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Abstract—The listener head generation (LHG) task aims to
generate natural nonverbal listener responses based on the
speaker’s multimodal cues. While prior work either rely on
limited modalities (e.g. audio and facial information) or employ
autoregressive approaches which have limitations such as ac-
cumulating prediction errors. To address these limitations, we
propose DiffListener, a discrete diffusion based approach for
non-autoregressive listener head generation. Our model takes
the speaker’s facial information, audio, and text as inputs, addi-
tionally incorporating facial differential information to represent
the temporal dynamics of expressions and movements. With this
explicit modeling of facial dynamics, DiffListener can generate
coherent reaction sequences in a non-autoregressive manner.
Through comprehensive experiments, DiffListener demonstrates
state-of-the-art performance in both quantitative and qualitative
evaluations. The user study shows that DiffListener generates
natural context-aware listener reactions that are well synchro-
nized with the speaker. The code and demo videos are available
in https://siyeoljung.github.io/DiffListener.

Index Terms—Listener Head Generation, Discrete Diffusion,
Dyadic Conversation

I. INTRODUCTION

With the rise of applications such as digital avatar genera-
tion [1]–[3] and human-computer interaction [4]–[6], appropri-
ate listening reactions have attracted attentions [7], [8]. In face-
to-face conversations, appropriate nonverbal feedback from
the listener, rather than content-based replies, is often crucial
for maintaining the flow of communication [9]. Therefore
appropriate nonverbal feedback is important for virtual agents
that communicate with humans [10]. In this context, there is
growing interest in generating realistic listener head generation
(LHG) [11]–[13]. The listener head generation task aims to
generate natural and appropriate nonverbal responses, such as
head motions and facial expressions, based on the speaker’s
verbal utterances and facial expressions. Moreover, listener
reactions are influenced not only by the speaker’s input but
also by the listener’s internal state, emotions, and personality,
leading to non-deterministic responses. To address this non-
deterministic property of the listener’s reaction, a previous
study [11] proposes to model the listener’s reactions using a
one-dimensional VQ-VAE [14]. This allows modeling unique
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reactions for different listener identities while preserving
the non-deterministic properties and identity-specific reaction
styles.

Most existing LHG approaches rely on autoregressive
methodologies to generate listener reactions [11], [12], [15].
These autoregressive methods have inherent structural draw-
backs. In particular, during the inference stage, autoregres-
sive models are sensitive to accumulating prediction errors.
These accumulated errors can lead the generated sequence to
significantly differ from the desired target and produce inco-
herent or unnatural listener responses. Although a NAR(non-
autoregressive) generation approach [13] has been explored, it
comes with its own constraints. The reported results are limited
to short durations, and extending the response length requires
a larger codebook size, which may limit the scalability of the
approach.

To address the limitations of existing listener head gener-
ation methods, we propose DiffListener that generates longer
listener responses, which is challenging but more practical, in
a non-autoregressive manner and fixed codebook size. First,
we train a VQ-VAE [14] model to learn a discrete codebook
that encodes listener-specific response patterns. Second, we
employ a discrete diffusion model [16] to generate diverse
and varied listener responses while preserving the codebook
representation. The model performs the denoising diffusion
process on the codebook tokens, which represent the listener’s
responsive reactions. Prior research [11], [13], [15] has pri-
marily focused on the speaker’s facial and audio cues to
generate listener responses. However, this approach may over-
look crucial lexical context. Our method incorporates textual
information to consider this aspect. Also, compressing speaker
modalities into a condition module might result in a loss of
temporal rhythmic information. To overcome it, we incorpo-
rated the speaker’s facial differential information, which helps
maintain temporal rhythmic information, potentially enhancing
the naturalness and coherence of generated reactions. In our
experiments, DiffListener outperforms the existing baselines
in both quantitative and qualitative evaluations. These results
demonstrate the effectiveness of our proposed approach.

In summary, the key contributions are as follows:
• We propose DiffListener which is a novel non-

autoregressive framework for listener head genera-
tion. To the best of our knowledge, it is the first
to apply the discrete diffusion to listener generation
task.IC
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• We propose utilizing the facial differential and text
information into the non-autoregressive generation
framework to provide more context information.

• DiffListener achieves state-of-the-art performance on
the listener head generation task, generating longer
sequences while preserving high quality and rele-
vance.

II. RELATED WORK

A. Listener Head Generation

VICO [15] proposes the LSTM-based model which gener-
ates the listener’s responsive reactions based on the speaker’s
facial and audio information. L2L [11] points out the non-
deterministic properties of the listener’s reaction. They propose
using a codebook to represent the listener’s reaction. ELP [13]
proposes using multiple codebooks based on the estimated
emotion from the speaker. LM-Listener [12] utilizes the large
language model to generate the listener’s reaction only using
the text information of the speaker. Most of the existing
listener head generation models [11], [12], [15] utilize the
autoregressive approach. However, this approach has draw-
backs such as accumulated error problems, so we propose
the DiffListener to solve this limitation in non-autoregressive
manner.

B. Diffusion Model

The denoising diffusion probabilistic model [17] has shown
strong performance not only in the image generation [18]–
[20] but also in the other various generation tasks [21]–
[23]. The Argmax Flow [24] extends the diffusion model to
categorical random variables with transition matrices. The VQ-
Diffusion [16] improves the discrete diffusion and applies it
to the image generation task, which has also been applied in
various tasks [25]–[27]. To the best of our knowledge, this
is the first time discrete diffusion is applied to the listener
generation task.

III. METHODOLOGY

A. Problem Definition

To represent the precise 3D facial expressions and mo-
tions from video frames, we utilize the 3D Morphable Face
Model(3DMM) [28], [29] for each frame. Through this pro-
cess, we can get the coefficient that corresponds to the facial
expression βt ∈ Rdm where dm is the dimension of expression
coefficient, head rotation Rt ∈ SO(3), and identity-specific
shape [30]. We discard the shape coefficient to model the
representation that is independent of individual identity [11].
Our facial information at time t can be represented by the
concatenation of the facial expression and rotation coefficients
ft = [βt, Rt]. Let FS = {fS

1 , f
S
2 , · · · , fS

T−1, f
S
T } represent

the sequence of the speaker’s facial information across T
frames, and let AS , FS

∆, and WS represent their correspond-
ing audio sequence, differential facial information, and text
information, respectively. The differential facial information
of the speaker is calculated taking the difference between the
facial information in each time step and the previous time

Fig. 1. The overview of DiffListener. The discrete diffusion model takes the
fused representation and generates the listener’s response sequence tokens.
These tokens are then passed through the VQ-VAE decoder to obtain the
listener’s 3DMM coefficients.

step: FS
∆ = {fS

x − fS
x−1 | 1 ≤ x ≤ T}. When DiffListener is

given the speaker’s information, the listener’s responsive head
sequence of the corresponding length FL can be generated:

FL = DiffListener(FS , AS , FS
∆,WS) (1)

B. Quantizing Listener Motion

We use the VQ-VAE [14] to quantize the listener’s facial
information. The VQ-VAE consists of facial encoder E , facial
decoder D and codebook C = {ck}Kk=1 ∈ RK×dz where
K is the size of the codebook and dz is the dimension of
each code. Given the sequence of listener facial information
FL = {fL

1 , f
L
2 , · · · , fL

T−1, f
L
T } across T frames, we encode

FL into specific representation through the facial encoder
Z = E (FL) ∈ RT

τ ×d where τ represents the ratio of down-
sampling and d represents the dimension of the representation.
After that the vector quantizer Q maps each Z elements to its
closest codebook entry. Finally, the facial decoder reconstructs
the sequence of the listener’s facial information. We utilize the
combination of losses to train the VQ-VAE:

Lembed =

T/τ∑
t=1

∥ zt − sg[ci] ∥2 (2)

Lreconstructed =

T∑
t=1

Lsmooth
1 (f̂t − ft) (3)

Lvelocity =

T−1∑
t=1

Lsmooth
1 (f̂t+1 − f̂t, ft+1 − ft) (4)

where sg is the stop-gradient operation, and Lsmooth
1 is the

L1 smooth loss function. The total loss is a weighted sum of
these losses.
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TABLE I
COMPARISION OF OUR MODEL WITH BASELINES IN TREVOR AND STEPHEN DATASET. BOLD REPRESENTS THE BEST. ↓ INDICATES LOWER IS BETTER, NO

ARROW INDICATES THAT CLOSER TO GT IS BETTER. GT DENOTES THE GROUND TRUTH.

Trevor Stephen
Models L2↓ FD↓ P-FD↓ Diversity Variation L2↓ FD↓ P-FD↓ Diversity Variation
GT 2.59 0.11 3.81 0.18
VICO [15] 0.41 17.94 19.22 2.31 0.08 0.71 31.43 33.64 2.98 0.11
L2L [11] 0.62 25.28 27.11 4.66 0.28 0.65 28.69 30.33 2.79 0.09
LM-Listener [12] 0.69 28.67 30.56 4.77 0.29 0.79 37.57 39.21 2.34 0.09
Ours 0.40 15.75 17.22 2.96 0.10 0.65 26.47 28.47 3.56 0.14

C. Discrete Diffsuion Model

We use VQ-Diffusion [16] to generate the listener re-
sponse conditioned on the speaker’s representation. To get the
speaker’s representation, we utilized the speaker’s informa-
tion IS which consists of FS , AS , FS

∆,WS . This information
is then processed through the fusion network described in
Section III-D to generate the corresponding speaker’s rep-
resentation RS . Let x be a token sequence of length T/τ
representing the listener’s response, where each token is from
the codebook. During the forward diffusion process, the data
x is progressively corrupted through a fixed Markov chain
q(xt|xt−1), which randomly replaces some tokens of xt−1

over the diffusion time steps Td. The reverse diffusion process
then restores the data from xTd

based on the architecture. The
VQ-Diffusion [16] operates based on a transition probability
matrix. The transition probability matrix [Qt]mn = q(xt =
m | xt−1 = n) ∈ RK×K that represents the probabilities
of xt−1 transit to xt. To get better reverse estimation, a
[Mask] token is introduced, expanding the transition matrix to
Qt ∈ R(K+1)×(K+1) [16]. To estimate the posterior transition
distribution q(xt−1 | xt, x0), we train the denoising network
pθ(xt−1 | xt, R

s). The network is trained to minimize the
variational lower bound [17]:

Lvlb =

Td−1∑
t=1

[DKL[q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt, R
s)]]

+DKL(q(xTd
| x0) ∥ p(xTd

)) (5)

where p(xTd
) refers to the prior distribution of timestep Td. To

get better results we utilize the reparameterization trick [16].
This leads to a more noiseless distribution at each step.

Lx0
= −logpθ(x0 | xt, R

s) (6)

where Lx0 refers the auxiliary denoising loss, which can be
further improved when combined with the Lvlb.

D. Fusion Network

Initially, we extract the text features by using the pre-trained
language model BERT [31] and audio features using Mel-
frequency cepstral coefficients (MFCC). The fusion network
consists of two components, as illustrated in Figure 1. The first
module focuses on fusing audio and 3DMM features. Cross-
modal attention is computed using the queries QA from AS ,
and the keys KF and values VF from FS . The second module
handles the fusion of audio with differential 3DMM features.

TABLE II
ABLATION STUDY RESULTS BASED ON CODEBOOK SIZE AT TREVOR

DATASET. GT DENOTES THE GROUND TRUTH.

Codebook size L2↓ FD↓ P-FD↓ Diversity Variation
GT 2.59 0.11
128 0.47 17.61 19.28 3.63 0.17
256 0.40 15.75 17.22 2.96 0.10
512 0.48 18.28 20.01 3.88 0.18

In this module, we set the queries QF∆
from FS

∆ and the keys
KA and values VA from AS . Finally, we concatenate each
of the fused representations along with the text representation
and feed the combined representation into an MLP layer for
further processing.

IV. EXPERIMENT

A. Dataset

Our research objective is to generate longer identity-
specific listener responses. To achieve this goal, we select the
dataset [11], [12], which provides sufficiently long sequences
of listener behaviors while maintaining individual identity
characteristics. We preprocess the dataset by setting the lis-
tener’s response period to 8 seconds (240 frames), assuming
that this duration may be sufficient to understand contextual
information through text data [12]. We clip each video to 8
seconds and employ a sliding-window approach to generate
more data. Based on this preprocessing, we found sufficient
data from Trevor and Stephen identities. To extract text from
audio data, we utilize the Whisper [32].

B. Experimental Setup

Following the previous work [11], [12], we use the fol-
lowing evaluation metrics for quantitative evaluation. L2,
FD(Frechet Distance), P-FD (Paired FD) which is the dis-
tribution distance between listener and speaker, Diversity,
and Variation. We use the L2L [11], VICO [15], and LM-
Listener [12] as our baselines. The ELP [13], which is based
on the non-autoregressive approach, does not release the code,
so we are not able to compare ours with it. We use K = 256,
T = 240, Td = 100, dz = 512, τ = 8 with a batch size
= 256 when training on the Trevor dataset [12], and batch
size 64 when training on the Stephen dataset [12]. The value
K = 256 is chosen by its superior performance, as shown in
Table II. During DiffListener training, we apply early stopping
with a patience of 5 epochs. For VQ-VAE training, we set the
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TABLE III
ABLATION STUDY RESULTS BASED ON SPEAKER MODALITIES AT TREVOR

DATASET.

L2↓ FD↓ P-FD↓ Diversity Variation
GT 2.59 0.1127
w/o Diff & Text 0.50 20.77 22.27 3.18 0.1223
w/o Diff 0.44 17.17 18.71 3.21 0.1247
w/o Text 0.41 16.17 17.66 3.05 0.1095
Ours 0.40 15.75 17.22 2.96 0.1027

Fig. 2. The visualization comparison with baselines and ablated models at
Trevor dataset. The blue and pink boxes include the speaker’s utterance.

weights of each loss term as follows: 0.02 for Lembed, 1 for
Lreconstructed, and 0.05 for Lvelocity.

C. Quantitative Comparison

Table I presents the overall performance of our model and
the baselines. Our model achieves the lowest L2, FD, and P-
FD scores for both Trevor and Stephen’s datasets, indicating
the highest realism in generating listener motions and the
greatest synchrony with the speaker. Our model achieves
superior performance in terms of diversity and variation scores
in most cases. For the Trevor dataset, the diversity metric is
slightly less close to the ground truth compared to the VICO
model. However, the difference is minimal, and our model
achieves a higher diversity score and lower L2, FD, and P-FD
scores than VICO. This indicates that our model can generate
more realistic and diverse results.

Table III presents the results of our ablation study on dif-
ferent modality conditions. By incorporating text into a model
without differential and text information (w/o Diff & Text),
we observed approximately 17.33% decrease in FD score (w/o
Diff). Only by incorporating differential 3DMM information
into the model to provide rhythmic temporal information, we
observed an approximately 22.16% decrease in the FD score
(w/o Text). Furthermore, integrating the differential 3DMM
value and text, we observed a 24.1% decrease in the FD
score and 22.6% decrease in the P-FD score (Ours). This
indicates that the combination of differential information with
audio, 3DMM, and text data enhances the model’s ability
to understand the context information, thereby enabling it to
generate more appropriate responses.

TABLE IV
USER STUDY RESULTS BASED ON THE COMPARISON OF OUR MODEL WITH

BASELINES.

Trevor Stephen
Win Tie Lose Win Tie Lose

Ours vs. Vico [15] 51% 23% 26% 65% 11% 24%
Ours vs. L2L [11] 50% 11% 39% 41% 25% 34%
Ours vs. LM-Listener [12] 67% 16% 16% 47% 12% 41%

D. Qualitative Comparision

In the Listener Generation task, it is important to generate
results that closely match the ground truth. Figure 2 (a)
presents a visual comparison with the baseline models. The
baselines sometimes fail to generate appropriate responses,
as indicated by the red boxes. While the ground truth sam-
ple is in a neutral state, other baselines sometimes show a
smile. In contrast, our model demonstrates more appropriate
responses in both head pose and facial expression. This result
may come from the advantages of DiffListener. First, NAR
approach can avoid the problem of accumulated errors. It
makes our model’s results more robust during the inference.
Second, using various modalities provides sufficient contex-
tual information. Figure 2(b) presents a visual comparison
with ablated models. When sufficient contextual information
is provided, the model generates more appropriate listener
responses. However, when some modalities are excluded, it
produces inappropriate responses, as indicated by the red
boxes. In addition, we conduct a user study to evaluate human
preferences on Amazon Mechanical Turk. We randomly select
25 videos from each of the identity datasets (total 50 videos)
and visualize each result as a grayscale mesh video using
EMOCA [33] because mesh videos provide a more intuitive
way to evaluate facial and head movements compared to
photorealistic videos [13]. If photorealistic video is required,
it can be generated using a renderer model [34]. Given the
(speaker, ours, baseline) tuple of samples, 20 people were
asked to choose the video that appeared to be listening and
paying more attention to the speaker. The results are presented
in Table IV. Our model is more preferred than the baselines in
both datasets. More samples can be found on our demo page1.

V. CONCLUSION

In this work, we propose DiffListener, a novel approach
that generates realistic and diverse listener responses in a non-
autoregressive manner using a discrete diffusion model. Unlike
previous work, our method can generate longer responses
while maintaining a fixed codebook size. To better synchronize
with the speaker, we introduce a novel speaker modality (the
speaker’s facial motion differential). Through experiments, we
demonstrated that our approach outperforms existing baselines
in terms of realism, diversity, and synchrony with the speaker’s
motions. This work represents a significant step forward in
achieving more natural and context-aware listener generation.

1https://siyeoljung.github.io/DiffListener/
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[30] M. Zollhöfer, J. Thies, P. Garrido, D. Bradley, T. Beeler, P. Pérez,
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