
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEATURE OVERLAPPING: THE COMPUTATIONAL
REDUNDANCY CAUSED BY REPEATED FEATURES
ACROSS DIFFERENT TIME STEPS IN SNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking neural networks (SNNs) have the potential advantage of building large-
scale energy-efficient network. However, the high training cost caused by mul-
tiple time steps currently limits the application of SNNs. To address this, we
break away from the traditional approach of reducing the number of time steps
and investigate feature redundancy between time steps. By jointly unfolding the
computational process of SNNs across both temporal and spatial dimensions, we
are the first to discover the Feature Overlapping Phenomenon, providing new in-
sights for improving SNNs training paradigms. Our Temporal Differential Decou-
pling (TDD) method successfully separates dynamic and static features, reducing
redundant computations. By transforming the feature space into the differential
domain, it addresses the issue of the original computational domain’s inability to
effectively filter sensitive information. In the differential domain, we propose the
Gradient Sensitivity Criterion (GSC), which helps further reduce training costs
and avoids the loss of important feature information. This paper introduces the
Differential Domain Low-Sparsity Approximation (DDLA) algorithm, which sig-
nificantly reduces computational resource consumption while maintaining com-
putational accuracy by adjusting the filtering ratio. Experimental results show that
we achieved up to an 80.9% reduction in the number of spikes per timestep and a
total spike count reduction of up to 57.8%, significantly reduce the inference cost
of SNNs.

1 INTRODUCTION

Spiking Neural Networks (SNNs) process all spiking events to process and represent information,
offering advantages such as low power consumption and high biological fidelity compared to Arti-
ficial Neural Networks (ANNs) Allen et al. (2009); Guo et al. (2017). As a third-generation neural
network model, they have garnered widespread attention Kasabov & Capecci (2015); Zhang et al.
(2013). However, existing SNN networks rely on rate coding to encode features into spike se-
quences, compensating for quantization errors through joint expectations over multiple time steps
Yang et al. (2021). This results in computational cost that increases exponentially with the number
of time steps, posing significant challenges for inference and training in large-scale networks, which
hinders the application of SNNs.

Currently, to address the issue of high computational cost over time steps, existing work primarily
focuse on reducing the number of time steps. Li et al. Li et al. (2023) proposed SEENN-I and
SEENN-II, which explore fine-grained adjustments to the number of time steps during the inference
phase. Yao et al. Kim et al. (2023) studied the dynamics of temporal information, redistributing
time information to achieve delay-adaptive decision-making. However, these works mainly focus
on reducing the number of time steps through dynamic configuration Shen et al. (2024). Given
that the current SNNs already operate within five time steps, further reducing time steps results in
a significant loss of accuracy. Therefore, we believe that to address the high computational cost
of large-scale SNNs, the solution should not be to directly reduce time steps but rather to focus on
whether there is redundancy between time steps.
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Through experiments, we found that between consecutive time steps, due to weight sharing and
identical image encoding, the firing patterns of neurons are often very similar. This led us to the
following thought:

• Are there redundant features in the multiple time steps of an SNN?

• How can we decouple effective features and redundant features?

• How can we reduce the computation associated with redundant features?

We present a frst-of-its-kind study to discover that certain feature information in the same time
sequence repeatedly appears across time steps, a phenomenon we define as ”feature shadowing”.
Previous works focus only on feature encoding and information representation capabilities. Due to
the inability to decouple redundant features, they believe that indiscriminate parallel computation
across multiple time steps is necessary for rate coding. Through clever Temporal Differential De-
coupling (TDD), we discover feature repetition and achieve redundancy separation. This provides
new possibilities for handling challenge of high training and inference costs in large-scale SNNs.

We propose the TDD method, which effectively decouples dynamic and static features. The features
vary with the time steps, are defined as dynamic features, representing the information gain for the
current time step. Transforming the feature space into the differential domain, making it possible
to filter out key features. In the original computational domain, crucial dynamic information could
be overlooked due to interference from static features. However, in the differential domain, sensi-
tive features are clearly identified, which avoids the negative impact of irrelevant features on result
accuracy. We propose the Gradient Sensitivity Criterion (GSC) to filtering Sensitivity Features.
Based on TDD and GSC, we propose Differential Domain Low-sparsity Approximation (DDLA)
algorithm. By adjusting the filtering ratio, our algorithm is possible to achieve any desired level of
computational precision while dramatically lowering the consumption of computational resources.

Our contributions are summarized as follows:

1. We are the first to discover the Feature Overlapping Phenomenon, which not only reveals
the issue of computational redundancy in SNN training paradigms but also provides new
insights for improving computational efficiency.

2. Temporal Differential Decoupling method effectively decouples dynamic and static fea-
tures by transforming the feature space into the differential domain, which allows for better
filtering of key features. We propose Differential Domain Low-sparsity Approximation al-
gorithm, which significantly reduces computational resource consumption while ensuring
computational precision.

3. We validated the effectiveness of our approach through comprehensive testing on both static
and event-based datasets across various network architectures. While ensuring accuracy
comparable to baseline models, we achieved up to an 80.9% reduction in the number of
spikes per timestep and a total spike count reduction of up to 57.8%, significantly enhancing
computational efficiency.

2 RELATED WORK

2.1 ANN-TO-SNN CONVERSION

The ANN-to-SNN conversion is a widely used method for obtaining SNNs by leveraging pre-trained
ANNs Ho & Chang (2021); Wang et al. (2024). This approach converts an ANN with ReLU acti-
vation functions into an SNN with spike-based activations, typically involving scaling the ANN’s
weights and biases to ensure compatibility with the spiking characteristics of SNNs Wang et al.
(2022). Conversion methods often include scaling operations, such as weight normalization and
threshold balancing, to better align the dynamic range of activations in SNNs with those in ANNs
Hwang & Kung (2024); Kundu et al. (2021). However, these conversion methods are challenged
by significant conversion errors and inference delays, which make it difficult to effectively handle
highly dynamic or deep neural network architectures.
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2.2 DIRECT TRAINING

Direct training of SNNs, without relying on pre-trained ANNs, has gained considerable attention
in recent years Lee et al. (2016); Yin et al. (2021), particularly for its advancements in reducing
time steps Bohte (2011), improving computational efficiency Sengupta et al. (2019), and enhancing
network performance Zheng et al. (2021). This approach typically involves using surrogate gradient
methods to overcome the challenges of gradient computation due to the discontinuity and non-
differentiability of spiking neurons Fang et al. (2021). Recent developments have made it possible
to achieve efficient training with fewer time steps by optimizing surrogate gradient, firing thresholds
and loss functions Fan et al. (2023). However, despite the reduction in time steps, the computational
cost per time step remains high. Reducing the computational cost is a critical focus for future
research.

2.3 DYNAMIC TIME STEP

The computational cost of SNNs increases exponentially due to their multiple steps processing of
spiking events Dominguez-Morales et al. (2018). To address this issue, current research has pri-
marily focused on two approaches: dynamically adjusting the number of time steps Li et al. (2023)
and dynamically redistributing temporal information Kim et al. (2023); Shen et al. (2024). Methods
that adjust the number of time steps aim to dynamically modify the time steps of SNNs based on
the characteristics of the input samples Meng et al. (2022). For example, SEENN-I uses confidence
scores, and SEENN-II employs a policy network to determine the inference time steps. Another
set of methods use Bayesian learning through deep ensembles or variational inference to aggregate
information across time steps. However, these approaches primarily focus on configuring time steps
and offer limited reductions in computational costs. We believe that, with the number of time steps
recently reduced to fewer than five, the focus should shift to targeting redundancy in computations
across time steps.

3 PRELIMINARY

In SNN, the membrane potential of Integrate-and-Fire(IF) neurons gradually changes based on the
input current it receives and the leaky characteristics of the membrane potential. The pre-activation
membrane potential of a neuron can be described as:

ũl(t) = ul(t− 1) +Wlsl−1(t) (1)

where ũl(t) denotes the pre-activation membrane potential of the neuron in l layer at time t, ul(t−1)
denotes the membrane potential of the neuron at the previous time step t−1, Wl denotes the synaptic
weight matrix between neurons in layer l− 1 and layer l, sl−1(t) denotes the spike from neurons in
layer at l − 1 time t, which is a binary value representing whether the neurons fired a spike (1) or
not (0).

When the membrane potential exceeds a certain threshold, the neuron fires a spike:

sl(t) = Hea (ũl(t)− Vth) (2)

where sl(t) denotes the spike output of the neuron in layer l at time t, which is a binary value. It
equals 1 if the neuron fires a spike and 0 if it does not. Hea(x) represents the Heaviside step func-
tion, determining whether the neuron fires a spike based on the difference between the membrane
potential and the threshold. Vth represents the firing threshold of the neuron.

The residual potential remaining after a neuron fires a spike can be described as:

ul(t) = ũl(t) (1− sl(t)) = ũl(t)− rl(t)sl(t) (3)

rl(t) =

{
ul(t) sl(t) = 1

0 sl(t) = 0
(4)

where ul(t) denotes the residual potential of the neuron in layer l at time t, rl(t) denotes the reset
potential of the neuron in layer l.

3
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(a) (b) (c) (d)

Figure 1: Feature maps of SNN convolutional layers at different time steps. Figure (a) shows the
original image from the CIFAR-10 dataset, while Figures (b), (c), and (d) depict the feature maps
output by the first convolutional spiking layer at time steps t = 1, t = 2, and t = 3 during image
classification using ResNet-19 SNN. It can be observed that the feature maps at different time steps
are highly similar.

4 FEATURE OVERLAPPING PHENOMENON

Through experiments, we found that between adjacent time steps, due to weight sharing and similar
image encoding, the firing patterns of neurons are often very similar, as shown in figure 1. Given this
similarity, we hypothesize that there may be overlapping and redundant feature information across
different time steps.

In this section, we expand and derive the SNN computation process from both spatial and temporal
dimensions. Temporal Differential Decoupling (TDD) separate dynamic information from static
information. This leds to the discovery of the Feature Overlapping Phenomenon, which proves that
the current SNN training paradigm indeed contains computational redundancy.

4.1 TEMPORAL DIFFERENTIAL DECOUPLING

Figure 2: Illustration of the time-step unfolding process in SNN computation. This diagram demon-
strates the unfolding process of SNNs computation across time steps. The blue circles represent
neurons, with the first column depicting neurons with a IF mechanism. The orange arrows indicate
the transmission of signals between layers, while the green dashed lines show the flow of signals
across time steps.

From the spatial dimension, the core feature of information transmission between layers in SNN is
that each neuron’s output depends on the output of the previous layer and the accumulated residual

4
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potential input from previous time steps. The output can be expressed as:

OT
l = F

(
fl
(
OT

l−1

)
+ UT−1

l

)
(5)

where Ot
l denotes the output of the neuron in layer l at time step t, U t−1

l denotes residual potential
from the previous time step t − 1, fl denotes the linear transformation applied to the output of the
previous layer, F is the nonlinear activation function.

From the temporal dimension, to capture the information about changes between time steps, the
output features at each time step are split into the overlapping part and the differential part. The
overlapping features, which do not change between two consecutive time steps, are defined as Static
Feature. The differential features represent those that change with the time steps and contribute to
the information gain at each time step, which we define as Dynamic Feature. The output can be
expressed as:

OT
l = OT−1

l︸ ︷︷ ︸
Static Feature

+ ∆T
l︸︷︷︸

Dynamic Feature

=

T∑
t=1

∆t
l (6)

where ∆t
l donates the diffierential part of the later time step relative to the previous time step.

Taking both the temporal and spatial dimensions into account, the neuron in layer l at time step t is
influenced by all the historical changes ∆T

l−1 passed from layer l − 1. Since fl is a linear function,
output can be expressed as:

OT
l = F

(
fl
(
OT

l−1

)
+ UT−1

l

)
= F

(
fl
(
O1

l−1

)
+ fl

(
∆2

l−1

)
+ fl

(
∆3

l−1

)
+ · · ·+ fl

(
∆T

l−1

)
+ U t−1

l

)
= F

(
T−1∑
t=1

fl
(
∆t

l−1

)
+ fl

(
∆t

l−1

)
+ U t−1

l

)
(7)

Here is an example of the computation process for l = 2 neurons of an SNN with t = 4, with and
without TDD, as shown in Table 1. The first equals sign represents the original SNN calculation
method, and the second equals sign shows the computation method after applying TDD.

Table 1: Time-step and feature component analysis in SNN computation process.

Output SNN computation model Feature overlapping part Feature
differential part

Residual
potential

O1
2 = F

(
f2
(
O1

1

))
= F ( +f2

(
∆1

1

)
)

O2
2 = F

(
f2
(
O2

1

)
+ U1

2

)
= F

(
f2
(
∆1

1

)
+f2

(
∆2

1

)
+U1

2

)
O3

2 = F
(
f2
(
O3

1

)
+ U2

2

)
= F

(
f2
(
∆1

1

)
+ f2

(
∆2

1

)
+f2

(
∆3

1

)
+U2

2

)
O4

2 = F
(
f2
(
O4

1

)
+ U3

2

)
= F

(
f2
(
∆1

1

)
+ f2

(
∆2

1

)
+ f2

(
∆3

1

)
+f2

(
∆4

1

)
+U3

2

)
Ot

l = F
(
f2
(
Ot

l−1

)
+ U t−1

l

)
= F

(
f2
(
∆1

l−1

)
+ f2

(
∆2

l−1

)
+ f2

(
∆3

l−1

)
+ · · · +f2

(
∆t

l−1

)
+U t−1

l

)

4.2 DEFINITION OF FEATURE OVERLAPPING PHENOMENON

In the original SNN model, a full computation is performed at each time step to extract features
specific to that moment (i.e., the orange section of the table 1). Although each computation extracts
the feature information for that particular time step, due to weight sharing and the same input image,
there is significant overlap in the features extracted across different time steps. Performing an XOR
operation on the feature maps of two adjacent time steps defines the feature differential part (i.e., the
red section of the table 1), representing the change in features at the next time step relative to the
shifted features. This portion is the feature information that needs to be computed for the current
time step. Temporal feature components are often repeatedly calculated across multiple time steps
(i.e., the blue section of the table 1). These repeated computations do not introduce new information
but rather process the same information multiple times. We define this phenomenon as follows 1.
Definition 1. Let Ot

l represent the output feature map of layer l at time step t. Assume that this
feature map is generated from the input Ot−1

l and parameters Wl through the function f : Ot
l =

f
(
Ot−1

l ;Wl

)
. we define the feature difference between time steps t and t− 1 as ∆t

l = Ot
l ⊕Ot−1

l ,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Illustration of of the Differential Transformation in SNN. The left side shows the structure
of the SNN model and the temporal propagation of the input signals. The top right illustrates the
original feature sequence across different time steps (T=1 to T=4), where noticeable feature overlap-
ping occurs. The bottom right presents the image sequence after differential transformation, which
removes redundant features between time steps.

where⊕ represents XOR operation. Feature Overlapping occurs when, for certain l and t, the norm
of the difference ∆t

l is smaller than a certain threshold ϵ, i.e., ∥∆t
l∥ < ϵ, which indicates that there

is a significant overlap between the features at t and t− 1.

This phenomenon refers to the overlap or redundancy between neuron activities or features across
different time steps. For static features, the results from the previous time step can be directly
reused, thereby reducing the computation cost. Consequently, after transforming into the differen-
tial domain, the more zero elements in ∆t

l , the fewer dynamic features, and the more pronounced
the Feature Overlapping Phenomenon becomes, leading to a more effective reduction of redundant
computation through feature reuse.

The discovery of this new phenomenon reveals computational redundancy in the current SNN train-
ing paradigm, offering new insights for improving computational efficiency, adaptive computation,
and refining the training paradigm.

5 DIFFERENTIAL DOMAIN LOW-SPARSITY APPROXIMATION ALGORITHM

In the differential domain, zero elements have a clear meaning: they indicate no change between
adjacent time steps. After TDD, dynamic features focus on key changes rather than the absolute
values of the original features, avoiding ignoring crucial information about dynamic changes due to
interference from static features. Therefore, it is possible to directly assess which features have a
significant impact on the output, called Sensitive Features. Through sensitivity analysis, irrelevant or
less impactful features can be set to zero, further reducing the computational cost. This is especially
beneficial in resource-constrained systems, where it can significantly reduce power consumption and
latency.

5.1 GRADIENT SENSITIVITY CRITERION

Here, we propose the Gradient Sensitivity Criterion (GSC) for selecting sensitive features. Assum-
ing the selection of the top k sensitive features ∆′t

l = k∆t
l , it is necessary to minimize the error of

the loss function: ∣∣∆L (Ot
l

)∣∣ = ∣∣∣L (Ot
l |W

)
− L

(
O′t

l |W
)∣∣∣ (8)

where O′t
l represents the approximate value of the output, L(Ot

l ) represents the loss function value
before sensitivity analysis and L(O′t

l |W ) represents the loss function value after c certain features
to zero. The independence assumption during training helps in simplifying the optimization process,
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even though the true behavior of the network is more complex. Approximating L(O′t
l | W ) with a

first-order Taylor polynomial near Ot
l,i = 0 based on the Taylor expansion method, we have:

L
(
O′t

l |W
)
= L

(
Ot

l |W
)
− δL

δOt
l,i

Ot
l,i +R1

(
Ot

l,i = 0
)

(9)

where R1

(
Ot

l,i = 0
)

is the first order remainder. By substituting Eq. 9 into Eq. 8 and ignoring the

remainder, we have ζ
(
Ot

l,i

)
: RH×W×T → R+:

ζ
(
Ot

l,i

)
=
∣∣∆L (Ot

l

)∣∣ = ∣∣∣∣∣L (Ot
l |W

)
− δL

δOt
l,i

Ot
l,i − L

(
Ot

l |W
)∣∣∣∣∣ =

∣∣∣∣∣ δL
δOt

l,i

Ot
l,i

∣∣∣∣∣ (10)

Finally, we propose the Gradient Sensitivity Criterion as follows.
Definition 2. Let the model’s output at time t be Ot

l,i, and the corresponding loss function be
L (Ot

l |W ), where W are the parameters of the model. To measure the impact of an output fea-

ture Ot
l,i on the loss functionL (Ot

l |W ), define the Gradient Sensitivity Criterion as: ζ
(
Ot

l,i

)
=∣∣∣ δL

δOt
l,i
Ot

l,i

∣∣∣
When a neuron’s gradient is large, it indicates that it has a stronger response to the task as a feature
detector and should be retained during inference. This criterion requires accumulating the gradients
of the features fed into the neuron at that moment, gradually selecting the features that contribute
most to the task, thereby optimizing network computation.

5.2 OVERALL ALGORITHM

We propose a novel Differential Domain Low Sparsity Approximation algorithm (DDLA) based on
TDD , complemented by GSC. The process begins with the transformation of feature maps from
SNNs into the differential domain, where the focus is primarily on the differential increments of
information. These increments are crucial as they represent the additional information that can in-
fluence subsequent layers. Our method specifically targets sensitive neurons that have a significant
impact on the outputs of subsequent layers, while ignoring those with minimal influence. The ratio-
nale behind this approach is that if the output of a layer is insensitive to the next layer’s response, it
implies that any output from the current layer does not affect the subsequent layer, allowing us to set
the output of insensitive neurons to zero to reduce computational load. Additionally, the discrepancy
between the actual and expected outputs at each layer is incorporated into the overall loss function
for optimization. Through iterative refinement, the algorithm ensures that the output from each layer
significantly affects the following layer, thereby enhancing the overall efficiency and performance
of the network. The detailed algorithm 1 is shown in the appendix.

6 TRAINING APPROXIMATION ERROR

Ignoring feature dependencies, the process of passing dynamic features while reusing static features
and the process of setting features to zero after sensitivity analysis are sources of accuracy loss.
Based on the error analysis formula of Taylor’s theorem, we can derive the following theorem 1.
The detailed derivation can be found in the appendix.
Theorem 1. Given an L-layered SNN intended to inference T time-steps, For layer l, according to
Feature Overlapping and Taylor expansion to approximate the nonlinear activation function F , it
satisfies:

Ot
l ≈ F

(
fl
(
Ot−1

l−1

)
+ U t−1

l

)
+∇f̂⊤

s

(
fl

(
∆′t

l−1

))
fl

(
∆′t

l−1

)
(11)

where f̂s(f(O
t−1
l−1 ) + U t−1

l ) is the overlapping feature. This part reuses the output from the previ-
ous time step without recalculating it. fl(∆

′t
l−1) represents the function operation on the feature

changes at the current time step after sensitivity analysis, which is much sparser compared to the
original feature map. ∇f̂⊤

s (X) is the first-order derivative matrix of the spiking activation function.
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If each component of fl(∆′t
l−1) is independent, let Γl = fl(O

t−1
l−1 ) + U t−1

l = [γ1, γ2, · · · , γn], the
error ϵ∗ satisfies

ϵ∗ =

L∑
l=1

∑
i,j

(
∂f̂s(Γl)

∂γi
· ∂f̂s(Γl)

∂γj

)
Cov

(
fk

(
∆′t

l−1

)
i
, fk

(
∆′t

l−1

)
j

)2

(12)

Theorem 1 explains how approximation errors arise due to decoupling dynamic features and static
features. This is helpful for designing more efficient and accurate SNN models, where controlling
these covariance terms can reduce errors.

In order to limit the algorithm error, we aim to obtain the expression of the supremum on ∥ϵ∗∥,
and analyze the factors that influence the training approximation error. It is based on the following
assumption:

Assumption 1. The lower bound of the membrane potential ul(t) ∈ RN×T is determined by (χ =
{0, 1}) : φ = supsl ̸=0,sl∈χNl−1 ∥ul(t)∥∞ ≥ 0

The error is closely related to the neuron firing rate. From Assumption 1, we can obtain the upper
and lower bounds of the membrane potential norm, which allows us to derive the range of the neuron
firing rate, and thus determine the upper bound of the error, as shown in Theorem 2. The detailed
derivation can be found in the appendix.

Theorem 2. Given an L-layered SNN intended to inference T time-steps, For layer l with N neu-
rons, the membrane potential ul(t) ∈ RN×T satisfies

φ ≤ ∥ul(t)∥2 =

∥∥∥∥∥Wlhl−1(t)−
t∑

i=1

rl(i)sl(i)

∥∥∥∥∥
2

≤
√
mnVth (13)

where hl(t) =
∑t

i=1 sl(i) is the firing rate. It satisfies

Wlhl−1(t)−
√
mnVth

tVth
≤ hl(t) ≤

Wlhl−1(t)− φ

tVth
(14)

Therefore, the training error satisfies

∥ϵ∗∥2 ≤
L∑

l=1

4
(√

NVth − φ
)2

k2NT 2V 2
th

∥Wl∥22
∥∥∇fT

s (Γl)
∥∥2
2

(15)

where Vth is the threshold potential, k is the filtering ratio of sensitivity analysis.

It is worth noting that increasing the number of time steps can significantly reduce algorithmic
errors. The more time steps there are, the greater the redundancy in the temporal feature maps, and
the more effective our method becomes in reducing computational complexity. At the same time,
the joint distribution of multiple time steps also compensates for algorithmic errors. Additionally,
the filtering ratio k reflects the strength of feature selection in sensitivity analysis. By adjusting the
value of K, it is theoretically possible to achieve arbitrarily precise computational approximation
with low power consumption simultaneously.

7 EXPERIMENTS

In this section, we apply our proposed method to the CIFAR-10 and CIFAR-100 datasets using the
TET code framework for testing. Specifically, we employ the ResNet-19 and Spikedriven Trans-
former networks as our experimental models. Our method relies on the output at time t to compute
gradients and identify sensitive neurons at time t + 1. Consequently, the entire network operation
cannot be processed in parallel and must be executed step-by-step in a serial manner. To accom-
modate this requirement, we have restructured the original code architecture to support serial pro-
cessing, replacing the previous parallel computation mode. This modification ensures the accurate
implementation of our experiments, tailored to the specific needs of our approach.
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Table 2: Comparison of spike number and simulation length T

Datasets Architecture Methods
SpikeNumber×105(Acc)

T=1 T=2 T=4 T=6

CIFAR10
ResNet19

TET Deng et al. (2022) 2.56(92.34) 4.78(94.16) 8.68(94.44) 12.23(94.50)

RMP Guo et al. (2023a) 2.45(93.45) 4.51(94.26) 8.43(94.37) 13.14(94.48)

MPBN Guo et al. (2023b) 2.27(93.45) 3.34(93.55) 7.49(93.60) 10.97(93.90)

TAB Jiang et al. 2.16(93.42) 4.44(94.52) 7.13(94.53) 11.96(94.55)

DDLA(Ours) 2.56(92.34) 3.32(93.92) 6.32(94.32) 7.01(94.38)

Transformer-2-256
Spike-Driven-Transformer Yao et al. (2024) 0.90(90.72) 1.79(93.51) 3.38(94.23) 5.12(94.32)

DDLA(Ours) 0.90(90.72) 1.65(93.24) 2.84(94.02) 3.28(94.07)

CIFAR100
ResNet19

TET Deng et al. (2022) 2.47(69.44) 5.61(71.92) 10.46(74.47) 15.94(74.72)

RMP Guo et al. (2023a) 2.92(71.84) 5.22(73.34) 10.04(73.71) 14.69(73.81)

MPBN Guo et al. (2023b) 2.75(70.84) 4.06(71.28) 8.74(72.56) 15.12(73.11)

TAB Jiang et al. 2.66(70.89) 5.17(71.39) 9.23(73.00) 14.98(73.80)

DDLA(Ours) 2.47(69.44) 4.50(71.35) 6.02(73.65) 6.73(73.85)

Transformer-2-256
Spike-Driven-Transformer Yao et al. (2024) 0.93(67.35) 1.83(68.70) 3.55(69.25) 5.15(70.68)

DDLA(Ours) 0.93(67.35) 1.69(68.50) 2.87(69.01) 2.94(70.59)

The number of spike in Table 2 represents the total number of pulses required to complete one
forward inference per image on average in the corresponding dataset.According to our experimen-
tal results, we observed variations in the number of spikes across different computational methods
when there were no constraints on the spike count of the neural networks. However, under the
same network architecture, these variations generally remained within the same order of magnitude.
Additionally, the relationship between the number of spikes and time steps is approximately propor-
tional, indicating that the differences in spike counts across different time steps are not significant.
Despite this, observations within individual time steps typically show fewer spikes in later steps.

(a) (b)

Figure 4: This figure shows the average number of spike generated per image at different maximum
time steps during the inference process on the (a) Cifar10 and (b) Cifar100 datasets.

During dataset comparisons, we particularly noted variations in spike distribution when the same
network architecture processed different datasets. For instance, while handling the CIFAR-10
dataset, which has lower image complexity, the spike count was generally lower than when pro-
cessing the more complex CIFAR-100 dataset.

Our experiments further revealed a close relationship between spike count and neural network accu-
racy. When facing the same dataset, setting a smaller maximum time step resulted in a higher spike
count per time step. Conversely, increasing the maximum time step led to an overall increase in
spike count but a decrease per time step, with only marginal improvements in recognition accuracy.
This finding suggests that as the number of time steps increases, the informational value provided
by the same amount of spikes gradually diminishes, indicating a decrease in the marginal utility of
spikes.

After implementing DDLA, we observed not only a reduction in the overall number of spikes but
also a significant decrease in the number of spikes per timestep, especially in cases with a larger
maximum timestep. For instance, in the ResNet19 architecture on Cifar100, when T=6, the spike
count was reduced by 57.8%, and according to Figure 5, the number of spikes at the sixth timestep

9
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(a) (b)

(c) (d)

Figure 5: This figure shows the average number of spike generated by each image at different
maximum time steps during the inference process on the Cifar10 and Cifar100 datasets.

decreased by approximately 80%. This marked reduction in spikes aligns with our expectations, as
beyond a certain number of timesteps, additional spikes no longer provide extra information. This
strategy not only optimizes the energy efficiency of SNNs but also opens possibilities for deploying
efficient neural networks in resource-constrained environments. Our research provides new insights
and empirical data on the energy efficiency and performance optimization of SNNs.

8 DISCUSSION

In this paper, we explore and analyze the phenomenon of feature superposition in SNNs, revealing
the distribution patterns of features within the current SNNs computational frameworks. We propose
a novel approach of shifting the network’s focus from the feature domain to the temporal difference
domain. This shift is predicated on the importance of feature dynamics over static features in SNNs,
which not only reduces the number of spikes and conserves energy but also enhances the network’s
focus on changes between features. Concurrently, we introduce a preliminary method for constrain-
ing spike count in the temporal difference domain that aims to minimize spike emissions without
compromising accuracy. It is important to note that our method is not the optimal solution but of-
fers a new perspective and constitutes a modest step forward in this field. Our experiments were
conducted on smaller datasets and network architectures, and the results demonstrate the efficacy of
our approach. We encourage further research into the computational mechanisms of SNNs from the
perspective of the temporal difference domain.
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A APPENDIX

A.1 PROOF OF THEOREM 1

We use the surrogate gradient and its primitive function method to approximate the output activation
function, thus making the function have continuous derivatives of any order. Therefore, the original
expression7 can be expanded into an integral order Taylor series around the approximation point.
This Taylor series expansion is crucial for deriving both the exact and approximate formulas for
error propagation. Let the spiking activation function be f̂s and the surrogate gradient function be
f̂ ′
s, then during the training process, the function is expanded using the Taylor series:

Ot
l = f̂s

(
fl
(
Ot−1

l−1

)
+ U t−1

l + fl(∆
′t
l−1)

)
= f̂s

(
fl
(
Ot−1

l−1

)
+ U t−1

l

)
+∇f̂⊤

s

(
fl

(
∆′t

l−1

))
fl

(
∆′t

l−1

)
+R1

(
∆′t

l−1

) (16)

where∇f̂⊤
s (X) is expressed by:

∇f̂⊤
s (X) =

[
∂f̂s
∂x1

,
∂f̂s
∂x2

, · · · , ∂f̂s
∂xn

]∣∣∣∣∣
⊤

X

=
[
f̂ ′
s (x1) , f̂

′
s (x2) · · · f̂ ′

s (xn)
]∣∣∣⊤

X

From the conclusion in Jie Xue & Jianghong Ma (2012), we can deduce that the error is related to

the second central moment about the origin. That is to say, V ar =
∑n

i=1

(
∂f(x)
∂xi

)2
σ2
i . Therefore,

ϵ∗ =

L∑
l=1

∑
i,j

(
∂f̂s(Γl)

∂γi
· ∂f̂s(Γl)

∂γj

)
Cov

(
fk

(
∆′t

l−1

)
i
, fk

(
∆′t

l−1

)
j

)2
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A.2 PROOF OF THEOREM 2

From Theorem 1, we can obtain

∥ϵ∗∥2 =

L∑
l=1

∥∥∇fT
s (Γl)

∥∥2
2

∥∥∥Cov
(
fk

(
∆′t

l−1

))∥∥∥
2

(17)

The norm of the covariance matrix is related to the norm of the differential quantity ∥∆′t
l−1∥. From

the definition of the differential quantity, it follows that

∥Cov(fl
(
∆′t

l

)
)∥2 =

1

N

∥∥∥∥f1 (∥∆′t
l−1

)⊤
fl

(
∥∆′t

l−1

)∥∥∥∥
2

=
1

k2N

∥∥fl (∆t
l

)∥∥2 =
1

k2N

∥∥∆t
l

∥∥2 ∥Wl∥2
(18)

where
∥∆t

l∥ = ∥s(t)⊕ sl(t− 1)∥2 = ∥s(t)− sl(t− 1)∥2 (19)

For neurons following dynamics in Eq. 1- 4 in the main text, Eq. 4 can be rewritten as:

u1(t) = ul(t− 1) +Wlsl−1(t)− rl(t)sl(t) (20)

Noting that the equation can be accumulated from t = 1 . . . T , we can obtain:

ul(T ) =

T∑
t=1

Wlsl−1(t)−
T∑

t=1

rl(t)sl(t) (21)

Define hl(t) =
∑t

i=1 sl(i) as firing rate,

ul(t) = W1h1−1(t)−
t∑

i=1

rl(i)sl(i) (22)

From the Assumption 1, the lower bound of the membrane potential can be obtained. If each norm
of the membrane potential is less than Vth, then the upper bound of the membrane potential norm is
∥ul(t)∥2 ≤

√
mnVth. Therefore,

φ ≤ ∥ul(t)∥2 =

∥∥∥∥∥W1h1−1(t)−
t∑

i=1

rl(i)sl(i)

∥∥∥∥∥
2

≤
√
NVth (23)

Time step integration:

φ ≤ (Wlhl−1(T )− Vthhl(T ))T ≤
√
mnVth (24)

From this, the upper and lower bounds of the neuron firing rate can be obtained.

Wlhl−1(t)−
√
mnVth

tVth
≤ hl(t) ≤

Wlhl−1(t)− φ

tVth
(25)

From Eq. 26, the upper bound of the norm of the differential quantity can be obtained, and the
minimum sparsity of the differential quantity can also be determined.

∥∆t
l∥ ≤ 2 ∥hl(t)− hl(t− 1)∥2 ≤ 2

√
NVth − φ

TVth
(26)

By stacking Eq. 15 and Eq. 23, we have

∥Cov(fl
(
∆′t

l

)
)∥2 ≤

4
(√

NVth − φ
)2

k2NT 2V 2
th

∥Wl∥22
∥∥∇fT

s (Γl)
∥∥2
2

(27)
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Combining Eq. 15 and Eq. 27, we obtain:

∥ϵ∗∥2 ≤
L∑

l=1

4
(√

NVth − φ
)2

k2NT 2V 2
th

∥Wl∥22
∥∥∇fT

s (Γl)
∥∥2
2

(28)

A.3 ALGORITHM

Algorithm 1 Overall training algorithm

1: Input: input (X), output (Y ), weights (W ), threshold voltage (V ), layers (L)
2: # Forward propagation
3: for t = 1 to T do
4: Ot

0 ← Poisson Encoder (X)
5: for l = 1 to L− 1 do
6: if t == 1 then
7: F t

l−1 = X(t)
8: end if
9: grad F l =

∣∣∣∂F t
l+1

∂F t
l

∣∣∣
10: sorted indices = Sort Indices By Value(grad F l)
11: F ′

l[sorted indices[i]] = Fl[sorted indices[i]]
12: Lsensi = MSE (F ′

l − Fl)
13: end for
14: end for
15: # calculate total loss
16: Ltotal = λLmodel + (1− λ)

∑n
l=1 L

(l)
sensi(t, s)

17: # Backward Propagation
18: for t = 1 to T do
19: for l = 1 to L− 1 do
20: dLtotal

dUt
l

= dLtotal
dF t

l

dF l
l

dUt
l

21: end for
22: end for
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