DualOptim: Enhancing Efficacy and Stability in
Machine Unlearning with Dual Optimizers

Xuyang Zhong Haochen Luo
Department of Computer Science Department of Computer Science
City University of Hong Kong City University of Hong Kong
xuyang.zhong@my.cityu.edu.hk chester.hc.luo@my.cityu.edu.hk
Chen Liu *

Department of Computer Science
City University of Hong Kong
chen.liu@cityu.edu.hk

Abstract

Existing machine unlearning (MU) approaches exhibit significant sensitivity to
hyperparameters, requiring meticulous tuning that limits practical deployment. In
this work, we first empirically demonstrate the instability and suboptimal perfor-
mance of existing popular MU methods when deployed in different scenarios. To
address this issue, we propose Dual Optimizer (DualOptim), which incorporates
adaptive learning rate and decoupled momentum factors. Empirical and theoretical
evidence demonstrates that DualOptim contributes to effective and stable unlearn-
ing. Through extensive experiments, we show that DualOptim can significantly
boost MU efficacy and stability across diverse tasks, including image classification,
image generation, and large language models, making it a versatile approach to
empower existing MU algorithms. Codes are available at https://github.com/CityU-
MLO/DualOptim.

1 Introduction

Recent advancements in machine unlearning (MU) research have established it as a crucial technique
for utilizing pretrained models while addressing various trustworthy challenges in various applica-
tions [1,2]. These MU methods have two major categories: exact MU [3] and approximate MU [4].
Exact MU requires retraining a model on a dataset excluding forgetting samples from scratch, which
is computationally prohibitive for large-scale models and datasets. Therefore, we study approximate
MU methods in this work, with focuses on their efficacy and stability.

Most existing approximate MU methods [5, 16, [7, 18, |9] aim to maximize loss on forget samples
while preserving performance on retain samples. While effective, these methods exhibit significant
sensitivity to hyperparameter choices, with optimal configurations requiring meticulous tuning that
varies substantially across datasets and forgetting scenarios. This dependency complicates their
practical deployment. As illustrated in Figure[I] we empirically demonstrate that state-of-the-art MU
approaches [0, [7, 18] exhibit suboptimal performance or instability. These limitations highlight the
critical need for techniques to improve the effectiveness and stability of MU methods.

In this work, we first reveal the unstable performance of existing MU methods when they are
applied in different scenarios. Considering the need to optimize two objectives on the forgetting

*Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/CityU-MLO/DualOptim
https://github.com/CityU-MLO/DualOptim

9% = W o W\/\(%
99 8t
96 93 5
80
% " 2
75 \
2
—— SFRon 97| — SFRon 11— SRon 701 — SFRon =~
2 Salun salun 0 salun o salun
8| — SCRUB ~— SCRUB ~— SCRUB ~— SCRUB
-~ Retrain 961 --- Retrain go] --- Retrain 601 --- Retrain
8 0 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Iteration Iteration Iteration Iteration
(a) Forget Accuracy (FA) (b) Retain Accuracy (RA) (c) Test Accuracy (TA) (d) MIA

Figure 1: Unlearning process of MU baselines. SFRon [7], SalUn [6] and SCRUB [§]] are adopted as
the baselines. The metrics are those mentioned in Sec. [3.1] All results are obtained from unlearning
10% random subset of CIFAR-10 on ResNet-18. The solid lines and shadows denote the mean
and standard deviation across 5 trials with different random data. The hyperparameters of different
methods are selected based on minimizing the averaging gap between retraining and them across 5
trials. The red dashed lines denote the final performance of retraining as a reference.

and the retaining samples, we then propose Dual Optimizer (DualOptim) to address this challenge.
Specifically, we employ an optimizer with adaptive learning rate, such as Adam [10, [11], to optimize
the forgetting objective, while utilizing a separate optimizer for the retaining objective. Compared
with existing methods, DualOptim decouples the momentum terms for the two objectives by using
and updating them separately. In addition, DualOptim is a plug-and-play solution that can be easily
integrated into existing MU algorithms.

Our theoretical analysis validates that decoupling momentum terms in two separate optimizers can
help decrease the variance of model parameters, indicating a more stable performance. Through
comprehensive experiments, we validate the effectiveness of DualOptim in improving the performance
of existing MU methods across various tasks, including image classification, image generation, and
large language models. Our proposed technique is generic and capable of pushing the state-of-the-art
performance on multiple tasks. We summarize the contributions of this paper as follows:

1. We introduce Dual Optimizer (DualOptim) to enhance the efficacy and stability of MU
methods by incorporating an adaptive learning rate and decoupled momentum. DualOptim can
be seamlessly integrated into existing MU algorithms.

2. We provide empirical and theoretical analyses to demonstrate the contribution of DualOptim in
improving unlearning performance and stability.

3. Comprehensive experiments across diverse scenarios such as image classification, image
generation, and large language models validate the effectiveness of DualOptim in boosting and
stabilizing the performance of MU methods.

2 Related Works

Machine Unlearning (MU). MU targets the need to remove specific data influences from pretrained
models [12} 13} [14], while complying with privacy requirements tied to differential privacy [3} 15}
16, [17, [18]]. Initially developed on linear classifiers with convex loss objective functions, exact
MU [3L 115019} 20] allowed precise data removal under privacy budgets to counter privacy attacks.
However, exact MU cannot be applied to deep neural networks due to their non-convex loss functions
and prohibitive computational cost for full retraining. In this context, approximate MU [4} 21]] was
proposed to address this issue by fine-tuning the model to achieve the forgetting effect. Despite
improved efficiency, approximate MU may cause catastrophic performance declines on retaining data
[21,22]. Recent methods incorporate fine-tuning [6} 8} 23], sparsity regularization [24], knowledge
distillation [[8, 25, saliency map [6, 7] and alternative updating [7] to better balance efficient forgetting
and model utility. However, as illustrated in Figure[I] these methods generally exhibit suboptimal
performance or high hyperparameter sensitivity, underscoring the necessity to develop a method to
enhance efficacy and stability during unlearning.

MU for Multiple Tasks. Besides classification, MU has broad applications for multiple tasks. For
example, recent text-conditional image generation models have showcased their ability to produce
images that closely align with textual descriptions [26} 27, 28} 29]. However, significant security and
privacy concerns have been raised [1} 130, 31]], necessitating the application of MU methods to these

models. While early works [30} 132} 133} 134] focuses on concept deletion in diffusion models, recent
studies [6} (7, 35] improve their performance and propose methods applicable to more general image
generators. Another notable example is large language models (LLMs), which have demonstrated
remarkable capabilities [36}137] but also face privacy and copyright issues like retaining unauthorized
content [38},139, 40, 41]]. To address these concerns, MU methods have been employed to fine-tune
LLMs [2,9]142] 143] to effectively and efficiently achieve data forgetting. However, all these methods
struggle to achieve a balance between model utility and forget effectiveness. In addition, intensive
hyperparameter tuning is expected for optimal performance, bringing challenges for practitioners.

In summary, MU has broad applications across various tasks. However, there are some common
issues with existing methods, including high hyper-parameter sensitivity and the utility-forgetting
trade-offs. In this work, we propose DualOptim as a generic solution to enhance the efficacy and
stability of MU across different tasks.

3 Methodology

3.1 Preliminary

Let D = {2;}¥, denote the training set for pretraining. The subset of the training set we aim to
forget during unlearning is known as the forget set Dy C D, and its complement, D, = D\ Dy is the
retain set. In the context of MU, we denote the parameters of pretrained model as 6, € R4, which
is trained on D. Consistent with previous studies [6, [7, 21, 24], Retraining is considered the gold
standard for MU, where the model parameters 6, € R< are trained from scratch on D,.. However,
retraining is computationally intensive or even infeasible, especially for large models and datasets.
This poses a significant challenge in the practical applications of MU.

We focus on approximate MU in this work, its primary objective is to obtain an unlearned model,
referred to as 0,, € R%, from 6, on D + and D,. so that it can serve as an accurate and computationally
efficient alternative to the retrained model 6,.. Mathematically, MU aims to solve the optimization
problem: ming L(Dy,0) + L, (D, 8), where L and L, denote forget and retain loss objective
functions, respectively. In practice, £, is usually the same as the loss objective function in pre-
training and L is the opposite, so MU aims to improve the performance on D, while degrading the
performance on Dy. To avoid confusion, we call L;(Dy, §), L, (D, 0) that we aim to minimize forget
loss and retain loss, respectively. In addition, many MU algorithms [0l [7, 8] update 6 by alternately
optimizing L (Dy, 6) and L, (D,., #) for better performance. The generic pipeline of MU is presented
in Algorithm (I} For notation simplicity, we use gy := Vg¢L;(Dy,0) and g, := VoL, (D,,0) to
denote the gradients of the forget loss and the retain loss, respectively. In mini-batch updates, we use
g and g, to denote the corresponding stochastic gradients.

The numerical analysis in this section is based on classification tasks. We adopt the same evaluation
schemes as [[7]. That is, we use the accuracy on the forget set (FA), the retain set (RA), test set (TA)
and the success rate of membership inference attack (MIA) [44]] E]on the forgetting set to indicate
model utility and the forgetting effectiveness. A competitive unlearning method should have stable
performance and small gaps with retraining in all these four evaluation schemes.

In the following subsections, we first illustrate the challenges associated with MU and propose
corresponding approaches to address them. Ultimately, we introduce DualOptim, which integrates
these proposed techniques to enhance both efficacy and stability in MU.

3.2 Adaptive Learning Rate Enables Stable Forgetting

Despite the effectiveness of existing MU methods, achieving satisfactory unlearning performance of-
ten relies on carefully selecting hyperparameters. The optimal hyperparameters can vary significantly
across different forget sets, complicating the practical applications of MU algorithms. As shown in
Figure [2] (a)-(d), we use the same hyperparameters for SFRon [7], the best-performed baseline in
our evaluation, with the default SGD optimizer for 5 trials of different randomly sampled forget sets.
We defer more results of other existing methods to Appendix [C.2] Despite being intensively tuned,
the unified hyperparameters exhibit quite unstable performance across different forget sets during
unlearning. This underscores that a hyperparameter configuration effective for certain forget sets may

2We follow the implementation in [[7] and adopt the entropy of the output probabilities as the metric in MIA.

100 95 95

100 \
98 Va o4 %0
9 v 85
9 9
80
94 o .

91

—— SGD o7 ~—— SGD —— SGD 70 —— SGD
o0 Adam Adam % Adam Adam
P —— DualOptim —— DualOptim — Dualoptim | © —— DualOptim
-~ Retrain % --- Retrain 89 --- Retrain 60 --- Retrain
5200 w0 o0 w0 100 1300 1400 T 200 w0 w0 a0 1000 1700 140 520 w0 0 w0 100 1200 1400 T 200 w0 o0 w0 1000 1300 1400
Iteration Iteration Iteration Iteration
(a) Forget Accuracy (FA) (b) Retain Accuracy (RA) (c) Test Accuracy (TA) (d) MIA

Figure 2: Unlearning process with different ablations of the proposed method. All results are obtained
from unlearning 10% random subset of CIFAR-10 by SFRon [[7] on ResNet-18. (a)-(d) The metrics
are those mentioned in Sec. 3.1} The red dashed lines denote the final performance of retraining as a
reference. The solid lines and shadows denote the mean and standard deviation across 5 trials with
different random forget sets.

—— SGD Forget —— Adam Forget —— DualOptim Forget
SGD Retain Adam Retain DualOptim Retain

@
3

80

60 60

40 40

20 20 W‘W 2 WW

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Iteration Iteration Iteration

(a) SGD (b) Adam (c) DualOptim (Ours)
Figure 3: Norms of stochastic forget gradient gy and stochastic retain gradient g, using different

optimizers. All results are obtained from unlearning 10% random subset of CIFAR-10 by SFRon on
ResNet-18. (a)-(c) The curves are obtained using SGD, Adam, DualOptim, respectively.

Gradient Norm
Gradient Norm
Gradient Norm

not be suitable for others. When dealing with a new forget set, even if it is sampled in the same way,
the need for precise hyperparameter tuning can pose challenges for practitioners.

Figure 3| (a) demonstrates the magnitude of the gradients on the forget set and the retain set when
using SGD optimizer. We can clearly see that the gradients on the forget set have significantly larger
magnitudes with substantial variations compared with the ones on the retain set. In this context, it is
crucial to adaptively adjust the learning rate to handle different gradient magnitudes. Therefore, we
use optimizers with preconditioners, such as Adam [[10, [11] to evade tricky hyperparameter tuning for
the learning rate. Specifically, Adam employs adaptive learning rates based on the historic gradient
magnitudes, making it suitable to handle large gradient magnitude variations during unlearning.

The observations in Figure [2] (a)-(d) and Figure 3] (b) suggest that Adam provides more stable
performance and induces smaller gradient norm across different forget sets. However, despite
enhanced stability, the noticeable performance gap with retraining, especially in the metric of
membership inference attack (MIA), indicates that Adam only achieves suboptimal unlearning
efficacy. We need a mechanism to improve performance while ensuring the stability of the method.

3.3 Decoupled Momentum for Enhanced Stability in Machine Unlearning

Inspired by the disparities in the magnitudes of g; and g,., along with their non-positive correlation
observed in Figure [3] and 4] we introduce decoupled momentum, which employs two separate
momentum terms dedicated to the forget loss £y and the retain loss £, respectively. This approach
ensures that the momentum update for the forget loss remains unaffected by the gradients of the
retaining loss, and vice versa. By decoupling the momentum terms in this manner, we can more
effectively optimize the distinct processes of forgetting and retaining, leading to enhanced stability
and performance. As illustrated in Figure 2] (a)-(d) (represented by the green lines) and Figure [3]
(c), the combination of adaptive learning rate with decoupled momentum not only stabilizes the
unlearning process but also leads to improved unlearning efficacy. Note that as presented in Table 3]
and Table 6] of Appendix although other methods like SalUn [[6] and SCRUB [§8]] perform more
stable than SFRon, they only achieve suboptimal unlearning performance. Nevertheless, our method
can also improve their performance.

Besides empirical findings, we provide a theoretical analysis to elucidate how decoupled momentum
contributes to stability. Before the detailed analyses, we first establish the following assumptions.

Assumption 3.1. (Stochastic Gradient Condition) For all time stepst = 0, ..., T —1, the stochastic
gradients of the forget loss gy, and retain loss g, ; satisfy:

g5t =G5t +€pts Gri = Grt + Ert, (D
where g = Vg, L¢(Dy,0;) and g,; = Vg, L, (D,,0;) are the full-batch gradients with model
parameter 0, at the time stamp t. €7, and €, are batch noises with zero mean and a bounded
variance: there exists a minimal o> > 0 such that Var(e fit) < o2, Var(e,;) < o2 for all ¢.
Assumption 3.2. (Correlation Bounds) The correlation between the stochastic gradients from the

same function in different time steps is bounded while the correlation between stochastic gradients
from different functions is non-positive. That is to say, 37 € [0, 1] such that:

Yty # to,, 5.t p(Gr,t1,Grit) STy 0(Grtrs Gritn) < T, Vi, te, p(Gr by, Grt,) <0(7) =0 (2)

The assumption Vt1,t2, p(Gy.¢,, Grt,) < 0(7) = 0 is motivated by the observations in Figure 4 of
Appendix [C.T|and for sake of notation simplicity. Our analyses can be easily extended to the cases if
we use a small constant to bound this correlation.

Assumption 3.3. (Lipschitz Smoothness) The loss functions £¢ and £, are both L-smooth:

V01,02, ||Vo, Ly (Dy,01) — Vo, Ly (Dy,02)|| < L||61 — o], 3)
ve17927 ||V91£7'(Dr791) - VGZLT(DNGQ)H < LH91 - 92“ 4)

We assume the same Lipschitz constant for L¢ and £, because (1) Dy and D,. are from similar
distributions; (2) Ly and L, are usually opposite functions.

We now consider the SGD update scheme with a shared or decoupled momentum factor. Since
we alternately update the parameters based on the stochastic gradients from Ly and £,., we use
{(m7,,m? S}, to denote the momentum factors after using the gradients from the forget loss
and the retain loss, respectrvely, for time stamp ¢ when we are using the shared momentum. Similarly,
we use {(m)’? t7 mP)}?Bl to denote the momentum factors when using the decoupled momentum.

We use {(67 710) PR (2 i 0>, T=! to represent the corresponding updated parameters. We

use « € [0,1] to denote the momentum factor and 7 as the learning rate, then the update schemes for
a shared and decoupled momentum factors are shown as follows:

5 5 ~ 5
my, =amy, ;+g7,, 9 =03, | —nmm
(Shared Momentum) mJ;,t B amgt LS fit 9 B 9T t s fit
rt o Ft TGt ot T My)
D D =D D D
m =am , 6P =00 . —nm
(Decoupled Momentum) { 5t L1 + ggt Lt il 77D fit
myy = 0Mgy + 9rt> er,t = ef,t — My
Here, we use {(g7 729 S)Y! and {(g% i+ Gr D11 to denote the stochastic gradients during un-

learning in the case of shared momentum and the decoupled momentum, respectively. Based on
Algorithm [I] we update the parameters by gradlents from the forget loss and the retain loss al-
ternately Therefore, we have gf = Vgﬁf(Sic1)» 95 = VeLs(02, 1), g2, = VoL, (i)

gl = VL, (nyl), and g gfyl, gfvl, 92> g, are their stochastic variants.

When using decoupled momentum factors, the momentum factors {m7,, m7,,...mPr |},
{mgo, mf,?l, e mf’T_l} are two independent sequences. By contrast, when using a shared mo-
mentum factor, the factor is updated as a sequence {m¥ ,, m?>,, m? |, m7,, ... m7, |, mi, |}
When initialization, we let 07 _; = 0, = 6, andm?_; =mp_, =mp_, =0.

We focus on the variance of the parameters in two different update schemes in (), both of which

iteratively calculate the gradients on random variables. Therefore, we first estimate the variance
caused by gradient calculation as in the following lemma.

Lemma 3.4. (Variance of Gradients) If the loss function L is Lipschitz smooth with a constant L,
and Var () < o3, then we have Var(VoL(0)) < L?c}

The proof and discussions are deferred to Appendix [A.T] We can use Lemma [3.4] to derive the
maximum variance of model parameters for both update schemes in (5)) as in following theorem.

Theorem 3.5. (Variance Bound Comparison for Decoupled vs. Shared Momentum) For the update
schemes indicated in using the same hyperparameters (1, o), and we use Var(-) to denote the

maximum variance of a variable, if the function L, L, and the stochastic gradient {(gf i §f) S

{(ﬁ? s §,PZ)};‘F:51 satisfy Assumption and ﬁ then

vt, Var(67,) < Var(6%,), Var(d;,) < Var(6;,), 6)
The proof is deferred to Appendix [A.2] Theorem [3.5]formalizes that decoupled momentum induces
smaller worst-case parameter variance compared to shared momentum, demonstrating that decoupled

momentum theoretically enhances the stability of unlearning. Additionally, we prove that decoupled
momentum can also induce smaller worst-case variance of downstream metrics in Appendix [A.3]

3.4 Dual Optimizers for Machine Unlearning

Algorithm 1 Machine Unlearning with 'Shared Optimizer / Dual Optimizers

1: Input: Model: fy; Forget set: Dy; Retain set: D,; Iterations for outer loop: T; Iterations for
forgetting: T'y; Iterations for retaining: T..; Step sizes: ‘9, 7y, 1, .

2: Optim is the same optimizer as in pretraining with step size 7.

Optim is Adam(6, ny), Optim,. is the same optimizer as in pretraining with step size ;..

3: fort=1,...,7T, do
4: fort'=1,..,T; do
5: Fetch mini-batch data from the forget set By ~ Dy
6: Calculate the forget loss £ on By and get the gradient
7: Use Optim / Optim, to update ¢
8: end for
9: fort' =1,..,T.do
10: Fetch mini-batch data from the retain set B,. ~ D,.
11: Calculate the retain loss £,. on B, and get the gradient
12: Use Optim / Optim, to update §
13: end for
14: end for

15: Output: Model fy

We incorporate the findings of the two subsections above and propose Dual Optimizers (DualOptim)
to enhance the efficacy and stability of MU. Specifically, we utilize two distinct optimizers during the
unlearning process: Adam for forgetting and the default optimizer (e.g., SGD) for retaining. On one
hand, we use the same optimizer as in pretraining to maintain the performance on the retain set and
use the optimizer with adaptive learning rates to handle the large gradient variation for the forget loss.
On the other hand, we decouple the momentum factors and use two distinct optimizers to boost the
algorithm stability during unlearning. Notably, DualOptim is a plug-and-play approach and can be
integrated in existing MU algorithms that minimize forgetting and retaining objectives alternately.
The detailed pseudo-code to compare the pipeline of MU with a shared optimizer and DualOptim is
presented in Algorithm[I] with unique segments for shared and dual optimizers highlighted in red and
green, respectively. Algorithm [T|presents a general framework, £; and £, are specified by different
concrete MU algorithms.

4 Experiments

In this section, we conduct extensive experiments to evaluate our method for different applications,
including image classification, image generation, and large language models. The results demonstrate
that our method can enhance the efficacy and stability of multiple MU methods, achieving new state-
of-the-art performance across diverse scenarios. We conduct ablation studies for further analysis.

4.1 Random Subset Unlearning in Image Classification

Table 1: Performance summary of MU methods for image classification. Experiments are conducted
on (a) 10% random subset of CIFAR-10 using ResNet-18 and (b) 10% random subset of TinyIma-
geNet using Swin-T. All results are presented as mean and standard deviation across 5 trials with
different random forget data. Performance gaps with RT are indicated in blue. The average gap (Gap)
and average standard deviation (Std) metrics are calculated by the average of the gaps and standard
deviation measured in FA, RA, TA, and MIA, respectively. All the numbers are in percentage.

(a) CIFAR-10 Random Subset Unlearning (10%)

Method | FA RA TA MIA | Gap| Std|
RT | 94.61.40.46 (0.00) 100.0040.00 (0.00) 94254015 (0.00) 76.26+0.54 (0.00) | 0.00 0.30
FT 99.1640.10 (4.55) 99.84410.06 (0.16) 94.10.0.09 (0.15) 88.77103s (12.51) | 434 0.16
GA 98.7610.39 (4.15) 99.1040.90 (0.90) 93.89.10.41 (0.36) 92.58.¢55(16.32) | 543 044
RL 97.1940.21 (2.58) 99.6710.0s (0.33) 94.03.027 (0.22) 68.19.9.95 (8.43) | 2.80 0.38
SCRUB 92.8810.25 (1.73) 99.6210.10 (0.38) 93.541022 (0.71) 82.7819.86 (6.52) | 2.33 0.36
+DualOptim | 94.9010 42 (0.29) 99.52.¢.09 (0.48) 93.5040.20 (0.75) 78.2610.79 (2.00) | 0.88 0.38
SalUn 96.9910.31 (2.38) 99.4040.28 (0.60) 93.84.1036 (0.41) 65.7641.05 (10.50) | 3.47 0.50
+DualOptim | 95.47 1992 (0.86) 99.0610.94 (0.60) 9247199 (1.78) 76.14107 (0.12) | 0.93 0.35
SFRon 94.67 13,03 (0.06) 99.8310.13 (0.17) 93.981056 (0.27) 77.801561 (1.54) | 0.51 2.33
+DualOptim | 94.6911 13 (0.08) 99.921001 (0.08) 94.1110.11 (0.14) 77.7711.39 (1.51) | 0.44 0.66
(b) TinyImageNet Random Subset Unlearning (10 %)

Method \ FA RA TA MIA | Gapl Stdl
RT ‘ 85.2940.09 (0.00) 99.5540.03 (0.00) 85.491¢.15 (0.00) 69.304-0.20 (0.00) ‘ 0.00 0.12
FT 96.5010.10 (11.21) 98.2310.05 (1.32) 82.6740.21 (2.82) 79.8541¢.15 (10.55) | 648 0.13
GA 90.0245.26 (4.73) 90.8443 99 (8.71) 75.6410.¢7 (9.85) 78.9742.07(9.67) | 824 282
RL 94.6610.26 (9.37) 98.0240.14 (1.53) 82.7310.07 (2.76) 544511 04 (15.15) | 7.13 043
SCRUB 97.80+0.16 (12.51) 98.1340.08 (1.42) 82.64+0.19 (2.85) 79.6240.41 (10.32) 6.78 0.21
+DualOptim | 97.204¢.20 (11.91) 98.304¢.10 (1.25) 83.1740.19 (2.32) 79.10+0.63 (9.80) 6.32 0.28
SalUn 97.6940.14 (12.40) 98.8940.03 (0.66) 84.0210.52 (1.47) 61.87410.97 (743) | 549 037
+DualOptim 91.68:&0,28 (639) 95-13i0.18 (4.42) 80.16:&0,34 (5.33) 72.48i0_33 (3.18) 4.83 0.28
SFRon 96411074 (11.12) 98.9510.92 (0.60) 83.401¢.51 (2.09) 70404315 (1.10) | 3.73 1.16
+DualOptim | 92.2641 44 (6.97) 982740.12 (1.28) 83.124¢.21 (237) 69.1942 27 (0.11) 2.68 1.01

We start with random subset unlearning tasks in image classification, including using ResNet-18 [45]]
on CIFAR-10 [46]] and Swin Transformer-Tiny (Swin-T) [47] on TinyImageNet [48]]. Additional
results on CIFAR-100 [46] and SVHN [49] are included in Appendix [C.3] Consistent with previous
work [2111241161[7]], we regard Retrain (RT) as the gold standard of MU. Since our proposed DualOptim
is plug-and-play, we apply it to SCRUB [8]], SalUn [6], and SFRon [7]] to validate its efficacy and
stability. Additionally, we include three simple baselines, namely Fine-tune (FT) [50], Gradient
Ascent (GA) [21] and Random Label (RL) [22], for reference as well. Note that the hyperparameters
of all evaluated methods are tuned to their optimal values by sophisticated search, and we defer the
implementation details to Appendix [B] Besides the metrics mentioned in Sec. [3.1} which includes
FA, RA, TA and MIA, we follow the evaluation criteria in [0 [7] to report the average gap (Gap) and
average standard deviation (Std) to indicate the overall performance and stability, respectively. They
are the average gap with RT and the average standard deviation among the results in FA, RA, TA, and
MIA, respectively.

As illustrated in Table [I] SFRon achieves the smallest average gap with RT, yet it exhibits the
highest variability in performance across different random forget subsets. This suggests that the
optimal hyperparameters vary significantly depending on the specific forget sets used. Despite being
more stable, other methods yield suboptimal results in terms of unlearning efficacy. By integrating
DualOptim into these MU algorithms, we observe notable enhancements in terms of both unlearning
efficacy and performance stability. For example, in the task of unlearning a 10% random subset
from CIFAR-10, DualOptim reduces the average standard deviation of SFRon from 2.33% to 0.66%,
while narrowing the average gap from 0.51% to 0.44%, achieving the best performance among all.
Additionally, DualOptim significantly narrows down the average gap with RT for both SCRUB and
SalUn, with improvements of 1.45% and 2.54%, respectively. Consistent results are observed in other
datasets and model architectures as well, highlighting the widespread effectiveness of DualOptim in
improving both the performance and stability of unlearning processes.

4.2 Class-wise Unlearning in Image Generation

Table 2: Class-wise unlearning performance on CIFAR-10 with DDPM and ImageNet with DiT.
The best unlearning performance for each forgetting class is highlighted in bold for FA (in %) and
FID. Note that the results of SA, SalUn and SFRon are those reported in [[7].

CIFAR-10 Class-wise Unlearning
Method | Automobile Cat Dog Horse Truck
FA| FID|| FA| FID| | FA|l FID|| FA| FID| | FA] FID|

SA 0.00 2356 | 1420 2134 | 860 21.19 | 0.00 21.13 | 0.00 29.04
SalUn 0.20 2123 | 1.40 20.29 | 0.00 20.18 | 0.60 20.70 | 0.80 20.45

SFRon 0.00 2070 | 740 1844 | 020 18.89 | 0.00 1993 | 0.00 20.61
+DO 020 19.72 | 1.00 1936 | 0.00 18.58 | 0.00 18.91 | 0.00 17.26

ImageNet Class-wise Unlearning
Method Cockatoo Golden Retriever| White Wolf Arctic Fox Otter
FA|l FID|| FA]l FID] | FA] FID)| FA|l FID|| FA|l FID|

SA 0.00 348.75| 0.00 29897 | 0.00 45.89 | 0.00 393.91| 29.8 321.21
SalUn | 91.21 18.47 | 46.09 2528 | 0.00 15.16 | 4590 408.07| 87.5 19.69

SFRon 0.00 1359 | 000 17.76 | 0.00 2328 | 0.00 16.12 | 0.00 1643
+DO 0.00 1746 | 0.00 14.63 | 0.00 14.72 | 0.00 1491 | 0.00 14.55

Besides classification, we further evaluate our proposed DualOptim in class-wise unlearning tasks in
image generation. Following the settings of [7]], we conduct experiments using conditional DDPM
[26] with the U-Net [51]] on CIFAR-10 and the latent diffusion model [28]] with Diffusion Transformer
(DiT) [29] on ImageNet [48]]. We apply our proposed DualOptim to SFRon [[7]], which exhibit the
state-of-the-art unlearning performance in image generation. We also include SA [35] and SalUn [6]]
as baselines for comparison. Note that we do not apply DualOptim to SA and SalUn due to their joint
updating scheme and unstable performance on ImageNet. Nonetheless, we still present the results of
SalUn+DO on CIFAR-10 in Appendix [C.4] The implementation details can be found in Appendix
As for the evaluation metrics, we adopt the accuracy of the unlearned model’s generated images
on forgetting classes (FA) by a pre-trained classifier to indicate the forgetting efficacy and Fréchet
Inception Distance (FID) [52] to assess the generation capability on the retained classes.

As shown in Table 2] and [B our

method generally enhances the fi- Table 3: Overall class-wise unlearning performance on
de]ity of generated images for retained CIFAR-10 with DDPM and ImageN et with DiT. The mean
classes while ensuring high forgetting value and standard deviation of FA (in %) and FID among
efficacy and low variance. For exam- the classes evaluated in Table [2] are reported.

ple, it significantly reduces the FID _

of SFRon for the white wolf category Method FAEIFARP}IOD 1 ‘ FA ilmageNeFtID i

from 23.28 to 14.63, with FA remain-

ing at 0.00%. Importantly, these re- ~ SA ‘4-56:&5.86 23.2543.03] 5.96411.92 281.754122.11

sults demonstrate that DualOptim is SalUn |0.60+0.49 20.570.37|54.14+33.32 97.33:155.40
effective across various datasets and SFRon [1.5242.94 19.7140.91| 0.0040.00 17.4441322
model architectures, making it suit- +DO 0.2410.59 18.7740.85| 0.0010.00 15.2511.11

able for practical applications. To-
gether with the findings in Section[4.1] these results highlight the effectiveness and generalizability of
DualOptim in diverse computer vision tasks. Generated images from the unlearned model utilizing
DualOptim can be found in Appendix The visualization again indicates that DualOptim achieves
effective unlearning while maintaining the generation capability for the retained classes.

4.3 Random Subset Unlearning in Large Language Models

Following the success of MU in vision tasks, there is a rising interest of applying it to remove private
or harmful information from large language models (LLMs). We conduct the experiments on Phi-1.5
[53]] and LLaMA 2 [37]], both are fine-tuned on TOFU dataset [2] with 1.3B and 7B parameters,
respectively. We include three untargeted unlearning methods (GA+GD, NPO+GD and ME+GD)
and two targeted unlearning methods (DPO+GD and IDK+AP) [9] as the baselines. We employ

Table 4: Performance comparison of different MU methods on TOFU-finetuned Phi-1.5 and LLaMA
2. The results include Model Capability (MC), Forget Efficacy (FE), and the average metric (Avg.)
for forget 1%, 5% data, and 10% data.

Phi-1.5
Method forget 1% data forget 5% data forget 10% data
MCtT FEt Avg.t| MCtT FE1T Avg.?| MCt FE1T Avg T

GA+GD | 0.4934 0.4493 0.4714 | 0.4360 0.5084 0.4722 | 0.4471 0.5246 0.4859
NPO+GD | 0.2569 0.5682 0.4125 | 0.4940 0.4469 0.4705 | 0.4808 0.4382 0.4595
ME+GD | 0.4944 0.3938 0.4441 | 0.4559 0.4480 0.4520 | 0.4594 0.4564 0.4579

+DO 0.4866 0.6913 0.5889 | 0.4676 0.8200 0.6438 | 0.5009 0.7732 0.6370

DPO+GD | 0.2410 0.6831 0.4621 | 0.4105 0.6334 0.5219 | 0.3517 0.6302 0.4910
IDK+AP | 0.4403 0.5723 0.5063 | 0.4800 0.5112 0.4956 | 0.4614 0.6003 0.5308
+DO 0.4221 0.7037 0.5629 | 0.4633 0.6974 0.5804 | 0.4422 0.7193 0.5807

LLaMA 2
Method forget 1% data forget 5% data forget 10% data
MCt FEft Avg.t| MCt FE{T Avg.1T| MCtT FET Avg?T

GA+GD | 0.6696 0.5908 0.6302 | 0.0000 0.8772 0.4386 | 0.5592 0.9346 0.7469
NPO+GD | 0.6414 0.6109 0.6262 | 0.5465 0.6921 0.6193 | 0.5648 0.7668 0.6658
ME+GD | 0.7271 0.9204 0.8237 | 0.7472 0.9313 0.8392 | 0.7357 0.9489 0.8423

+DO 0.7425 0.9612 0.8519 | 0.7316 0.9602 0.8459 | 0.7315 0.9625 0.8470

DPO+GD | 0.7564 0.5335 0.6450 | 0.0000 0.8243 0.4122 | 0.0000 0.8041 0.4021
IDK+AP | 0.7580 0.7625 0.7603 | 0.7529 0.7479 0.7504 | 0.7471 0.7433 0.7452
+DO 0.7412 0.8075 0.7743 | 0.7354 0.7958 0.7656 | 0.7362 0.7855 0.7609

DualOptim (DO) in ME+GD and IDK+AP, which perform the best in [9], to validate the effectiveness
of our method. Consistent with [2} 9]], we consider three levels of unlearning tasks: to forget 1%, 5%,
and 10% of the constructed data. We follow [9]] and adopt the improved Model Capability (MC)E]
and Forger Efficacy (FE) as the evaluation metrics.

The results in Table d]indicate that our method significantly enhances both FE and MC in general.
Although a slight reduction in MC is observed for some instances, the more effective forgetting
achieved ultimately leads to an increase in the average metric for all cases. Note that the standard
deviations are omitted since they are smaller than 5% of the corresponding mean values in all cases.
In addition, as shown in Figure [7] of Appendix [C.5] the unlearning process utilizing DualOptim
demonstrates greater effectiveness and stability compared wtih other baselines. These findings
underscore the effectiveness of our method in terms of both performance and stability for LLMs.

It is important to note that the forgetting and retaining objectives are jointly optimized in the baselines
listed in Table[d}, whereas our method alternates between optimizing these two objectives. To ensure a
fair comparison, we also evaluate unlearning performance by alternately optimizing the forgetting and
retaining objectives using a shared optimizer. The results in Table|15|of Appendix demonstrate
that DualOptim surpasses both the joint and alternate update schemes.

Table 5: Running time and memory usage of Adam and DualOptim on Llama 2 with full-parameter
tuning and LoRA. Note that for full-parameter tuning, we used two H20 GPUs and DeepSpeed zero
stage 2 is adopted; for LoRA, we used a single H20 GPU.

(a) Running Time Usage (min) (b) Memory Usage (GB/GPU)
Tuning method MU method Adam DualOptim Ratio Tuning method MU method Adam DualOptim Ratio
Full " ME+GD 19.40 28.50 1.47 Full " IDK+AP 59.83 86.40 1.44
Wparameter pgy AP 2277 33.92 1.49 wiparameter - \ELGD 59.84 8652 1.45
LoRA ME+GD 17.04 17.43 1.02 LoRA IDK+AP 30.63 30.62 1.00
° IDK+AP 26.76 62.32 1.21 © ME+GD 31.44 30.62 0.97

Although DualOptim exhibits effectiveness in MU for LLMs, as shown in Table[3] the decoupled
momentum introduces approximately 1.5x computational and memory overhead because of large
amount of parameters in LLMs. To investigate our method’s effectiveness under limited computation

*Model Capability (MC) is referred to Model Utility (MU) in [9]], which conflicts with the abbreviation of
Machine Unlearning (MU) in this paper.

resources, we apply DualOptim to the parameter-efficient fine-tuning techniques, such as LoRA [54].
As indicated in Table [I6]of Appendix [C.5] DualOptim achieves a minimal compromise in unlearning
performance by using LoRA, while significantly reducing memory consumption on optimizer states.

4.4 Ablation Studies

In this subsection, we compare different combinations of optimizers to further analyze the proposed
method. More ablation studies can be found in Appendix [C.6

We compare various combinations of the Adam and SGD optimizers for the forget loss and the retain
loss with their standalone counterparts. Besides Adam, we also investigate the combinations of
SGD and other optimizers, e.g., Lion [53]] and Muon [56]. The results in Table E] indicate that the
configuration of Adam (F) + SGD (R) offers the optimal balance between performance and stability.
This finding underscores the importance of decoupled momentum and adaptive learning rate for
the forgetting objective. Moreover, the results presented in Table I8 and Table[T9]in Appendix [C.6]
indicate that the best optimizer for retaining depends on the choice of optimizer during pretraining
and the specific MU algorithms employed. It should be pointed out that a shared SGD demonstrates
a competitive average performance but suffers from high standard deviation indicating instability.
Conversely, Lion exhibits low variability but does not achieve optimal performance. These insights
further emphasize the efficacy of our method in enhancing performance and stability in MU tasks.

Table 6: Ablation study on different optimizers when we use DualOptim in SFRon. Results are based
on 10% random subset unlearning task on CIFAR-10 using ResNet-18 pre-trained by SGD. (F) and
(R) denotes that the optimizer is used to minimize the forget and retain losses, respectively.

Optimizer | FA RA TA MIA | Gap| Std|
Smgle SGD 94.67i3_03 (006) 9983i013 (017) 9398i056 (027) 77~80i5.61 (154) 0.51 2.33
Single Adam 94.54.5.41 (0.07) 99.9640.02 (0.04) 94.1510.30 (0.10) 81.4615.4 (5.20) | 135 1.29
SGD (F) + SGD (R) 94.07+£3.48 (0.54) 99.90+0.06 (0.10) 93.9310.63 (0.32) 78.48+4.03 (2.22) 080 2.05
SGD (F) + Adam (R) | 94.5843.49 (0.03) 99.3840.78 (0.62) 92.8411.62 (0.14) 81.1344.58 (4.87) 1.73 2.62
Adam (F) + Adam (R) | 94.2941.23 (0.32) 99.9410.01 (0.06) 94.0240.11 (0.23) 77.8641.39 (1.60) | 0.55 0.63
Adam (F) + SGD (R) | 94.69+1.13 (0.02) 99.9240.01 (0.08) 94.114+0.11 (0.14) 77.7741.30 (1.51) 044 0.66
SGD (F) + Lion (R) 97.8841.490 (3.27) 99.8140.28 (0.19) 93.8640.94 (0.39) 87.6242.73 (11.36) | 3.80 1.36
Lion (F) + Lion (R) 94.5441.59 (0.07) 99.9310.02 (0.07) 93.91+0.20 (0.34) 83.08+1.35 (6.82) 1.82 0.81
Lion (F) + SGD (R) 94.6641.48 (0.05) 99.9140.03 (0.09) 93.9510.27 (0.30) 79.55+1.41(3.29) | 0.93 0.80
SGD (F) + Muon (R) | 95.7440.40 (1.13) 99.6140.03 (0.39) 94.0410.00 (0.21) 84.03+0.77 (7.77) 237 032
Muon (F) + Muon (R) 95.12i0_54 (051) 9964i001 (036) 9384i010 (041) 82~77i0.60 (651) 1.94 0.31
Muon (F) + SGD (R) | 94.57+1.12 (0.04) 99.9340.01 (0.07) 94.1340.12 (0.12) 72.4641.01 (3.80) 1.01 057

5 Conclusion

This study improves efficacy and stability in approximate machine unlearning (MU) methods with
Dual Optimizers (DualOptim). By integrating adaptive learning rates and decoupled momentum,
DualOptim enhances unlearning performance across diverse applications in computer vision and
natural language processing. Its plug-and-play design ensures easy integration into existing MU
frameworks. DualOptim marks a significant advancement in the MU field, offering an effective
solution to meet the demand for trustworthy machine learning systems.

Broader Impacts and Limitations

Our method contributes to the trustworthiness of deep learning and can be broadly applicable across
diverse tasks. Although DualOptim can be integrated with parameter-efficient fine-tuning methods, it
still introduces double memory consumption for optimizer states. We leave the development of a
more efficient approach as future work.

Acknowledgments and Disclosure of Funding

This work is supported by National Natural Science Foundation of China (NSFC Project No.
62306250) and City University of Hong Kong (CityU Project No. 9220132).

10

References

[1] Javier Rando, Daniel Paleka, David Lindner, Lennart Heim, and Florian Tramer. Red-teaming
the stable diffusion safety filter. In NeurlPS ML Safety Workshop, 2022.

[2] Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter. Tofu:
A task of fictitious unlearning for llms. In First Conference on Language Modeling, 2024.

[3] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data
removal from machine learning models. In International Conference on Machine Learning,
pages 3832-3842. PMLR, 2020.

[4] Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data
deletion from machine learning models. In International Conference on Artificial Intelligence
and Statistics, pages 2008-2016. PMLR, 2021.

[5] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 11516-11524, 2021.

[6] Chongyu Fan, Jiancheng Liu, Yihua Zhang, Dennis Wei, Eric Wong, and Sijia Liu. Salun:
Empowering machine unlearning via gradient-based weight saliency in both image classification
and generation. In International Conference on Learning Representations, 2024.

[7] Zhehao Huang, Xinwen Cheng, JingHao Zheng, Haoran Wang, Zhengbao He, Tao Li, and
Xiaolin Huang. Unified gradient-based machine unlearning with remain geometry enhancement.
Advances in Neural Information Processing Systems, 37:26377-26414, 2024.

[8] Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards un-
bounded machine unlearning. Advances in neural information processing systems, 36:1957—
1987, 2023.

[9] Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen, Weiming Zhang, and Min Lin. A closer
look at machine unlearning for large language models. In International Conference on Learning
Representations, 2015.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[11] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[12] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2027 IEEE
symposium on security and privacy (SP), pages 141-159. IEEE, 2021.

[13] Thanveer Shaik, Xiaohui Tao, Haoran Xie, Lin Li, Xiaofeng Zhu, and Qing Li. Exploring the
landscape of machine unlearning: A comprehensive survey and taxonomy. /EEE Transactions
on Neural Networks and Learning Systems, 2024.

[14] Jie Xu, Zihan Wu, Cong Wang, and Xiaohua Jia. Machine unlearning: Solutions and challenges.
IEEFE Transactions on Emerging Topics in Computational Intelligence, 2024.

[15] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based
methods for machine unlearning. In Algorithmic Learning Theory, pages 931-962. PMLR,
2021.

[16] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember
what you want to forget: Algorithms for machine unlearning. Advances in Neural Information
Processing Systems, 34:18075-18086, 2021.

[17] Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

[18] Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning via
algorithmic stability. In Conference on Learning Theory, pages 4126-4142. PMLR, 2021.

11

[19] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International conference on machine learning, pages 1885-1894. PMLR, 2017.

[20] Ryan Giordano, William Stephenson, Runjing Liu, Michael Jordan, and Tamara Broderick.
A swiss army infinitesimal jackknife. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1139-1147. PMLR, 2019.

[21] Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd:
Understanding factors influencing machine unlearning. In 2022 IEEE 7th European Symposium
on Security and Privacy (EuroS&P), pages 303-319. IEEE, 2022.

[22] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9304-9312, 2020.

[23] Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet
effective machine unlearning. /IEEE Transactions on Neural Networks and Learning Systems,
2023.

[24] Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay
Sharma, and Sijia Liu. Model sparsity can simplify machine unlearning. Advances in Neural
Information Processing Systems, 36:51584-51605, 2023.

[25] Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad
teaching induce forgetting? unlearning in deep networks using an incompetent teacher. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 7210-7217,
2023.

[26] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

[27] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications, 2021.

[28] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684—10695, 2022.

[29] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 4195-4205, 2023.

[30] Patrick Schramowski, Manuel Brack, Bjorn Deiseroth, and Kristian Kersting. Safe latent
diffusion: Mitigating inappropriate degeneration in diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22522-22531, 2023.

[31] Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer,
Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models.
In 32nd USENIX Security Symposium (USENIX Security 23), pages 5253-5270, 2023.

[32] Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
from diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 2426-2436, 2023.

[33] Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, and Jun-Yan
Zhu. Ablating concepts in text-to-image diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 22691-22702, 2023.

[34] Gong Zhang, Kai Wang, Xingqian Xu, Zhangyang Wang, and Humphrey Shi. Forget-me-
not: Learning to forget in text-to-image diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 1755-1764, 2024.

[35] Alvin Heng and Harold Soh. Selective amnesia: A continual learning approach to forgetting in
deep generative models. Advances in Neural Information Processing Systems, 36:17170-17194,
2023.

12

[36] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

[37] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[38] Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language
models leaking your personal information? In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 2038-2047, 2022.

[39] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and
Chiyuan Zhang. Quantifying memorization across neural language models. In The Eleventh
International Conference on Learning Representations, 2023.

[40] Robin Staab, Mark Vero, Mislav Balunovic, and Martin Vechev. Beyond memorization:
Violating privacy via inference with large language models. In The Twelfth International
Conference on Learning Representations, 2024.

[41] Guangyao Dou, Zheyuan Liu, Qing Lyu, Kaize Ding, and Eric Wong. Avoiding copyright
infringement via machine unlearning. arXiv e-prints, pages arXiv—2406, 2024.

[42] Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large
language models. Nature Machine Intelligence, pages 1-14, 2025.

[43] Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From
catastrophic collapse to effective unlearning. In First Conference on Language Modeling, 2024.

[44] Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning
models. In 30th USENIX Security Symposium (USENIX Security 21), pages 2615-2632, 2021.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

[46] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[47] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012-10022, 2021.

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

[49] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 4. Granada, 2011.

[50] Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine un-
learning of features and labels. Annual Network and Distributed System Security Symposium,
2023.

[51] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 234-241. Springer, 2015.

[52] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

13

[53] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463,
2023.

[54] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2022.

[55] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization
algorithms. Advances in neural information processing systems, 36:49205-49233, 2023.

[56] Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.

14

A Proofs

A.1 Proof of Lemma[3.4]

Proof. Let 61,05 be independent copies of § with probability density p(#). Using the variance
identity Var(X) = 1E[[| X1 — X3||?] for independent copies X1, X5, we have:

1
Var(VoL(®)) = 5 [[p0009(62) [V£(61) — VL) dbdpe)
By L-smoothness, |VL(61) — VL(02)| < L||1 — 02]|, we have:

L2
Var(VoL () < = / / (01)p(0)]01 — 0|20, dbs. ®)

Since Var(f) < o, we have 1 [[p(61)p(62)]|61 — 02?df1d6> < oF. Therefore, we can conclude
Var(VyL(0)) < L0}

Discussion. Lemma [3.4]is an important tool for us to analyze the variance of the full-batch gradient,
because the full-batch gradient is calculated based on the model parameters obtained in the last
iteration, which is also a random variable. Specifically, we can derive the following inequality from
the update rule in (5) for further analysis. We add no superscripts, indicating it is applicable for both
update schemes.
Var(gyi) < 0%+ Var(VeLs(0,:-1)) < 0 + L*Var(6,;_1) ©
Var(g,,;) < o + Var(VoL,(0,)) < o + L*Var(6y,)
O

A.2 Proof of Theorem
Proof. Without the loss of generality, we can assume the pretrained parameter #, = 0 and the learning
rate n = 1, because shift and multiplication do not change the inequalities in the conclusion to prove.

Unfold the update rules in (3)) and we obtain

S S t 2(t—1) 2(t %)
(Shared Momentum) mf b am” 1 gf ' ZZ 0(: 1)+1/\S o Z 2(t—i) 5 gr '
mr,t:amft+g7t Yoo +Zz 00‘ gri

D D ~D t t—inD
m = am = .
(Decoupled Momentum) ¢ ¢ “ Lt +ﬁ’g§t z:tlzoat ng’
mr,t = amr,tfl + gr,t = Zi:O « g?“l
(10)
For notation simplicity, we let A, = Z?:o o', Itis clear that Vky < kg, Ag, < Ap,.

Based on the update scheme (5) and = 1, we have:
—95 =zt S
(Shared Momentum) { Lt ZZ 0 mf it ZZ 0 mm

(11)
_pgD _ t D‘
(Decoupled Momentum) { O _ th 0 mf it Z Bl

Combining (I0) and (TT), we have the following equations. For notation simplicity, we let A, =
Zf:o ot Ttis clear that Vk; < ko, Ay, < Ap,.

- A A
(Shared Momentum){ Zz 0 2(t- l)gfz—’—ZZ 9 2=~ 19”

Hft ZZ o0 Az(t— z)+1gf,+zl o0 Azt 1)9“ a2

(Decoupled Momentum) Jgt ZFO ! Z’(ZB% + thzo ! ZA%)Q,«,,
=0 = Zi:o At*igf,i + Zz‘:o At*igr,i

15

We prove the theorem by mathematical induction.

We start with the case of ¢ = 0. Based on (12), we have 07, = g7, 07, = —gF,- Both are
stochastic gradients calculated on the initial parameter 6, so based on Assumption we have:

Var(Hf 0) < o2 Var(9j 0)s Var(ﬂf 0) < o2 Var(Qf 0)- (13)

In addition, we have 62, = —g7, — g/, and 020 =—(1+ a)ﬁ}?,o — g2 based on . Based on
Lemma [3.4]and 1nequa11ty [©), we have:

Var(gy,) < o® + L*Var(67) < (L* + 1)0”

14
Var(gr,) < o® + L*Var(67,) < (L* + 1)0? (19

We assume negative correlation between gradients from the forget loss and the retain loss in Assump-
tion Therefore, we can derive the variance for 9§ o and 9,?0 as follows:

Var(029) < (1+ a)?Var(g7) + Var(gyy) < (1+a)?0? + (L + 1)o® = Var(62), as)
Var(05,) < Var(gPy) + Var(gZy) < o + (1 + L?)o? = Var(62)).
Thus, we have the following conclusion:
Var(07,) < Var(67), Var(6)) < Var(65). (16)

That is to say, the conclusion of the theorem holds for ¢ = 0. Now we assume that the conclusion
of the theorem holds for 0, 1, ...,¢ — 1, and then consider the case of t.

Based on Assumption[3.2] we have the following inequality for both update schemes:

¢ t
Ywo, ..., wg, Var (Z w1§f1> = Z w?Var(gy;) + 2 Z p(Gs.i: G5, wiw; \/Var(ﬁf_’i)\/ar(ﬁf,j)

i=0 i=0 i#]

t
< Zw Var(gy.,) +Z w?Var(gy;) + w? Var(gfj)) =(1 +tT)waVar(§f7i)

i#£] i=0
(17)
Similarly, we have Yuwy, ..., wy, Var (ZE:O wiﬁm) < (1+4tr) 22:0 w?Var(g,;).
Now we combine (12)), (T4), and can derive the following inequalities:
t t—1
Var(87,) < (1+t7) > A3y (o7 + L2Var(67: 1)) + (1+ (£ = 1)7) D A3y 1 (07 + L7Var(67,))
=0 1=0

t t—1
Var(0F,) < (1 +1tr) > A%, (02 ¥ LQVar(afg,l)) FH-nn Y AR (a s Var(ef,))
=0 =0
t t
Var(0re) < (1+t1) > Aj_iyi (02 ¥ L2Var(9§,i,1)) FA+tT)YAfy (Uz + szar(ef,i))
=0 =0
t
Var(@,?t) < (1+tr) ZAf_i (02 + L2Var(9£i 1) (1+tr ZAt P (0‘ + L Var(9f1)>
1=0
18)
By definition, W(F)?’t), W(Gﬁt), Var(07,), and Var(02,) are the maximum possible value of
Var(07,), Var(67,), Var(62,), and Var(0?,), respectively. Considering the inequalities in are
all achievable, we have the following:

16

t t—1

W(ait):(HtT)ZAg(t,i) (U2+L2W(0§,i_1)) + A+ (=17 ZAW D1 (a +L Var(ﬁfl))
1=0 =0
t—1

t
Var(0F,) = (1+41) S A2 (02+L2W(95¢_1)) T+ E-1n)Y AR (a +L Var(ﬁfl))
1=0 1=0
t

t
Var(0;,) = (1+17) > A3_iy4a (02 i p@(eii,l)) +A+tr)Y ASy (02 n LZ@(G?,Z-))
=0 =0
t t
Var(09,) = (1+tr) > A7 (07 + L?Vax(0F: 1)) + (1 +47) Y A7, (o + L*Vax(67)))
i=0 i=0

19)

By induction, we have for ¢’ € {0, 1,...,t — 1}, Var(6,,) < Var(@;?t/) Var(0F,) < Var(6,,).
In addition, Vk; < ko, Ap, < Aj,. Therefore, after comparing the factors and terms on the
right hand of (I9), it is obvious to obtain the following conclusion.

Var(0f,) < Var(63,), Var(62,) < Var(6:,). (20)

By induction, the conclusion of this theorem holds for any ¢ > 0. O

A.3 Variance Bound of Performance Metric Function

We let M(0) to represent the performance of model with parameter § where M can be
FA/RA/TA/MIA. Before we derive the variance bound of performance metric function M (6), we
make the following assumption:

Assumption A.1. The performance metric function M is Lipschitz continuous:
V01,0, [|M(01) = M(62)|| < Lar|61 = 02, 21
where L)/ is a non-negative constant.

Following a similar logic to Lemma|3.4] we have the following corollary:

Corollary A.2. If Assumption holds, and the parameter variance satisfies Var(f) < Var(6),
then we have Var(M (0)) < L3, Var(6).

Proof. Similar to the proof of Lemma[3.4] we have:
Var(M / (00)p(02) ||M (61) — M ()| b dbs, 22)

where 61, 05 are independent copies of § with probability density p(6).
By [|M(61) — M(02)|| < L1 — 2],

L?
Var(M(0)) < %/ p(01)p(02)||61 — O2]>d6dbs. (23)

Since Var(6) < Var(6), we have 3 [[p(61)p(62)||61 — 02||>d61df> < Var(@). Therefore, we can
conclude Var(M (0)) < L?\/[Var(ﬁ). O

Discussion. The final unlearned parameters are usually the parameter updated by retaining loss at the
last iteration 7', i.e., 0. using decoupled momentum and 67 . using shared momentum. According

to Theorem 3.5 we have Var(07) < Var(67 ;). Let the upper bound of the performance variance
Var(M(0)) = L3,Var(0), we can derive Var(M(07)) < Var(M(67;)). Thus, decoupled
momentum can also induce less variability on performance metrics.

17

B Implementation Details

B.1 Implementation Details for Image Classification

For CIFAR-10, CIFAR-100, and SVHN using ResNet-18, all baselines use the SGD optimizer
with momentum of 0.9, weight decay of 5 x 10~*, and batch size of 128 if not specified. For
TinyImageNet, Swin-T, the models are initialized from torchvision weight pre-trained on ImageNet.
All baselines use the Adam optimizer with a weight decay of 5 x 10~* and batch size of 128 if not
specified. Summaries of the hyperparameters for each method on each dataset are shown in Table
[7-[10} Note that the unspecified hyperparameters are the same as the default ones reported in their
original papers.

Table 7: Summary of hyperparameters for each method on unlearning 10% random subset of CIFAR-
10. 7 is short for learning rate.

Method \ Hyperparameters
Pretrain epoch = 200, cosine scheduler, n = 0.1
RT epoch = 200, cosine scheduler, n = 0.1
FT epoch = 10, constant scheduler, n = 0.01
GA epoch = 10, constant scheduler, n = 5 x 10~
RL epoch = 10, constant scheduler, 7y = 0.01, 5, = 0.01
SCRUB epoch = 10, constant scheduler, Adam, ny = 1 x 10~4, N =1x 10~
SalUn epoch = 10, constant scheduler, n; = 0.018, n, = 0.01
SFRon Tout = 1500, Tj,, = 5, cosine scheduler, 7y = 0.01, 7, = 0.01, a = 31
SCRUB+DO epoch = 10, constant scheduler, Adam (F) + Adam (R), ny = 1.5 x 1074, =1x107%
SalUn+DO epoch = 10, constant scheduler, Adam (F) + SGD (R), ny = 1.3 x 1074, n, = 0.01
SFRon+DO | T,,; = 1500, T}, = 5, cosine scheduler, Adam (F) + SGD (R), ny =1 x 1074, n =001, a=1

Table 8: Summary of hyperparameters for each method on unlearning 50% random subset of CIFAR-
10. n is short for learning rate.

Method | Hyperparameters
Pretrain epoch = 200, cosine scheduler, n = 0.1
RT epoch = 200, cosine scheduler, n = 0.1
FT epoch = 10, constant scheduler, n = 0.01
GA epoch = 10, constant scheduler, n = 8 x 10-5
RL epoch = 10, constant scheduler, 7y = 0.01, . = 0.01
SCRUB epoch = 10, constant scheduler, Adam, 7y = 1.6 x 1075, =1x 104
SalUn epoch = 10, constant scheduler, 7y = 2.5 x 1074, n, = 0.01
SFRon Tout = 1500, T3, = 5, cosine scheduler, ny = 0.01, n, = 0.01, o = 82
SCRUB+DO epoch = 10, constant scheduler, Adam (F) + Adam (R), ny = 2.8 x 107%, 7, = 1 x 107*
SalUn+DO epoch = 10, constant scheduler, Adam (F) + SGD (R), ny = 5.5 x 107%, 1, = 0.01
SFRon+DO | T,,; = 1500, T}, = 5, cosine scheduler, Adam (F) + SGD (R), ny = 4.1 x 1074, 7, =0.01,a =1

Table 9: Summary of hyperparameters for each method on unlearning 10% random subset of CIFAR-
100. 7 is short for learning rate.

Method \ Hyperparameters
Pretrain epoch = 200, cosine scheduler, n = 0.1
RT epoch = 200, cosine scheduler, n = 0.1
FT epoch = 10, constant scheduler, n = 4.5 X 10~2
GA epoch = 10, constant scheduler, n = 5.2 x 10~4
RL epoch = 10, constant scheduler, ny = 8 x 1074, 7, = 0.01
SCRUB epoch = 10, constant scheduler, Adam, 1y = 6 x 1075, N =1x 10~
SalUn epoch = 10, constant scheduler, ny = 1.3 x 1073, 7, = 0.01
SFRon Tout = 1500, Ty, = 5, cosine scheduler, ny = 0.01, 5, = 0.01, o = 44
SCRUB+DO epoch = 10, constant scheduler, Adam (F) + Adam (R), n; = 1 x 1074, 5, = 1 x 10~*
SalUn+DO epoch = 10, constant scheduler, Adam (F) + SGD (R), ny = 1.9 x 1074, 9, =0.01
SFRon+DO | T,,; = 1500, T}, = 5, cosine scheduler, Adam (F) + SGD (R), ny =1 x 1074, 9, =001, a=1

18

Table 10: Summary of hyperparameters for each method on unlearning 10% random subset of SVHN.
7 is short for learning rate.

Method | Hyperparameters
Pretrain epoch = 200, cosine scheduler, = 0.1
RT epoch = 200, cosine scheduler, n = 0.1
FT epoch = 10, constant scheduler, n = 2.2 x 102
GA epoch = 10, constant scheduler, = 5.2 x 1074
RL epoch = 10, constant scheduler, 7y = 8 x 1073, ny = 0.01
SCRUB epoch = 10, constant scheduler, Adam, n; = 8 x 1076, 7, =1 x 107*
SalUn epoch = 10, constant scheduler, n; = 1.25 x 1072, 5, = 0.01
SFRon Tout = 1500, Tj,, = 5, cosine scheduler, ny = 0.01, 7, = 0.01, a = 12.5
SCRUB+DO epoch = 10, constant scheduler, Adam (F) + Adam (R), 1y = 2.2 x 107%, ., =1x 1074
SalUn+DO epoch = 10, constant scheduler, Adam (F) + SGD (R), ny = 2.5 X 1076, 7, = 0.01
SFRon+DO | T,,; = 1500, T}, = 5, cosine scheduler, Adam (F) + SGD (R), ny = 1.6 x 1074, 7, =0.01,a=1

Table 11: Summary of hyperparameters for each method on unlearning 10% random subset of
TinyImageNet. 7 is short for learning rate.

Method | Hyperparameters
Pretrain epoch = 10, cosine scheduler, n = 1 x 10~4
RT epoch = 10, cosine scheduler, n = 1 x 10~4
FT epoch = 1, constant scheduler, = 1 x 10’4_
GA epoch = 1, constant scheduler, n = 5 x 1076
RL epoch = 1, constant scheduler, 7y = 5 x 1075, =1x 1074
SCRUB epoch = 1, constant scheduler, Adam, n; = 2 x 107, 5, = 2 x 1075
SalUn epoch = 1, constant scheduler, y = 9 x 107%, 9, =9 x 107°
SFRon Tout = 500, T}, = 1, cosine scheduler, ny = 3 x 107, 7, = 3 x 107°, a = 500
SCRUB+DO epoch = 1, constant scheduler, Adam (F) + Adam (R), ny = 2 x 1075, Ny =2 X 105
SalUn+DO epoch = 1, constant scheduler, Adam (F) + Adam (R), ny =9 x 1075, 5, = 9 x 107
SFRon+DO | T, = 500, T, = 2, cosine scheduler, Adam (F) + Adam (R), 7y = 1.9 x 1074, 7, = 1.9 x 107, a =1

B.2 Implementation Details for Image Generation

For CIFAR-10, we use DDPM based on U-Net architecture with 1000 timesteps for linear /3 schedule.
All methods use Adam optimizer and batch size of 128. The hyperparameters of SalUn+DO are:
Tour = 150, Ty, = 1,mp = 4 x 1075, = 1 x 1074, threshold = top-50%. The hyperparameters
of SFRon+DO are: Ty = 150, T;, = 1,y =1 x 1074, =1 x 1074, a = 1, A = 0.5, v = 3.
The hyperparameters of other methods are the same as those reported in [[7]].

For ImageNet, we use pre-trained DiT-XL/22 with 256 x 256 resolution. All methods use AdamW
optimizer and batch size of 1. The hyperparameters of SFRon+DO are: T,,;, = 500, T;, = 1,
nf=5x107%n, =5 x 107, a = 1,y = 3. Since the batch size is 1, we ignore) in adaptive
coefficients. The hyperparameters of other methods are the same as those reported in [7].

B.3 Implementation Details for Natural Language Processing

For Phi-1.5 and LLaMA 2, we utilize pre-trained models on the TOFU dataset [2] and conduct
evaluations accordingly. For the baseline methods, including GA+GD and DPO+GD, as well as the
methods ME+GD and IDK+AP, we adopt the default hyperparameters reported in [9]. For IDK+AP,
the forget coefficient and regularization coefficient are set to 1.0 across all models. For ME+GD,
the retain coefficient is 1.0 for all methods. The forget coefficient is 1.0 for LLaMA 2, while it is set
to 0.1 for LLaMA 2 LoRA and Phi 1.5. For the LLaMA LoRA configuration, the LoRA rank is 8
and the LoRA alpha is 32. For training LLaMA 2 with DualOptim, we use two NVIDIA H20 GPUs
with 96GB of memory each. For Phi-1.5, we use two NVIDIA RTX 6000 Ada GPUs with 48GB of
memory each. The detailed hyperparameters of our methods are reported in Table

19

Table 12: Summary of hyperparameters for each method on LLM unlearning task. 7 is short for
learning rate.

Model | Method | Hyperparameters
Phi-1.5 ME+GD+DO | epoch=5,7; =1x107° 7, =1 x 107°
: IDK+AP+DO | epoch=5,1n; =8x107% 5. =1x 107°
ME+GD+DO | epoch = 5,75 = 1.45 x 107%, 7, =1 x 107°
LLaMA 2 IDK+AP+DO | epoch = 5,77 = 1.25 x 107%, 9, =1 x 1079
ME+GD+DO | epoch =357y =1x 1074, 7, =2 x107*
LLaMA 2LORA | 1pk4AP4DO | epoch = 5.7y = 5 x 10-% 7, — 2 x 10~

C Additional Results

C.1 Non-positive Correlation between Forget and Retain Gradients

The unlearning processes of SalUn [6] and SCRUB [8] are

illustrated in Figure [5|and [6] respectively. Compared to SFRon 0
(see in Figure [2), SalUn and SCRUB exhibits less performance
fluctuation. However, they underperform SFRon by a large
margin. Despite that, our method is still effective in boosting
their unlearning performance.

99
9
— s
Adam

—— Dualoptim

Figure E] illustrates non-positive correlation between g; and
g, during unlearning, supporting the reasonableness of As-
sumption [3.2] Note that the results are obtained using SGD
optimizer.

C.2 Unlearning Process of Other MU Methods

200 400 600 800 1000 1200 1400
Iteration

Figure 4: Cosine similarity be-
tween gy and g,. The moving aver-
age curve is shown for better visu-

alization.
—— SGD
Adam
=== Retrain

100.0

x go

RA

-~ Retrain

—— sGD
Adam
—— Dualoptim
-~ Retrain

—— Dualoptim
-~ Retrain

8s
Py
=
— s6D 1
Adam

_ .

0 2 [10

a 6
Iteration

0 2 8 10

a 6
Iteration

0 2 [10

a 6
Iteration

0 2 [10

2 6
Iteration

(a) Forget Accuracy (FA) (b) Retain Accuracy (RA) (c) Test Accuracy (TA) (d) MIA

Figure 5: Unlearning process of SalUn. All results are obtained from unlearning 10% random subset
of CIFAR-10 on ResNet-18.

M

Adam
—— Dualoptim
-~ Retrain

94.75

—— SGD

Adam
—— DualOptim
-~ Retrain

—— SGD
Adam
—— Dualoptim
-~ Retrain

94.50
94.25{ =
94.00

Fo37s

93.50

— SGD
Adam
—— DualOptim

93.25

93.001 —-- Retrain

[2 a 6 [10 [2 a 6 [10 0 2 a 6 8 10 [2 a 6 8 10
Iteration Iteration Iteration Iteration

(a) Forget Accuracy (FA) (b) Retain Accuracy (RA) (c) Test Accuracy (TA) (d) MIA

Figure 6: Unlearning process of SCRUB. All results are obtained from unlearning 10% random
subset of CIFAR-10 on ResNet-18.

C.3 Additional Results of Image Classification

We further conduct experiment to evaluate the performance of unlearning 50% random subsets of
CIFAR-10 and 10% random subsets of CIFAR-100 and SVHN. The results are reported in Table[I3]
The observation in Table[T3]is consistent with that in Table[T} emphasizing the efficacy of our method
across different fractions of forget data, different datasets and different model architectures.

20

Table 13: Additional performance summary of MU methods for image classification. (a) 50% random
subset of CIFAR-10, (b) 10% random subset of CIFAR-100 and (¢) 10% random subset of SVHN.
ResNet-18 is used. All results are presented as mean and standard deviation across 5 trials with
different random data. Performance gap from RT are indicated in blue.

(a) CIFAR-10 Random Subset Unlearning (50 %)

Method \ UA RA TA MIA | Gapl Std |
Retrain \ 93.3640.10 (0.00) 100.00+0.00 (0.00) 93.11+0.29 (0.00) 69.02+0.01 (0.00) \ 0.00 0.10
FT 99.2840.05 (5.92) 99.921¢.03 (0.08) 94.20+0.18 (1.09) 88.77+0.28 (19.75) 6.71 0.14
GA 95.44 17 29 (2.08) 95.5347.30 (4.47) 90.54 +6.69 (2.57) 89.14416.82 (20.12) 7.31 7.03
RL 99.2640.09 (5.90) 99.50+0.02 (0.50) 93.91+0.12 (0.80) 58.50+1.22 (10.52) 4.43 0.36
SCRUB 97.07+0.28 3.71) 99.5710.10 (0.43) 93.2140.17 (0.10) 80.62+1.14 (11.60) 3.96 0.42
+ DualOptim | 97.42410.09 (4.06) 99.5210.05 (0.48) 93.3840.06 (0.27) 77.9410.69 (8.92) 3.43 0.22
SalUn 99.05+0.09 (5.69) 99.88+0.02 (0.12) 94.10+0.15 (0.99) 68.30+0.72 (0.72) 1.88 0.24
+ DualOptim | 93.8240.36 (0.46) 97.9040.36 (2.10) 90.66+0.25 (2.45) 68.8810.64 (0.14) 1:29 0.40
SFRon 93.2142.34 (0.15) 98.90+0.60 (1.10) 91.3441.00 (1.77) 71.7543.31 (2.73) 1.44 1.87
+ DualOptim | 91.38.10.51 (1.98) 99.5210.20 (0.48) 91.074+0.31 (2.04) 69.66+0.34 (0.64) 1.29 0.41
(b) CIFAR-100 Random Subset Unlearning (10%)
Method \ UA RA TA MIA | Gapl Stdl]
Retrain | 77.96+0.52 (0.00) 99.9840.00 (0.00) 77.2310.30 (0.00) 41.7940.01 (0.00) | 0.00 0.21
FT 77.97+0.06 (0.01) 92.3310.54 (7.65) 66.0710.45 (11.16) 626410 15 (20.85) 9.92 0.31
GA 81.81111.77 (3.85) 83.52411.05 (1646) 62.1319.55 (15.10) 72.62414.47 (30.83) | 1656 11.76
RL 94.66+0.21 (16.70) 98.10£0.03 (1.88) 70.16+0.09 (7.07) 40.8240.51 (0.97) 6.66 0.21
SCRUB 77454068 (0.51) 99.26+9.02 (0.72) 73.5140.37 (3.72) 70814072 (29.02) 8.49 0.45
+DualOptim | 76.7240.65 (1.24) 99.38.10.01 (0.60) 73.87+0.19 (3.36) 63.0610.56 (21.27) 6.62 0.35
SalUn 95.02+0.40 (17.06) 98.0410.04 (1.94) 70.261+0.29 (6.97) 413510 46 (0.44) 6.60 0.30
+DualOptim | 78.0411 o7 (0.08) 97.96+0.09 (2.02) 71.10+0.25 (6.13) 41.941¢ g9 (0.15) 2.10 0.53
SFRon 7624112 35 (1.72) 99.56.10.25 (0.42) 73.18+£1 30 (4.05) 57.64+7.41 (15.85) 5.51 5.33
+DualOptim | 74.3244 25 (3.64) 99.7140.03 (0.27) 73.66+0.49 (3.57) 540241 55 (12.23) 4.93 1.59
(c) SVHN Random Subset Unlearning (10%)
Method \ UA RA TA MIA | Gapl Stdl
Retrain ‘ 96.0540.14 (0.00) 99.824.0.01 (0.00) 96.5340.10 (0.00) 79.47 +0.01 (0.00) ‘ 0.00 0.07
FT 99.5140.07 (346) 100.0040.00 (0.18) 95.854+0.03 (0.68) 80.2340.66 (0.76) 1.27 0.19
GA 96.8114.45 (0.76) 97414415 (241) 92.6044.80 (3.93) 88.8015.60(9.33) | 4.11 4.77
RL 94.7310.32 (1.32) 99.4340.00 (0.39) 94.5640.04 (1.97) 74.0041.02 (5.47) | 2.29 0.42
SCRUB 92.4140.25 3.64) 99.8210.03 (0.00) 94.6840.11 (1.85) 84.44.¢. 55 (4.97) 2.61 0.23
+DualOptim | 954210 23 (0.63) 99.8210.01 (0.00) 95.0640.17 (147) 82.7010.34 (3.23) | 133 0.19
SalUn 94.6940.02 (1.36) 98.8540.33 (0.97) 94.5440.31 (1.99) 73.1140.47 (6.36) | 2.67 0.33
+DualOptim | 99.58-10.06 3.53) 100.0040.00 (0.18) 95.7640.04 (0.77) 79.594¢.46 (0.12) | 1.15 0.14
SFRon 97.2911.05 (1.24) 100.0040.00 (0.18) 95.41+0.36 (1.12) 79.25+3.30 (0.22) | 0.69 141
+DualOptim | 98.2040.60 (2.15) 100.0040.00 (0.18) 95.6340.09 (0.90) 79.5641.06 (0.09) | 0.83 0.44

C.4 Additional Results of Image Generation

To further validate the effectiveness of the proposed method, we apply DualOptim to SalUn [6] on
CIFAR-10 with DDPM. Table [[4]illustrates that DualOptim can still enhance the performance and
stability of SalUn in image generation tasks. Note that we adapt SalUn to alternate updating scheme
when applying DualOptim, which originally utilizes joint updating scheme in image generation tasks.
We do not include its results on ImageNet due to suboptimal and unstable performance.

Table 14: Class-wise unlearning performance of SalUn+DO on CIFAR-10 with DDPM. The best
unlearning performance for each forgetting class is highlighted in bold for FA (in %) and FID.

Method Automobile Cat Dog Horse Truck Average
FA| FID [|FA| FID | |FA| FID | |FA| FID ||FA| FID || FA| FID |

SalUn ‘

0.20 21.23 1.40 20.29 0.00 20.18 0.60 20.70 0.80 20.45‘0.60io449 20.57+0.37
+DO

0.00 19.93 0.00 20.45 0.00 20.12 0.00 20.14 0.00 19.91|0.00-0.00 20.1140.19

21

C.5 Additional Results of Large Language Models

The results in Table [I5]|suggest that the alternate updating method can improve LLM unlearning. In
addition, DualOptim boosts the performance based on that. As presented in Table[T6] DualOptim
achieves a minimal compromise in unlearning performance by using LoRA, while significantly
reducing memory consumption. Furthermore, Figure[7illustrates that the unlearning process utilizing
DualOptim demonstrates greater effectiveness and stability compared to other baselines.

Table 15: Performance comparison of different updating methods on TOFU-finetuned Phi-1.5. The
MU method is IDK+AP. The results include Model Capability (MC), Forget Efficacy (FE), and
the average metric (Avg.) for forgetting 1%, 5%, and 10% data. Note that Joint represents jointly
optimizing forgetting and retaining objectives, which is the default updating method; Alternate
represents alternately optimizing these two objectives using a shared optimizer.

forget 1% data forget 5% data forget 10% data

Method

MC+ FEt Avg.t| MCt FEt Ave 1| MCt FET Avg
Joint 0.4403 05723 0.5063 | 0.4800 0.5112 0.4956 | 0.4614 0.6003 0.5308
Alternate | 0.4182 0.5746 0.4964 | 0.4348 0.6570 0.5459 | 0.4588 0.6619 0.5603

DualOptim | 04221 0.7037 0.5629 | 0.4633 0.6974 0.5804 | 0.4422 0.7193 0.5807

Table 16: Performance comparison of different MU methods on TOFU-finetuned LLaMA 2 with
LoRA. We set the LoRA rank to 8 and the LoRA alpha to 32. The results include Model Capability
(MC), Forget Efficacy (FE), and the average metric (Avg.) for forgetting 1%, 5%, and 10% data.

forget 1% data forget 5% data forget 10% data

Method MCt+ FEt Avg. 1| MCt FEtT Avg. 1| MCt FE 1 Avg.

GA+GD | 0.5007 0.6051 0.5529 | 0.5470 0.4306 0.4888 | 0.5745 0.9133 0.7439
NPO+GD | 0.5290 0.5778 0.5534 | 0.5185 0.7032 0.6109 | 0.5350 0.7745 0.6548
ME+GD | 0.7526 0.8425 0.7976 | 0.7435 0.9298 0.8367 | 0.7410 0.8856 0.8133
+DO 0.7542 0.9646 0.8594 | 0.7373 0.9545 0.8459 | 0.7363 0.9549 0.8456
DPO+GD | 0.6874 0.7647 0.7260 | 0.6951 0.5490 0.6221 | 0.7308 0.3973 0.5640
IDK+AP | 0.7572 0.6754 0.7163 | 0.7471 0.7430 0.7451 | 0.7604 0.7411 0.7507
+DO 0.7422 0.7729 0.7575 | 0.7311 0.7499 0.7406 | 0.7533 0.7532 0.7533

C.6 Additional Ablation Studies

Decouple m and v in Adam. Given that Adam incorporates two momentum terms, i.e., the first
moment m and the second moment v, we conducted a further analysis to explore the impact of
decoupling these terms. As shown in Table[T7] decoupling both 7 and v yields the best performance.
This finding reinforces the importance of fully decoupling the optimization processes for forgetting
and retaining objectives.

Table 17: Ablation study on Dual Adams. Results are based on 10% random subset unlearning task
on CIFAR-10 using ResNet-18 pre-trained by SGD. SFRon is the adopted MU algorithm. m and v
denote the decoupled first and second moment terms in Adam, respectively.

m v | FA RA TA MIA | Gapl Sd{
X X | 94541241 (0.07) 99.9610.02 (0.04) 94151030 (0.10) 81.4619 .42 (520) | 135 129
V' X | 94614243 (0.00) 99.9540.02 (0.05) 94.2640.31 (0.01) 82441556 (6.18) | 156 1.33
X V| 94524544 (0.09) 99.9410.03 (0.06) 94.0940.40 (0.16) 82.0642.94 (5.80) | 153 145
Vo V| 94294123 (032) 99944001 (0.06) 94.0240.11 (023) 77.86+1.39 (1.60) | 0.55 0.63

Ablation studies on Adam-trained ResNet-18 and SCRUB [8]. We conduct ablation studies based
on the configurations of Adam-trained ResNet-18 + SFRon and SGD-trained ResNet-18 + SCRUB.
As illustrated in Table @] and @1 Adam (F) + Adam (R) is the best configuration in both cases,
indicating that the optimal optimizer for retaining is influenced by the choice of optimizer during
pretraining and the specific MU algorithms employed.

Shared optimizer with larger momentum coefficient. We further compare DualOptim with shared
optimizers that employ larger momentum coefficients. As observed in Table while increasing

22

GA+GD ME+GD e ME+GD+DO
forget 1% data forget 5% data forget 10% data

0.8 O
9 ¢ s
g o7 . »
=
Y06 é
] ®
o _
= . ®
S 05 q) 11

W N)

. ¢ \ |
0.3 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Model Capability
(a) untargeted unlearning
DPO+GD IDK+AP IDK+AP+DO
forget 1% data forget 5% data forget 10% data

0.8
>
§ 0.7 o
JE:j 0.6 e %
9]
=
2 0.5

0.4

0.3 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Model Capability
(b) targeted unlearning

Figure 7: Forget Efficacy versus Model Capability of (a) untargeted unlearning and (b) targeted unlearning
on TOFU with Phi-1.5. The relative size of the markers indicates the epoch of unlearning.

Table 18: Ablation study on different combinations of DualOptim. Results are based on 10% random
subset unlearning task on CIFAR-10 using ResNet-18 pre-trained by Adam. SFRon is the adopted
MU algorithm. (F) and (R) denotes that the optimizer is used for minimizing the forget and retain
losses, respectively. Note the the result of RT is reported since the pretrained model is different from
that in Table

Optimizer | FA RA TA MIA | Gapl Std]
RT ‘ 93.44+0.42 (0.00) 100.00+0.00 (0.00) 92.841¢.08 (0.00) 78.36+0.80 (0.00) ‘ 0.00 0.30
SGD 93.88+7.21 (0.44) 98.69+2.00 (1.31) 92.17+1.65 (0.67) 76.91+12.23 (1.45) 0.97 5.77
Adam 945410 14 (1.10) 996110 11 (039) 920240 45 (0.82) 76.1014 40 (226) | 1.14 178
Adam (F) + Adam (R) | 93.1241.90 (0.32) 99331003 (0.67) 91.6440.01 (1.20) 78.6310.85 (027) | 0.62 0.60
Adam (F)+ SGD (R) | 95304055 (1.86) 994510 09 (0.55) 92.654018 (0.19) 78.1310.85 (023) | 071 037

the momentum coefficient o can reduce performance variation when using SGD, it also results in
slower convergence and ultimately leads to suboptimal performance. In contrast, increasing (3, has
only a marginal impact when using Adam. This is because Adam’s momentum update rule, i.e.
m = fym + (1 — 81)g, inherently provides a stronger smoothing effect compared to SGD, i.e.
m = am + g, when the same momentum coefficient is applied.

C.7 Visualization for Machine Unlearning in Image Generation

Generated images from the unlearned model utilizing DualOptim are shown in Figure [§] and [0
The visualization indicates that, by leveraging DualOptim, effective unlearning is achieved and the
generation capability for the remaining classes is retained.

23

Table 19: Ablation study on different combinations of DualOptim. Results are based on 10% random
subset unlearning task on CIFAR-10 using ResNet-18 pre-trained by SGD. SCRUB is the adopted
MU algorithm. (F) and (R) denotes that the optimizer is used for minimizing the forget and retain
losses, respectively.

Optimizer | FA RA TA MIA | Gapl Std]
SGD 94.6410.95 (0.03) 99.4440 10 (0.56) 934910 92 (0.76) 80.3740.86 4.11) | 137 036
Adam 92,8840 05 (1.73) 99.6210 10 (038) 935410 20 (0.71) 82784086 (652) | 233 0.36
Adam (F) + Adam (R) | 94.9010 42 (0.29) 99.5240 00 (0.48) 93.5010.20 (0.75) 78264070 (2.00) | 0.88 0.38
Adam (F) + SGD (R) | 94201065 (041) 98.6810.17 (132) 92.5810.15 (1.67) 782841 12 (2.02) | 136 0.53

Table 20: Comparison between DualOptim and shared optimizers with larger momentum coefficients.
Results are based on 10% random subset unlearning task on CIFAR-10 using ResNet-18 pre-trained
by SGD. SFRon is the adopted MU algorithm. Note that 5, is the momentum coefficient in Adam .

Optimizer | FA RA TA MIA | Gapl Std]
SGD (a = 0.9) 94.6743.03 (0.06) 99834015 (0.17) 93.9810.56 (027) 77.8045.61 (1.54) | 051 2.33
SGD (o = 0.95) 9444 15,14 (0.17) 99.824+0.22 (0.18) 94.1140.38 (0.14) 784312 55 (2.17) 0.67 1.32
SGD (a = 0.99) 95.06+0.64 (0.45) 99.021+0.09 (0.98) 93.631+0.26 (0.62) 78.69+1.13 (2.43) 1.12 0.53
Adam (B1 = 0.9) | 94544241 (007) 99.9640.02 (0.04) 94.1540.50 (0.10) 814650 42 (5.20) | 135 1.29
Adam (81 = 0.99) 94.64+2.51 (0.03) 99.93410.02 (0.07) 94.12409.35 (0.13) 82.1042.40 (5.84) 1.52 1.32
Adam (81 = 0.999) | 94.5645 55 (0.05) 99.7910.06 (0.21) 93.7540 35 (0.50) 803612 g5 (4.10) | 122 146
DualOptim | 94.6941.13 (0.02) 99.92:0.01 (0.08) 94114011 (0.14) 77774130 (151) | 0.44 066

W

3 rl‘ {— R _:'_' i e
(g) Forgetting ‘Frog’

3

SR L -t

(i) Forgetting ‘Ship’ (j) Forgetting ‘Truck’
Figure 8: Visualization of class-wise unlearning results on classifier-free guidance DDPM on CIFAR-10. The
forgetting class is marked with a red color.

24

(e) Forgetting Deer (f) Forgetting ‘Dog’

25

AR
ey
SRR
8333

p

(-
RS

l o o : S

Ay — e i 98

) s ‘

A 3 o3 17
“o g orvs \

- - g

(e) Forgetting ‘Otter’

Figure 9: Visualization of class-wise unlearning results on DiT on ImageNet. The forgetting class is
marked with a red color.

26

	Introduction
	Related Works
	Methodology
	Preliminary
	Adaptive Learning Rate Enables Stable Forgetting
	Decoupled Momentum for Enhanced Stability in Machine Unlearning
	Dual Optimizers for Machine Unlearning

	Experiments
	Random Subset Unlearning in Image Classification
	Class-wise Unlearning in Image Generation
	Random Subset Unlearning in Large Language Models
	Ablation Studies

	Conclusion
	Proofs
	Proof of Lemma 3.4
	Proof of Theorem 3.5
	Variance Bound of Performance Metric Function

	Implementation Details
	Implementation Details for Image Classification
	Implementation Details for Image Generation
	Implementation Details for Natural Language Processing

	Additional Results
	Non-positive Correlation between Forget and Retain Gradients
	Unlearning Process of Other MU Methods
	Additional Results of Image Classification
	Additional Results of Image Generation
	Additional Results of Large Language Models
	Additional Ablation Studies
	Visualization for Machine Unlearning in Image Generation

