊤

s

(
fl

(
∆′t

l−1

))
fl

(
∆′t

l−1

)
(11)

where f̂s(f(O
t−1
l−1) + U t−1

l) is the overlapping feature. This part reuses the output from the previ-
ous time step without recalculating it. fl(∆

′t
l−1) represents the function operation on the feature

changes at the current time step after sensitivity analysis, which is much sparser compared to the
original feature map. ∇f̂⊤

s (X) is the first-order derivative matrix of the spiking activation function.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

If each component of fl(∆′t
l−1) is independent, let Γl = fl(O

t−1
l−1) + U t−1

l = [γ1, γ2, · · · , γn], the
error ϵ∗ satisfies

ϵ∗ =

L∑
l=1

∑
i,j

(
∂f̂s(Γl)

∂γi
· ∂f̂s(Γl)

∂γj

)
Cov

(
fk

(
∆′t

l−1

)
i
, fk

(
∆′t

l−1

)
j

)2

(12)

Theorem 1 explains how approximation errors arise due to decoupling dynamic features and static
features. This is helpful for designing more efficient and accurate SNN models, where controlling
these covariance terms can reduce errors.

In order to limit the algorithm error, we aim to obtain the expression of the supremum on ∥ϵ∗∥,
and analyze the factors that influence the training approximation error. It is based on the following
assumption:

Assumption 1. The lower bound of the membrane potential ul(t) ∈ RN×T is determined by (χ =
{0, 1}) : φ = supsl ̸=0,sl∈χNl−1 ∥ul(t)∥∞ ≥ 0

The error is closely related to the neuron firing rate. From Assumption 1, we can obtain the upper
and lower bounds of the membrane potential norm, which allows us to derive the range of the neuron
firing rate, and thus determine the upper bound of the error, as shown in Theorem 2. The detailed
derivation can be found in the appendix.

Theorem 2. Given an L-layered SNN intended to inference T time-steps, For layer l with N neu-
rons, the membrane potential ul(t) ∈ RN×T satisfies

φ ≤ ∥ul(t)∥2 =

∥∥∥∥∥Wlhl−1(t)−
t∑

i=1

rl(i)sl(i)

∥∥∥∥∥
2

≤
√
mnVth (13)

where hl(t) =
∑t

i=1 sl(i) is the firing rate. It satisfies

Wlhl−1(t)−
√
mnVth

tVth
≤ hl(t) ≤

Wlhl−1(t)− φ

tVth
(14)

Therefore, the training error satisfies

∥ϵ∗∥2 ≤
L∑

l=1

4
(√

NVth − φ
)2

k2NT 2V 2
th

∥Wl∥22
∥∥∇fT

s (Γl)
∥∥2
2

(15)

where Vth is the threshold potential, k is the filtering ratio of sensitivity analysis.

It is worth noting that increasing the number of time steps can significantly reduce algorithmic
errors. The more time steps there are, the greater the redundancy in the temporal feature maps, and
the more effective our method becomes in reducing computational complexity. At the same time,
the joint distribution of multiple time steps also compensates for algorithmic errors. Additionally,
the filtering ratio k reflects the strength of feature selection in sensitivity analysis. By adjusting the
value of K, it is theoretically possible to achieve arbitrarily precise computational approximation
with low power consumption simultaneously.

7 EXPERIMENTS

In this section, we apply our proposed method to the CIFAR-10 and CIFAR-100 datasets using the
TET code framework for testing. Specifically, we employ the ResNet-19 and Spikedriven Trans-
former networks as our experimental models. Our method relies on the output at time t to compute
gradients and identify sensitive neurons at time t + 1. Consequently, the entire network operation
cannot be processed in parallel and must be executed step-by-step in a serial manner. To accom-
modate this requirement, we have restructured the original code architecture to support serial pro-
cessing, replacing the previous parallel computation mode. This modification ensures the accurate
implementation of our experiments, tailored to the specific needs of our approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparison of spike number and simulation length T

Datasets Architecture Methods
SpikeNumber×105(Acc)

T=1 T=2 T=4 T=6

CIFAR10
ResNet19

TET Deng et al. (2022) 2.56(92.34) 4.78(94.16) 8.68(94.44) 12.23(94.50)

RMP Guo et al. (2023a) 2.45(93.45) 4.51(94.26) 8.43(94.37) 13.14(94.48)

MPBN Guo et al. (2023b) 2.27(93.45) 3.34(93.55) 7.49(93.60) 10.97(93.90)

TAB Jiang et al. 2.16(93.42) 4.44(94.52) 7.13(94.53) 11.96(94.55)

DDLA(Ours) 2.56(92.34) 3.32(93.92) 6.32(94.32) 7.01(94.38)

Transformer-2-256
Spike-Driven-Transformer Yao et al. (2024) 0.90(90.72) 1.79(93.51) 3.38(94.23) 5.12(94.32)

DDLA(Ours) 0.90(90.72) 1.65(93.24) 2.84(94.02) 3.28(94.07)

CIFAR100
ResNet19

TET Deng et al. (2022) 2.47(69.44) 5.61(71.92) 10.46(74.47) 15.94(74.72)

RMP Guo et al. (2023a) 2.92(71.84) 5.22(73.34) 10.04(73.71) 14.69(73.81)

MPBN Guo et al. (2023b) 2.75(70.84) 4.06(71.28) 8.74(72.56) 15.12(73.11)

TAB Jiang et al. 2.66(70.89) 5.17(71.39) 9.23(73.00) 14.98(73.80)

DDLA(Ours) 2.47(69.44) 4.50(71.35) 6.02(73.65) 6.73(73.85)

Transformer-2-256
Spike-Driven-Transformer Yao et al. (2024) 0.93(67.35) 1.83(68.70) 3.55(69.25) 5.15(70.68)

DDLA(Ours) 0.93(67.35) 1.69(68.50) 2.87(69.01) 2.94(70.59)

The number of spike in Table 2 represents the total number of pulses required to complete one
forward inference per image on average in the corresponding dataset.According to our experimen-
tal results, we observed variations in the number of spikes across different computational methods
when there were no constraints on the spike count of the neural networks. However, under the
same network architecture, these variations generally remained within the same order of magnitude.
Additionally, the relationship between the number of spikes and time steps is approximately propor-
tional, indicating that the differences in spike counts across different time steps are not significant.
Despite this, observations within individual time steps typically show fewer spikes in later steps.

(a) (b)

Figure 4: This figure shows the average number of spike generated per image at different maximum
time steps during the inference process on the (a) Cifar10 and (b) Cifar100 datasets.

During dataset comparisons, we particularly noted variations in spike distribution when the same
network architecture processed different datasets. For instance, while handling the CIFAR-10
dataset, which has lower image complexity, the spike count was generally lower than when pro-
cessing the more complex CIFAR-100 dataset.

Our experiments further revealed a close relationship between spike count and neural network accu-
racy. When facing the same dataset, setting a smaller maximum time step resulted in a higher spike
count per time step. Conversely, increasing the maximum time step led to an overall increase in
spike count but a decrease per time step, with only marginal improvements in recognition accuracy.
This finding suggests that as the number of time steps increases, the informational value provided
by the same amount of spikes gradually diminishes, indicating a decrease in the marginal utility of
spikes.

After implementing DDLA, we observed not only a reduction in the overall number of spikes but
also a significant decrease in the number of spikes per timestep, especially in cases with a larger
maximum timestep. For instance, in the ResNet19 architecture on Cifar100, when T=6, the spike
count was reduced by 57.8%, and according to Figure 5, the number of spikes at the sixth timestep

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) (b)

(c) (d)

Figure 5: This figure shows the average number of spike generated by each image at different
maximum time steps during the inference process on the Cifar10 and Cifar100 datasets.

decreased by approximately 80%. This marked reduction in spikes aligns with our expectations, as
beyond a certain number of timesteps, additional spikes no longer provide extra information. This
strategy not only optimizes the energy efficiency of SNNs but also opens possibilities for deploying
efficient neural networks in resource-constrained environments. Our research provides new insights
and empirical data on the energy efficiency and performance optimization of SNNs.

8 DISCUSSION

In this paper, we explore and analyze the phenomenon of feature superposition in SNNs, revealing
the distribution patterns of features within the current SNNs computational frameworks. We propose
a novel approach of shifting the network’s focus from the feature domain to the temporal difference
domain. This shift is predicated on the importance of feature dynamics over static features in SNNs,
which not only reduces the number of spikes and conserves energy but also enhances the network’s
focus on changes between features. Concurrently, we introduce a preliminary method for constrain-
ing spike count in the temporal difference domain that aims to minimize spike emissions without
compromising accuracy. It is important to note that our method is not the optimal solution but of-
fers a new perspective and constitutes a modest step forward in this field. Our experiments were
conducted on smaller datasets and network architectures, and the results demonstrate the efficacy of
our approach. We encourage further research into the computational mechanisms of SNNs from the
perspective of the temporal difference domain.

REFERENCES

Jacob N. Allen, Hoda S. Abdel-Aty-Zohdy, and Robert L. Ewing. Cognitive processing using spik-
ing neural networks. In Proceedings of the IEEE 2009 National Aerospace & Electronics Confer-
ence (NAECON), pp. 56–64, 2009.

Sander M. Bohte. Error-Backpropagation in Networks of Fractionally Predictive Spiking Neurons.
In Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 60–68. Springer Berlin
Heidelberg, 2011.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Juan P Dominguez-Morales, Qian Liu, Robert James, Daniel Gutierrez-Galan, Angel Jimenez-
Fernandez, Simon Davidson, and Steve Furber. Deep spiking neural network model for time-
variant signals classification: a real-time speech recognition approach. In 2018 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2018.

Xiongfei Fan, Hong Zhang, and Yu Zhang. IDSNN: Towards High-Performance and Low-Latency
SNN Training via Initialization and Distillation. Biomimetics, pp. 375, 2023.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
Residual Learning in Spiking Neural Networks. In Advances in Neural Information Processing
Systems, pp. 21056–21069, 2021.

Shangqi Guo, Zhaofei Yu, Fei Deng, Xiaolin Hu, and Feng Chen. Hierarchical bayesian inference
and learning in spiking neural networks. IEEE transactions on cybernetics, pp. 133–145, 2017.

Yufei Guo, Xiaode Liu, Yuanpei Chen, Liwen Zhang, Weihang Peng, Yuhan Zhang, Xuhui Huang,
and Zhe Ma. Rmp-loss: Regularizing membrane potential distribution for spiking neural net-
works. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
17391–17401, 2023a.

Yufei Guo, Yuhan Zhang, Yuanpei Chen, Weihang Peng, Xiaode Liu, Liwen Zhang, Xuhui Huang,
and Zhe Ma. Membrane potential batch normalization for spiking neural networks. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 19420–19430, 2023b.

Nguyen-Dong Ho and Ik-Joon Chang. TCL: an ANN-to-SNN Conversion with Trainable Clipping
Layers. In 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 793–798. IEEE,
2021.

Sangwoo Hwang and Jaeha Kung. One-Spike SNN: Single-Spike Phase Coding With Base Manipu-
lation for ANN-to-SNN Conversion Loss Minimization. IEEE Transactions on Emerging Topics
in Computing, pp. 1–11, 2024.

Haiyan Jiang, Vincent Zoonekynd, Giulia De Masi, Bin Gu, and Huan Xiong. Tab: Temporal accu-
mulated batch normalization in spiking neural networks. In The Twelfth International Conference
on Learning Representations.

Jie Xue and Jianghong Ma. A comparative study of several Taylor expansion methods on error
propagation. In 2012 20th International Conference on Geoinformatics, pp. 1–5. IEEE, June
2012.

Nikola Kasabov and Elisa Capecci. Spiking neural network methodology for modelling, classifica-
tion and understanding of EEG spatio-temporal data measuring cognitive processes. Information
Sciences, pp. 565–575, 2015.

Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, Anna Hambitzer, and
Priyadarshini Panda. Exploring temporal information dynamics in spiking neural networks. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 37:8308–8316, Jun. 2023.

Souvik Kundu, Massoud Pedram, and Peter A. Beerel. HIRE-SNN: Harnessing the Inherent Robust-
ness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise. In
2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5189–5198, 2021.

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training Deep Spiking Neural Networks Using
Backpropagation. Frontiers in Neuroscience, 2016.

Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards temporal
spiking early exit neural networks. In Advances in Neural Information Processing Systems, 2023.

Qingyan Meng, Shen Yan, Mingqing Xiao, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
much deeper spiking neural networks with a small number of time-steps. Neural Networks, pp.
254–268, September 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going Deeper in Spiking
Neural Networks: VGG and Residual Architectures. Frontiers in Neuroscience, pp. 95, 2019.

Sicheng Shen, Dongcheng Zhao, Guobin Shen, and Yi Zeng. TIM: An Efficient Temporal Interac-
tion Module for Spiking Transformer, May 2024. arXiv:2401.11687 [cs].

Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. Signed Neuron with Memory: Towards Simple,
Accurate and High-Efficient ANN-SNN Conversion. In Proceedings of the Thirty-First Interna-
tional Joint Conference on Artificial Intelligence, pp. 2501–2508, 2022.

Yuchen Wang, Hanwen Liu, Malu Zhang, Xiaoling Luo, and Hong Qu. A universal ANN-to-SNN
framework for achieving high accuracy and low latency deep Spiking Neural Networks. Neural
Networks, pp. 106244, 2024.

Shuangming Yang, Tian Gao, Jiang Wang, Bin Deng, Benjamin Lansdell, and Bernabe Linares-
Barranco. Efficient Spike-Driven Learning With Dendritic Event-Based Processing. Frontiers in
Neuroscience, pp. 601109, 2021.

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. Advances in neural information processing systems, 36, 2024.

Bojian Yin, Federico Corradi, and Sander M. Bohté. Accurate and efficient time-domain classifica-
tion with adaptive spiking recurrent neural networks. Nature Machine Intelligence, pp. 905–913,
2021.

X. Zhang, Z. Xu, C. Henriquez, and S. Ferrari. Spike-based indirect training of a spiking neural
network-controlled virtual insect. In 52nd IEEE Conference on Decision and Control, pp. 6798–
6805, 2013.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going Deeper With Directly-Trained
Larger Spiking Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 11062–11070, 2021.

A APPENDIX

A.1 PROOF OF THEOREM 1

We use the surrogate gradient and its primitive function method to approximate the output activation
function, thus making the function have continuous derivatives of any order. Therefore, the original
expression7 can be expanded into an integral order Taylor series around the approximation point.
This Taylor series expansion is crucial for deriving both the exact and approximate formulas for
error propagation. Let the spiking activation function be f̂s and the surrogate gradient function be
f̂ ′
s, then during the training process, the function is expanded using the Taylor series:

Ot
l = f̂s

(
fl
(
Ot−1

l−1

)
+ U t−1

l + fl(∆
′t
l−1)

)
= f̂s

(
fl
(
Ot−1

l−1

)
+ U t−1

l

)
+∇f̂⊤

s

(
fl

(
∆′t

l−1

))
fl

(
∆′t

l−1

)
+R1

(
∆′t

l−1

) (16)

where∇f̂⊤
s (X) is expressed by:

∇f̂⊤
s (X) =

[
∂f̂s
∂x1

,
∂f̂s
∂x2

, · · · , ∂f̂s
∂xn

]∣∣∣∣∣
⊤

X

=
[
f̂ ′
s (x1) , f̂

′
s (x2) · · · f̂ ′

s (xn)
]∣∣∣⊤

X

From the conclusion in Jie Xue & Jianghong Ma (2012), we can deduce that the error is related to

the second central moment about the origin. That is to say, V ar =
∑n

i=1

(
∂f(x)
∂xi

)2
σ2
i . Therefore,

ϵ∗ =

L∑
l=1

∑
i,j

(
∂f̂s(Γl)

∂γi
· ∂f̂s(Γl)

∂γj

)
Cov

(
fk

(
∆′t

l−1

)
i
, fk

(
∆′t

l−1

)
j

)2

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.2 PROOF OF THEOREM 2

From Theorem 1, we can obtain

∥ϵ∗∥2 =

L∑
l=1

∥∥∇fT
s (Γl)

∥∥2
2

∥∥∥Cov
(
fk

(
∆′t

l−1

))∥∥∥
2

(17)

The norm of the covariance matrix is related to the norm of the differential quantity ∥∆′t
l−1∥. From

the definition of the differential quantity, it follows that

∥Cov(fl
(
∆′t

l

)
)∥2 =

1

N

∥∥∥∥f1 (∥∆′t
l−1

)⊤
fl

(
∥∆′t

l−1

)∥∥∥∥
2

=
1

k2N

∥∥fl (∆t
l

)∥∥2 =
1

k2N

∥∥∆t
l

∥∥2 ∥Wl∥2
(18)

where
∥∆t

l∥ = ∥s(t)⊕ sl(t− 1)∥2 = ∥s(t)− sl(t− 1)∥2 (19)

For neurons following dynamics in Eq. 1- 4 in the main text, Eq. 4 can be rewritten as:

u1(t) = ul(t− 1) +Wlsl−1(t)− rl(t)sl(t) (20)

Noting that the equation can be accumulated from t = 1 . . . T , we can obtain:

ul(T) =

T∑
t=1

Wlsl−1(t)−
T∑

t=1

rl(t)sl(t) (21)

Define hl(t) =
∑t

i=1 sl(i) as firing rate,

ul(t) = W1h1−1(t)−
t∑

i=1

rl(i)sl(i) (22)

From the Assumption 1, the lower bound of the membrane potential can be obtained. If each norm
of the membrane potential is less than Vth, then the upper bound of the membrane potential norm is
∥ul(t)∥2 ≤

√
mnVth. Therefore,

φ ≤ ∥ul(t)∥2 =

∥∥∥∥∥W1h1−1(t)−
t∑

i=1

rl(i)sl(i)

∥∥∥∥∥
2

≤
√
NVth (23)

Time step integration:

φ ≤ (Wlhl−1(T)− Vthhl(T))T ≤
√
mnVth (24)

From this, the upper and lower bounds of the neuron firing rate can be obtained.

Wlhl−1(t)−
√
mnVth

tVth
≤ hl(t) ≤

Wlhl−1(t)− φ

tVth
(25)

From Eq. 26, the upper bound of the norm of the differential quantity can be obtained, and the
minimum sparsity of the differential quantity can also be determined.

∥∆t
l∥ ≤ 2 ∥hl(t)− hl(t− 1)∥2 ≤ 2

√
NVth − φ

TVth
(26)

By stacking Eq. 15 and Eq. 23, we have

∥Cov(fl
(
∆′t

l

)
)∥2 ≤

4
(√

NVth − φ
)2

k2NT 2V 2
th

∥Wl∥22
∥∥∇fT

s (Γl)
∥∥2
2

(27)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Combining Eq. 15 and Eq. 27, we obtain:

∥ϵ∗∥2 ≤
L∑

l=1

4
(√

NVth − φ
)2

k2NT 2V 2
th

∥Wl∥22
∥∥∇fT

s (Γl)
∥∥2
2

(28)

A.3 ALGORITHM

Algorithm 1 Overall training algorithm

1: Input: input (X), output (Y), weights (W), threshold voltage (V), layers (L)
2: # Forward propagation
3: for t = 1 to T do
4: Ot

0 ← Poisson Encoder (X)
5: for l = 1 to L− 1 do
6: if t == 1 then
7: F t

l−1 = X(t)
8: end if
9: grad F l =

∣∣∣∂F t
l+1

∂F t
l

∣∣∣
10: sorted indices = Sort Indices By Value(grad F l)
11: F ′

l[sorted indices[i]] = Fl[sorted indices[i]]
12: Lsensi = MSE (F ′

l − Fl)
13: end for
14: end for
15: # calculate total loss
16: Ltotal = λLmodel + (1− λ)

∑n
l=1 L

(l)
sensi(t, s)

17: # Backward Propagation
18: for t = 1 to T do
19: for l = 1 to L− 1 do
20: dLtotal

dUt
l

= dLtotal
dF t

l

dF l
l

dUt
l

21: end for
22: end for

14

	Introduction
	Related Work
	ANN-to-SNN conversion
	Direct training
	Dynamic Time Step

	Preliminary
	Feature Overlapping Phenomenon
	Temporal Differential Decoupling
	Definition of Feature Overlapping Phenomenon

	Differential Domain Low-sparsity Approximation Algorithm
	Gradient Sensitivity Criterion
	Overall Algorithm

	Training Approximation Error
	Experiments
	Discussion
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Algorithm

