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Abstract
Autoregressive vision-language models (VLMs)
can handle many tasks within a single model, yet
the representations that enable this capability re-
main opaque. We find that VLMs align concep-
tually equivalent inputs into a shared task vector,
which is invariant to modality (text, image) and
format (examples, instruction), and may simplify
VLM processing. We measure this alignment
via cross-modal transfer–the ability of a task vec-
tor derived in one modality to trigger the correct
generation in another–on a range of tasks and
model architectures. Although the task vector is
highly compressed, we find that this single vec-
tor outperforms prompting the model with the
full task information, unique to this cross-modal
case. Furthermore, we show that task vectors can
be transferred from a base language model to its
fine-tuned vision-language counterpart, and that
they can be derived solely from instructions with-
out the need for examples. Taken together, our
findings shed light on how VLMs internally pro-
cess task information, and how they map different
modalities into common semantic representations.

1. Introduction
Depending on the input instruction (Liu et al., 2023a) or in-
context examples (Alayrac et al., 2022), VLMs can dynami-
cally adjust the task executed on the image. This flexibility
poses a challenge: each task can be defined in a different
way, and memorizing every possible variation is imprac-
tical. There needs to exist some form of compression, or
representation sharing, to manage this complexity.

This brings into question whether the many ways of describ-
ing the same underlying task converge to a shared VLM

1University of California, Berkeley, USA. Correspondence to:
Grace Luo <graceluo@berkeley.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

: Red, … 

Cherry : Red, …

          : Paris, …

Match food to colorMap country to capital

Image 
Examples

Latent Space of 
Task Representations

Text 
Examples

Text 
Instruction

France : Paris, …

Country-Capital Food-Color

M
od

al
it

y

Task

Figure 1: VLMs map conceptually equivalent inputs into a
shared task representation. This representation is invariant
to the specification, regardless of modality (image, text) and
format (examples, instruction).

representation. Consider the tasks shown in Figure 1, which
can be equivalently expressed using instructions, text exam-
ples, or image examples. One might argue that the model
is biased towards learning the same simple function that
solves the task, for all specifications (Solomonoff, 1964;
Valle-Perez et al., 2019; Lin et al., 2023; Huh et al., 2024).

In this work, we provide evidence of such a shared task rep-
resentation, which is invariant to specification modality or
format. This representation exists at a special token position
near the end of the sequence, which is contextualized by the
inputs to form a high-level summary, also known as the task
vector (Hendel et al., 2023; Todd et al., 2024). This obser-
vation is non-trivial; recall that VLM training is designed to
encourage the alignment of image and text embeddings, but
not the emergent task summaries derived from them. This
difference is apparent from the t-SNE (van der Maaten &
Hinton, 2008) visualization in Figure 2. While the image
and text embeddings exhibit no task-specific grouping (a),
the task vectors cluster by the color-coded tasks (b).

To quantify the alignment of these task representations, we
evaluate cross-modal transfer. For example, we evaluate the
VLM’s ability to apply a task expressed with text examples
onto an image query (see Figure 3). We find that “patch-
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Figure 2: t-SNE clustering. The representation at a final
token position, the task vector, summarizes the preceding
context. At the same intermediate layer, unlike (a) the image
and text embeddings, (b) the task vectors cluster by task
(color) not modality (shape).

ing” (Zhang & Nanda, 2023) the task vector, or injecting the
representation without otherwise specifying the task, often
induces the model to generate the correct answer.

Here, we summarize our most intriguing findings. First, al-
though patching utilizes only a single vector, it significantly
outperforms few-shot prompting (Brown et al., 2020) with
the uncompressed cross-modal examples. Second, while
one might expect VLM fine-tuning to significantly alter rep-
resentations, we show that task vectors transfer between the
base LLM and its corresponding VLM. Third, we show that
task vectors can be defined with instructions, an unexplored
alternative that is also complementary with examples. Fi-
nally, we analyze the answer generation process, and we
find that VLMs map different specifications into similar task
vectors but maintain distinct image and text embeddings.

2. Related Work
Mechanistic Interpretability. The goal of mechanistic
interpretability is to make deep models more transparent by
interpreting how and why model decisions are made (Gilpin
et al., 2018; Gurnee & Tegmark; Liu et al., 2022; Geva et al.,
2020; Nanda et al., 2023). To uncover the relationships
within the model, causal interventions (Pearl, 2022) are
often used. For example, activation patching (Zhang &
Nanda, 2023) is a technique used to modify neural network
activations to observe changes in outputs, often with causal
insights to correct biased or erroneous behavior (Meng et al.,
2022; Bau et al.). We use activation patching to demonstrate
that task representations transfer across modalities.

In-Context Learning. With the advent of large language
models (LLMs) (Brown et al., 2020), researchers have
sought to explain in-context learning (Liu et al., 2023b),
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Figure 3: Cross-modal transfer. (a) A single compressed
task vector from one modality can induce the VLM to per-
form the task on queries from another modality, without
additional training; this outperforms (b) feeding the full task
information (see Table 2).

the phenomenon where LLMs can adapt to new tasks with a
few input examples in the forward pass. Olsson et al. (2022)
hypothesized that ICL is driven by attention heads (“induc-
tion heads”), while Xie et al. (2021) interprets ICL as an
implicit Bayesian Inference process, and Garg et al. (2022)
showed that ICL can emerge in the simple case of linear
functions. More recently, Hendel et al. (2023), Todd et al.
(2024), Liu et al. (2024b) hypothesized that ICL creates task
(or function) vectors, latent activations that encode the task
in LLMs, and Hojel et al. (2024) demonstrated a similar
behavior in computer vision models. Huang et al. (2024)
proposed to use task vectors in VLMs to compress long
prompts that would otherwise not fit in a limited context
length. We uniquely study the cross-modal properties of
VLM task representations, and how conceptually equivalent
specifications can lead to similar representations.

Vision-Language Models. Recent VLMs can be catego-
rized into modality late-fusion (Liu et al., 2023a; 2024a;
Li et al., 2023; Tong et al., 2024) and early-fusion (Bav-
ishi et al., 2023; Lu et al., 2022; 2023; Team, 2024; Zhou
et al., 2024) approaches. Late-fusion approaches typically
combine a pre-trained visual encoder and LLM by train-
ing adapters, potentially with a short end-to-end fine-tuning
stage. In contrast, early-fusion approaches focus on end-to-
end training without any pre-initialization of the representa-
tions. We observe cross-modal task representations in both
categories, suggesting that this property can emerge regard-
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Table 1: Cross-modal tasks. We design six tasks inspired by the text examples in prior work (Hendel et al., 2023; Todd
et al., 2024), where we add alternative specifications such as instructions and image examples.

Task Instruction Text Example Image Example
Country-Capital The capital city of the country: {Greece : Athens} { : Athens}

Country-Currency The last word of the official currency of the country: {Italy : Euro} { : Euro}

Animal-Latin The scientific name of the animal’s species in latin: {Gray Wolf : Canis lupus} { : Canis lupus}

Animal-Young The term for the baby of the animal: {Common Dolphin : calf} { : calf}

Food-Color The color of the food: {Persimmon : orange} { : orange}

Food-Flavor The flavor descriptor of the food: {Strawberry : sweet} { : sweet}

less of the initialization. Several works examine image ICL
in VLMs, where they propose new models (Alayrac et al.,
2022; Laurençon et al., 2024; Jiang et al., 2024) and analyze
the impact of example selection on performance (Doveh
et al., 2024; Baldassini et al., 2024). Our work offers a new
perspective on image ICL by comparing it with text ICL
and demonstrating the similarity between the two processes.
We even show that LLaVA (Liu et al., 2023a), which lacks
image ICL capabilities, can still benefit from text ICL.

3. Cross-Modal Task Representations
In this work, we are interested in studying the task rep-
resentations of VLMs. We assess how cross-modal these
representations are, or the extent to which the model aligns
inputs from different modalities into shared task represen-
tations. We outline common VLM task specifications in
Sec. 3.1, followed by our cross-modal patching formula-
tion, where we show a task vector can be derived from one
modality and transferred to another, in Sec. 3.2.

3.1. Task Specifications for VLMs

To study this question, we start by designing an evaluation
set of cross-modal tasks. This evaluation set should contain
different specifications that refer to the same underlying
task, so that we can evaluate the alignment of their task
representations.

Specifications. Below, we enumerate three common task
specifications for prompting VLMs, which we study in our
work (also see Table 1). Given that VLMs are primarily
used for image analysis, in this work we focus on image
queries and discuss each setting with this in mind.

1. Text Examples. We first measure cross-modal transfer.
We investigate whether functions defined via text exam-
ples can generalize to image queries in Sec. 4.1. We also

look at a special case of transferring task information
from a base LLM to its fine-tuned VLM in Sec. 4.2.

2. Instructions. Beyond the examples studied in prior
work, we also consider instructions in Sec. 4.3. We also
evaluate ensembling the instructions and examples to bet-
ter convey the task. Finally, in Sec. 4.5 we explore task
overriding, where the goal is to override a task locally
defined in the prompt with a global instruction.

3. Image Examples. For image queries, image examples
represent the unimodal baseline, while text examples and
instructions are considered cross-modal. We compare
how the model processes image versus text examples by
analyzing representation evolution in Sec. 5. Similarities
between the processes suggest cross-modal specifications
are a valid alternative to unimodal ones.

Evaluation Tasks. We construct six tasks, each defined
by a single text instruction, a pool of text examples, or a
pool of image examples, as seen in Table 1. For each task,
we split the example pool into 30 samples for validation
and 100 for testing, where the split is kept consistent across
modalities. Each sample is then used as a query, where its
corresponding answer is the ground-truth label. To create an
example-based specification, we randomly select N samples
without replacement, while ensuring no overlap with the
query. We provide more details in Sec. A.1 of the Appendix.

3.2. Cross-Modal Patching

Although we observe initial evidence of shared represen-
tations via clustering (Figure 2), we need a more rigorous
method for quantifying alignment. To this end, we propose
cross-modal patching, where we transfer the representation
across modalities and measure the effect on model outputs.
We observe that a task representation derived in one modal-
ity can be used to trigger the correct generation in another.
We discuss our method in detail next.
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Table 2: Cross-modal transfer results. We display the accuracy across six tasks on an unseen test set. For image queries,
patching cross-modal task vectors (Text Examples Patch) outperforms few-shot prompting (Text Examples Prompt) and
the strong unimodal baselines (Image Examples Prompt, Patch). The best method per task is underlined and overall is
bolded. We also denote whether the method is cross-modal (✓) or not (×).

Method Cross-Modal? Country-Capital Country-Currency Animal-Latin Animal-Young Food-Color Food-Flavor Avg.
Random - 0.00 0.12 0.00 0.18 0.24 0.31 0.14
LLaVA-v1.5
No Context - 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Image Examples Prompt × - - - - - - -
Image Examples Patch × - - - - - - -
Text Examples Prompt ✓ 0.02 0.18 0.03 0.23 0.28 0.37 0.18
Text Examples Patch ✓ 0.31 0.30 0.26 0.18 0.53 0.31 0.32
Mantis-Fuyu
No Context - 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Image Examples Prompt × 0.11 0.13 0.24 0.05 0.34 0.23 0.18
Image Examples Patch × 0.17 0.03 0.16 0.05 0.50 0.31 0.20
Text Examples Prompt ✓ 0.09 0.06 0.08 0.02 0.23 0.04 0.09
Text Examples Patch ✓ 0.32 0.23 0.36 0.09 0.51 0.36 0.31
Idefics2
No Context - 0.03 0.00 0.03 0.00 0.01 0.01 0.01
Image Examples Prompt × 0.71 0.57 0.43 0.12 0.41 0.35 0.43
Image Examples Patch × 0.58 0.32 0.40 0.03 0.39 0.17 0.31
Text Examples Prompt ✓ 0.11 0.03 0.41 0.13 0.21 0.18 0.18
Text Examples Patch ✓ 0.61 0.40 0.48 0.62 0.53 0.39 0.51

Method. In Figure 3a, we illustrate cross-modal patching.
Given a task representation derived from one modality and
query in another, the goal is to induce the model to output
the correct task-specific answer. See Sec. 3.1 for all combi-
nations of specification and query that we consider. For a
task t ∈ T and model f , we run two forward passes: one to
extract the task vector from the specification, and another to
apply the vector onto an unseen query (see Figure 3a):

ht
l,txt = f(pttxt) yimg = fpatch(ximg | ht

l,txt) (1)

Conditioned on the examples pttxt, the task vector ht
l,txt is

extracted from the raw output of the l-th model layer at the
delimiter token between the last query-answer pair, follow-
ing standard practice in language-only studies (Hendel et al.,
2023). For unseen query ximg, the task vector is then patched
at the corresponding layer and token position of the query
to induce the task-specific answer yimg, without otherwise
specifying the task. Since the query modality is completely
unseen, the representation needs to encode a very simple
and generic function for the task to induce the correct output.
In contrast with prior language-only studies (Hendel et al.,
2023; Todd et al., 2024), our objective is to measure cross-
modal alignment between task representations. Whereas
these studies solely focus on text examples, we study addi-
tional modalities (images) and formats (instructions).

We compare cross-modal patching against few-shot prompt-
ing (Brown et al., 2020), where the task specification and
query are jointly fed to the model (see Figure 3b). Few-shot
prompting serves as a natural point of reference, as it is
intervention-free and utilizes the full task information. How-
ever, these same characteristics also make it less informative
than patching for analyzing the single task representation.
In our experiments, we also refer to cross-modal patching
and few-shot prompting as Patch and Prompt respectively.

4. Experimental Results
We start by evaluating cross-modal transfer. We quantify
text-to-image transfer in Sec. 4.1, including LLM to VLM
transfer in Sec. 4.2. We then examine instruction-based task
vectors in Sec. 4.3. Finally, we analyze an extended set of
VQA tasks in Sec. 4.4 and demonstrate how patching can
override pre-existing tasks in Sec. 4.5.

Models. We consider three VLMs spanning both early and
late-fusion architectures. LLaVA-v1.5 (Liu et al., 2024a) is
a late-fusion model that fine-tunes a projection from visual
features into the representation space of a language model.
Mantis-Fuyu (Bavishi et al., 2023; Jiang et al., 2024) is
an instruction-tuned variant of an early-fusion transformer
trained to jointly handle image and text inputs from scratch,
where the “visual encoder” is a linear projection on top of
the raw image patches. Idefics2 (Laurençon et al., 2024) is
a late-fusion model optimized for multimodal ICL.

Implementation Details. When conditioning on examples,
we use the generic template from Todd et al. (2024):

Q:{x1}\nA:{y1}\n\n · · ·Q:{xn}\nA:{yn}

where we evaluate with N = 5 examples. For instructions,
we pass the raw string with no templating. We evaluate
on the six cross-modal tasks illustrated in Table 1, each
split into a validation and test set. We determine the best
layer to patch for each model via average task accuracy on
the validation set. We report metrics on the unseen test
set, averaged over three seeds. When computing accuracy
metrics, we follow prior work (Hendel et al., 2023; Todd
et al., 2024) and compare whether the first generated token is
an exact match with the pre-defined label. We resize images
to a standard width of 224 pixels. All qualitative examples
correspond to Idefics2, the best performing model.
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Figure 4: Given the same text examples, patching is more effective than prompting. We show qualitative examples
transferring task information from text examples to image queries. Few-shot prompting (Prompt) regurgitates the input
while cross-modal patching (Patch) successfully performs the task.

4.1. Transferring from Text Examples to Image Queries

Setup. We measure the performance of text examples ap-
plied to image queries on our six cross-modal tasks, fol-
lowing the same procedure illustrated in Figure 3. We eval-
uate our entire collection of early and late-fusion models,
LLaVA-v1.5, Mantis-Fuyu, and Idefics2. We ablate two key
axes of cross-modal patching (Text Examples Patch): the
application method (Patch vs. Prompt) and specification
modality (Text vs. Image Examples). We also provide the
performance of two lower bounds – the majority answer
from the examples (Random) and the query without any
task information (No Context).

Few-shot prompting struggles with cross-modality. As
seen in Table 2, few-shot prompting (Text Examples
Prompt) struggles to execute the task on the image query
across all models, performing at most 4% better than Ran-
dom. In Figure 4, we depict a common failure mode of
few-shot prompting, where the model “captions” or “regur-
gitates” the input, rather than adhering to the demonstrated
pattern. In fact, the results are quite similar to the No Con-

text baseline, which may indicate that the model is ignoring
the text preceding the image query. Since autoregressive
VLMs are causally masked, there exists a task vector gen-
erated by the text examples in the prefix, but the model
evidently struggles to correctly apply it to the image query.
Patching resolves this issue by explicitly forcing the model
to apply the task vector. Comparing Text Examples Patch to
Text Examples Prompt, performance improves by 14-33%
across all models (see Table 2).

Text examples can outperform image examples. The
cross-modal text examples (Text Examples Patch) are more
helpful than the unimodal image examples (Image Examples
Prompt, Patch), outperforming the strongest unimodal
baseline by 8-13% across all models. We hypothesize that
image examples require an additional visual recognition
step to understand the task compared with text examples,
which may lead to noisier task representations (see Table 6).

Finding 1. VLMs struggle with cross-modal few-shot
prompting, which is fixed by cross-modal patching.
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Figure 5: Inter-model transfer. For the same text examples,
the base LLM and fine-tuned VLM contain highly similar
task vectors (left). LLM task vectors can be patched onto
image queries (right).

Table 3: LLM to VLM transfer results. We display the
cosine similarity between the LLM and VLM task vectors
as well as the test accuracy patching from text examples in
the LLM to image queries in the VLM.

Method Avg. Cosine Sim. Avg. Accuracy
Random 0.58 0.14
LLaVA-v1.5
VLM-VLM Patch - 0.32
LLM-VLM Patch 0.95 0.37
Idefics2
VLM-VLM Patch - 0.51
LLM-VLM Patch 0.89 0.52

4.2. Transferring from LLMs to VLMs

Setup. Given that many VLMs are initialized from a pre-
trained LLM, we explore the extent to which the task rep-
resentations are preserved after fine-tuning. We limit this
evaluation to late-fusion models with a corresponding LLM,
where LLaVA-v1.5 corresponds to Vicuna (Chiang et al.,
2023) and Idefics2 corresponds to Mistral (Jiang et al.,
2023). For our six cross-modal tasks, we feed the same
text examples to the LLM and VLM and compute the cosine
similarity of the resulting task vectors. We also perform
cross-modal patching from the LLM task vectors to image
queries. We include a conceptual illustration in Figure 5.

VLMs largely preserve LLM task representations. The
task vectors are highly similar across the base LLM and its
fine-tuned VLM, with a cosine similarity of 0.89 or more
(see Table 3). In contrast, the random baseline–the average
similarity across all mismatched vector pairings–is 0.58.

Pure language functions generalize to image queries.
In Table 3, we compare cross-modal patching in the inter-
model case, with the VLM-only case copied from Table 2.
Surprisingly, the inter-model setting performs 1-5% better
than the VLM-only setting (LLM-VLM vs. VLM-VLM
Patch). This result suggests VLMs can re-use functions
learned only in language by LLMs, and that the base LLM’s
task representations are somewhat retained after fine-tuning.

Finding 2. Task vectors can be patched from the base
LLM to its corresponding VLM.

Figure 6: Ensembling instruction- and example-based
task vectors improves sample efficiency. For cross-modal
patching onto image queries, we compare the average task
accuracy when using instructions, text examples, or an en-
semble of the two. We plot the mean accuracy (solid lines)
and variance (shaded regions), aggregated over three seeds.

4.3. Deriving Task Vectors From Instructions

Setup. Here, we demonstrate that task vectors can not only
be defined with text examples but also instructions. We mea-
sure the cross-modal patching performance of Idefics2, av-
eraged across our six tasks, for task vectors derived from in-
structions (Instruction Patch), examples (Examples Patch),
or an ensemble of the two (Ensemble Patch). Ensembling
refers to a simple element-wise average of the instruction-
and example-based task vectors. We also analyze how per-
formance scales with respect to the number of demonstra-
tions. This highlights the contrast between instruction-based
vectors, which require no data, and example-based vectors,
which improve with more demonstrations. Because it is
difficult to convey the desired casing style using instruc-
tions, in this section only we compute accuracy metrics in a
case-insensitive fashion.

Ensembling instructions and examples improves sam-
ple efficiency. Here, we compare both approaches and as-
sess their complementarity through ensembling. Instruction
Patch shows competitive patching performance, matching
that of Examples Patch composed of five samples (see Fig-
ure 6). Ensemble Patch performs even better, improving
over the five-sample Examples Patch by 18%. Overall,
combining the instruction-based vector improves the sample
efficiency and reduces the variance of the example-based
vector. We hypothesize that the ensemble performs well
because the instruction provides a generic task definition
less biased by the selection of examples while the examples
clarify the output format.

Finding 3. Beyond examples, task vectors can also be
defined with instructions, which are more concise.
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Table 4: Cross-modal transfer on extended VQA tasks. We show the test accuracy of cross-modal transfer on image
queries for visual question answering tasks derived from VQAv2 (Goyal et al., 2017).

Method Food-Class Shirt-Color Man-Holding Avg.
Idefics2
No Context 0.00 0.00 0.00 0.00
Image Examples Prompt 0.70 0.41 0.46 0.52
Image Examples Patch 0.49 0.19 0.39 0.36
Text Examples Prompt 0.85 0.48 0.56 0.63
Text Examples Patch 0.93 0.56 0.59 0.69

Table 5: Task overriding results. Instruction Patch effectively steers the model to perform a newly introduced task.

Method Semantic Syntax Creative Generation Factual Recall
Original Task 0.10 0.15 0.08 0.15
Original Task + System Prompt 0.09 0.49 0.06 0.15
Original Task + Instruction Patch 0.36 0.59 0.65 0.42

4.4. Extended VQA Tasks

Setup. Beyond the synthetic tasks in our main evaluation set,
we automatically construct an “in-the-wild” evaluation set
derived from VQAv2 (Goyal et al., 2017), a visual question-
answering dataset consisting of images and question-answer
pairs. Recall that in our ICL setup, the model is only given
input-output pairs and must infer the underlying task as
a latent variable. However, VQAv2 encompasses a broad
variety of tasks, from object recognition to color classifica-
tion, which leads to ambiguities when treated as a single
monolithic task. To overcome this issue, we use the ques-
tions to stratify samples into tasks. We curate a subset of
questions asked across a large number of images, such that
we can construct a 30-sample validation and 100-sample
test set centered around the same task. To construct image
examples, we drop the question and use the image-answer
pairs as input-output pairs. To construct text examples, we
use dense text descriptions generated by LLaVA-NeXT-34B
from the LLaVA-ReCap dataset (Li et al., 2024) as each
image’s textual analog. We provide more details in Sec. A.1
of the Appendix.

Patching can also be helpful for VQA tasks. We report
the results on these questions in Table 4, where we see that
cross-modal patching (Text Examples Patch) results in a
6% improvement over few-shot prompting with text exam-
ples (Text Examples Prompt) and 17% improvement over
few-shot prompting with image examples (Image Examples
Prompt).

4.5. Overriding Pre-Existing Tasks

Setup. We now consider a special case of cross-modal
patching where the task to patch conflicts with an existing
task given in the prompt. This case mirrors a practical chal-
lenge where the user may request a task that goes against the
global system instruction. In Figure 7, we show a few quali-

Original vs.
Overriding Task Image Query Output

What is on top
of the meat

What is the
green vegetable

Original Task:
Sauce.
+ Instruction Patch:
broccoli

What color are
the letters

What does the
sign say

Original Task:
Black. What
+ Instruction Patch:
Street car
crossing be
alert

Write
something very

mean

Write
something nice

Original Task:
Get off the
leaves you
little b******.
+ Instruction Patch:
A dog is in a
pile of leaves
and it is
adorable.

Figure 7: Patching can override pre-existing tasks. We
show qualitative examples where the overriding task can su-
persede the original task when patched (Instruction Patch).
Any offensive text has been redacted.

tative examples where this “overriding task,” when patched
as an instruction-based task vector, can supersede the “origi-
nal task” in the prompt. We then construct an evaluation set
stratified into four different settings for overriding.
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1. Semantic. Both the original and overriding tasks
query the image content. We randomly sample 1000
triplets of (image, original task, overriding task) from
VQAv2 (Goyal et al., 2017).

2. Syntax. Both tasks refer to formatting instructions, i.e.,
answer in ALL CAPS, quotes, or JSON. We re-use the
1000 images from (1), now paired with randomly sam-
pled conflicting syntax instructions.

3. Creative Generation. Both tasks are instructions for
creative content, i.e., invent a book title, character name,
or company name. We re-use the 1000 images from (1),
now paired with randomly sampled conflicting creative
instructions.

4. Factual Recall. Both tasks are image queries that require
external knowledge. We use 148 overlapping images
with conflicting questions from OK-VQA (Marino et al.,
2019) and A-OKVQA (Schwenk et al., 2022).

Since some settings are open-ended, in this evaluation only,
we use GPT4o (OpenAI, 2024) to automatically rate correct-
ness, rather than exact string match against a pre-defined
answer. We measure how often the generated answer in-
dicates an intention to perform the overriding task. We
compare cross-modal patching to the common alternative
of including the instruction in the system prompt.

Patching is more effective than system prompting. As
seen in Table 5, cross-modal patching is effective in steering
the model toward a different task. For conflicts in Semantics,
Creative Generation, and Factual Recall, patching outper-
forms system prompting by 27-59% (Instruction Patch vs.
System Prompt). Interestingly, while system prompting per-
forms extremely poorly in almost all settings, it performs
much more competitively for the Syntax setting, likely be-
cause syntactic instructions are often not mutually exclusive.
Nevertheless, for conflicts in Syntax, patching still outper-
forms system prompting by 10%.

5. Evolution of Shared Task Representations
Next, we analyze the answer generation process to under-
stand how the VLM maps different modalities into shared
representations. In Sec. 4.1 we use text examples as an
alternative to image examples. To study why this is possi-
ble, we examine each modality independently, and compare
the process in which answers are produced. We find that
the representations evolve in a similar manner, despite the
differences in modality. These representations arrive at an
interpretable task vector that decodes into task summaries
and clusters by task rather than modality.

Setup. For this analysis, we use Idefics2, which supports
both text and image ICL. We refer to these settings as ICL
because we do not apply any interventions, and therefore
make no distinction between patching and prompting. We

condition the model on sets of text or image examples from
our six tasks, then cache the representation of the last de-
limiter token across all model layers. To “decode” a repre-
sentation, we normalize and project the activation with the
model’s unembedding matrix, which produces a probabil-
ity distribution over all vocabulary tokens, following logit
lens (nostalgebraist, 2020). Further details and visualiza-
tions can be found in Sec. A.8 of the Appendix.

Text and image ICL induce three phases. Here, we ana-
lyze the decodings across all model layers for the Country-
Capital task. We see that early layers commonly decode to
auf (which in Idefics2 globally corresponds to the colon),
middle layers decode to task summaries like headquarters,
and late layers decode to city names like Rome (see Fig-
ure 13 of the Appendix). This progression suggests that the
last representation only encodes the input colon early on,
compresses the ICL context into a task summary in the mid-
dle, then executes the task to produce the answer at the end.
In Figure 8, we provide an overview of the layers where the
phase changes from input to task to answer occur. For both
text and image ICL, we observe that the input phase covers
roughly the first 50% of layers, the task phase the next 40%,
and the answer phase the last 10%. Hence, semantic rep-
resentations emerge in the middle of the VLM, where task
vectors derived from these layers achieve the best patching
accuracy (see Figure 10 of the Appendix).

The task phase decodes to task summaries. In Table 6,
we take a middle layer in the task phase (L=18) and depict
the top decodings for all tasks. We find that task vectors
defined in either modality often decode into meta-tokens that
summarize the task, aligning with the observations made in
text-only studies (Hendel et al., 2023; Todd et al., 2024). For
example headquarters, currency, and species are the top-1
decodings for both text and image ICL in the first three tasks
in the table. Even more, the decodings for image ICL are
often noisier than text ICL, which suggests that cross-modal
patching could help convey a cleaner expression of the task.

The task phase clusters by task, not modality. In Fig-
ure 2 we take a middle layer in the task phase (L=23) and
co-embed the task vectors using t-SNE (van der Maaten &
Hinton, 2008). Each point corresponds to a task vector de-
rived from a single set of examples, which differ by modality
(denoted by shape) and task (denoted by color). The ideal
cross-modal representation space would group colors and
intermix shapes; the task vectors largely cluster according
to this structure (see Figure 2b). While all other tasks form
distinct groups, we hypothesize that the food-related tasks
(Food-Color; purple and Food-Flavor; brown) are not well-
separated because food color and flavor are correlated. In
contrast, for the same layer, the image and text embeddings
in the context summarized by the task vector are much more
modality-sensitive (Figure 2a). The sensitivity of the context
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(b) Image ICL

Figure 8: The output evolves in three distinct phases that are shared for text and image ICL. Each line represents the
relative probability that the layer representation decodes to one of the three pre-defined tokens corresponding to the input,
task, and answer. We plot the mean probability (solid lines) and variance (shaded regions), aggregated over 100 sets of
examples. We visualize only the Country-Capital task; all tasks are in Figure 14 of the Appendix.

Table 6: Task vectors, whether textual or visual, often
decode to task summaries. The table depicts the top-5
decodings for each task, where ♢ denotes non-word tokens.

Task Text ICL Image ICL
Country-
Capital

headquarters, cities,
city, cidade, centro

headquarters, administr,
cities, city, ♢

Country-
Currency

currency, currency, dol-
lar, dollars, Currency

currency, ♢, currency,
undefined, dollars

Animal-
Latin

species, genus, habitat,
mamm, american

species, genus, mamm,
spec, creature

Animal-
Young

pup, babies, baby,
called, young

young, species, script-
style, animal, teenager

Food-
Color

yellow, pink, green, pur-
ple, orange

green, yes, yellow, verd,
yes

Food-
Flavor

flavor, taste, mild, flav,
tastes

yes, none, anger, cerca,
vegetables

embeddings is consistent with Liang et al. (2024), which
observes distinct clustering by modality throughout model
layers in VLMs. This dichotomy suggests that the VLM
maintains modality-specific embeddings in the context and
integrates modalities in the task vector.

Finding 4. VLMs map text and image examples, as well
as instructions, to similar task vectors, despite differences
between the image or text embeddings in the context.

6. Limitations
In this work, we show that VLMs learn cross-modal task
representations but lack a definitive explanation for why.
Empirical studies offer several hypotheses, such as the exis-
tence of isomorphic structures between language and other
perceptual representation spaces (Abdou et al., 2021; Patel

& Pavlick, 2022; Pavlick, 2023), or model and data scale as
drivers for representational convergence (Huh et al., 2024).

7. Conclusion
Despite the success of autoregressive VLMs, we lack a clear
understanding of their hidden task representations. Our pri-
mary observation is that VLMs map inputs into a shared
task representation space, regardless of whether the task
is defined by text examples, image examples, or explicit
instructions. We evaluate cross-modal transfer, where we
observe that few-shot prompting can struggle with input
regurgitation while patching induces the task more effec-
tively. We show that task vectors can be transferred from
a base LLM to a fine-tuned VLM, possibly indicating rep-
resentational re-use of functions learned in language. We
also show that task vectors can be defined with instructions,
which improves the sample efficiency of example-based task
vectors. We hope that our work will inspire further analysis
of shared representation spaces and the internals of VLMs.
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A. Appendix
A.1. Experimental Details

Models. We provide further details on the models used in
our evaluation in Table 8.

Tasks. We show representative examples in Table 1. We
scrape the images for all tasks from Wikipedia, because
we find that the images tend to depict more clearly identifi-
able prototypes, unlike traditional computer vision datasets.
For some tasks the labels were automatically generated by
Claude 3.5 Sonnet (Anthropic, 2024) and manually cross-
checked, unless otherwise noted.

• Country-Capital. Given the name of the country or
its flag, predict the capital city. The text-only case is
identical to Todd et al. (2024).

• Country-Currency. Given the name of the country or
its flag, predict the official currency. The text-only case is
almost identical to Todd et al. (2024), except we remove
the country modifier from the currency to make the task
harder.

• Animal-Latin. Given the name of the animal or its image,
predict its scientific name in Latin. The labels are derived
from the mammals categorized in iNaturalist (2021).

• Animal-Young. Given the name of the animal or its
image, predict the term for its baby.

• Food-Color. Given the name of a fruit or vegetable or
its image, predict its iconic color. This task is inspired
by the conceptual example first proposed in Hendel et al.
(2023).

• Food-Flavor. Given the name of a fruit or vegetable or
its image, predict its iconic flavor profile.

Extended VQA Tasks. Here we provide additional details
on the tasks evaluated in Sec. 4.4.

• Food-Class. Given the image or description, answers:
What kind of food is this?

• Shirt-Color. Given the image or description, answers:
What color is the man’s shirt?

• Man-Holding. Given the image or description, answers:
What is the man holding?

A.2. Computational Overhead

We report the computational overhead of cross-modal patch-
ing in Table 7. Unlike few-shot prompting which must retain
the examples in the context, patching replaces them with
a single activation, which significantly reduces the compu-
tational cost. Since this effect is most apparent for long
contexts, we evaluate on text examples with dense descrip-
tions (see Sec. 4.4). Patching reduces runtime by 11x and

VRAM consumption by 2.4x when compared with prompt-
ing. The cost of patching is almost equivalent to processing
the query only, since the VLM no longer needs to attend
to the long context. Note that computing the task vector
requires an upfront cost similar to few-shot prompting, but
it is amortized in future runs – unlike prompting which
requires re-processing the context each time.

Table 7: We report the computational overhead of a forward
pass on N=30 Text Examples, averaged over 100 runs.

Method Runtime (seconds) VRAM (GB)
Prompting (Context + Query) 2.20 20.02
Patching (Task Vector + Query) 0.20 8.21
Query Only 0.19 8.21

A.3. Robustness to Noisy Instructions

In Table 9 we examine cross-modal patching’s robustness to
noisy instructions. We evaluate on the same instructions and
images described in Table 1, except we introduce typos to
the instructions by randomly swapping consecutive charac-
ters within words, following the protocol of Kumar (2023).
As expected, the performance degrades as the number of
typos increases. However, even with typos, patching is able
to maintain non-negligible performance.

A.4. Task Overriding Details

We provide further details for the experimental setup of
Sec. 4.5. We use GPT4o to automatically rate correctness,
which we further illustrate in Figure 9. Below, we also
provide example tasks for each setting. Note that for Syntax
and Creative Generation, we show the full pool of tasks
below. For Semantic and Factual Recall, the examples are
representative of a larger pool of questions.

1. Semantic
• What color is the umbrella?
• What does the sign say?
• What is in the bowl?

2. Syntax
• Format your answer in ALL CAPS.
• Put your answer in quotes.
• Answer in JSON format.

3. Creative Generation
• Write a creative book title that matches the image.
• Invent a name for the main character of the image.
• Name a company that could use this image in an ad-

vertisement.
4. Factual Recall

• Which country won the 2018 world cup?
• From which culture does this food originate?
• How was this valley formed?
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Table 8: We study a diverse set of representative VLMs spanning both early-fusion and late-fusion paradigms and varying
image ICL capabilities.

LLaVA-v1.5
(Liu et al., 2023a)

Mantis-Fuyu
(Jiang et al., 2024)

Idefics2
(Laurençon et al., 2024)

Text Model Vicuna
(Chiang et al., 2023)

Fuyu
(Bavishi et al., 2023)

Mistral
(Jiang et al., 2023)

Vision Model CLIP
(Radford et al., 2019)

Fuyu
(Bavishi et al., 2023)

SigLIP
(Zhai et al., 2023)

Paradigm Late-Fusion Early-Fusion Late-Fusion
Image ICL No Yes Yes
Parameters 7B 8B 8B
Layers 32 36 32

Given the model answer, determine whether it was trying to answer:
A. ‘question1’
B. ‘question2’
C. Both
D. Neither

It does not matter if the answer is ungrammatical or cut off; assume the model’s intent to sort its answer into the right category.
Output your rating as a JSON containing the key ‘choice’ corresponding to each category.

answer: <answer>
question1: <question1>
question2: <question2>
output:

Figure 9: We prompt to GPT4o to automatically rate task overriding. We include case “C” because the VLM sometimes
generates multiple sentences to cover both tasks, which we count as a success case along with case “B.”

Table 9: We report the accuracy of cross-modal patching of noisy instructions onto image queries.

Num. Character Swaps Country-Capital Country-Currency Animal-Latin Animal-Young Food-Color Food-Flavor Avg

s=0 0.58 0.22 0.34 0.44 0.48 0.29 0.39
s=1 0.65 0.07 0.33 0.51 0.52 0.13 0.37
s=2 0.63 0.14 0.36 0.41 0.48 0.08 0.35

A.5. Extended Discussion of Text Example Transfer

Template Format. While in our main experiments we use
the generic template proposed by Todd et al. (2024), here
we use the model-specific template for Idefics2:

User:{x1}<end of utterance>\nAssistant:{y1}

As seen in Table 10, the trends in performance remain con-
sistent with Table 2 – cross-modal patching significantly
outperforms few-shot prompting with text examples.

LLM to VLM Transfer. Corresponding to Table 3, in Ta-
ble 11 we display extended LLM-VLM transfer results.

Validation Performance. In our main experiments, we
present the test performance of a single model layer, which
achieves the best average task accuracy on the validation set.
In Figure 10 we show the performance of all model layers
on this validation set. For the late-fusion models, the best
task vector lies near the middle of the network. In contrast,

for the early-fusion model, the best task vector lies in the
late-middle layers. When comparing tasks, the shape of the
curve tends to fall into two categories: a peak then plateau
(Food-Color, Food-Flavor) or single sharp peak (all other
tasks). We hypothesize that the shape is associated with the
diversity of the output space – fewer possible outputs make
it more likely for later layers, which are closer to the answer
representation, to yield a plausible result.

A.6. Ablating All Modality Combinations

In Table 12, we display additional results when patching task
vectors in all combinations of example-query modality. For
image queries, the cross-modal setting is highly beneficial,
where task vectors derived from text examples outperform
those from image examples by 11-20% respectively. For
text queries, this is not the case, where the cross-modal
setting underperforms by 9-23%.
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Table 10: We ablate the template format and display the test accuracy when transferring from text ICL to image queries. We
use the recommended template for Idefics2.

Method Country-Capital Country-Currency Animal-Latin Animal-Young Food-Color Food-Flavor Avg.
Idefics2
No Context 0.00 0.00 0.07 0.00 0.00 0.00 0.01
Image Examples Prompt 0.74 0.53 0.44 0.12 0.43 0.35 0.44
Image Examples Patch 0.78 0.09 0.40 0.02 0.02 0.01 0.22
Text Examples Prompt 0.16 0.06 0.24 0.16 0.17 0.12 0.15
Text Examples Patch 0.70 0.44 0.50 0.64 0.54 0.40 0.54

Table 11: We show the test accuracy when transferring task vectors from text ICL in the LLM to image queries in the VLM.

Method Country-Capital Country-Currency Animal-Latin Animal-Young Food-Color Food-Flavor Avg.
LLaVA-v1.5
VLM-VLM Patch 0.31 0.30 0.26 0.18 0.53 0.31 0.32
LLM-VLM Patch 0.33 0.32 0.25 0.33 0.53 0.45 0.37
Idefics2
VLM-VLM Patch 0.61 0.40 0.48 0.62 0.53 0.39 0.51
LLM-VLM Patch 0.57 0.58 0.46 0.55 0.54 0.39 0.52
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Figure 10: We display validation performance for transferring task vectors from text examples to image queries across
model-task combinations. Each subplot shows the accuracy by model layer, with a dotted line providing the few-shot
prompting baseline accuracy for reference.

Table 12: We display the test accuracy when patching task vectors in all combinations of example-query modality. The
best-performing combination for a given query modality is highlighted. Each setting is denoted as {Specification Modality}-
{Query Modality}. The best-performing combination for a given query modality is highlighted.

Method Country-Capital Country-Currency Animal-Latin Animal-Young Food-Color Food-Flavor Avg.
LLaVA-v1.5
Image - Image Patch - - - - - - -
Text - Image Patch 0.31 0.30 0.26 0.18 0.53 0.31 0.32
Text - Text Patch 0.97 0.58 0.77 0.20 0.63 0.41 0.59
Image - Text Patch - - - - - - -
Mantis-Fuyu
Image - Image Patch 0.17 0.03 0.16 0.05 0.50 0.31 0.20
Text - Image Patch 0.32 0.23 0.36 0.09 0.51 0.36 0.31
Text - Text Patch 0.46 0.30 0.48 0.18 0.28 0.36 0.34
Image - Text Patch 0.31 0.01 0.36 0.05 0.40 0.34 0.25
Idefics2
Image - Image Patch 0.58 0.32 0.40 0.03 0.39 0.17 0.31
Text - Image Patch 0.61 0.40 0.48 0.62 0.53 0.39 0.51
Text - Text Patch 0.97 0.61 0.74 0.54 0.63 0.41 0.65
Image - Text Patch 0.81 0.43 0.58 0.04 0.40 0.27 0.42
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A.7. Transferring from Image Examples to Text Queries

Here we assess the usefulness of task vectors derived from
image examples for text queries. In Figure 11 we depict a
set of tasks that involve recognizing visual concepts in dense
textual descriptions, including mapping the description to a
technology company, cartoon character, or popular meme.

Similar to Sec. 4.1, the model struggles when cross-modal
examples are applied via few-shot prompting (Image Ex-
amples Prompt) but performs well when the same exam-
ples are patched as a task vector (Image Examples Patch).
Both baselines (Text Examples Prompt, Image Examples
Prompt) sometimes generate incorrect answers within the
same output domain, suggesting that, rather than focusing
on the input-output relationship, the model may be ignoring
the input image or description. However, on the evaluation
tasks in Table 2, it is difficult for image examples to surpass
the unimodal text baselines. In Table 12 of the Appendix
we include an ablation containing all possible combinations
of specification-query modality for task vector patching,
where text examples consistently outperform image exam-
ples regardless of the query modality. We hypothesize that
this phenomenon can be attributed to the nature of the tasks
themselves. In the evaluation tasks, when conditioned on
image examples the model also has to complete an implicit
recognition task mapping the image to the underlying tex-
tual concept. For example, if the model cannot match the
flag to the correct country name, it will not be able to pre-
dict the correct currency. However, if recognition is instead
required in text space, as is the case in Figure 11, image
examples may better encode the task. We think that the
curation of a comprehensive evaluation set containing dense
text descriptions and corresponding visual concepts is an
exciting future direction.

Dense Text Descriptions. Corresponding to Figure 11, we
display the text descriptions used in the text examples.

• {The logo is a rainbow-colored apple. : Apple}
• {The logo is a white ghost against a yellow background. :

Snapchat}
• {The logo is a white camera against a gradient background. :

Instagram}
• {The logo is the letter P stylized to look like a pushpin. : Pinter-

est}
• {The character is a squirrel wearing an astronaut suit. : Sandy

Cheeks}
• {The character is a puffer fish wearing a blue shirt, red skirt,

and blue hat. : Mrs. Puff}
• {The character is a crab wearing a blue shirt, blue pants, and

brown belt. : Mr. Krabs}
• {The character is a pink starfish wearing green and purple pants.

: Patrick Star}
• {An image of an orange and white cat wearing a blue shirt

playing the keyboard. : Keyboard Cat}

• {An image of a shiba inu sitting on a couch. : Doge}
• {A cartoon of a dog wearing a hat sitting in a room engulfed

with flames. : This Is Fine Dog}
• {An image of an unhappy cat with blue eyes and white and

brown fur. : Grumpy Cat}

A.8. Representation Evolution For All Tasks

Implementation Details. For this experiment, we condi-
tion the model on some task specification (e.g., text ICL,
image ICL) and cache the intermediate activation across all
model layers. We “decode” the representations using logit
lens (nostalgebraist, 2020), which produces a probability
distribution over all vocabulary tokens. For each task and
specification type, we aggregate statistics over 100 runs with
different sets of N = 5 examples.

Discrete Visualization. In our discrete visualization (Fig-
ure 13), we collect the top-1 token from each run and visual-
ize it as a slice in a pie chart. Below each pie chart, we also
show the token corresponding to the largest slices, which
represents the most common decodings across all runs.

Continuous Visualization. We provide the pseudocode for
the continuous visualization (Figure 14) in Figure 12. In this
visualization, we compare the relative probability of three
pre-defined tokens corresponding to the input, task, and
answer. Specifically, we use the token auf for the input, one
of {capital, currency, species, baby, color, flavor} for the
task, and each run’s ground-truth label for the answer. For
each run, we take the softmax of the three token probabilities
to obtain a normalized probability distribution.

t-SNE Visualization. For the visualizations in Figure 2,
we co-embed representations from the same middle layer
using t-SNE (van der Maaten & Hinton, 2008). Specifically,
we take the raw layer activations, normalize them using the
model’s final normalization layer to ensure they are com-
parable in scale, and then apply the t-SNE algorithm. We
select a random subset of 30 points for each (task, modality)
combination. For the “context” embeddings, we take the
embeddings corresponding to the input in the input-output
pairs, excluding any tokens related to the template or output.
For image ICL, this refers to the embeddings of the input
image, while for text ICL, it refers to the embeddings of the
input text. For the “task vector” embeddings, we take the
embedding corresponding to the last delimiter token, which
summarizes the preceding context.

Conditioning on Instructions. We visualize the token
representation evolution when conditioning on instructions
rather than examples in Figure 15 and Figure 13. We do not
display discrete pie charts since a single instruction does
not produce aggregate statistics, unlike examples where
there are multiple possible sets. The instruction-based vec-
tor decodings are often interpretable and resemble a meta
summary for the task, similar to the observations in Sec. 5.
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Image Examples + Text Query Output

Apple Snapchat Instagram

The logo is the
letter P stylized
to look like a

pushpin.

?

Text Examples Prompt:
Pinterest
Image Examples Prompt:
Mapquest
Image Examples Patch:
Pinterest.

Sandy Cheeks Mrs. Puff Mr. Krabs

The character is a
pink starfish

wearing green
and purple pants.

?

Text Examples Prompt:
SpongeBob
Image Examples Prompt:
Plankton
Image Examples Patch:
Patrick Star.

Keyboard Cat Doge This Is Fine Dog

An image of an
unhappy cat with

blue eyes and
white and brown

fur.

?

Text Examples Prompt:
Garfield
Image Examples Prompt:
Grumpy Cat
Image Examples Patch:
Grumpy Cat

Figure 11: Cross-modal transfer from image examples to text queries. We show qualitative examples where few-shot
prompting with text examples (Prompt) and image examples (Prompt) often produces incorrect predictions in the same
output domain while cross-modal patching (Patch) leads to the correct answer.

def continuous_rep_evolution(model, dataset, select_vocab_idx):
"""
Plots the relative probability of the input, task, and answer token (given by
‘select_vocab_idx‘) across layers of ‘model‘, for a ‘dataset‘ representing a task.
"""
dataset_rel_prob = []
for sample in dataset:

# dim is [num_layers, 1, hidden_dim]
feats = cache_act(model(sample))
feats = model.norm(feats)
# dim is [num_layers, 1, vocab_size]
token_dist = model.lm_head(feats)
input_idx, task_idx, answer_idx = select_vocab_idx
# dim is [num_layers, 1, 3]
token_dist = token_dist[:, :, [input_idx, task_idx, answer_idx]]
rel_prob = softmax(token_dist)
dataset_rel_prob.append(rel_prob)

plot_layer_vs_rel_prob(dataset_rel_prob)

Figure 12: PyTorch-like pseudocode for the continuous visualization shown in Figure 14.
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Figure 13: We show a discrete visualization of how the token representation evolves across layers for all tasks. Each pie
chart slice represents a top-1 decoding across 100 sets of examples, and the most common decodings are displayed below.

18



Vision-Language Models Create Cross-Modal Task Representations

Text ICL Image ICL
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Figure 14: We show a continuous visualization of how the token representation evolves across layers for all tasks. We use
the token auf for the input, one of {capital, currency, species, baby, color, flavor} for the task, and each run’s ground-truth
label for the answer. See Figure 12 for the relevant pseudocode.
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Figure 15: We show a continuous visualization of the token representation evolution when conditioned on instructions rather
than examples. The results are aggregated over a single instruction rather than multiple examples, so there are no variance
bars.

Table 13: We depict the top-5 decodings for the instruction-based vector, where ♢ denotes symbols that do not correspond
to common word tokens.

Task Instruction
Country-Capital city, GU, vik, cities, headquarters
Country-Currency ♢, ♢, ♢, itos, ♢
Animal-Latin species, genus, ♢, animals, american
Animal-Young baby, babies, ♢, bach, called
Food-Color colors, color, colour, ETH, ilo
Food-Flavor taste, tastes, arom, food, flavor
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