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ABSTRACT

Test-time adaptation (TTA) updates the model weights during the inference stage
using testing data to enhance generalization. However, this practice exposes TTA
to adversarial risks. Existing studies have shown that when TTA is updated with
crafted adversarial test samples, also known as test-time poisoned data, the perfor-
mance on benign samples can deteriorate. Nonetheless, the perceived adversarial
risk may be overstated if the poisoned data is generated under overly strong as-
sumptions. In this work, we first review realistic assumptions for test-time data
poisoning, including white-box versus grey-box attacks, access to benign data,
attack budget, and more. We then propose an effective and realistic attack method
that better produces poisoned samples without access to benign samples, and derive
an effective in-distribution attack objective. We also design two TTA-aware attack
objectives. Our benchmarks of existing attack methods reveal that the TTA methods
are more robust than previously believed. In addition, we analyze effective defense
strategies to help develop adversarially robust TTA methods.

1 INTRODUCTION

Test-time adaptation (TTA) emerges as an effective measure to counter distribution shift at inference
stage (Wang et al., 2020; Liu et al., 2021; Su et al., 2022; Song et al., 2023). Successful TTA methods
leverage the testing data samples for self-training (Wang et al., 2020; Su et al., 2024b), distribution
alignment Su et al. (2022); Liu et al. (2021) or prompt tuning (Gao et al., 2022). Despite the continuing
efforts into developing computation efficient and high caliber TTA approaches, the robustness of TTA
methods has not picked up until recently, leading to studies examining the robustness of TTA methods
under constant distribution shift (Song et al., 2023), correlated testing data stream (Su et al., 2024a;
Niu et al., 2023), open-world testing data (Li et al., 2023), adversarial robustness (Wu et al., 2023;
Cong et al., 2023), etc. Among these risks, adversarial vulnerability warrants particular attention due
to its potential for evading human inspection and the significant consequences of admitting malicious
samples during TTA.

Existing research frames the adversarial risk of Test-Time Adaptation (TTA) as the crafting of
poisoned testing data, resulting in models updated with such data performing poorly on clean testing
samples (Wu et al., 2023; Cong et al., 2023). Consequently, this task is also referred to as Test-Time
Data Poisoning (TTDP). The pioneering work DIA (Wu et al., 2023) introduced a poisoning approach
by crafting malicious data with access to all benign samples within a minibatch, leveraging real-
time model weights for explicit gradient computing, i.e., a white-box attack. Another concurrent
study (Cong et al., 2023) implements poisoning by preemptively injecting all poisoned data to
attack the model even before TTA starts. While these explorations conclude that TTA methods
are susceptible to poisoned data, evaluations based on unrealistic assumptions may exaggerate the
adversarial risk for several reasons. i) Access to real-time model weights (white-box attack) is often
considered overly optimistic, especially given that models are constantly updated during adaptation.
Therefore, a grey-box or even black-box attack is preferred for TTDP. ii) The adversary is typically
assumed only to be aware of the query samples submitted by themselves. Thus, benign samples
submitted by other users should not be utilized for crafting poisoned data, for instance, through
bi-level optimization (Wu et al., 2023). iii) Crafting poisoned data requires querying the model with
testing samples. Repeatedly querying the model from a single user could easily trigger alerts in
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defensive systems. Therefore, any query sample, whether adversarial or benign, should be counted
towards the attack budget. iv) Following the above concern, the adversary should not monopolize the
entire testing bandwidth. This constraint translates to a scenario where poisoned data only partially
occupies a minibatch, and the adversary is not allowed to inject all poisoned data at once even before
TTA starts (Cong et al., 2023).

To the best of our knowledge, existing attempts at test-time poisoning have not fully addressed the
above realistic concerns. In this work, we aim to propose a threat model that advances towards
more Realistic Test-Time Data Poisoning (RTTDP). Firstly, we formulate the threat model under
a grey-box attack scenario, where initial model weights are visible. We distill a simple surrogate
model from the online model using only the adversary’s queries, enabling efficient gradient-based
synthesis of poisoned data. Empirical analysis demonstrates that the distilled surrogate provides
sufficient information for crafting effective poisoned data. Moreover, to constrain the attack budget,
we reformulate the bi-level optimization objective proposed in prior work (Wu et al., 2023) by
replacing benign samples with poisoned data only. Through reasoning on generalization error, we
illustrate that the attack loss defined on poisoned data can be generalized to benign samples if
the distributions between poisoned and benign samples are identical. This insight motivates us to
introduce a feature distribution consistency regularization for in-distribution attacks, eliminating the
need for additional benign samples to construct the outer objective. Finally, we devise two alternative
attack objectives tailored to the unique features of Test-Time Adaptation (TTA) methods. We first
propose a high-entropy oriented attack to generate poisoned samples biased towards high entropy.
This approach proves effective in compromising TTA methods based on entropy minimization (Wang
et al., 2020). However, high-entropy attacks may become less effective with the introduction of
simple defense techniques, such as confidence thresholding. Therefore, we explore a low-entropy
based attack objective aimed at attacking towards a non-ground-truth class. The combined threat
model is applied to a diverse range of TTA methods, resulting in more effective outcomes compared
to existing threat models. An overview of the overall framework is presented in Figure 1.

In addition to crafting effective threat models, we delve into exploring practices conducive to enhanc-
ing Test-Time Adaptation (TTA)’s adversarial robustness. Contrary to the reliance on adversarially
trained models (Madry et al., 2018) and robust batch normalization estimation (Wu et al., 2023),
we draw inspiration from empirical observations of robust TTA methods. Our validation reveals
that confidence thresholding, data augmentation, exponential moving averaging (EMA), and random
parameter restoration represent potential directions for improving the adversarial robustness of TTA
methods.

We summarize the contributions of this work as follows.

• We argue the unrealistic assumptions, e.g. white-box attack and overusing attack budget,
made in existing attempts at TTDP may overestimate the adversarial risk of TTA methods.
To address this, we first propose key criteria for defining realistic test-time data poisoning
scenarios.

• Under our proposed realistic test-time protocol, we analyze the generalization error and
introduce an in-distribution attack strategy with feature distribution consistency regulariza-
tion. This strategy eliminates the need for additional benign samples in evaluating the outer
objective. Additionally, we tailor attack objectives specifically for TTA methods, resulting
in more effective poisoning.

• We conduct extensive evaluations on state-of-the-art TTA methods, demonstrating the
efficacy of our proposed in-distribution attack strategy. Furthermore, we identify certain
practices that are conducive to improving realistic adversarial robustness.

2 RELATED WORK

Test-Time Adaptation (TTA) (Wang et al., 2020; 2022; Niu et al., 2022; Su et al., 2022; Li et al.,
2023; Liang et al., 2024) have shown significant success in bridging the domain gap by using
stream-based testing samples to dynamically update models in real time. The success of TTA is
mainly attributed to the self-supervised learning on testing data. While it has proved sensitive to
confirmation bias (Arazo et al., 2020), many solutions were proposed to minimize the influences
of the wrong pseudo-labels. These strategies include minimizing sample entropy (Wang et al.,
2020; Liang et al., 2020), adding regularization terms (Song et al., 2023; Su et al., 2024b), using
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confidence thresholding (Niu et al., 2022; 2023), updating models with exponential moving average
architectures (Wang et al., 2022; Döbler et al., 2023), partially updating model weights (Wang et al.,
2020; Yuan et al., 2023), and augmenting testing samples (Zhang et al., 2022; Döbler et al., 2023), all
aimed at minimizing sample distribution discrepancies. However, adaptation during the testing stage
remains highly risky, as it directly impacts the final results. In this work, we aim to demonstrate that
most existing TTA methods are highly susceptible to data poisoning.

Robustness in Test-Time Adaptation: Recent research has increasingly focused on the robustness
of TTA in realistic deployments. Wang et al. (2022) and Brahma & Rai (2023) tackle issues of
catastrophic forgetting due to changing test data distributions. Niu et al. (2023), Gong et al. (2022) and
Yuan et al. (2023) address non-i.i.d. and shifting label distributions in test data. Li et al. (2023) and
Zhou et al. (2023) introduce open-world scenarios in TTA, where test data may include novel classes
not present in the source domain. Furthermore, Wu et al. (2023) and Cong et al. (2023) investigate
the threat of data poisoning in TTA, where attackers alter test data to exploit vulnerabilities in TTA
methods. DIA (Wu et al., 2023) uses bi-level optimization to degrade target sample performance,
assuming white-box attack access. In contrast, TePA (Cong et al., 2023) includes an exclusive offline
stage for poisoning data on the source model prior to the TTA process. Inspired by these works, we
focus on the severe threat of data poisoning. We examine the adversarial robustness of TTA under
realistic conditions, with access only to the source model and partial test samples for data poisoning.
Our attack, despite these constraints, outperforms previous methods, highlighting the significant
adversarial risks that TTA methods face.

Adversarial Attack & Data Poisoning: Adversarial risk is a crucial concern for models to address
for safe deployment, which can be primarily divided into two categories: adversarial attacks and data
poisoning. Adversarial attacks (Szegedy et al., 2014; Akhtar & Mian, 2018; Goodfellow et al., 2014;
Madry et al., 2018; Croce & Hein, 2020; Chen et al., 2022; Chakraborty et al., 2018) manipulate
models during inference by adding small perturbations to input data. White-box attacks (Szegedy
et al., 2014; Tramèr et al., 2018) assume full access to the victim model, creating adversarial examples
by maximizing loss gradients. In contrast, grey-box attacks (Chen et al., 2017; Ilyas et al., 2018; Ru
et al., 2019) assume no model access, generating adversarial samples by estimating gradients through
intensive querying. Data poisoning (Biggio et al., 2012; Yang et al., 2017; Shafahi et al., 2018; Alfeld
et al., 2016; Huang et al., 2021; Fowl et al., 2021; Fan et al., 2022) compromise models by injecting
manipulated data into the training set, misleading the training process. Traditional data poisoning
assumes that the attacker can observe and poison the entire training set at once. Recent advancements,
such as online poisoning (Zhang et al., 2020), relax this assumption by requiring knowledge of the
model updating strategies. In this work, we explore a more realistic scenario of adversarial robustness
for TTA, focusing on data poisoning without online model access and without multiple queries for
the same data.

3 SETTING: REALISTIC TEST-TIME DATA POISONING

3.1 OVERVIEW OF TEST-TIME DATA POISONING

We first provide a generic overview of test-time adaptation for a K-way classification task. We denote
the testing data as D = {xi}Nt

i=1, a pre-trained model as θ0. TTA methods often employ unsupervised
loss, Ltta, to update model parameters upon observing a minibatch of testing samples Bt = {xi}Nb

i=1
at timestamp t. Usually, a subset of model parameters θut ⊆ θt is subject to update at timestamp
t, and we denote the BN statistics as θb(Bt) = {µ(Bt), σ

2(Bt)} and the frozen parameters as θf .
The posterior of the sample xi towards the model parameter θ is h(xi; θ) ∈ [0, 1]K . The adversarial
risk arises when a subset of testing samples are poisoned, e.g. through adding an adversarial noise
x̃ = x + ϵ, s.t. ||ϵ||∞ ≤ b. The model trained on poisoned data exhibit poor performance on
clean/benign testing samples. In a typical TTA scenario, the online model is queried by both
adversary and benign users. Thus, we denote the query data from adversary as adversary poisoned
subset Ba = {x̃i}. The poisoned subset could be generated from arbitrary clean testing data, denoted
as Bab = {xi} (e.g. use any public clean images). The generation follows an additive noise, i.e.
x̃i = xi + ϵi, s.t. x̃i ∈ Ba xi ∈ Bab, where the noise ϵi is the data poisoning to be learned. The
query data from benign users is denoted as benign subset Bb = {xi}, where Bab ∩ Bb = ∅. The
combination of both, Bt = Ba ∪ Bb, forms a single TTA minibatch. The effectiveness of test-time
poisoning is evaluated at the attack success rate (classification error) on benign subset Bb.
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Figure 1: Illustration of the proposed Realistic Test-Time Data Poisoning (RTTDP) pipeline. Bab indicates
the adversary benign subset, and Ba indicates the adversary poisoned subset where the samples are poisoned
from the clean samples in Bab. Bb indicates the benign users’ subset where the samples are used to validate
the adversarial risk of TTA pipeline and these samples cannot be access by the adversary. Adversary generates
poisoned data by attacking a regularized objective without accessing benign samples from other users. Model is
attacked when carrying out TTA on testing data stream mixed with benign and poisoned data.

3.2 REALISTIC TEST-TIME DATA POISONING PROTOCOL

The adversarial risk of TTA methods must be assessed under realistic attacks. Existing works may
have exaggerated the adversarial risk when attack is implemented under an overly strong assumption.
We summarize the criteria that define a more realistic attack as follows.

White-Box v.s. Grey-Box Attack: Access to real-time TTA model parameters is a key factor
for crafting realistic test-time data poisoning. Contrary to the assumption adopted by white-box
adversarial attack (Szegedy et al., 2014; Biggio et al., 2013) that a frozen model is deployed for
inference, the TTA model parameters experience constant updating at inference stage. The update
is performed on the cloud side, thus the attacker doesn’t normally have access to real-time model
weights. Such a realistic assumption prompts us to explore a more relaxed grey-box test-time data
poisoning, i.e. only the model architecture and initial model weights are available to the adversary,
such as the open-source famous pre-trained models (He et al., 2016; Dosovitskiy et al., 2021) and
popular foundation models (Radford et al., 2021; Kirillov et al., 2023; Oquab et al., 2024).

Access To Benign Subset: The effectiveness of test-time data poisoning is evaluated on the benign
subset Bb submitted by benign users. In a standard cloud service, users are generally restricted from
accessing the queries of other users. Thus the adversary should only have access to adversary subset
Ba. This assumption prohibits the practice of crafting poisoned data by directly optimizing (minimiz-
ing) the loss on benign subset (Wu et al., 2023), on which the attack success rate (performance) is
calculated.

Attack Order: Finally, attacking TTA model in a realistic way should be implemented during the
adaptation stage. Attacking the model before TTA begins is deemed less practical (Cong et al., 2023).

Based on the aforementioned key criteria, we provide a summary of existing test-time data poisoning
methods in Tab. 1. Our analysis indicates that none of the current methods fully satisfy all the estab-
lished criteria. Specifically, DIA (Wu et al., 2023) employs a white-box attack strategy, generating
poisoned samples by maximizing the error rate on a subset of benign data. TePA (Cong et al., 2023)
attacks the pre-trained model with an offline surrogate model prior to the commencement of test-time
adaptation. In the rest of the paper, we stick to the most realistic assumptions, i.e. online grey-box
poisoning and no access to benign subset, named as Realistic Test-Time Data Poisoning (RTTDP).

Table 1: Taxonomy of methods based on the criteria for realistic test-time data poisoning.
Setting Grey-box v.s. White-box Access Benign Subset Attack Order

DIA (Wu et al., 2023) White-box ! Online
TePA (Cong et al., 2023) Grey-box % Offline
RTTDP (Ours) Grey-box % Online
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Adversarial Attacks on Standard Image Classification: Common grey-box or black-box adversar-
ial attack techniques are often impractical for RTTDP due to two primary challenges. First, existing
adversarial attack methods operate on a static model and inherently require multiple queries
for gradient approximation or fitness evaluation, as seen in query-based attacks (Li et al., 2020; Xu
et al., 2021), genetic algorithms (Chen et al., 2019), and black-box optimization (Qiu et al., 2021).
However, in the test-time adaptation setting, the online model is continuously updated with each
query during the inference phase. Thus, repetitive querying the model for gradient approximation or
fitness evaluation is unavailable. Second, traditional adversarial attack methods focus on crafting
adversarial samples to degrade the performance of the attacker’s own input data. In contrast, in
a realistic test-time data poisoning scenario, poisoned samples are introduced into the test-time
adaptation process to degrade the performance of benign samples submitted by other users.

4 METHODOLOGY

4.1 GREY-BOX ATTACK BY SURROGATE MODEL DISTILLATION

To tackle the challenge of access to TTA model parameters, we propose to maintain a surrogate
model, denoted as θ̂t at timestamp t, for the purpose of synthesizing poisoned data. To ensure good
approximation, we distill the target model θt into the surrogate model θ̂t by leveraging the feedback
of poisoned data from the online target model. Specifically, for each query to the target model, we
minimize the symmetric KL-Divergence between the posteriors of the target and surrogate models, as
Eq. 1. Our empirical observations demonstrated that utilizing the adversarial subset Ba for distillation
yields performance comparable to a white-box attack, as illustrated in Fig. 2 (a).

Ldist =
1

|Ba|
∑

xi∈Ba

1

2

[
KLD

(
h(xi; θt)||h(xi; θ̂t)

)
+KLD

(
h(xi; θ̂t||h(xi; θt))

)]
(1)

4.2 IN-DISTRIBUTION TEST-TIME DATA POISONING

In this section, we further address the challenge of attacking TTA model without access to benign
user’s testing samples. In the first place, we revisit DIA (Wu et al., 2023), which formulated test-time
poisoned data generation as a bi-level optimization problem, in Eq. 2.

min
Ba

1

|Bb|
∑

xi∈Bb

Latk (xi; θ
∗
t (Bt))

s.t. Bt = Ba ∪ Bb; θ
b′ = {µ(Bt), σ

2(Bt)};
θu∗t = argmin

θu
t

Ltta(Bt; θ
∗
t (Bt)); θ

∗
t (Bt) = θu∗t ∪ θb′ ∪ θf

(2)

The above bi-level optimization problem employed in DIA (Wu et al., 2023) aims to generate
adversarially poisoned data Ba by minimizing the loss function Latk, which is computed on the
benign samples Bb. Although DIA approximates θu∗t ≈ θut to discard the inner TTA gradient update
loop and reduce the number of queries to the online model, several realistic concerns still persist
under the RTTDP protocol. First, as discussed in Sec. 3.2, DIA, as a white-box attack method, must
query the online TTA model θ∗t for generating poisoned samples. To mitigate this issue, we propose
to leverage a surrogate model θ̂t as an proxy model, which is distilled by Eq. 1 with the last feedback
of Ba,t−δ, where δ denotes the time interval between two injected poisoned subsets. Second, DIA
evaluates the outer optimization by employing the benign samples Bb (assuming access to benign
users’ query samples). The adversarial risk mainly arises from the injection of poisoned samples
into the TTA training process. However, employing the validation (benign) samples as the outer
optimization objective may result in an overestimation of this risk, as the specific poisoned samples
could be tailored for the attack on the inference of the current batch of benign samples (Park et al.,
2024), e.g., θb′, rather than for attacking the TTA process, i.e., θu.

To prevent from using benign users’ samples for optimization and assuming grey-box attack, one
possible solution is to swap the benign users’ samples Bb with the adversary’s clean sample Bab

based on the assumption that Bab and Bb are drawn from similar distributions, and replacing the
white-box model θ with distilled model θ̂ and discarding the inner TTA loop θ̂∗t ≈ θ̂t as adopted by
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Figure 2: (a) The attack performance comparison about the poisoned samples generated on Source (pretrained)
Model, our proposed Surrogate Model and Online target Model (white box). (b) The T-SNE visualization of the
feature points (before FC layer). Without Lreg , common attack losses (e.g. maximizing cross-entropy) produce
poisoned samples (orange dots) that are far from benign ones (blue dots), leading to less effective attacks. (c) The
attack performance comparison between w.o. and w. Lreg . (d) The average prediction entropy of the poisoned
samples generated by our proposed two different attack objectives, respectively.

DIA (Wu et al., 2023), resulting in the following formulation.

min
Ba

1

|Bab|
∑

xi∈Bab

Latk

(
xi; θ̂

′
t(Bt)

)
s.t. Bt = Ba ∪ Bab; θ̂b′ = {µ(Bt), σ

2(Bt)}; θ̂′t(Bt) = θ̂ut ∪ θ̂b′ ∪ θ̂f
(3)

Despite the above formulation alleviates the assumption of the available to access the benign users’
samples and the online model parameters, it still remains elusive to tackle. First, as most TTA
methods leverage the current batch statistics to estimate the statistics on target domain, forwarding
Bt results in esimating the BN statistics on the combination of Ba and Bab which bias update of BN
parameters. This may results in a mismatch between the feature distribution of Bab and Bb, if Bb is
queried independently. Thus, the poisoning effect may fail to generalize to Bb. This is evidenced
by an empirical study into the distribution of poisoned data in Fig. 2 (b) where the distribution of
generated poisoned data (orange dots) deviate substantially from the benign samples (blue dots) if the
Eq. 3 is directly attacked. Therefore, we are prompted to explore a solution that does not explicitly
require forward pass for both Ba and Bab simultaneously and is able to transfer the attacked effect
from Ba to the benign subset i.e. Bab or Bb.

To address this challenge, we propose introducing additional constraints and integrating the optimized
target Bab with the optimizing objective Ba into a unified objective Ba, as presented in Eq. 4, where
D(P1, P2) is a metric of two distributions and Pa and Pab refer to the feature distributions of Ba

and Bab. We have the follow reason why the formulation is effective. If Ba and Bab have the similar
distribution, we can have Pa → Pab ⇒ EPa(x)[Latk(x)] → EPab(x)[Latk(x)] according to the
Probably Approximately Correct (PAC) learning framework (Valiant). Thus attack against Ba has a
high chance to generalize to Bab.

min
Ba

1

|Ba|
∑

xi∈Ba

Latk

(
xi; θ̂

′
t(Ba)

)
; s.t. D(Pa, Pab) = 0 (4)

Feature Consistency Regularization for In-Distribution Attack: To achieve indistinguish-
able distribution between Pa and Pab, we propose to measure the discrepancy at feature level
and introduce the discrepancy as a constraint to the optimization problem. Crucially, since
the attack loss is defined in the representation extracted by the backbone network, the distri-
bution consistency is ideally imposed on the intermediate features except for the final seman-
tic one. Specifically, we denote the l-th intermediate feature map before each normalization
layer as zli = f l(xi) ∈ R

Hl×Wl×Dl . A single Gaussian distribution is fitted to intermedi-
ate layer features, as µl

i = 1
HlWl

∑
h,w zlihw, Σl

i = 1
HlWl

∑
h,w(z

l
ihw − µl

i)(z
l
ihw − µl

i)
⊤ and

µ̃l
i =

1
HlWl

∑
h,w z̃lihw, Σ̃l

i =
1

HlWl

∑
h,w(z̃

l
ihw − µ̃l

i)(z̃
l
ihw − µ̃l

i)
⊤, where z̃i and zi refer to the

sample features from Ba and Bab, respectively. The KL-Divergence between feature distributions is
introduced as the constraint.

Lreg =
1

L

∑
l

KLD(N (µl
i,Σ

l
i)||N (µ̃l

i, Σ̃
l
i)) (5)

With the introduced constraint Lreg = 0, we finally formulate the problem as Eq. 6. The problem
now degenerates to a single level optimization with constraints which can be easily converted into
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an unconstrained optimization problem via Lagrangian multiplier (Lag, 2008). The unconstrained
problem can be solved in an iterative fashion with detailed algorithm presented in the Appendix.

min
Ba

1

|Ba|
∑

xi∈Ba

Latk

(
xi; θ̂

′
t(Ba)

)
s.t. θ̂b′ = {µ(Ba), σ

2(Ba)}; θ̂′t(Ba) = θ̂ut ∪ θ̂b′ ∪ θ̂f ; Lreg = 0

⇒min
Ba

max
λ

1

|Ba|
∑

xi∈Ba

Latk

(
xi; θ̂

′
t(Ba)

)
+ λLreg

⇒min
Ba

max
{λ0···λL−1}

1

|Ba|
∑

xi∈Ba

Latk

(
xi; θ̂

′
t(Ba)

)
+

1

L

∑
l

λlKLD(N (µl
i,Σ

l
i)||N (µ̃l

i, Σ̃
l
i))

(6)

Through optimizing the above objective, now we could craft the effective poisoned data Ba that
satisfies Exi∈Ba

Latk(xi; θ̂t) ≈ Exi∈Bb
Latk(xi; θ̂t), since the approximation equation Pa → Pab →

Pb now holds. Fig. 2 (c) demonstrates the effectiveness of this in-distribution attack, where the attack
performance of the attack objective combined with the feature regularization (orange bars) is always
higher than that of the corresponding attack objective alone (blue bars) in different TTA methods.
Next, we would introduce the attack objectives Latk that we designed to effectively generate different
kinds of poisoned samples.

4.3 TTA-AWARE ATTACK OBJECTIVE

The specific design of attack objective Latk warrants careful consideration. The existing works
examined both targeted and indiscriminative attacks, demonstrating that both are effective against
state-of-the-art TTA methods (Wu et al., 2023). However, we argue that an attack objective is not
universally effective against all TTA methods. Therefore, we investigate two types of attack objectives
as follows, and the prediction entropy of poisoned samples generated via the proposed attack losses
can be compared in Fig. 2 (d).

High Entropy Attack Objective: Self-Training based TTA methods, e.g. TENT, RPL, are vulnerable
for out-of-distribution samples with high entropy (Niu et al., 2023), and therefore, a straightforward
way to generate poisoned data to attack TTA model is by maximizing the entropy of poisoned data
as proposed in TePA (Cong et al., 2023) since these poisoned samples with high prediction entropy
would induce high updating gradient. However, maximizing the prediction entropy does not guarantee
wrong pseudo labels. Therefore, we propose a stronger high entropy attack objective called Notch
High Entropy Attack (NHE Attack). Based on the uniform distribution, we set the probability in the
ground-truth label to zero and construct the target distribution Q. Then we minimize the cross-entropy
against target distribution Q.

LNHE
atk (x̃i) = −

∑
k

Qik log hk(x̃i) s.t. Qik =

{
0 k = yi

1
K−1 others

(7)

Low Entropy Attack Objective: High entropy attack objective is particular effective against self-
training based TTA methods because of high updating gradient, yet they could be easily defended
by some defense strategies, e.g. entropy thresholding. Therefore, we further explore a new low
entropy based attack objective. DIA (Wu et al., 2023) proposed to maximize the cross-entropy loss
on the benign samples (indiscriminate attack) to generate the other poisoned samples. However, we
empirically found that maximizing the cross-entropy loss without any constraints on one sample is
prone to maximizing the probability of the most confident class (except the ground-truth) of one
model, and feeding these samples into TTA model would bring up the following issues. i) The
model will quickly bias towards the most confident class and collapse if without any class diversity
constraints. ii) If class diversity constraints is applied (assembled in several TTA methods, e.g. EATA,
ROID), this objective will become less ineffective since the class-biased poisoned samples will obtain
the less updating weighting than other benign samples. Therefore, we propose a class-balanced
low entropy attack, termed Balanced Low Entropy Attack (BLE Attack). Specifically, we maintain
an moving average probability confusion C ∈ [0, 1]K×K to store the prediction bias in each class
and find a global optimal label mapping M ∈ {0, 1}K×K such that each class is attacked towards
the most probable non ground-truth class. Details of deriving label mapping M is deferred to the
supplementary. Finally, the BLE Attack objective is calculate as Eq. 8.

LBLE
atk (x̃i) = −

∑
k

1(k = argmax
q ̸=yi

Myi,q) log h(x̃i) (8)
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Overall Attack Strategy: We craft poisoned data by attacking the aforementioned in-distribution at-
tack objective with regularization. Following the practice that poisoned data should be less discernible
by human, we employ a 40 steps Projected Gradient Descent algorithm (Boyd & Vandenberghe,
2004) on the combined objective in Eq. 6 with a budget b. More details of the training and evaluation
algorithm are deferred to the Appendix.

5 EXPERIMENT

5.1 EXPERIMENT DETAILS

Benchmark Poisoning Methods: We evaluated the following methods under our proposed RTTDP
setting. Unlearnable Examples (Huang et al., 2021) generates the poisoned noise by minimizing
the cross-entropy of Ba on a randomly initialized model. Adversarial Poisoning (Fowl et al., 2021)
proposed to minimize the cross-entropy between the posterior probabilities of poisoned samples, Ba,
and their corresponding incorrect labels, ŷ, where the incorrect labels are defined as ŷi = yi + 1.
DIA (Wu et al., 2023) is one of the first approaches towards test-time data poisoning, generating
the poisoned data via maximizing the cross-entropy of other benign data. We adapt DIA to the
realistic evaluation protocol by splitting Bab into two subsets of 50% each, i.e. Bp

ab : Bb
ab = 1 : 1,

and craft Bp
a to maximize the cross-entropy of Bb

ab. TePA (Cong et al., 2023) proposed to maximize
entropy to generate poisoned data and performed attack before TTA starts. We adapt TePA to
generate the poisoned data based on the source model and inject them into TTA pipeline on-the-fly.
MaxCE (Madry et al., 2018) is an established way to create adversarial samples by maximizing
the cross-entropy loss. Finally, we evaluate the two attack objectives proposed in this paper, i.e
high entropy attack (NHE Attack) and low entropy attack against most probable and balanced non
ground-truth class (BLE Attack). For both NHE Attack and BLE Attack, we evaluate the attack
objective subject to the constraint of our proposed feature consistency (Eq. 6). For all methods
that require gradient based optimization, e.g. DIA, TePA, MaxCE and our proposed attacks, we
employ the Projected Gradient Descent (PGD) algorithm Boyd & Vandenberghe (2004) to perform
the constrained optimization. We use 40 steps PGD for all methods for a fair comparison.

Datasets: We evaluate on three datasets, widely adopted for TTA benchmarking. CIFAR10-C,
CIFAR100-C and ImageNet-C are synthesized from the original clean validation set by adding
various types of corruptions to simulate natural distribution shifts (Hendrycks & Dietterich, 2019).
We choose corruption level 5 and perform continual test-time adaptation setting for evaluation.
Following prior works (Wang et al., 2022; Döbler et al., 2023), we adopt the pre-trained WideResNet-
28 Zagoruyko & Komodakis (2016), ResNeXt-29 (Xie et al., 2017), and ResNet-50 (He et al., 2016)
models for experiments on the CIFAR10-C, CIFAR100-C, and ImageNet-C datasets, respectively.
More experiment details can be found in the Appendix A.3.

5.2 EVALUATION ON TEST-TIME DATA POISONING

We present the results of comparing different attack objectives against state-of-the-art TTA methods
in Tab. 2, Tab. 3 and Tab. 4 for CIFAR10-C, CIFAR100-C and ImageNet-C respectively. We make
the following observations from the results. i) Contrary to the claims that TTA methods are extremely
vulnerable to data poisoning, under the realistic data poisoning protocol, without accessing to benign
data, it’s not trivial to transfer the adversarial risk from poisoned data to benign data, especially
for the TTA methods using EMA model such as CoTTA and ROID. In particular, existing methods
do not pose too much risk to more advanced TTA methods without feature consistency regularization.
DIA and TePA are more effective on TENT and RPL than other TTA methods. We attribute this to
the fact that both TENT and RPL are naive self-training methods without filtering testing samples,
hence, poisoned data could easily mislead model update. ii) Our proposed two attack objectives
generally perform better than existing poisoning methods, demonstrating a better average ranking
and a higher average error rate. This is attributed to the combination of the well-designed attack
objective and the regularization of feature consistency. On the other hand, low entropy attack (BLE)
obtains significantly improved with our proposed feature consistency compared with the similar low
entropy attack i.e. MaxCE. iii) “Non-uniform ” attack in general yields higher attack success rate
than “Uniform” attack. This is probably due to consecutive attack being more effective in misleading
model’s update.
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Table 2: Evaluation of test-time data poisoning under the RTTDP protocol for CIFAR10-C. We report the attack
success rate (higher the better) for each TTA method and the average ranking (lower the better) for each attack
objective. ∗ indicates that the method is modified to align with the RTTDP protocol.

Attack Freq. Attack Objective Source TENT RPL EATA TTAC SAR CoTTA ROID Avg. Err. (↑) Avg. Rank (↓)

Uniform

No Attack

43.81

19.72 21.00 18.03 17.41 18.94 16.46 16.37 18.28 7.43
Unlearnable Examples (Huang et al., 2021) 32.61 26.62 20.11 18.43 19.23 17.27 17.80 21.72 4.86
Adversarial Poisoning (Fowl et al., 2021) 19.60 19.90 18.94 18.69 19.90 18.34 19.12 19.21 3.86

DIA∗ (Wu et al., 2023) 26.04 21.87 18.94 18.56 19.46 17.72 17.77 20.05 4.86
TePA∗ (Cong et al., 2023) 33.78 22.36 23.37 17.75 19.53 16.57 18.76 21.73 4.43

MaxCE (Madry et al., 2018) 18.55 20.81 18.17 18.50 19.50 16.88 18.57 18.71 6.00

BLE Attack (Ours) 54.07 51.99 45.20 34.00 26.80 18.12 19.06 35.61 1.57
NHE Attack (Ours) 73.86 72.40 29.73 18.67 24.56 17.54 17.00 36.25 2.86

Non-Uniform

No Attack

43.55

19.29 20.36 17.75 16.89 18.74 16.18 15.81 17.86 5.71
DIA∗ (Wu et al., 2023) 22.84 25.70 19.75 18.35 19.42 19.18 17.79 20.43 4.00

TePA∗ (Cong et al., 2023) 40.31 32.32 23.03 18.06 19.49 18.07 18.50 24.25 3.43
MaxCE (Madry et al., 2018) 18.64 20.01 18.29 18.43 19.47 18.01 18.94 18.83 4.43

BLE Attack (Ours) 56.17 46.66 50.97 34.25 27.54 19.23 20.12 36.42 1.43
NHE Attack (Ours) 74.93 73.65 27.56 18.75 24.95 20.86 16.77 36.78 2.00

Table 3: Evaluation of test-time data poisoning under the RTTDP protocol for CIFAR100-C. We report the
attack success rate (higher the better) for each TTA method and the average ranking (lower the better) for each
attack objective. ∗ indicates that the method is modified to align with the RTTDP protocol.

Attack Freq. Attack Objective Source TENT RPL EATA TTAC SAR CoTTA ROID Avg. Err. (↑) Avg. Rank (↓)

Uniform

No Attack

46.23

60.25 47.12 32.20 31.93 31.62 32.13 29.11 37.77 5.71
DIA∗ (Wu et al., 2023) 74.79 68.42 33.77 32.57 33.20 32.68 30.10 43.65 4.00

TePA∗ (Cong et al., 2023) 75.79 81.98 36.74 33.41 35.79 32.41 32.24 46.91 2.86
MaxCE (Madry et al., 2018) 42.36 39.04 34.08 40.73 32.01 32.18 31.08 35.93 4.43

BLE Attack (Ours) 73.93 76.71 47.30 34.58 43.25 32.81 32.27 48.69 2.00
NHE Attack (Ours) 92.08 91.72 37.86 33.85 56.09 32.50 31.48 53.65 2.00

Non-Uniform

No Attack

46.33

62.30 49.69 31.45 32.07 31.37 32.56 28.39 38.26 5.71
DIA∗ (Wu et al., 2023) 76.83 71.44 33.74 32.63 33.24 33.13 30.07 44.44 4.14

TePA∗ (Cong et al., 2023) 82.29 88.48 36.40 34.89 35.56 33.44 33.27 49.19 2.43
MaxCE (Madry et al., 2018) 41.89 38.05 33.20 42.12 31.90 32.78 31.66 35.94 4.43

BLE Attack (Ours) 71.30 72.97 47.21 35.26 41.22 33.50 32.60 47.72 2.29
NHE Attack (Ours) 94.46 94.58 40.05 34.14 56.48 33.52 31.45 54.95 2.00

Table 4: Evaluation of test-time data poisoning under the RTTDP protocol for ImageNet-C. We report the attack
success rate (higher the better) for each TTA method and the average ranking (lower the better) for each attack
objective. ∗ indicates that the method is modified to align with the RTTDP protocol.

Attack Freq. Attack Objective Source TENT SAR CoTTA ROID Avg. Err. (↑) Avg. Rank (↓)

Uniform

No Attack

82.08

63.49 61.26 63.02 53.42 60.30 5.50
DIA∗ (Wu et al., 2023) 67.18 62.91 64.09 56.97 62.79 4.00

TePA∗ (Cong et al., 2023) 75.36 64.90 62.84 59.78 65.72 3.00
MaxCE (Madry et al., 2018) 62.64 61.66 68.83 59.89 63.26 3.25

BLE Attack (Ours) 68.04 64.31 66.40 57.10 63.96 3.00
NHE Attack (Ours) 78.03 72.58 63.84 57.72 68.04 2.25

Non-Uniform

No Attack

81.98

61.81 59.52 62.51 50.36 58.55 6.00
DIA∗ (Wu et al., 2023) 66.61 62.88 63.40 55.18 62.02 4.25

TePA∗ (Cong et al., 2023) 74.98 62.31 62.78 59.29 64.84 3.50
MaxCE (Madry et al., 2018) 62.09 65.58 72.39 59.76 64.96 2.50

BLE Attack (Ours) 67.61 65.95 65.75 56.23 63.89 2.75
NHE Attack (Ours) 77.49 73.67 64.02 57.09 68.07 2.00

5.3 ABLATION STUDY ON ATTACK MODULES

In this section, we ablate our proposed modules including the surrogate model, the feature consistency
regularization and two attack objectives to demonstrate their their indispensable contribution to the
final results. We conduct the experiments on CIFAR10-C and CIFAR100-C datasets as shown in
Tab. 5. First, comparing the use of the source model v.s. surrogate model for generating poisoned
data, the surrogate model consistently delivers superior results, often approaching or even slightly
surpassing those obtained with the online model, regardless of the attack objective. It demonstrates
the effectiveness of our proposed surrogate model that is leveraged for generating on-the-fly poisoned
data. Second, our proposed NHE attack objective is effective though using source model and without
feature consistency regularization, that could be attributed to the high entropy samples easily mislead
the model update and cause strong perturbation to the source knowledge. Third, under the surrogate
model or online model, both BLE and NHE are significantly improved with the help of feature
consistency regularization, empirically demonstrating the reasonableness and effectiveness of our
method.
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Table 5: The ablation study of our proposed modules under the RTTDP protocol on CIFAR10/100-C
datasets.

Attack Model Attack Objective Feat. Cons. Reg. CIFAR10-C CIFAR100-C
TENT EATA SAR AR (↑) TENT EATA SAR AR (↑)

Source Model BLE - 19.26 18.82 19.80 19.29 34.21 31.62 32.17 32.67
Source Model BLE ✓ 38.09 23.28 21.86 27.74 67.11 34.57 33.78 45.15
Source Model NHE - 63.00 23.76 19.52 35.43 85.48 39.37 38.76 54.54
Source Model NHE ✓ 37.27 20.79 21.07 26.38 81.81 35.96 47.06 54.94

Surrogate Model (Ours) BLE - 20.22 20.16 19.71 20.03 38.71 31.87 31.95 34.18
Surrogate Model (Ours) BLE ✓ 54.07 45.20 26.80 42.02 73.93 47.30 43.25 54.83
Surrogate Model (Ours) NHE - 72.77 21.93 19.51 38.07 81.49 32.16 31.68 48.44
Surrogate Model (Ours) NHE ✓ 73.86 29.73 24.56 42.72 92.08 37.86 56.09 62.01

Online Model BLE - 25.14 25.50 19.71 23.45 42.09 32.82 32.05 35.65
Online Model BLE ✓ 56.75 52.32 27.38 45.48 77.92 49.91 44.01 57.28
Online Model NHE - 72.01 21.91 19.52 37.81 80.62 31.96 31.69 48.09
Online Model NHE ✓ 73.62 28.73 25.03 42.46 91.15 39.01 54.67 61.61

5.4 EXPLORING EFFECTIVE DEFENSE PRACTICES

In this section, we explore effective defense practices. We conduct an ablation study for each of the
above practices on top of a simple entropy minimization baseline method (Min. Ent.). As seen in
Tab. 6, we make the observation that without any hypothesized defense practice, directly minimizing
entropy is very sensitive to poisoned data, especially the high entropy attack (NHE). When entropy
thresholding (Ent. Thresh.) is applied, we observe a significant improvement in robustness under
high entropy attack, suggesting rejecting high entropy testing samples from TTA is an effective
defense practice. Furthermore, both data augmentation (Data Aug.) and exponential moving average
update (EMA) are very effective defense practices. The former could perturb the testing sample
towards non-adversarial direction while the latter prevents the model from updating too quickly, thus
less sensitive to poisoned data. Finally, one might expect stochastic parameter restoration (Stoch.
Resto.) to be an effective defense method. Despite exhibiting improved adversarial robustness alone,
parameter restoration does not further improve the robustness when combined with other effective
defense methods.

Table 6: Ablation study of hypothesized defense practices on CIFAR10-C
dataset.

Min. Ent. Ent. Thresh. Data Aug. EMA Update Stoch. Resto. BLE NHE

- - - - - 43.81
✓ - - - - 54.07 73.86
✓ ✓ - - - 46.24 35.86
✓ ✓ ✓ - - 24.01 20.05
✓ ✓ ✓ ✓ - 20.22 19.76
- - - - ✓ 29.68 50.68
✓ ✓ ✓ ✓ ✓ 20.41 20.30

Table 7: The generalisation of
our modules on CIFAR10-C.

Attack Objective TENT EATA

DIA 26.04 18.94
DIA + Ours 27.02 19.41

TePA 33.78 23.37
TePA + Ours 38.79 21.37

MaxCE 18.55 18.17
MaxCE + Ours 23.61 19.44

5.5 GENERALISATION OF OUR MODULES

In this section, to demonstrate the generalization of our method, we combine the existing attack objec-
tives with our proposed modules including the surrogate model and feature consistency regularization.
The comparisons are shown in Tab. 7. First, we can observe that DIA and MaxCE could get improved
additional with our proposed method. Second, TePA could obtain improvement under TENT method
but slightly degraded under EATA method. It could be that TePA using maximizing entropy as an
attack objective, and with the help of the surrogate model, the poisoned data would have very high
prediction entropy because the attack reference model is more approximate to the online model, but
fail to pass the entropy threshold and class diverse weighting using in EATA. Overall, our proposed
in-distribution attack could generalize to most of the existing attacking objectives.

6 CONCLUSION

In this work, we reviewed the assumptions adopted by existing works for generating poisoned data at
test-time and propose a few criteria that define a more realistic test-time data poisoning. Specifically,
we approach from the angles of attack transparency, access to other users’ benign data, attack budget,
and attack order. To craft realistic poisoned data, we proposed a grey-box in-distribution attack
with attack objective tailored for TTA methods. Through extensive evaluations under the realistic
evaluation protocol, we reveal that the adversarial risk of TTA method might be over estimated and,
importantly, certain practices in TTA methods are empirically proven to be effective and should be
considered for designing adversarial robust TTA methods in the future.
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A APPENDIX

A.1 ADDITIONAL DETAILS FOR METHODOLOGY

A.1.1 ILLUSTRATION OF TEST-TIME DATA POISONING BATCH SPLIT

We visualize the batch split under realistic test-time data poisoning in Fig. 3. We present the batch
split scheme for both “Uniform” and “Non-Uniform” attack frequencies. Under “Uniform” attack
frequency, the poisoned minibatch is uniformly presented in the test data stream while “Non-Uniform”
attack protocol simulates the situation the adversary attacks the TTA model in a short period of time
with a huge amount of poisoned data.

A.1.2 GLOBAL OPTIOMAL LABEL MAPPING

For Balanced Low Entropy Attack, we need to obtain a label mapping which mainly addresses the
following issues, i) maps the GT label to one wrong label; ii) the label mapping is bijective; iii) the
sum of the mapping cost is the minimal. To achieve it, we first define a probability confusion between
all class pairs as C ∈ [0, 1]K×K . The probability confusion is updated in an exponentially moving
average fashion using the current posterior predictions. The label mapping M ∈ {0, 1}K×K is then
obtained by optimizing the following linear assignment problem. Efficient solver, e.g. Hungarian
method, can be employed to solve this problem, as Eq. 9.
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Figure 3: Illustration of test-time data poisoning batch split.

M̂ = argmax
M

∑
k

∑
q

Ck,qMk,q

s.t. Mk,k ̸= 1,
∑
q

Mk,q = 1, M ∈ {0, 1}K×K ,

Ct
k = βCt

k + (1− β)

∑
x̃i∈Ba

1(yi = k) · h(x̃i)∑
xi∈Ba

h(xi)

(9)

Here, we also provide the pseudo code of the implementation of BLE Attack, as follow,

def attack_objective(self, x, y):
// x: (B, K) the predicted logit of poisoned data
// y: (B, ) the ground true label of poisoned data
// return the attack loss value

with torch.no_grad():

// EMA update C^t_k
curr_prob_term = scatter_mean(x.softmax(1), y[:, None],

dim=0,
out=torch.zeros_like(self.class_wise_momentum_prob))

↪→

↪→

new_ema_prob = self.class_wise_momentum_prob.clone()
new_ema_prob[y.unique()] = self.momentum_coefficient *

new_ema_prob[y.unique()] + (1 -
self.momentum_coefficient) *
curr_prob_term[y.unique()]

↪→

↪→

↪→

new_ema_prob_select = new_ema_prob.clone()
diag_mask =

torch.diag(torch.ones(new_ema_prob_select.shape[0]))↪→

new_ema_prob_select[diag_mask.bool()] = 0.

// Find the global optimal mapping M
label_mapping = y.new_zeros(new_ema_prob_select.shape[0],

dtype=torch.long)↪→
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for i in range(new_ema_prob_select.shape[0]):
biased_prob, biased_class =

F.normalize(new_ema_prob_select, dim=-1,
p=1).max(dim=-1)

↪→

↪→

max_item = biased_prob.argmax(dim=-1)
label_mapping[max_item] = biased_class[max_item]
new_ema_prob_select[max_item, :] = 0.
new_ema_prob_select[:, biased_class[max_item]] = 0.

// BLE attack loss
loss = F.cross_entropy(x, label_mapping[y])
self.current_prob = new_ema_prob.detach()
return loss

A.1.3 DETAILS OF DEFENSE PRACTICES

Here, we provide the details about the defense practices evaluated in Tab. 6 of the main text.

• Entropy Thresholding is implemented through filtering the entropy below 0.05 ∗ log(K),
where K is the class number of the dataset.

• Data Augmentation performs the data augmentation used into CoTTA over the input
samples and constrain the consistent predictions between the augmented samples and the
corresponding original samples.

• EMA Update module allow us to maintain an exponentially moving average updated model
to generate robust predictions and used to supervise the online model update, and the EMA
momentum is 0.999.

• Stochastic Parameter Restoration is implemented as the module used in CoTTA. We
randomly reset the network weights to source model weights with probability p and p is set
to 0.01.

A.1.4 DISTINCTION BETWEEN RTTDP AND TEPA

We would like to highlight the key differences between our proposed RTTDP and TePA protocols as
follows,

TePA Cong et al. (2023) employs a fixed surrogate model before test-time adaptation begins for
generating poisoning, which qualifies the method as an offline method. The surrogate model is
obtained by training a separate model (different architecture from the target model) using the same
source dataset. For example, on TTA for CIFAR10-C, if the target model, i.e. the model deployed for
inference and is subject to test-time adaptation, is ResNet18, TePA employs VGG-11 as the surrogate
model and trains VGG-11 on the same source training dataset (CIFAR10 clean training set). This
is evidenced from the source code released by official repository 1 and the descriptions in TePA
"we assume that the adversary has background knowledge of the distribution of the target model’s
training dataset. This knowledge allows the adversary to construct a surrogate model with a similar
distribution dataset".

TePA employs the fixed surrogate model to generate poisoned dataset x′. Then generated poisoned
dataset is fed to test-time adaptation to update model weights. Afterwards, TTA is further conducted
on clean testing data for model update and performance evaluation. The segregation of data poisoning
and TTA steps further support the claim that TePA should be classified as an offline approach.

Finally, to ensure fair comparison between TePA with our proposed methods under RTTDP protocol,
TePA could be adapted to online fashion and we made such an adaptation to TePA for comparison in
Tab. 2, Tab. 3 and Tab. 4 of the main text. Specifically, we use TePA to generate poisoning against the
initial surrogate model and inject the generated poisoning into the testing data stream, i.e. placing
poisoning in between benign testing batches. In this way, poisoning will affect TTA in an online
fashion. We believe this is the most fair way to compare RTTDP with TePA.

1https://github.com/tianshuocong/TePA
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A.1.5 MORE ANALYSIS AND DERIVATIONS ABOUT THE OPTIMIZATION OBJECTIVE

Here, we discuss the transition from the original bi-level optimization objective (Eq. 2) to our
proposed single-level optimization objective (Eq. 4) with a feature consistency constraint.

The original optimization objective for test-time data poisoning is formulated as a bi-level optimization
problem, as shown below (equivalent to the meaning of Eq. 2):

Ba = argmin
Ba

E(x,y)∈Bb
[Latk(h(x; θ

∗
t (Ba ∪ Bb)), y)]

s.t. θ∗t (Ba ∪ Bb) = argmin
θt

Ltta(h(Ba ∪ Bb; θ))
(10)

The above optimization involves an inner loop where the model adapts to test samples, including
poisoned and benign samples, and an outer loop to optimize the attack objective. This structure is
computationally intensive and impractical under the constraints of the RTTDP setting. To address
this, we provide a detailed step-by-step derivation and explanation below.

1. Discarding the Inner Optimization: In DIA (Wu et al., 2023), the inner optimization is
approximated by assuming θ∗t ≈ θt, where θ∗t represents the parameters after a full adaptation step,
and θt represents the current parameters. This approximation is justified as TTA models typically
update minimally during a single minibatch iteration, resulting in minor perturbations to θt. Thus,
the approximation retains practical relevance while simplifying the problem. The formula is derived
as (this is also the DIA’s objective),

Ba = argminBa
E(x,y)∈Bb

[Latk(h(x; θt(Ba ∪ Bb)), y)] (11)

2. Surrogate Model for Online Parameters: In the RTTDP protocol, direct access to online model
parameters θt is unrealistic. Instead, we replace θt with the surrogate model parameters θ̂t, which are
accessible and trained to approximate the online model’s behavior.

Ba = argminBa
E(x,y)∈Bb

[
Latk(h(x; θ̂t(Ba ∪ Bb)), y)

]
(12)

3. Removing the access to Bb: In the RTTDP protocol, the adversary is prohibited from observing
benign users’ samples when generating poisoned samples. Consequently, the Bb term is excluded
from the optimization objective. In the main text, we introduce to leverage Bab to replace Bb, where
Bab represents the adversary benign samples before they are poisoned.

Ba = argminBa
E(x,y)∈Bab

[
Latk(h(x; θ̂t(Ba ∪ Bab)), y)

]
(13)

where θ̂t(Ba ∪ Bb) indicates forwarding Ba ∪ Bb to update the BN statistics. This objective would
lead to a trivial solution that Ba is effective only for the current Bab data through easily introducing
biased normalization in each BN layer, and it has little effect while Ba and Bab are in seperated batch.
Therefore, it would waste a half of attack query budget for forwarding these poisoned samples (the
benign samples take up half of the batch size).

4. Introducing a feature consistency constraint to improve query utilization: In the main text, we
observed the feature distributions of Ba and Bab and found out that they obviously do not overlap,
so we introduced feature consistency constraint to regularize their distributions according to the
PAC learning framework in order to merge the two subsets into a single one, and to improve the
utilization of the poisoned data query. The final objective is derived as follows, where Pa and Pab are
the shallow feature distributions of Ba and Bab, respectively.

Ba = argminBa E(x,y)∈Ba

[
Latk(h(x; θ̂t(Ba)), y)

]
, s.t. D(Pa, Pab) = 0 (14)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

To this end, we can fully utilize the budget of all poisoned data query to generate poisoned data. The
experimental results show that the attack performance of the attack objective will be significantly
improved after using this regularization term.

In-distribution Attack Objective from a TTA Perspective: Our proposed objective leverages
the dependence of TTA models on self-training mechanisms, which aim to maximize confidence
on pseudo-labels for adaptation. When the TTA model adapts to poisoned samples, it learns and
reinforces incorrect associations. This creates a vulnerability, as future test samples with similar
shallow feature distributions are more likely to be misclassified by the online model. Since TTA
methods iteratively adapt using incoming test samples, our approach leverages this dependency to
propagate the error induced by poisoned samples throughout the adaptation process.

A.1.6 DETAILED POISONING & TRAINING ALGORITHM

We present the overall algorithm for generating poisoned data and surrogate model update in Alg. 1

Algorithm 1: The pipeline of the proposed test time data poisoning
input :A minibatch of testing samples Bt = Bab ∪Bb, where Bab is the adversary benign subset

that is preparing for crafting poisoned data and Bb is other users’ benign subset.
Test-time adaptation model: h(x; θt),
Surrogate model used by adversary: h(x; θ̂t).
Attack Objective: Latk

// generate attack samples through surrogate model.
if Ba ̸= ∅ then

initialize ϵ = {0}B×H×W×3, where B = |Bab|.
initialize λ = {0}L, where L is the number of feature layers.
for i := 1 to 40 do

Ba = {x̃i; x̃i = xi + ϵi}
calculate the attack loss: loss1 = 1

|Ba|
∑

x̃i∈Ba
Latk(x̃i).

obtain all feature maps {z̃li}l=1···L before the normalization layers.
calculate the feature consistency regularization term as Eq. 6:
lossl2 =

∑
x̃i∈Ba

KLD(N (µl
i,Σ

l
i)||N (µ̃l

i, Σ̃
l
i))

construct the final optimized objective as Eq. 6:
L = loss1 +

1
L

∑L
l λl · lossl2

update the adversarial noise:
ϵ′ = ϵ− α ∗ sign [∇ϵL], where α is PGD attack step size of 0.01.
ϵi = clamp(xi + ϵ′i, 0, 1)− xi, xi ∈ Ba.
update the λl:
λl = λl + 0.001 · ∇λl

L

// feed into TTA model and obtain the prediction.
yi = h(xi, θt), xi ∈ Bt

// update the surrogate model if Ba ̸= ∅.
if Ba ̸= ∅ then

θ̂t,0 = θ̂t
for j := 1 to iters do

pai = h(xa
i , θt), xa

i ∈ Ba.
p̂ai = h(xa

i , θ̂t,j−1), xa
i ∈ Ba.

calculate the distillation loss Ldist as Eq. 1.
θ̂t,j = θ̂t,j−1 − lr ∗ ∇θ̂Ldist

θ̂t+1 = θ̂t,iters.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.2 EXPERIMENTAL SETUPS OF DIA, TEPA AND RTTDP

We revisit the experimental setups of the previous methods, i.e. DIA (Wu et al., 2023) and TePA Cong
et al. (2023), explain the differences under our RTTDP protocol, and justify the adaptations we made
to ensure fair comparisons.

Commonalities among the different protocols: The three protocols, TePA, DIA, and RTTDP, share
several overarching goals and assumptions. First, all protocols aim to evaluate the adversarial risks
posed to Test-Time Adaptation (TTA) by injecting poisoned samples into the test data stream. Second,
all protocols allow the adversary to obtain the source model, since the source model is usually the
well-known pre-trained model, e.g., ImageNet pre-trained ResNet, and the open-source foundation
model, e.g., DINOv2, SAM.

Key Differences among Protocols: Despite sharing some commonalities, the protocols diverge
significantly in their attack setups.

In the TePA protocol, poisoned samples are generated by maximizing the entropy of the adversary’s
crafted samples with respect to the source model’s predictions. These poisoned samples are injected
into the TTA pipeline before any benign users’ samples are processed, simulating an offline attack
scenario. However, this approach is unrealistic in real-world settings, where adversaries cannot fully
control the sequence of test samples in advance.

In contrast, the DIA protocol generates poisoned samples by optimizing them to maximize the
cross-entropy loss of benign samples belonging to other users. DIA assumes direct access to the
online model’s parameters and the ability to observe other users’ benign samples. Poisoned samples
are injected into the TTA pipeline alongside the corresponding benign users’ samples. However, this
protocol has significant limitations in realistic settings. In practice, adversaries typically lack access
to or control over the online model’s parameters. Additionally, it is highly improbable for adversaries
to observe benign users’ samples, let alone the validation samples required for optimizing poisoning
objectives.

The proposed RTTDP protocol addresses these limitations by operating under more realistic assump-
tions. In RTTDP, the adversary neither has access to other users’ benign samples nor the parameters
of the online model. Instead, RTTDP employs a surrogate model, initialized as the source model,
to generate poisoned samples. This surrogate model is iteratively updated based on feedback from
previously injected poisoned samples. Poisoned samples are then injected into the TTA pipeline,
either uniformly or non-uniformly, depending on the attack frequency in RTTDP protocol.

Adaptations of Competing Methods to RTTDP protocol: To ensure fair comparisons under RTTDP
protocol, we made the following adjustments to the competing methods:

For TePA method, we preserved TePA’s original poisoning objective, i.e. maximizing entropy, but
adapted the poisoned data injection strategy from an offline manner to an online manner, i.e. placing
poisoning in between benign testing batches according to RTTDP.

For DIA method, (1) Replacing Online Model Parameters: DIA’s original objective relies on online
model parameters, which are inaccessible in RTTDP. We replaced these parameters with the initial
surrogate model, i.e. source model. (2) No Access to Benign Users’ Samples for Optimization: DIA
uses benign users’ samples as optimization targets in its original setup. To meet RTTDP’s constraints,
we split Bab into two equal subsets, Bp

ab and Bb
ab, with a 1:1 ratio. We then generate poisoned samples

Bp
a by maximizing the cross-entropy loss of Bb

ab. The specific formula can be found in Eq. 15.

A.3 ADDITIONAL DETAILS FOR EXPERIMENT

Benchmark TTA Methods: We investigate several state-of-the-art TTA methods under our RTTDP
protocol to evaluate their adversarial robustness. Source serves as the baseline for inference perfor-
mance without adaptation. TENT (Wang et al., 2020) updates BN parameters through minimizing
entropy. RPL (Rusak et al., 2022) performs self-training with a generalized cross-entropy (GCE)
loss, which aids in more robust adaptation under label noise. EATA (Niu et al., 2022) minimizes
entropy with the Fisher regularization term to prevent forgetting knowledge from the source do-
main. TTAC (Su et al., 2022) adapts all backbone parameters by jointly optimizing global and
class-wise distribution alignment with the source distribution. SAR (Niu et al., 2023) updates BN
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parameters with a sharpness-aware optimizer to filter out noisy labels and help escape local minima.
CoTTA (Wang et al., 2022) leverages a teacher-student structure, optimizing all parameters of the
student model and updating the teacher model using an exponential moving average. To better
prevent forgetting during continual adaptation, it incorporates parameter random resetting and data
augmentation methods. ROID (Marsden et al., 2024) updates BN parameters with loss of self-label
refinement (SLR) weighed by certainty and diversity while continually weighting the online model
and the source model to prevent forgetting.

Evaluation Protocol: We devise a evaluation plan respecting the realistic test-time data poisoning
criteria. First, we investigate the frequency of injecting poisoned data. The “Uniform” scheme
indicates that the poisoned minibatch is uniformly present in the test data stream, simulating the
scenario that the adversary is periodically injecting the poisoned data. We further evaluate “Non-
Uniform” scheme by allowing the adversary to concentrate the attack budget within a short period of
time. We fix the overall attack budget as r = |Ba|

|Ba|+|Bb| throughout the experiments. We report the
attack success rate as the evaluation metric, which is measured as the percentage of misclassified
benign samples in the benign subset Bb. Additionally, for easier comparison, we also calculate the
average error rate (higher the better) and the average ranking (lower the better) for each poisoning
method.

Hyperparameters: For all competing methods, we employ the 40 steps L∞ PGD attack to generate
poisoned data. The maximum perturbation budget b is 0.3 and the attack step size is 0.01. Additionally,
within each PGD iteration, we update λl via λ′

l = λl +0.001 · ∇λl
L for Eq. 6, where λl is initialized

as zero before PGD attack. Unless otherwise noted, the overall attack budget r is 50% throughout the
experiment. For surrogate model distillation module, we adopt SGD optimizer with 0.1 learning rate
for 10 iterations to update the surrogate model in each update stage.

Implementation Details: For a fair comparison, we implement various data poisoning methods
within a unified poisoning framework. This framework utilizes a 40-step Projected Gradient Descent
(PGD Boyd & Vandenberghe (2004)) optimization process tailored to the respective objectives
of each method. The poisoned samples generated are then injected into the TTA pipeline in an
online manner, adhering to the RTTDP protocol. Specifically, the respective objectives of different
competing poisoning methods are shown as follows,

• DIA (Wu et al., 2023):

Bp
a = argmin

Bp
a

E(x,y)∈Bb
ab

[
−CrossEntropyLoss(h(x; θ̂0(Bb

ab ∪ Bp
a)), y)

]
(15)

• TePA Cong et al. (2023):

Ba = argmin
Ba

E(x,y)∈Ba

[
−Entropy(h(x; θ̂0(Ba)))

]
(16)

• MaxCE Madry et al. (2018):

Ba = argmin
Ba

E(x,y)∈Ba

[
−CrossEntropyLoss(h(x; θ̂0(Ba)), y)

]
(17)

• Unlearnable Examples (Huang et al., 2021):

Ba = argmin
Ba

E(x,y)∈Ba
[CrossEntropyLoss(h(x; θinit(Ba)), y)] (18)

• Adversarial Poisoning (Fowl et al., 2021):

Ba = argmin
Ba

E(x,y)∈Ba

[
CrossEntropyLoss(h; θ̂0(Ba), ŷ)

]
,where ŷ = (y + 1)%K.

(19)
• NHE Attack (Ours):

Ba = argmin
Ba

max
λ

E(x,y)∈Ba

[
LNHE
atk (x; θ̂t(Ba)) + λLreg

]
(20)

• BLE Attack (Ours):

Ba = argmin
Ba

max
λ

E(x,y)∈Ba

[
LBLE
atk (x; θ̂t(Ba)) + λLreg

]
(21)
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where θ̂0 indicates the initial surrogate model parameters, θinit indicates the randomly initialized
parameters and K is the number of the category in the dataset. Since under the RTTDP protocol
the real-time model parameters are unavailable to access, we leverage the initial surrogate model,
to replace the online model they might have used in their original paper, as the threat model for the
competing methods. The surrogate model is initialized as source model. For our proposed methods,
we employ the proposed surrogate model distillation module to update the surrogate model, and
during each PGD iteration, the variables Ba and λ are updated simultaneously using gradient descent
for Ba and gradient ascent for λ, respectively. More details about our proposed methods can be found
in Alg. 1.

A.4 ADDITIONAL EMPIRICAL ANALYSIS

A.4.1 COMPARISON WITH ADVERSARIAL ATTACK METHODS

Adversarial attack methods are designed to generate perturbations on input samples to mislead the
model into making incorrect predictions. Here, we aim to investigate whether the adversarial effects
of poisoned samples, generated using advanced adversarial attack methods (Madry et al., 2018; Croce
& Hein, 2020; Chen et al., 2022), can be effectively transferred to benign users’ samples under the
RTTDP protocol.

We conduct the experiments on CIFAR10-C and ImageNet-C datasets with a Uniform attack frequency
under our proposed RTTDP protocol. The results are shown in Tab. 8 and Tab. 9. We make the
following observations. (i) The objectives of adversarial attack methods and data poisoning methods
differ fundamentally. Adversarial attack methods focus on generating adversarial noise to mislead
model predictions on the perturbed test samples. In contrast, data poisoning methods aim to inject
carefully crafted poisoned samples to degrade the model’s performance on subsequent benign samples
after adaptation. (ii) While AutoAttack (Croce & Hein, 2020) represents a more advanced adversarial
attack method, its performance is inferior to that of MaxCE-PGD (Madry et al., 2018) on ImageNet-C.
(iii) Furthermore, certain complex adversarial attack methods, such as GMSA-MIN and GMSA-
AVG (Chen et al., 2022), require generating adversarial perturbations separately for each class, a
process that incurs substantial computational costs and limits scalability (which is why these methods
are excluded from comparison on ImageNet-C), and still fall short compared to the efficacy of our
proposed data poisoning methods.

Table 8: Comparison with different adversarial attack methods with our proposed data poisoning
methods on CIFAR10-C dataset under the RTTDP protocol.

Attack Objective TENT EATA SAR ROID Avg

NoAttack 19.72 18.03 18.94 16.37 18.27

MaxCE-PGD (Madry et al., 2018) 18.55 18.17 19.50 18.57 18.70
AutoAttack (Croce & Hein, 2020) 26.29 19.12 19.56 18.67 20.91
GMSA-MIN (Chen et al., 2022) 35.92 22.78 19.99 18.65 24.33
GMSA-AVG (Chen et al., 2022) 38.80 21.89 19.95 18.51 24.79

BLE Attack (Ours) 54.07 45.20 26.80 19.06 36.28
NHE Attack (Ours) 73.86 29.73 24.56 17.00 36.29

A.4.2 ABLATION STUDY ON QUERY COUNTS

Regarding varying query attempts, we add an additional evaluation as follows. Nonetheless, we want
to highlight that the query attempts do not have to be limited for our method because all queries are
submitted to the surrogate model rather than the online model. More queries simply makes generating
poisoning slower. In this study, we vary the query steps from 10 to 60 for the projected gradient
descent optimization (Boyd & Vandenberghe, 2004). We evaluate varying attack query counts for two
TTA methods under their respective strongest attack objectives. The results in the Tab. 10 are obtained
on CIFAR10-C dataset with a Uniform attack frequency. We make the following observations. (i)
Increasing the number of queries could improve the performance at a low query budget. (ii) When
the budget is increased to beyond 40 queries, the performance saturates. We draw the conclusion that
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Table 9: Comparison with different adversarial attack methods with our proposed data poisoning
methods on ImageNet-C dataset under the RTTDP protocol.

Attack Objective TENT SAR CoTTA ROID Avg

NoAttack 63.49 61.26 63.02 53.42 60.30

MaxCE-PGD (Madry et al., 2018) 62.64 61.66 68.83 59.89 63.26
AutoAttack (Croce & Hein, 2020) 64.48 61.42 63.03 54.78 60.93

BLE Attack (Ours) 68.04 64.31 66.40 57.10 63.96
NHE Attack (Ours) 78.03 72.58 66.40 57.72 68.68

allowing sufficient queries to the surrogate model is necessary for generating effective data poisoning,
and, importantly, this procedure will not create alert to the online model.

Table 10: The ablation study on query counts. These results are obtained on CIFAR10-C dataset
with a Uniform attack frequency under RTTDP protocol. We choose 40 queries throughout the
experiments.

TTA Method 10 20 30 40 50 60

TENT (NHE Attack) 66.95 74.36 74.34 73.86 73.51 73.66
EATA (BLE Attack) 35.73 39.70 42.36 45.20 45.99 45.89

A.4.3 ANALYSIS ON SYMMETRIC KLD USED FOR DISTILLING SURROGATE MODEL

In this work, we adopt the common practice of symmetrizing the Kullback-Leibler Divergence (KLD)
to ensure balanced alignment between distributions in the surrogate model distillation. Following the
definitions provided in the main text, the forward KLD is expressed as KLD(h(xi; θt)∥h(xi; θ̂t)),
while the reverse KLD is defined as KLD(h(xi; θ̂t)∥h(xi; θt)).

Forward KLD emphasizes penalizing discrepancies where the distilled (surrogate) model θ̂t assigns
low probability to samples that the source (real-time target) model θ deems important. It encourages
the distilled model to mimic the behavior of the target model by focusing on areas of high confidence
in θ’s posterior.

Reverse KLD, in contrast, focuses on matching θ’s predictions where θ̂ assigns high probabilities.
This can result in sharper, more focused distributions but might dismiss less probable regions of θ’s
posterior.

The symmetric KLD balances the above two objectives. The forward KLD may be more suitable
when surrogate model is significantly smaller than the target model and the objective is to allow the
surrogate model to mimic the target model’s certainty. When the surrogate model is of the same
capacity with target model, using the symmetric KLD may better align the two models in both high
confident and low confident predictions. In this work, the capacity of surrogate is similar to target
model. Thus, we hypothesize that the symmetric KLD could be better.

We further use empirical observations in the Tab. 11 below to support the hypothesis. With symmetric
KLD the performance is slightly better than using the forward KLD.

Nevertheless, we do acknowledge that both symmetric KLD and forward KLD give competitive
results. The choice depends on computation affordability and empirical observations.

A.4.4 DIFFERENT ATTACK BUDGETS

We further evaluate the effectiveness of proposed poisoning approach under different attack budgets.
Specifically, we evaluated at r = 0.1, r = 0.2 and r = 0.5. We clearly observe that both high entropy
and low entropy attacks are effective regardless of attack budgets.
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Table 11: Comparison between Symmetric KLD and Forward KLD used for surrogate model
distillation. These results are obtained on CIFAR10-C dataset with a Uniform attack frequency under
RTTDP protocol.

TTA Method Symmetric KLD KLD(h(xi; θt)||h(xi; θ̂t))

TENT (NHE Attack) 73.86 74.35
EATA (BLE Attack) 45.20 43.99
SAR (BLE Attack) 26.80 26.35

Table 12: Comparing the attack performance of test-time data poisoning under different attack
budgets.

TTA Attack Obj. 0.1 0.2 0.5

TENT
No Attack 20.72 20.39 19.72
BLE Attack 22.44 27.60 54.07
NHE Attack 39.20 62.19 73.86

EATA
No Attack 17.99 17.76 18.03
BLE Attack 22.20 28.29 45.20
NHE Attack 19.59 20.10 29.73

SAR
No Attack 18.95 18.90 18.94
BLE Attack 19.90 21.30 26.80
NHE Attack 19.33 20.74 24.56

A.4.5 VISUALIZATION OF POISONED SAMPLES

We visualize selected samples before and after test-time data poisoning in Fig. 4. The high corruption
level makes the adversarial noise less noticeable, suggesting the poisoned data could even evade
human inspection.
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Figure 4: Visualizing of selected samples before and after test-time data poisoning.
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