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ABSTRACT

Data attribution quantifies the influence of individual training data points on ma-
chine learning models, aiding in their interpretation and improvement. While prior
work has primarily focused on single-task learning (STL), this work extends data
attribution to multitask learning (MTL). Data attribution in MTL presents new
opportunities for interpreting and improving MTL models while also introducing
unique technical challenges. On the opportunity side, data attribution in MTL
offers a natural way to efficiently measure task relatedness, a key factor that im-
pacts the effectiveness of MTL. However, the shared and task-specific parameters
in MTL models present challenges that require specialized data attribution meth-
ods. In this paper, we propose the MultiTask Influence Function (MTIF), a data
attribution framework tailored for MTL. MTIF leverages the parameter structure
of MTL models to derive influence functions that distinguish between within-task
and cross-task influences. Our derivation also sheds light on the applicability
of popular approximation techniques for influence function computation, such as
EK-FAC and LiSSA, in the MTL setting. Compared to conventional task related-
ness measurements, MTIF provides not only task-level relatedness but also data-
level influence analysis. The latter enables fine-grained interpretations of task
relatedness and facilitates a data selection strategy to effectively mitigate negative
transfer in MTL. Extensive experiments on both linear and neural network models
show that MTIF effectively approximates leave-one-out and leave-one-task-out ef-
fects while offering interpretable insights into task relatedness. Moreover, the data
selection strategy enabled by MTIF consistently improves model performance in
MTL. Our work establishes a novel connection between data attribution and MTL,
offering an efficient and scalable solution for measuring task relatedness and en-
hancing MTL models.

1 INTRODUCTION

Data attribution aims to quantify the influence of individual training data points on machine learning
models and has been widely used to interpret and improve these models (Koh & Liang,|2017; Ham-
moudeh & Lowd| [2024). However, most existing literature on data attribution focuses on single-task
learning (STL) settings. In contrast, this work explores data attribution in the context of multitask
learning (MTL), where multiple related tasks are trained simultaneously to enhance overall perfor-
mance (Caruana, [1997). Data attribution in MTL presents new opportunities for interpreting and
improving MTL, with distinct technical challenges in comparison to data attribution in STL.

MTL has demonstrated success across a wide range of domains, including computer vision (Za-
mir et al., 2018)), natural language processing (Hashimoto et al., [2017), speech processing (Huang
et al., [2015), and recommender systems (Ma et al.| 2018)). In practice, however, MTL does not al-
ways help with the overall performance—training unrelated tasks together often harms the learning
performance, a phenomenon known as negative transfer (Standley et al., 2020; Wang et al., |2020;
Parisotto et al.,|2016; [Rusu et al.,[2016). As a result, understanding and quantifying task relatedness
has become a key focus in MTL research (Ma et al., 2018 |Standley et al., 2020; Fifty et al.,[2021]).
Despite this, there is still no consensus on a universally effective and efficient method for measur-
ing task relatedness. In practical applications, practitioners often rely on trial and error—repeatedly
training models with different task combinations—as a gold standard to assess task relatedness, a
process that is computationally expensive.

Generalizing data attribution methods to MTL offers a promising, efficient, and interpretable way to
measure task relatedness in MTL. Many data attribution methods are designed to efficiently approx-
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imate the change of model performance when retraining the model with certain data points excluded
from the training dataset (Koh & Liang} 2017; [Park et al.,|2023)). Extending these methods to MTL
naturally leads to an efficient approximation of the aforementioned trial-and-error process for deter-
mining task relatedness. Moreover, data attribution methods allow for fine-grained analysis at the
individual data instance level, revealing how data points from one task impact performance on an-
other task. This data-level influence analysis offers more interpretable insights into task relatedness
by moving beyond a single metric, providing concrete evidence of how tasks are related through
specific data points and their cross-task effects.

However, MTL introduces unique challenges that require tailored data attribution methods. MTL
models typically consist of both shared parameters across all tasks and task-specific parameters for
each individual task. When making predictions for a specific task, only a submodel with a subset
of the parameters is utilized. As the number of tasks increases, this brings several computational
challenges for data attribution. Firstly, since each task corresponds to a separate attribution tar-
get, retraining-based data attribution methods (Ghorbani & Zou, 2019; Jia et al., 2019) become
prohibitively expensive. Therefore, in this paper, we focus on influence function (IF)-based data
attribution methods that do not require repeated retraining. Additionally, tasks in MTL may em-
ploy different loss functions, and the number of parameters scales with the number of tasks, further
complicating the application of existing IF-based data attribution methods designed for STL. These
factors present significant technical challenges when adapting such methods to the MTL setting.

In this paper, we propose the MultiTask Influence Function (MTIF) to address these challenges.
Similar to the IF-based data attribution methods for STL (Koh & Liang| 2017), MTIF leverages a
first-order approximation to efficiently estimate the impact of removing a data point from one task
on the prediction for another task, without the need for model retraining. Specifically designed for
MTL, MTIF derives the influence of data points on the shared and task-specific parameters sepa-
rately, and exploits the unique structure of MTL models to enhance computational efficiency. MTIF
enables the efficient estimation of both data-level and task-level influence, providing a scalable and
interpretable solution for data attribution in MTL settings.

We conduct extensive experiments on both linear and neural network models to evaluate the effec-
tiveness of the proposed MTIF. On linear models, the data-level influence scores predicted by MTIF
shows a near perfect correlation with the actual change of model outputs obtained by brute-force
leave-one-out retraining; the task-level influence estimated by MTIF also strongly correlates with
the leave-one-task-out retraining, with an average Pearson correlation around 0.7. On neural net-
work models, the task-level influence estimated by MTIF also shows significant correlation with
leave-one-task-out retraining, with Pearson correlation ranging from 0.1 to 0.4. Moreover, the data-
level influence estimated by MTIF enables fine-grained data selection for MTL, which demonstrates
consistent performance improvements over baselines. Finally, we provide case studies of the most
negative data points from one task to another task, providing interpretations about negative transfer.

We summarize the contributions of this study as following. Firstly, we establish a novel connec-
tion between data attribution and MTL, where the former can be naturally employed to efficiently
measure task relatedness, a key concept in MTL. Secondly, we propose a scalable data attribu-
tion method, MTIF, that addresses unique challenges of data attribution in MTL and provides fine-
grained influence analysis. Finally, we demonstrate the effectiveness and practical usefulness of the
proposed method through extensive experiments.

2 RELATED WORK

Data Attribution Data attribution methods quantify the influence of individual training data points
on model performance. These methods can be broadly categorized into retraining-based and
gradient-based approaches (Hammoudeh & Lowd, [2024). Retraining-based methods (Ghorbani &
Zoul, |2019; Jia et al.|[2019; Kwon & Zoul |2022; [Wang & Jia, 2023} |Ilyas et al., 2022) require retrain-
ing the model multiple times on different subsets of the training data. Retraining-based methods are
usually computationally expensive due to the repeated retraining. The computation cost can be fur-
ther exacerbated in MTL due to the combination of tasks. Gradient-based methods (Koh & Liang,
2017; |Guo et al.| 2021} Barshan et al., 2020; [Schioppa et al.| [2022; [Kwon et al., 2024} [Yeh et al.,
2018}, [Pruthi et al.| 2020; Park et al.| [2023) instead rely on the (higher-order) gradient information
of the original model to estimate the data influence, which are more efficient. Many gradient-based
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methods can be viewed as variants of IF-based data attribution methods (Koh & Liang| [2017). In
this paper, we develop an IF-based data attribution method tailored for the MTL settings.

Task Relatedness in Multitask Learning Quantifying task relatedness has been a central focus
in multitask learning. Broadly, two lines of work address this topic. The first focuses on task
grouping or task selection, aiming to develop methods for grouping or selecting positively related
tasks to improve prediction performance. |Standley et al.| (2020) and [L1 et al.| (2023) introduced
task selection methods based on model retraining, which are less efficient than our method. [Fifty
et al.| (2021) proposed an efficient method for calculating heuristic pairwise task affinities, but their
estimator heavily depends on the training trajectory, which limits its interpretability. Additionally,
Wu et al| (2020) incorporated task data covariance to estimate task similarity, though their work
is restricted to specific types of models. Another line of research focuses on developing advanced
training algorithms for MTL by explicitly accounting for inter-task relations during training. These
methods generally fall into two categories. The first category manipulates per-task gradients to
mitigate negative influences between tasks (Yu et al., |2020; [Wang et al., 2021} |Liu et al., 2021a;
Chen et al., [2020; [Peng et al.| 2024). The second category employs task reweighting techniques to
balance the contribution of each task or to emphasize on critical tasks (Chen et al.| 2018} Liu et al.|
2019; |Guo et al.| 2018; [Kendall et al., 2018). Beyond these two categories, Duan & Wang (2023)
proposed a family of methods that automatically leverage task similarities to improve multitask
learning. These approaches are orthogonal to our method and can be potentially combined with the
data and task selection enabled by our method. There is also a body of work on task relatedness in
transfer learning (Zamir et al.,[2018}|Achille et al.,[2021;|Dwivedi & Roig,[2019;Zhuang et al.| 2021}
Achille et al.| |2019). However, [Standley et al.| (2020) demonstrated that task similarity metrics in
transfer learning do not generalize well to the multitask learning domain. Finally, various works have
tackled negative transfer in MTL from different perspectives. |Yang et al.| (2019) propose learning
latent task representations and utilizing a block-diagonal latent task assignment matrix to explicitly
structure inter-task relationships, thereby mitigating inter-group negative transfer. [Meng et al.|(2021)
reformulate the MTL problem as a multi-teacher knowledge distillation framework, introducing a
two-stage optimization process that alleviates negative transfer. [Zhou et al.|(2023a)) address negative
transfer by introducing the Feature Decomposition Network (FDN), which separates features into
task-specific and task-shared components to reduce feature redundancy. These works address related
topics and are complementary to ours, included here for completeness in reviewing the literature.

3 PRELIMINARY: INFLUENCE FUNCTION AS AN APPROXIMATION TO LOO

As a widely used data attribution metric, the leave-one-out (LOO) effect measures the contribution
of a training data point by the change of model performance after removing this data point and
retraining the model (Koh & Liang| 2017; [Schioppa et al., [2022; |Grosse et al., [2023). However,
repeatedly retraining the model can be computationally extensive. To address this issue, in the
single-task learning (STL) setting, Koh & Liang| (2017) proposed the use of influence functions,
which approximate the LOO effect by leveraging small perturbations to the weight of the loss at
each data point.

Specifically, for a given data point z € Z and parameter vector § € O, consider a loss
function ¢(¢;z). Given a training dataset {z;} ,, we minimize the empirical risk, ie., =
arg mingeo Y., £(6; z;)/n, and evaluate the performance of # using certain evaluation metrics. A
common metric is the average loss on the validation data DV, i.e., V/(6; DV) = > __ . £(0;2) /| D"|.
The LOO effect of the ¢-th data point is defined as the difference in the evaluation metric when using
the parameters learned from all data points versus the parameters learned by excluding the data point
z;. Formally, we introduce a weight vector o = (o1, -+ ,0,) into the objective function, then the
minimizer can be written by

. _ 1 &
0(o) = arg min L(0,0), where L(0,0) = - ;mé(@,zi).

The LOO effect of the i-th data point is given by V (6(1); DY) — V(6(1(=9); DY), where 1 is an
all-ones vector with length n and 1(~% is a vector of all ones except for the i-th element being 0. The
LOO effect requires retraining the model multiple times — once for each data point being left out -
to obtain é(l(_i)). To reduce computational cost,|Koh & Liang|(2017) proposed to approximate the
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LOO effect by using the partial derivative VoV (6(c); DY) - M‘ . Under certain regularity
o=1

Boi —
conditions, the effect of perturbing the weight for data point z; on the learned parameters is given by
06 (o) H —1 7
=—H(0(1),1) " - Vel(0(1); z;), 1
S|y = ~HOW. )T Vor(d(1): =) 1)
where H(0,0) = Y., 0y 362)2(899;?) /n is the Hessian matrix. (See Appendix A of [Koh & Liang

(2017) for the derivation.) This approximation is referred to as influence function (IF)-based data
attribution. Compared to the LOO effect, IF-based data attribution only requires the evaluation of
the inverse Hessian matrix and the gradient at the model parameters trained on the full dataset.

4 INFLUENCE FUNCTION FOR MULTITASK DATA ATTRIBUTION

While IF-based data attribution has been shown as a scalable and effective tool for many applica-
tions, it has been primarily developed for STL settings, where a single model is trained on a homo-
geneous task. However, in many real-world applications, multiple related tasks are learned jointly,
with shared parameters across tasks and different evaluation metrics of interest. In this section, we
extend IF-based data attribution to the multitask learning (MTL) setting.

4.1 PROBLEM SETUP FOR MULTITASK DATA ATTRIBUTION

Multitask Learning. MTL aims to solve multiple tasks simultaneously. In many real-world sce-
narios, tasks are often related and share common underlying structures. MTL leverages shared
structures by jointly training tasks to enhance generalization and improve prediction accuracy, es-
pecially when tasks are related or when data for individual tasks is limited. A common approach in
MTL to facilitate information sharing across tasks is through either soft or hard parameter sharing
(Ruder}, 2017). In soft parameter sharing, regularization is applied to the task-specific parameters to
encourage them to be similar across tasks (Xue et al., |2007; |Duong et al., [2015)). In contrast, hard
parameter sharing learns a common feature representation through shared parameters, while task-
specific parameters are used to make predictions tailored to each task (Caruana, [1997). Recently,
Duan & Wang| (2023)) proposed an augmented optimization framework for MTL that accommodates
both hard parameter sharing and various types of soft parameter sharing.

We consider a general MTL objective that incorporates these common parameter-sharing schemes.
Specifically, consider K tasks and for each task k = 1, ..., K, we observe nj independent samples,
denoted by {zg; };",. Let £ (-; -) be the loss function for task k. The MTL objective is given by
K ng
1
L = — L Ok, 7v; zki) + Qi (O, , 2
(w) ; nk; k(Oks s 20i) + Qe (Ok, ) 2
where 8 = {0, € Rd’c},{,{:l are task-specific parameters, v € R? are shared parameters, w = {6, v}
denotes all parameters, and (0, y) represents the task-level regularization. The parameters are
estimated by minimizing (2), i.e., w = arg min,, £(w).

Below, we present two special cases of supervised learning within this general framework: one
illustrating soft parameter sharing and the other demonstrating hard parameter sharing. Let z; =
(ki ,ygi) for 1 < k < K and 1 < i < ng, where xy,; represents the features and y; represents the
outcomes for the i-th data point in task k.

Example 1 (Multitask Linear Regression with Ridge Penalty). Regularization has been inte-
grated in MTL to encourange similarity among task-specific parameters; see (Evgeniou & Pontil,
2004 Duan & Wang, 2023)) for examples. Consider the regression seiting where yi; = 07 + €k,
with €y; being independent noise and xy; € R4 for1 <1 < npand1 < k < K. Additionally,
we have the prior knowledge that {Hz}szl are close to each other. Instead of fitting a separate
ordinary least squares estimator for each 0y, a ridge penalty is introduced to shrink the task-specific
parameters 01, . .., 0k € R toward a common vector v € R?, while ~y is simultaneously learned
by leveraging data from all tasks.

The objective function for multitask linear regression with a ridge penalty is given by
K nk
1
L(w) = ;kZ(yki = z;0)% + Aell6k =3 -
i=1
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where \i controls the strength of regularization. This can be viewed as a special case of (2)) by
setting {i as the squared error (depending only on the task-specific parameters) and defining the
regularization term Q,(0x, ) = M\ |0k — 7|3

Example 2 (Shared-Bottom Neural Network Model). The shared-bottom neural network archi-
tecture, first proposed by|Caruanal (1997), has been widely applied to MTL across various domains
(Zhou et al.}|2023b} |\Liu et al.| 2021b; Ma et al., 2018). The shared-bottom model can be represented
as fr(x) = g(Ok; f(v;x)), where f(v;-) represents the shared layers that process the input data
and produce an intermediate representation, and y denotes the parameters shared across tasks. The
Sunction g(0y; ) corresponds to task-specific layers, which take the intermediate representation and
produce task-specific predictions, with 0y, representing task-specific parameters.

The loss function for this model can be written as:

K ng
£(w) =3 |- lulyne, 90k £ 010)) + Qu(61,7)
k=1 i=1

where Uy (-,-) represents the task-specific loss function, and Q(0y,~y) denotes the regularization
term. A simple choice is Q. (0x,v) = \e(||0x]13 + c||V]|3), where A\ and c are positive constants.

Multitask Data Attribution. In this work, we aim to estimate the contribution of a data point (or
a task) to the learning performance on a specific target task k € {1,..., K'}. The performance of
any model with parameters (6, ) on task &k can be measured by the average loss over a validation
dataset Dy, i.e, Vi (0k,v; D)) = ZzeD% U0k, v; 2)/| D). Then the data-level influence of the i-th

data point from task [ on the target task k can be quantified by the following LOO effect:
Ajl = Vi(Br, % DY) = Vil 4715 D)), 3)
where 6, and 4 are from the minimizer of (2) with the full training data, while HA,(;h) and 4~ are

obtained by excluding the data point z;; from task [. This data-level attribution metric allows for a
fine-grained understanding of the impact each data point from one task has on another task.

Similarly, the task-level influence of task [ on the target task k is quantified by the leave-one-task-out
(LOTO) effect:

AL = Vi (61, %; DY) — Vi (659,400 DY), )

where HA,(;Z) and 4(~ are obtained by excluding all the data points from task /. The LOTO effect
provides a natural and interpretable measure of task relatedness.

4.2 THE PROPOSED METHOD: MULTITASK INFLUENCE FUNCTION

The computational burden of evaluating LOO and LOTO effects becomes even more pronounced in
MTL setting compared to STL setting, particularly when the number of tasks is large. To address
this challenge, we extend the IF-based approximation to LOO and LOTO effects in MTL. This
approach builds on the similar idea of using infinitesimal perturbations on the weights of data points
to approximate the removal of individual data points. Specifically, we consider the following data-
level o-weighted version of the general objective function in (2):
K n
1
L 5 - - z‘e 7 0 ) Q. (0 ) ) 5
(w,0) ;[nk;% ki (Or,7) + k(k'Y)‘| ®)

where £p;(-) is shorthand for ¢j(-;zx;). For each weight vector o, we solve w(o) =
arg min,, £(w, o). We propose to use the partial derivative with respect to oy, i.e.,
Vi (0r(a),%(a); DY) 90, (o) ‘ A 95(o)

: Vo Vi(Ok,5; DY) - ——— ,

Ooy; 0oy lo=1 + Vo VO, 33 Dy) doy; lo=1

(6)
to approximate the LOO effect defined in (3). To apply the chain rule in (6], we need to compute the

influence scores of the data point z;; on the task-specific parameters 0y, and shared parameters 7.

= VoVi(0x,%; DY) -

o=1

To achieve this, we present the following proposition that provides the explicit analytical form for
the influence of a data point on task-specific parameters for the same task (within-task influence),
task-specific parameters for another task (between-task influence), and shared parameters (shared
influence). Before introducing the results, we first define some notation. Let Hy; denote the (k,[)-th



Under review as a conference paper at ICLR 2025

block components of the Hessian matrix of the MTL objective function £(w, o), as defined in ,
with respect to w. This Hessian matrix has the following block structure in MTL:

Hi, - 0 Hi g1
H(w,o) = : (7
0 -+ Hg g Hy k1
Higi11 -+ Hriixk Higpi k41

The details of each block are described in Lemma [ATT] We leverage the unique block structure of
this Hessian in MTL to derive its analytical inverse, offering insights into how data from other tasks
influence the target task through shared parameters.

Proposition 1 (Data-Level Within-task Influence, Between-task Influence, and Shared Influence).
Assuming the objective function L(w, o) in (EI) is twice-differentiable and strictly convex in w. For
any two tasks k # land 1 < k,l < K, the following results hold:

(Shared influence) For 1 < i < ny, the influence of the i-th data point from task k on the shared
parameters, ¥, is given by

9y

00k

-1 8£k;7, 1 8£ki

=N"'-H H ==
K+1,kM g 00, 377

. K _ .. .
where the matrix N := Hg (1 k41— 2 g HK+17kak1Hk7K+1 € RP*P is invertible;

®)

(Within-task influence) For 1 < © < ny, the influence of the i-th data point from task k on the
task-specific parameters for the same task k, 0y, is given by

aék —-1 azkt -1 8&
— =-H, — —H_ H, .
001 kk o0, kk 1k, K+1
(Between-task influence) For 1 < i < ny, the influence of the i-th data point from task | on the
task-specific parameters for another task k, 0y, is given by
00y, %
doy; Doy

Interpretation of Data-Level Influences. In MTL, data points have more composite influences on
task-specific parameters compared to STL due to interactions with other tasks and shared parame-
ters. In STL, each data point only affects its own task’s parameters through the gradient and Hessian
of the task-specific objective, which is solely the first term in (9). However, in MTL, shared param-
eters introduce a feedback mechanism that allows data from one task to influence the parameters of
other tasks. As shown in (8), the influence of i-th data point from task % on the shared parameters
stem from two sources: the first term reflects the change on the task-specific parameter 0}, which
then indirectly affects the shared parameters 7, while the second term accounts for the direct impact
on 4. Consequently, within-task influence in (9) includes an additional influence propagated through
the shared parameters, and between-task influence in (I0) arises as data from one task indirectly im-
pacts the parameters of another task via the shared parameters. In particular, in STL, between-task
influence does not occur because tasks are independent and do not interact.

©))

80']”"

= —Hp Hy i1 - (10)

Computational Complexity of Exact Hessian Inverse Calculation. Evaluating influence scores
requires inverting the Hessian matrix, which becomes computationally expensive as the number of
parameters per task or the number of tasks increases. The exact calculation of H~!(w, o) has a

complexity of €2 ((Zle di + p) ) where w is the matrix multiplication constant. The current
state-of-the-art value is w ~ 2.37 (Le Gall,2014). However, using the block structure of the Hessian
matrix in Proposition the complexity can be largely reduced to {2 (Zszl dy + p“’) .

Challenges in Approximating Hessian Inverse in MTL. Recent methods, such as EK-FAC
(George et al., 2018 |Grosse et al., 2023) and LiSSA (Agarwal et al., 2017; [Koh & Liang| 2017,
have been developed to approximate the Hessian inverse and improve computational efficiency. We
discuss the challenges these methods may face when applied to MTL, highlighting the need for
further exploration and adaptation to better align with the block-structure of Hessian in MTL.

EK-FAC approximates the Hessian inverse using a blockwise diagonal matrix by treating different
layers of a neural network as independent. For many popular MTL models (e.g., the shared-bottom
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neural network model in Example 2), EK-FAC approximates the Hessian matrix in Equation (7)
as diag {H11,..., Hxy1,K+1}, where the off-diagonal blocks Hy, k11 and Hp 1y are treated
as O for all & = 1,..., K. However, as shown in Proposition [I} this approximation can result
in the loss of significant contributions to within-task influence, between-task influence, and shared
influence in MTL due to omitting the terms involving Hj, i1 and Hg 4 . For instance, under

this approximation, agf would be approximated as 0, which can severely degrade the accuracy of

between-task influence score calculations. This limitation is particularly impactful in soft parameter
sharing models, where the influence from one task to another will be completely lost.

LiSSA approximates the inverse-Hessian-vector-product using an iterative algorithm that supports
mini-batch gradients. While LiSSA has potential applicability in the MTL setting, its convergence
heavily depends on the condition number of the empirical Hessian evaluated on each mini-batch
(Agarwal et al.|[2017). The condition number of a matrix, defined as the ratio of its largest eigenvalue
to its smallest eigenvalue, quantifies the matrix’s ill-posedness. In the MTL setting, each data point
is associated with a specific task k, influencing the shared parameters and only the task-specific
parameters for task k. Consequently, the empirical Hessian for a single data point contains non-zero
entries only in the Hy, , Hy g1, Hx 41,5, and Hg 1 g1 blocks of Equation (]Z]) This sparsity
can render the mini-batch empirical Hessian ill-posed, leading to a large condition number and
instability in LiSSA’s iterative approximation.

In Appendix [C.4] we empirically demonstrate that as the number of tasks K increases, LiSSA re-
quires larger batch sizes in the stochastic estimation to mitigate the issues caused by a high condition
number. This adjustment significantly increases computational costs for large-scale MTL problems.

4.3 TASK-LEVEL INFLUENCES

The LOTO effect, introduced in (@) is a natural measure for task relatedness. To provide a computa-
tionally efficient approximation of the LOTO effect, we similarly apply infinitesimal perturbations
on the data weights. Specifically, we consider the following task-level o-weighted objective, where
we assign the same weight to data from the same task:

K
a)=Zok[ Zemek, ) + Q% (O, )1. (11)
k=1

Note that, the regularization terms Q2 (0x, ) in 1D are also weighted by oy, unlike the data-level
o-weighted objective , where the weights are only applied to the individual losses {x; (6, ). This
difference is due to the nature of MTL - excluding a task results in the removal of its task-specific
parameters along with the regularization term.

The IF-based approximation for the LOTO effect Al is given by

Vi (0x(a),4(a); D) 90y, (o) c e 09(o)
0oy 1 oy ‘a:l+v7vk(9k’%Dk). doy ’,;:1'

In Proposition [2] we provide the analytical form for the influence of data from one task on the
parameters of another task and the shared parameters. The Hessian matrix of £(w, o) with respect
to w shares the same block structure as shown in (7). Let Hy; denote the (k,1)-th block of the
Hessian matrix, with the details provided in Lemma[A.2] Let N be defined as in Proposition|[T]

Proposition 2 (Task-Level Between-task Influence). Under the assumptions of Proposition[I} for
any two tasks k # [ where 1 < k,l < K, the influence of data from task | on the task-specific

parameters of task k, O, is given by

= VoVi(0x,%; DY) -

90, -1 2al
——=-H,, H - 12
80’[ k,K+1 ao_l 5 ( )
where 88 is the influence of data from task | on the shared parameters, 7, and is given by
({9’)/ 8&1 891 8&1 an
=N'H H; — 13
3o, K+1,.H), lz a6, 891] [Z (13)

As shown in Proposition task-level influences % and g—; are sums of data-level influence scores
for all points in task /, with additional terms arising from o-weighted regularization.
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5 EXPERIMENTS

Our experimental results are organized into two parts: (1) an evaluation of MTIF’s ability to ap-
proximate the gold-standard LOO and LOTO influences, and (2) a demonstration of its practical
application for data selection to improve model performance.

We test MTIF on two types of models: linear models, illustrated in Example [T] and discussed in
Section[5.1] and neural network models, described in Example 2] and discussed in Section The
results highlight the following: First, our data-level influence score provides a strong approxima-
tion of the leave-one-out (LOO) effect in (3)), as evidenced by the high degree of linearity between
the two measures. Second, our task-level influence scores closely approximate the gold-standard
LOTO influences in (), as demonstrated by a high Spearman correlation between the ranks of task
contributions derived from our method and those obtained via true LOTO influences. Additionally,
in Appendix we compare MTIF with gradient-based baseline methods (Azorin et al.| 2023}
Fifty et al.| |2021)for measuring task relatedness between training tasks and the target task. Our re-
sults show that the Spearman correlation between the task-relatedness ranks estimated by baseline
methods and the gold-standard LOTO ranks is consistently lower than that achieved by MTIF.

For practical applications, in Section [5.3] we show that data selection based on MTIF influence
scores enhances model performance across various dynamic weighting algorithms (Liu et al., 2019;
Chen et al., [2018; [Liu et al., [2021a}; |[Kendall et al.l 2018}, |Lin et al., 2022) for MTL. Furthermore,
in Appendix[D] we present case studies demonstrating that the negative samples filtered out by MTIF
provide interpretable insights into why they are detrimental to the model’s performance.

5.1 LINEAR MODEL

We conduct experiments in the linear model setting, as described in Example|[T] on two datasets.
Synthetic Dataset. This dataset consists of 10 tasks, each with 200 samples (;;, ;) split equally
into training and testing sets. Input vectors z;; are drawn from N (0, I;) with d = 50, and responses
are generated using y;; = x;rﬂ]* + €j;, where €;; ~ N(0,1). More details are provided in Ap-
pendix

Real-World Dataset. The second dataset is the HAR dataset (Anguita et al.,|2013)), also referenced
in|Duan & Wang|(2023)). This dataset was collected from 30 volunteers performing daily activities
while carrying a smartphone equipped with inertial sensors on their waist. To adapt this dataset for
multitask learning, we treat the data from each volunteer as a separate task, with the objective of
distinguishing sitting from all other activities. Additional details can be found in Appendix[C.1.2}
We apply linear regression on the synthetic dataset and logistic regression on the HAR dataset. We
present experimental results for data-level and task-level influence scores derived from our method,
evaluated on both datasets.

Data-level Influence. In this experiment, we compare our data-level influence scores (6) with the
gold-standard LOO scores (3). The results, shown in Figure [I] reveal a strong linear correlation
between the MTIF influence scores and the gold-standard LOO scores across all scenarios. This
demonstrates that MTIF effectively approximates the LOO effect for both within-task and between-
task influences on the synthetic and HAR datasets.

-
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Figure 1: LOO experiments on linear models. The x-axis is the actual loss difference obtained by
LOO retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first two
figures from the left show within-task and between-task results (in order) results on the synthetic
dataset, while the other two figures present within-task and between-task results (in order) on the
HAR dataset. Following Koh & Liang|(2017), the plots shown here reflect influences on a randomly
picked test data point, while the trend holds more broadly on other test data points. The scatter
points correspond to training data points in the first task of each dataset.

Task-level Influence. In this experiment, we compare our task-level influence scores with the gold-
standard LOTO scores on both the synthetic and HAR datasets. We randomly split 20% of
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the data from each task as the validation set. Specifically, for a given target task, we use MTIF to
calculate the influence score of each task on the model’s performance on the target task’s validation
set. We also compute the LOTO scores for each task by retraining the model. The Spearman
correlation coefficient between the MTIF influence scores and the LOTO scores is then reported.

Table shows the results on the synthetic dataset for each task selected as the target
task. Due to space constraints, the results for the HAR dataset are provided in Ap-
pendix [C.I.2] On both datasets, the proposed MTIF achieves high correlation coefficients with
the LOTO scores, indicating that MTIF aligns well with LOTO. Additionally, we compare
MTIF with two baselines, Cosine Similarity (Azorin et al.l [2023) and TAG (Fifty et al., [2021),
in Appendix [C.2] These baselines are

. . Task 1 Task 2 Task 3 Task 4 Task 5
widely used for measuring task related- (o "%) 0 () 005 074011 0812005 071 + 009
ness in the MTL literature. The pro-

Task 6 Task 7 Task 8 Task 9 Task 10

posed MTIF outperforms these base- (744004 0744007 0844005 0744003 065+ 007
lines in terms of correlation with the

ground-truth LOTO scores. Table 1:

Average Spearman correlation coefficients
across 5 random seeds on the synthetic dataset. Error bars

5.2 NEURAL NETWORKS represent the standard error of the mean.

We further evaluate the effectiveness of the proposed MTIF in neural network settings with the
Shared-Bottom neural network (as described in Example@) on the CelebA dataset (Liu et al.| [2015)).
In our experiments, the Shared-Bottom model consists of a two-layer convolutional neural network
as the shared encoder and a single-layer feed-forward neural network as the task-specific decoder
for each task. Details of the training procedure are provided in Appendix [C.1.3]

CelebA Dataset. CelebA is a large-scale face image dataset annotated with 40 attributes and widely
used in the multitask learning (MTL) literature (Fifty et al.l 2021)). Following the setup in |[Fifty
et al.| (2021), we select 9 attributes as tasks for our experiments, modeling each task as a binary
classification problem.

Task-level Influence. In this experiment, we compare the task-level influence estimated by MTIF
with the gold-standard LOTO scores in the neural network setting, following a similar setup as
the linear model experiments in Section [5.1] Table [2] reports the average Spearman correlation
coefficients across 5 random seeds, with each task selected as the target task. Compared to the
linear model setting in Table[I] the correlation coefficients are lower. This result is expected, as data
attribution for non-convex models is inherently more challenging, and the evaluation is noisier due
to the stochasticity in model retraining (Koh & Liang| [2017)).

Despite these challenges, the influence scores estimated by MTIF still exhibit non-trivial correla-
tions with the LOTO scores in most cases, with the highest correlation coefficient reaching 0.43.
This demonstrates that MTIF effectively captures meaningful signals even in the neural network set-
ting. Furthermore, MTIF outperforms baseline task-relatedness measures in this setup, as detailed

in Appendix [C.2]

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

021£004 035£019 023+£010 043+£0.12 0.14+0.17 036+0.10 029+005 0.10£0.10 0.15£0.15

Table 2: Average Spearman correlation coefficients across 5 random seeds on the CelebA dataset
with the Shared-Bottom Neural Network model. Error bars represent the standard error of the mean.

5.3 APPLICATION: DATA SELECTION

We further illustrate the practical utility of the proposed MTIF through a downstream application in
data selection. While most existing MTL research focuses on task-level relatedness, the data-level
influence scores estimated by MTIF offer a unique opportunity to improve MTL performance by
identifying and removing training data points that negatively impact the model. In this section, we
present experiment results on the CelebA dataset using the Shared-Bottom Neural Network architec-
ture. Additional results on simpler linear models as well as results on other MTL model architectures
beyond shared-bottom neural networks, are included in Appendix [C.3]

Experimental Setup. To evaluate the compatibility of MTIF’s data selection with various MTL al-
gorithms and to compare their performances, we conduct experiments using different MTL training
algorithms. Specifically, in addition to the naive Equal Weighting (EW) training algorithm, we eval-
uate several re-weighting-based methods: GradNorm (GN) (Chen et al., 2018)), Dynamic Weight
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Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Average

DWA 0.8641  0.804% 0903 0786  0.931F%  0.945" 0.854%  0.920" 0.9557 0.885"

DWA+DS 0.873%  0.815t 09047  0.795%  0.937F  0.950° 0.8661  0.929" 0.9567 0.892

GN 0.8647  0.808f  0.900f  0.781F  0.928F  0.9461  0.8561  0.922F  0.954% 0.884"

GN+DS 0.873%  0.817t  0.898F  0.791%  0.934%  0.951" 0.870%1  0.931" 0.957% 0.891°

IMTL 0.858+  0.800f  0.8961  0.775%  0.930F  0.947" 0.869f 09171  0.957% 0.883"
IMTL+DS ~ 0.871" 0.806%  0.897t  0.788% 09341  0.952" 0.8731  0.925F  0.9617F 0.890"

®

Uw 0.857t  0.808%  0.8971  0.7811  0.925%  0.945° 08591 0.920° 09561  0.883
UW+DS 0.867f  0.816F  0.900f  0.792F 09317  0.953"  0.866f 0.929% 0.958F  0.890"

«

RLW 0.8701  0.821% 0901t  0.789% 0934+  0951%  0.856%  0.927" 0.955% 0.889
RLW+DS 0.881" 0.8201 0907t  0.798% 09361  0.954" 0.868" 0.932" 0.9587+ 0.895"

*

EW 0.861% 08131 0901t 0784 0927+ 09461  0.856%  0.918" 0.957t 0.885
EW+DS 0.869%  0.818%  0.902F  0.792% 0934  0.952° 0.8681  0.9291  0.9587F 0.892°

Table 3: Results of model performance using different dynamic weighting methods (DWA (Liu
et al., 2019), GN (Chen et al., |2018), IMTL (L1u et al., 2021a), UW (Kendall et al., |2018)), and
RLW (Lin et al., [2022)), both with and without data selection (DS). The DS method removes the
top 5% of the most negative data points based on the data-level influence scores estimated by MTIF.
EW refers to Equal Weighting, which is the vanilla Shared-Bottom model without any re-weighting.
The reported values are averaged over 5 random seeds, with { indicating standard error of the mean
< 0.01 and " indicating standard error of the mean < 0.002. The last column shows the average
performance across all tasks.

Average (DWA) (Liu et al., 2019), Impartial MultiTask Learning (IMTL) (Liu et al., [2021a), Ran-
dom Loss Weighting (RLW) (Lin et al., 2022}, and Uncertainty Weighting (UW) (Kendall et al.,
2018). These methods dynamically measure and adjust task relatedness during training.

We assess model performance under two configurations: (1) using the MTL algorithms as standalone
methods, and (2) combining these algorithms with data selection (DS) enabled by MTIF. For data
selection, the model is initially trained, after which the top 5% of the most detrimental training data
points, as estimated by MTIF on the validation dataset, are removed. The models are then retrained
on the remaining training data. All re-weighting methods and their combinations with data selection
are implemented using libMTL (Lin & Zhang} 2023)).

Results. Table [3] summarizes our key findings. First, the standalone re-weighting-based methods
provide minimal to no improvement over the baseline EW, with only RLW (0.889) slightly outper-
forming EW (0.885) in terms of average performance. Although this result may seem counterintu-
itive, it aligns with findings from the benchmark study by libMTL (Lin & Zhang|, 2023)). Second,
introducing data selection significantly enhances the performance of the baseline, with EW+DS
achieving an average performance of 0.892, outperforming all standalone re-weighting-based meth-
ods. Third, combining data selection with re-weighting-based methods consistently results in sub-
stantial performance gains compared to their standalone counterparts.

These findings demonstrate that leveraging fine-grained data-level influence through MTIF-driven
data selection provides more substantial improvements in MTL performance than approaches that
focus solely on task-level relatedness.

6 CONCLUSION

In this work, we proposed the MultiTask Influence Function (MTIF), a novel data attribution method
for multitask learning (MTL). MTIF efficiently estimates the influence of individual data points on
task performance across multiple tasks, without the need for retraining. By leveraging the struc-
ture of MTL models, MTIF enables scalable and interpretable data-level and task-level influence
analysis.

Through experiments on both linear and neural network models, we demonstrated that MTIF ef-
fectively approximates leave-one-out and leave-one-task-out effects. Moreover, MTIF facilitates
fine-grained data selection, leading to consistent improvements in model performance and helping
mitigate negative transfer. Our approach offers a practical tool for measuring and interpreting task
relatedness as well as improving MTL performance.

10
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A LEMMA

The first two lemmas describe the structure of the Hessian matrices for data-level and task-level
inference.

Lemma A.1 (Hessian Matrix Structure for Data-Level Inference). Let H(w, o) be the Hessian

matrix of data-level o-weighted objective (@) with respect to w, i.e., H(w, o) = W, then we

have

Hi, o - 0 Hi k11
H(w,o) = : E : : ,
0 -+ Hg g Hyg ki1
Higy11 -+ Hrxyix Higi1,k41

where

2k 0? K}m 0y ) 829k(9k ’7) di xd
7 ) . cR kX @ 1<k< K7
Z"’“ 00,067 00,00, Jort=k=

Hy, ZOGRd’“Xdl for1 <k, l<Kandk#I,

Nk 2
0s (B, O (6,
Hferp = Higen = Z%a ki (O )Jra k(0k,7) ERWP for1 <k <K,

90,0~ 90,0~
K ng
0%0y; (O, 0%Q ™
Hgi1 k1 = ZZ Oki ak 8~yk Z 87k87k € RP*P,
k=1 1=1

Lemma A.2 (Hessian Matrix Structure for Task-Level Inference). Let H(w, o) be the Hessian
matrix of task-level o-weighted objective (I1) with respect to w, then

Hi, - 0 Hy g1
H(w,a‘) — . ." . . R
0 -+ Hg g Hy i1
Higi11 -+ Hriix Higp1 k41
where i i
= 200 (0, ) | 02Q(Ok, ) d
Hyp = AL i € Rk > 1<k<K,
b = Ok ; 90,007 90,007 forl<ks
Hy :()edexdl forl <kl<Kandk#1,
Olyi(0.7) | (6 )]
T . o kz ks Wk, 7Y dp, X
HK+1,k—Hk,K+1—Uk Z 90,0 90,07 T e R**P forl1 <k <K,
8 f}m 0k 629k(9k ’}/)
H o : c RP*P,
KKl = Z% Z oyoyT ooy T

1=1

Lemma A.3 (Influence Scores for Data-Level Analysis). Assume that the objective L(w, o) is twice

differentiable and strictly convex in w. Then, (o) = arg min,, L£(w, o) satisfies W =0.

Moreover, we have:

T

811;(0) 1 - aelm 861“*

Por. =—-H(w(o),0) o, 0, W’O’”.’O’ 5T 7
k-th bllcock (K +1)-th block

where H(w, o) € R(XCk=1 de+p) X (k=1 detp) g the Hessian matrix of L(w, o) with respect to w.

Proof. The result is obtained by applying the classical influence function framework as outlined in
Koh & Liang|(2017). O

Lemma A.4 (Influence Scores for Task-Level Analysis). Assume that the objective L(w, o) is twice
differentiable and strictly convex in w. Then, the optimal solution w(o) = argmin,, L(w, o)
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satisfies W = 0. Furthermore, we have:
T
ow(o) . 1 Ol BQk 0l 3Qk
=—-H
o (i(o),7) 0, Z o 0 ; |
k-th block (K+1) -th block

where H(w, o) € ROZE: detp)x (1 detP) s the Hessian matrix of L(w, o) with respect to w.

Proof. The result is obtained by applying the classical influence function framework as outlined in
Koh & Liang (2017). O

The following two lemmas provide tools for verifying the invertibility of the Hessian matrix and
calculating its inverse.

Lemma A.5 (Invertibility of Hessian). If Hyy, is invertible for 1 < k < K, define
K

N = Hgi1k01 — Y HipaoHy Hy g1 € RPP. (A1)
k=1
If N is also invertible, then H is invertible.

Proof. The proof is in Section[B] O

Lemma A.6 (Hessian Inverse). Let [H *l}kl denote the (k,l) block of the inverse Hessian
H(w,o)™ . Thenfor1 <k,l <K,

[H], =1(k=10)- Hy! + Hy Hy g N Hicog Hyy 'y for1 < kIS K,
[Hil]k,KJrl = —Hg Hy kN2, for1 <k <K,
-1 _ -1
[H ]K+1,K+1 =N
Proof. The proof is in Section[B] O
B PROOF
Proof of LemmalA.5|and Lemma[A.6] Denote
A B
ne(eh)
Hyy 0 Hi k1
where A = c R(Zsz1 ng) X (Chey ”k), B =(CT = : c
0 HKK HK,K+1

R(ZK= 76)XP and D = Hy 11,541 € RPXP. Under the conditions, the matrices Hyy, for 1 < k <
K are invertible. Note that A is a diagonal block matrix. It is also invertible and its inverse is given
by
H-L
11
Al =
-1
Hyx
In addition, under the conditions, D — CA™'B = Hi 1,641 — Zszl HK+17ka_k1Hk7K+1 =N
is invertible. Using the inverse formula for block matrix, we have
- -1 -1 -1\ 1
gl — (A—BD 1C) —A B(D—C’_ﬁl B) ,
-DC (A — BDflC') (D — C’AilB)
where the upper left block is equivalent to
(A-BD'C) ' =A' 4+ A7'B(D-CAT'B) T CAT,

_1 (B.2)
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by using the Woodbury matrix identity. Further, by expanding the RHS of Equation (B.2)) in terms
of the blocks in H, we can get the block-wise expression of H~!. In particular, for 1 < k,l < K,

[#1,,= [(4-BD7C) ] = 1k=0)-Hl 4[4 B(D-cATB) oAt
=1Uk=1)-H' + H Hyc i1 - N7' - Hger  Hy
Further, for1 < k < K,
_ 1T B B
(A e = T g = Hid Hiean N7
and
[Hil]K-&-l,K-&-l =N~!
O

C EXPERIMENTS

C.1 ADDITIONAL RESULTS AND DETAILS ON MTIF’S APPROXIMATION TO LOO AND
LOTO

C.1.1 SYNTHETIC DATASET

The synthetic dataset for multi-task linear regression is generated with m = 10 tasks, where each
dataset contains n = 200 samples (x;;,y;;), split into training and test sets. The input vectors x;
are independently sampled from a normal distribution A/(0, I;) with dimensionality d = 50. The
response y;; is generated using a linear model y;; = fzroZ-H]*-Jreji, where €;; ~ N(0, 1) is independent
noise.

The coefficient vectors 67 for task j are generated by starting with a common vector 3* = 2e;
(where e; is a unit vector) and adding random perturbations d;, sampled from a sphere with norm
4. For a fraction em of the tasks, 07 is replaced with independent random vectors. This parame-
terization introduces variability in task similarity, with § controlling the perturbation magnitude and
€ determining the fraction of unrelated tasks. For more details, we refer readers to [Duan & Wang

(2023)).

To explore different task similarity scenarios, we generate datasets under varying § and e values.
The datasets are randomly divided into training, validation, and test sets with an 1:1:1 ratio.

Leave-One-Out (LOO). Figures [2| and [3| present results on the synthetic dataset for each task se-
lected as the target task under varying 0 and e. Additionally, Figures ] and [5] show results when
data to be removed originates from tasks different from those in the main text. In all cases, the
strong linear relationship between MTIF scores and the gold-standard LOO scores is preserved,
demonstrating that MTIF aligns well with LOO.

Leave-One-Task-Out (LOTO). Tables 4] [3] [6] and [9] present results under various combina-
tions of § and e. The high correlation scores across these settings further demonstrate that MTIF
strongly aligns with LOTO, even in neural network settings.

C.1.2 HUMAN ACTIVITY RECOGNITION (HAR) DATASET

The Human Activity Recognition (HAR) dataset (Anguita et al.|[2013)) was constructed from record-
ings of 30 volunteers performing various daily activities while carrying smartphones equipped with
inertial sensors on their waist. Each participant contributed an average of 343.3 samples, ranging
from 281 to 409. Each sample corresponds to one of six activities: walking, walking upstairs,
walking downstairs, sitting, standing, or lying.

The feature vectors for each sample are 561-dimensional, capturing information from both the time
and frequency domains, and are reduced to 100 dimensions using Principal Component Analysis
(PCA). To frame the dataset as a multitask learning problem, we treat each volunteer as a separate
task. The goal is formulated as a multi-task logistic regression problem to classify whether a partic-
ipant is sitting or engaged in any other activity. For each task, 10% of the data is randomly selected
for testing, another 10% for validation, and the remaining data is used for training.
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Figure 2: LOO experiments on linear regression. The x-axis is the actual loss difference obtained
by LOO retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first
two figures from the left show within-task and between-task LOO (in order) results with 6 = 0.4
and € = 0, while the other two figures present within-task and between-task results (in order) with
0=04ande=0.2.

Figure 3: LOO experiments on linear regression. The x-axis is the actual loss difference obtained
by LOO retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first
two figures from the left show within-task and between-task LOO (in order) results with § = 0.8
and € = 0, while the other two figures present within-task and between-task results (in order) with
0=08ande=0.2.

Figure 4: LOO experiments on linear regression. The x-axis is the actual loss difference obtained
by LOO retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first two
figures from the left show within-task and between-task LOO (in order) results with deleted data
from task 1, while the other two figures present within-task and between-task results (in order) with
deleted data from task 2.

rd

=2

Predicted loss difference

 loss diff

Actualloss difference h Actualloss difference

Figure 5: LOO experiments on linear regression. The x-axis is the actual loss difference obtained
by LOO retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first two
figures from the left show within-task and between-task LOO (in order) results with deleted data
from task 3, while the other two figures present within-task and between-task results (in order) with
deleted data from task 5.
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Task 1 Task 2 Task 3 Task 4 Task 5
084 +£0.05 072+005 0.74+0.11 0.81 £0.05 0.71 £ 0.09
Task 6 Task 7 Task 8 Task 9 Task 10

0.74 £0.04 074 £0.07 084 +0.03 0.74+0.03 0.65=+0.07

Table 4: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
0=1.0and e =0.2

Task 1 Task 2 Task 3 Task 4 Task 5
0.75£0.07 0.67+0.06 0814003 0.704+0.05 0.60 % 0.10
Task 6 Task 7 Task 8 Task 9 Task 10

039+0.13  0.66+0.06 0.75+0.03 071 £0.05 0.61 £0.03

Table 5: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
0 =1.0and e = 0.

Task 1 Task 2 Task 3 Task 4 Task 5
0.84 £0.04 0.67+£007 0694012 0.774+0.05 0.71 £0.05
Task 6 Task 7 Task 8 Task 9 Task 10

0.73 £0.07 0.65+0.06 077 +0.05 0.69+0.05 0.56=+0.11

Table 6: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
0=0.6ande=0.2.

Task 1 Task 2 Task 3 Task 4 Task 5
0.77£0.05 056+0.09 0.69+007 0.63+0.06 0.57+0.13
Task 6 Task 7 Task 8 Task 9 Task 10

038 +£0.16 0.62+0.04 0.724+0.03 0.65+0.04 0.46 +0.09

Table 7: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
0=0.6ande=0.

Task 1 Task 2 Task 3 Task 4 Task 5
079 £0.05 0.62+006 0564013 0.734+0.05 0.64 +0.07
Task 6 Task 7 Task 8 Task 9 Task 10

0.67 £0.08 052+0.05 0.70+£0.04 0.65+0.04 0.56=+0.09

Table 8: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
0=04ande=0.2.

Task 1 Task 2 Task 3 Task 4 Task 5
0.67£0.08 052+0.10 056+009 0.64+0.06 0.54=+0.15
Task 6 Task 7 Task 8 Task 9 Task 10

042+0.16 052+0.08 0.65+005 0.56+004 038+0.12

Table 9: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
0=04ande=0.

C.1.3 NEURAL NETWORK EXPERIMENTAL SETTINGS

We further evaluate MTIF in neural network settings on the CelebA dataset (Liu et al., 2015).
CelebA is a large-scale face image dataset annotated with 40 attributes and widely used in the mul-
titask learning (MTL) literature (Fifty et al., 2021). Following the setup in |Fifty et al|(2021), we
select 9 attributes as tasks for our experiments, modeling each task as a binary classification prob-
lem. The dataset is pre-partitioned into training, validation, and test sets. For our experiments, we
sample a subset of 1000 examples per task from each partition to construct our training, validation,
and test sets.

The neural network model is trained for 200 epochs using a StepLR learning rate scheduler with a
step size of 100 and v = 0.5. Optimization is performed using cross-entropy loss and the Adam
optimizer (Kingma & Ba}|2017) without weight decay, ensuring the regularization term is zero.

C.2 RESULTS ON TASK RELATEDNESS

We incorporate two gradient-based baselines into our task-relatedness experiments for both linear
regression and neural network settings: Cosine Similarity (Azorin et al.,|2023)) and TAG (Fifty et al.,
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[2021)). Following the procedure outlined in Section[5.1] we evaluate task relatedness by designating
one task as the target task, ranking the most influential tasks relative to it as calculated by MTIF,
Cosine Similarity, or TAG, and computing the ranking correlation coefficient with the ground-truth
Leave-One-Task-Out (LOTO) scores. A higher correlation coefficient indicates better alignment
with the LOTO scores, with values ranging from -1 (completely reversed alignment) to 1 (perfect
alignment), and O representing random ranking.

Task Task 1 Task 2 Task 3 Task 4 Task 5

MTIF 0.844+0.05 0724+005 0744+0.11 0814005 0.71 +£0.09
TAG 0.57+£0.03 0.63+0.07 0494+0.11 056+0.05 0.69 £ 0.04
Cosine  0.52£0.04 048+£007 039+£012 047+£0.09 0.58 £ 0.06

Task Task 6 Task 7 Task 8 Task 9 Task 10

MTIF 0.74 £0.04 074 +£0.07 0844003 074+0.03 0.65+0.07
TAG 0.55+0.12 0424006 044+024 0.66=+0.08 061 +0.07
Cosine 047 £0.12 034£005 040£022 0.62£009 0.51+£0.08

Table 10: The average Spearman correlation coefficients over 5 random seeds on the synthetic
dataset for MTIF, TAG, and Cosine across 10 tasks.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

MTIF 0.87£0.02 0.90£0.02 0.88+£0.01 0.91+£0.03 0.91+£0.01 0.90+£0.02
TAG 0.26 £0.13 0.424+0.11 0.554+0.09 0.22+0.07 0.60=+0.07 0.55=+0.08
Cosine  0.31+£0.11 0.40+£0.11 0.57£0.08 0.20£0.09 0.61+0.06 0.57+0.08

Task 7 Task 8 Task 9 Task 10 Task 11 Task 12

MTIF 0.90£0.01 0.88£0.02 0.92£0.01 0.91+£0.02 0.89+£0.02 0.86=+0.01
TAG 0.49+0.12 0.31£0.12 0.24£0.01 0.33£0.02 0.43+£0.03 0.21+£0.02
Cosine  0.46 £0.11 0.31+£0.14 0.26+0.03 0.34+0.01 0.46+0.04 0.18+0.11

Task 13 Task 14 Task 15 Task 16 Task 17 Task 18

MTIF 0.90 £0.02 0.93£0.05 0.84+£0.01 0.87£0.05 0.89+£0.02 0.82+0.02
TAG 0.544+£0.03 0.574+0.03 0.434+0.02 0.48+0.03 0.64+0.05 0.44 +0.02
Cosine  0.53+£0.10 0.58+0.10 0.48+0.04 0.49+0.11 0.66=+0.05 0.46 +0.07

Task 19 Task 20 Task 21 Task 22 Task 23 Task 24

MTIF 0.85+0.02 0.91£0.02 0.93£0.02 0.80£0.01 0.80+£0.02 0.82+0.05
TAG 0.44£0.03 0.46£0.02 0.84£0.02 0.52+£0.07 0.13£0.03 0.38+£0.07
Cosine  0.48 £0.05 0.47+0.07 0.84+0.10 0.53+0.08 0.16+0.12 0.45+0.10

Task 25 Task 26 Task 27 Task 28 Task 29 Task 30

MTIF 0.89 £0.02 0.81£0.03 0.82£0.03 0.89+£0.01 0.92+£0.03 0.86+0.03
TAG 0.56 £0.04 0.144+0.11 0.414+0.10 0.144+0.11 0.724+0.04 0.41+0.11
Cosine  0.60+0.04 0.18+0.12 0.46+0.10 0.15+0.10 0.74+0.11 0.46 +£0.10

Table 11: The average Spearman correlation coefficients over 5 random seeds on HAR dataset for
MTIF, TAG, and Cosine across 30 tasks.

Task 1 Task 2 Task 3 Task 4 Task 5
MTIF 0.23 £ 0.08 0.44 £0.19 0.25+0.11 0.36 £ 0.12 0.17 £0.13
TAG —0.10 £0.13 —0.10£0.14 0.09 £ 0.06 0.40 £+ 0.08 0.00 £0.12
Cosine 0.12+£0.18 0.08 £0.15 0.08 £ 0.07 0.37 £ 0.08 —0.10 £0.13
Task 6 Task 7 Task 8 Task 9
MTIF 0.35 £ 0.08 0.25 £ 0.07 0.11 £ 0.09 0.18 £ 0.12
TAG —0.42 £ 0.08 —0.26 £0.17 0.06 £0.13 0.16 £ 0.16

Cosine  —0.25 +0.12 —0.25£0.14 —0.01£0.16 0.05+£0.12

Table 12: The average Spearman correlation coefficients over 5 random seeds on CelebA dataset for
MTIF, TAG, and Cosine across 9 tasks.

The results in Tables[T0} [TT} and[T2]show that our proposed MTIF method consistently outperforms
the baselines across all scenarios. For the synthetic and HAR datasets, all methods achieve positive
correlation scores across tasks, but MTIF consistently achieves the highest scores, often exceeding
0.7 for most tasks. In the CelebA dataset, estimating task relatedness in neural network models
proves to be more challenging. While MTIF maintains positive scores, the baselines perform close
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to random, frequently yielding negative scores for many tasks. Although the baselines occasionally
achieve slightly higher scores than MTIF on specific tasks, their performance is inconsistent. These
findings underscore MTIF’s reliability and superior ability to approximate task relatedness compared
to the baselines.

C.3 ADDITIONAL RESULTS ON DATA SELECTION

In this section, we present additional results on data selection. First, we evaluate the impact of MTIF-
enabled data selection under relatively simpler linear models on the synthetic dataset and HAR
dataset (Anguita et al.| 2013). These experiments provide interpretable insights into the performance
gains achieved through MTIF-enabled data selection. Second, we include results demonstrating the
flexibility of MTIF-enabled data selection when combined with multitask architectures beyond the
shared-bottom architecture on the CelebA dataset [2013).

C.3.1 SYNTHETIC DATASET

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

Before DS 0.304 0.316 0.442 0.269 0.303 0.335 0.420 0.322 0.458 0.291
After DS 0.291 0.303 0.418 0.252 0.284 0.324 0.412 0.300 0.436 0.284

Table 13: Average loss across all tasks on synthetic dataset before and after data selection.

For the synthetic dataset, a straightforward metric for model performance is the lo distance between
the estimated parameters 0} and the true parameters ¢7 for each task j. As shown in Table
the [, distance between the estimated and true parameters decreases for most tasks after applying
MTTIF-enabled data selection, demonstrating the efficacy of our method.

C.3.2 HAR DATASET

For the real-world HAR dataset, we investigate the benefits of MTIF-enabled data selection through
a label-flipping experiment. We introduce adversarial noise by randomly flipping 5% of the labels
in a small subset of the training data. During data selection, an equivalent portion of the data is
removed using the proposed MTIF method. Task-wise classification errors are reported in Table [T4]
The results show that the average classification error decreases significantly after applying data
selection, highlighting the robustness of MTIF in mitigating the impact of noisy data.

Vanilla Clustered Lowrank

Before DS 0.020 0.018 0.017
After DS 0.017 0.012 0.011

Table 14: Average classification loss for each task with different multitask learning methods (Vanilla,
Clustered, and Lowrank) proposed inDuan & Wang|(2023)) before and after data selection.

C.3.3 DIFFERENT MODEL ARCHITECTURES

We also evaluate the impact of MTIF-enabled data selection across different multitask learning
architectures, including CGC 2020), MMoE 2018), and DSelect _k
2021)). For consistency, we fix the weighting strategy to equal weighting and vary the model
architecture to train models before and after data selection. As our primary interest is in the effect
of data selection, we do not perform hyperparameter tuning. The results in Table [T3]indicate that
applying MTIF-enabled data selection leads to significant performance improvements for most tasks
across all model architectures.

C.4 LISSA

We empirically demonstrate that as the number of tasks K increases, LiSSA requires larger batch
sizes for stochastic estimation to address issues arising from a high condition number. Using a
synthetic dataset for a linear regression task, we show that increasing K necessitates larger batch
sizes to achieve stable convergence. In our experiments, we vary the batch size and observe the
convergence rate by measuring the ratio of the /5-distance between the ground-truth Hessian and the

22



Under review as a conference paper at ICLR 2025

Task 1 Task2  Task3  Task4  TaskS  Task6  Task7  Task8  Task9  Average

CGC 0.863 0.772 0.878 0.734 0.920 0.939 0.834 0.900 0.949 0.866
CGC+DS 0.868 0.783 0.877 0.766 0.925 0.943 0.842 0.917 0.956 0.875
DSelect k 0.855 0.786 0.862 0.758 0.927 0.947 0.850 0.913 0.950 0.872
DSelect_k+DS 0.868 0.787 0.867 0.775 0.933 0.951 0.856 0.924 0.954 0.880
HPS 0.859 0.815 0.896 0.791 0.934 0.951 0.872 0.919 0.958 0.888
HPS+DS 0.872 0.825 0.896 0.802 0.935 0.954 0.868 0.927 0.961 0.893
MMOoE 0.843 0.793 0.881 0.740 0.917 0.944 0.842 0.899 0.956 0.868
MMOoE+DS 0.868 0.793 0.887 0.766 0.929 0.949 0.867 0.926 0.959 0.883

Table 15: Performance comparison across different tasks and model architectures with and without
data selection (DS). The average performance over 5 random seeds is reported in the last column.

Number of Tasks = 5 Number of Tasks = 10 Number of Tasks = 20
1.0 4 1.0+
—— Batch Size: 20 —— Batch Size: 20 1.6 4 —— Batch Size: 20
Batch Size: 50 0.9 Batch size: 50 Batch Size: 50
—— Batch Size: 100 —— Batch Size: 100 —— Batch Size: 100
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Figure 6: Convergence analysis of LiSSA-estimated Hessians across varying recursion depths and
batch sizes. Each plot represents results for a different number of tasks, with three lines indi-
cating the performance for different batch sizes. The y-axis shows the L2-distance ratio between
the ground-truth Hessian and the LiSSA-estimated Hessian, while the x-axis denotes the recursion
depth.

LiSSA-estimated Hessian to the norm of the ground-truth Hessian (y-axis). As shown in Figure[6]
the need for larger batch sizes becomes increasingly evident as /K grows.

We further analyze the impact of the condition number in stochastic Hessian estimation by varying
the batch size and the number of tasks. The condition number is defined as the ratio of the largest
eigenvalue to the smallest eigenvalue of the Hessian. A larger condition number indicates a more
ill-conditioned Hessian. As shown in Table [T6} the condition number increases with the number of
tasks and decreases with larger batch sizes. Notably, the condition number becomes infinite when
the batch size is 100 and the number of tasks is 20, indicating that some tasks lack samples in the
Hessian calculation, resulting in at least one zero eigenvalue. This highlights the necessity of using
larger batch sizes in LiSSA to maintain a well-conditioned Hessian, although this compromises
efficiency.

100 150 200 250 300 Full

5 1602.53 417.03 177.06 95.82 65.96 22.38
10 7395.75 1583.46 647.36 378.03 236.25  20.47
20 inf 8067.93  2959.49 1533.45  911.80  18.34

Table 16: Average condition number of batched Hessians computed over 100 random seeds. Each
column represents the selected batch size, with “Full” indicating the full Hessian. Each task contains
100 samples, and each row corresponds to a different number of tasks. Notably, the condition
number becomes infinite when the batch size is 100 and the number of tasks is 20.
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Figure 7: The images on the left represent four samples from the task “Mustache” that negatively
influence the task “No Beard.” They are labeled positive for “Mustache” but negative for “No
Beard.” On the right, there are four samples from the task “Wearing Hat” that negatively influence
the task “Black Hair.” They are labeled positive for “Wearing Hat” but negative for “Black Hair.”

D VISUALIZATION OF MOST NEGATIVE SAMPLES

In this section, we demonstrate how MTIF can provide interpretable insights into task relatedness.
Using the CelebA dataset, we visualize some of the most negative samples between specific task
pairs in Figure

On the left side of Figure [7] we show samples from the task "Mustache™ that negatively influence
the task ”No Beard.” Intuitively, these tasks are related, as individuals with a mustache often have
a beard. However, the images depicted are negative samples for the "Mustache” task, yet the indi-
viduals clearly have beards. Such samples could potentially confuse the model, as the visual cues
contradict the task label.

Similarly, the images on the right side of Figure[7]depict individuals wearing a black hat but labeled
as not having black hair. This labeling might occur because the individual’s natural hair color is not
black or because their hair is obscured by the hat, though this distinction is not obvious from the
images. The model may misinterpret the presence of a black hat as indicating black hair.

These examples illustrate that MTIF can identify samples from one task that negatively influence
another, providing interpretable insights into task relationships and potential sources of confusion
for the model.
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