
When Words Smile: Generating Diverse Emotional
Facial Expressions from Text

Anonymous ACL submission

Abstract001

Enabling digital humans to express rich emo-002
tions has significant applications in dialogue003
systems, gaming, and other interactive scenar-004
ios. While recent advances in talking head005
synthesis have achieved impressive results in006
lip synchronization, they tend to overlook the007
rich and dynamic nature of facial expressions.008
To fill this critical gap, we introduce an end-009
to-end text-to-expression model that explicitly010
focuses on emotional dynamics. Our model011
learns expressive facial variations in a continu-012
ous latent space and generates expressions that013
are diverse, fluid, and emotionally coherent.014
To support this task, we introduce EmoAva,015
a large-scale and high-quality dataset contain-016
ing 15,000 text–3D expression pairs. Exten-017
sive experiments on both existing datasets and018
EmoAva demonstrate that our method signif-019
icantly outperforms baselines across multiple020
evaluation metrics, marking a significant ad-021
vancement in the field. 1022

1 Introduction023

In recent years, the remarkable success of dialogue024

systems has sparked a growing desire for face-to-025

face interaction with digital humans (Park et al.,026

2024). As emotional beings, humans rely heav-027

ily on facial expressions as a primary means of028

conveying emotions and intentions. Therefore, en-029

abling digital humans to express emotions through030

facial expressions holds substantial research and031

application value (Sung-Bin et al., 2024).032

A large portion of digital human (also referred to033

as talking head) research (Li et al., 2024; He et al.,034

2024), focuses primarily on the synchronization035

between speech and lip movements, while largely036

ignoring the rich emotional and expressive dynam-037

ics of face-to-face communication. Although some038

previous studies have recognized this limitation039

1Resources are available at (https://anonymous.4open.
science/r/EmoAva).
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Figure 1: Top: The existing pipeline for synthesizing
emotional avatars, which can only generate limited ex-
pressions that lack of diversity. Bottom: The proposed
end-to-end system that directly maps text to facial ex-
pressions (codes), aims to generate diverse, emotionally
consistent, and temporally smooth expressions.

and started investigating potential solutions, most 040

existing systems (He et al., 2024; Danecek et al., 041

2023; Pan et al., 2024) still generate only coarse 042

facial expressions based on a limited set of dis- 043

crete emotion labels (e.g., “happy,” “sad”), usually 044

employing a pipeline architecture. 045

Following the current pipeline, one typically per- 046

forms sentiment analysis on the speech or text to 047

obtain a discrete emotion label, which is then used 048

to condition the facial expression generation (as 049

shown in Figure 1). However, this approach faces 050

at least two major limitations. First, emotion labels 051

are typically limited in number and struggle to cap- 052

ture the full richness and subtlety of human emo- 053

tional expression. Second, pipeline-based models 054

are susceptible to information loss and error propa- 055

gation across stages. End-to-end modeling could 056

be one promising strategy to address the above lim- 057

itations. By generating a continuous sequence of 058

3D facial expressions directly from the input ut- 059

terance, the output is expected to be more diverse, 060

natural, and emotionally consistent. 061

In this work, we present the first end-to-end work 062

for text-3D facial expression learning. Technically, 063

we propose a unified model, CTEG (Continuous 064

Text-to-Expression Generator). CTEG leverages a 065
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CVAE-based autoregressive architecture to model066

expressive variations in a continuous latent space,067

enabling smooth and natural expression synthesis.068

To ensure emotional consistency between the input069

text and generated expressions, CTEG adopts a070

Latent Temporal Attention (LTA) mechanism that071

enhances the latent representation at each timestep072

by attending to historical context. Additionally, to073

promote expressive richness, CTEG incorporates074

an Expression-wise Attention (EwA) module that075

captures spatial dependencies among facial regions,076

enabling coordinated and varied facial movements.077

To facilitate end-to-end training, we introduce078

EmoAva, a high-quality, large-scale dataset com-079

prising 15,000 text-to-3D expression mapping in-080

stances, collected from multi-party dialogue scenes081

in professionally acted video sources. EmoAva pro-082

vides rich, emotionally diverse, and context-aware083

expressive behaviors, offering a valuable founda-084

tion for studying facial expression generation in085

conversational AI. Extensive qualitative and quanti-086

tative experiments on the EmoAva as well as other087

representative existing datasets (Ng et al., 2023)088

demonstrate the superiority of our CTEG model in089

terms of expression diversity, naturalness, and emo-090

tional consistency, establishing a strong baseline091

for future research in text-to-expression generation.092

In summary, our key contributions are as below.093

• We propose a novel end-to-end model, CTEG,094

which learns text-to-expression mapping in a095

continuous latent space.096

• We introduce EmoAva, a high-quality dataset097

with 15,000 annotated instances, designed to098

alleviate data scarcity in this domain.099

• Extensive experiments demonstrate the effec-100

tiveness of CTEG in capturing expression101

diversity, naturalness, and emotional consis-102

tency, establishing a strong baseline for future103

research in this field.104

2 Related work105

Speech-driven Emotional Avatar Synthesis.106

Extensive research has been conducted on the107

synthesis of 3D talking heads (Richard et al.,108

2021; Ji et al., 2021; Papantoniou et al., 2022;109

Fan et al., 2022; Chu et al., 2018; Zhang et al.,110

2023b; Liu et al., 2024), most of which are speech-111

driven—generating lip-synced facial animations112

from audio input. These works generally overlook113

the modeling of facial expressions.114

Recently, some approaches have started to in-115

tegrate emotional context into the generation pro- 116

cess (He et al., 2024). EMOTE (Danecek et al., 117

2023) addresses this by controlling expressions 118

with single emotional labels, but the limited cat- 119

egories do not capture the full range of human 120

emotions. Conversely, EmoTalk (Peng et al., 2023) 121

and LaughTalk (Sung-Bin et al., 2024) extract tonal 122

emotional features from speech to guide avatar syn- 123

thesis similarly to talking head tasks. Complemen- 124

tary to these approaches, our method explores text 125

as the sole source of emotional input since textual 126

dialogue inherently conveys rich affective informa- 127

tion and is more abundantly available than other 128

modalities (Narayanan et al., 2009). 129

Text-Driven Human Motion Generation. Text- 130

based human motion generation has significant 131

applications in areas such as gaming and virtual 132

reality. Much of the existing research in this do- 133

main focuses on generating sequences of human 134

body movements (Zhang et al., 2023a; Jiang et al., 135

2023). In contrast, relatively little attention has 136

been paid to text-driven human facial expression 137

generation (Ng et al., 2023; Jung and Kim, 2025). 138

Our approach is most closely related to the re- 139

cent work LM-Listener (Ng et al., 2023), which 140

focuses on generating listener motions. In con- 141

trast, we concentrate on the more diverse and com- 142

plex expressions of speakers. While LM-Listener 143

employs a VQ-VAE-based framework, the use of 144

discrete modeling and a constrained latent space 145

may limit its ability to maintain temporal coher- 146

ence and capture the full range of speaker-driven 147

facial dynamics. In comparison, our method adopts 148

a CVAE framework, whose structured continuous 149

latent space is better suited for modeling the fluidity 150

and expressiveness of facial behaviors. 151

3 Our Approach 152

3.1 Task Definition 153

Given a text input x, our system gener- 154

ates a sequence of expression vectors ψ = 155

{E0,E1, ...,ET } over T time steps. The expres- 156

sion vectors are derived from 3D Morphable Face 157

Model (3DMM) frameworks (Cao et al., 2014; 158

Blanz and Vetter, 1999; Ng et al., 2023), which 159

parameterize facial geometry in a compact and in- 160

terpretable form. Among various 3DMMs, we fol- 161

low Ng et al. (2023) and adopt the widely used 162

FLAME model (Li et al., 2017), denoted as F . 163

Specifically, FLAME defines the parameter set 164
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Figure 2: Architecture of the Continuous Text-to-
Expression Generator (CTEG). Given a text, the model
autoregressively generates a sequence of expression
vectors. The green block and pink block represent
the proposed Expression-wise Attention (EwA) module
and the core Conditional Variational Autoregressive De-
coder (CVAD) module, respectively.

F = {β,∆v, ϱ,Θ, ψ}, where β denotes shape,165

∆v represents vertex offsets, ϱ is global translation,166

Θ denotes joint poses, and ψ captures expression-167

related deformations. FLAME decouples expres-168

sion from the shape and other identity-related fac-169

tors, allowing us to directly regress the expression170

parameters ψ ∈ Rd in an identity-agnostic manner,171

where d (53 in this paper) denotes the dimension172

of the expression space.173

3.2 Overall framework174

The overview framework of the CTEG model is175

shown in Figure 2. CTEG primarily consists of176

the Expression-wise Attention (EwA) block at the177

encode side, and the Conditional Variational Au-178

toregressive Decoder (CVAD) block at the decode179

side. From the perspective of architectural design,180

the EwA module serves as a feature enhancement181

module, while the CVAD functions as a hybrid of182

a CVAE (Sohn et al., 2015) and a transformer de-183

coder (Vaswani et al., 2017). Technically, we adopt184

such an architecture for the following advantages.185

1) CVAE is beneficial for maintaining a smooth186

spatial distribution due to its nature of modeling187

in continuous space (Kingma and Welling, 2014; 188

Sohn et al., 2015), which may help to model ex- 189

pression fluidity. 2) Transformer decoder excels at 190

modeling the long-range dependencies between se- 191

quences (Vaswani et al., 2017), which may help to 192

model the emotion-content consistency. 3) Due to 193

the richness of the facial expression sequence, even 194

within a single time step, facial expressions have 195

countless variations. The Variational Autoregres- 196

sive Decoder (VAD) may facilitate the modeling of 197

diverse, time-varying sequences (Du et al., 2018). 198

Given a text x as input, CTEG generates a sequence 199

of expression vectors ψ autoregressively. 200

3.3 Expression-wise Attention Module 201

In the input part, we introduce EwA to establish 202

connections between facial units and enhance the 203

richness of the input expression in the feature 204

space. This guides the subsequent CVAD mod- 205

ule to capture different and rich patterns and struc- 206

tures, thereby improving the overall diversity of the 207

model’s generation results. 208

The expression vector E is constructed by con- 209

catenating two components: the jaw part Ej and the 210

above-jaw part Ef . Intuitively, these two parts are 211

not independent of each other because human fa- 212

cial units function as a whole. For example, when a 213

person laughs heartily, the jaw controls the opening 214

of the mouth. To establish a connection between 215

them, we first use a projection layer to map the raw 216

expression vector to a latent space. Then we let the 217

transfered Ej as the query, and let the transfered 218

Ef as the key and value, feeding them into a cross 219

attention module (Vaswani et al., 2017). After that, 220

we apply dimensionality reduction to the output of 221

the attention module and obtain Ej′ ∈ R|Ej |. The 222

final recombined 3D expression codes E′ ∈ R|E| 223

are represented by: E′ = Concat(Ef ,Ej + Ej′). 224

Then we project it into a high dimension dmodel. In 225

order to capture the order of expression sequence, 226

we add the Positional Embeddings (PE) to the out- 227

put of the EwA module. Specifically, we adopt the 228

sinusoidal version positional encodings introduced 229

in Vaswani et al. (2017). 230

3.4 Conditional Variational Autoregressive 231

Decoder 232

Given a text x as input, an expression se- 233

quence ψ as output, CVAE is to maximize 234

the conditional log-likelihood log p(ψ|x). To 235

better capture temporal dynamics, we model 236

the conditional probability distribution at each 237

time step. Formally, the log-likelihood in our 238
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method is log
∏T

t=1 p(ψt | ψ<t,x), rather than239

log p(ψ0,...,T | x). To enhance the emotion-content240

consistency, we explicitly model the historical241

states of the latent variables. The resulting gen-242

eration model can be formulated as:243

p(ψ | z,x) =
∏T

t=1 p(ψt | ψ<t, zt,x)

=
∏T

t=1 p(ψt | ψ<t, fζ(z<t),x) ,
(1)244

where fζ is the Latent Temporal Attention (LTA)245

module, implemented by the masked multi-head246

attention (Vaswani et al., 2017). 2.247

Intuitively, we assume the prior distribution Pθ248

and conditional distribution Qϕ to be multivariate249

Gaussian distributions:250

Qϕ(zt | ψ≤t,x) = N (µr(ψ≤t,x),σr(ψ≤t,x)) ,

Pθ(zt | ψ<t,x) = N (µp(ψ<t,x),σp(ψ<t,x)) .
(2)251

The two Gaussian distributions are parameterized252

by two neural networks respectively:253

[µr,σr] = [hµr (o), h
σ
r (o)] ,

[µp,σp] = [hµp (o), h
σ
p (o)] ,

o = Amask[A(ψ≤t,x) ,

(3)254

where h denotes a linear layer, Amask and A de-255

note masked attention module and cross attention256

module, respectively. As sampling zt from two dis-257

tributions is non-differentiable, we employ the repa-258

rameterization trick (Kingma and Welling, 2014):259

zt = µt + σt ⊙ ϵ, ϵ ∼ N (0, I) , (4)260

zt is drawn from Qϕ(zt | ψ≤t,x) in the training261

stage, while drawn from Pθ(zt | ψ<t,x) in the in-262

ference stage. After we obtain the sampled zt, we263

learn the second conditional generation distribution264

Pθ(ψt | ψ<t, zt,x). Similarly, we assume the dis-265

tribution a multivariate Gaussian distribution, the266

mean µg can be parameterized by the following267

generation network:268

µtg = FFN(Concat(A(o1),A(o2), ...,A(ol))) ,

A(oi) = A((ψ<t + z<t)W
Q
i ,xW

K
i ,xW

V
i ) ,

(5)269

where l is the number of cross attention heads. FFN270

is the position-wise feed-forward network.271

Note that the CVAD module can be stacked mul-272

tiple layers deep, where the input of the first layer273

comes from the EwA module, and the input of each274

subsequent layer comes from µg obtained by the275

previous layer. Specifically, the input at layer m is276

sampled from N (µm−1
g , σ). For simplicity, we pa-277

2We also try another simple model, the details can be found
in the Appendix C

rameterize only µg and set the σ of the generative 278

distribution to a matrix where all entries are equal 279

to 1. Finally, we sample the predicted expression 280

codes in time step t using the reparameterization 281

trick again: ψ̂t = µm,t
g + ϵ, ϵ ∼ N (0, I). Our loss 282

function of CVAD is as follows: 283

LCV AD =
∑
t

Lrec(ψt, ψ̂t) +
∑
t

LKL(t) , (6) 284

where Lrec is the mean squared error (MSE) loss, 285

and the corresponding Kullback-Leibler (KL) di- 286

vergence term is defined as follows: 287

LKL(t) = KL
(
Qϕ(zt | ψ≤t,x) 288

∥ Pθ(zt | ψ<t,x)
)
. (7) 289

3.5 Target Guided Loss 290

Despite the excellent performance, CVAD is known 291

to suffer from a notorious issue referred to as model 292

collapse (Fu et al., 2019; Yang et al., 2017). When 293

this happens, the KL divergence term in the loss 294

function becomes very close to zero, and the latent 295

variable may be ignored by the decoder. 296

Some works have proposed various methods to 297

mitigate this issue (Fu et al., 2019; Yang et al., 298

2017; Du et al., 2018). Among them, the most 299

common approach is to adjust the weight of the 300

KL term during the training process. However, 301

this method requires carefully selecting parameters 302

based on the specific training process of models, 303

which is time-consuming when the dataset is very 304

large or the model is very large. To this end, we 305

design a simple yet effective loss function Lg to 306

guide the latent variables to learn a meaningful 307

structure. In this way, the latent variables may 308

guide the autoregressive model in its generation 309

process, thereby preventing the model from directly 310

ignoring the latent variables. Formally, 311

Lg =
∑
t

Lrec(ψt, fγ(ot)) ,

ot =

Nc∑
i=1

FFNi(z
i
<t) ,

(8) 312

where fγ is a linear projection layer, Nc is the 313

number of the CVAD layers. 314

3.6 Details of Training and Inference 315

The total loss function of CTEG is: 316

Ltotal = LCV AD + Lg , (9) 317

We freeze the pretrained language model parame- 318

ters during training and update the remaining pa- 319

rameters using the backpropagation algorithm. We 320

use the teacher forcing (Williams and Zipser, 1989) 321
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Dataset #Train #Validation #Test Multi-person?

Ng et al. (2023) 2,366 222 543 ✗
EmoAva 12,000 1,500 1,500 ✓

Table 1: Comparisons of text-to-3D expression datasets.
EmoAva is significantly larger and more diverse, featur-
ing characters from over 100 screen productions.

approach to train in parallel for speed, but decode322

the expression codes sequentially during the infer-323

ence phase. Adam (Kingma and Ba, 2015) opti-324

mizer is adopted here. We train 100 epochs with325

the maximum expression sequence length 256 and326

maximum sentence length 128. We set the warm-327

up steps warmup = 4000 and adopt the same learn-328

ing rate scheduler in Vaswani et al. (2017):329

lr = d−0.5
model ·min(step−0.5, step · warmup−1.5) .

(10)330

Additionally, we also employ residual connection331

(He et al., 2016) and layer normalization (Ba et al.,332

2016) throughout our architecture, as detailed in333

Figure 2. The number of heads in all our attention334

modules is set to 12. The inner hidden dimension335

for the FFN model is 2048. Following Ghosh et al.336

(2021), we adopt the pretrained language model337

BERT(Devlin et al., 2019) to obtain meaningful338

sentence embeddings. Specifically, the last hidden339

state of bert-base-cased is used here. Both the text340

embedding and the expression embedding share341

the same feature dimension dmodel = 768. We342

only use one single CVAD layer in this paper (i.e.,343

Nc = 1). More details about model analysis can344

be found in the Appendix C.345

To ensure smoothness in the predicted sequences,346

an average expression—computed as the mean of347

all expression parameters in the training set—is348

prepended to each sequence. We treat an expres-349

sion with all parameters set to zero as a terminator,350

referred to as the “standard” face. Since sampling351

in a continuous space differs from discrete space352

sampling in language models, optimizing a sin-353

gle point in continuous space as a terminator is354

more challenging. One straightforward approach355

involves setting a threshold (e.g., 1.0) during the356

inference phase, stopping when the predicted ex-357

pression is very close to the "standard" face based358

on the Euclidean distance. We further employ a359

length-constrained decoding method by setting a360

maximum sequence length (MSL).361

4 EmoAva Dataset362

We expect each instance in EmoAva to include a363

piece of text to be spoken, and a corresponding364

You know 
what?

What 
happened?

Love 
you ...
Love 
you ...

What the 
hell?

数据量大，多样性

What happened ?What happened ?

I love you.I love you.

I love you.

What happened ?

   What the hell are you … ?

Figure 3: Samples from EmoAva dataset. Each instance
includes a textual dialogue spoken by an actor, a corre-
sponding head video, and a sequence of 3D expression
vectors (here visualized in 3D mesh).

sequence of 3D expression vectors, as illustrated 365

in Figure 3. To construct this data, we first gather 366

a large number of video clips from TV series and 367

movies with dialogues. We consider two existing 368

data sources for multimodal emotion analysis task, 369

MELD (Poria et al., 2019) and MEMOR (Shen 370

et al., 2020), both of which consist of television 371

show segments. Besides these, we also gather 372

numerous video clips from YouTube. A total of 373

21,390 such raw clips are collected, all in English. 374

We apply various preprocessing methods. A 375

brief overview is provided below, with details in 376

the Appendix A. We employ WhisperX (Bain et al., 377

2023) to transcribe the audio, resulting in the corre- 378

sponding text and timestamps. Afterwards, we cut 379

the videos via the timestamps, creating dialogue 380

video segments corresponding to the texts. To ob- 381

tain clean headshot segments for each speaker, we 382

develop a two-stage speaker localization pipeline. 383

Specifically, we first apply FaceNet (Schroff et al., 384

2015) for automatic face tracking. To handle the 385

challenges posed by complex visual scenes—such 386

as multiple characters in a single frame or fre- 387

quent speaker switches—we further perform man- 388

ual refinement to ensure accurate speaker segmen- 389

tation. After obtaining the head-videos, we adopt 390

a 3D face tracking model EMOCA-v2 (Danecek 391

et al., 2022) to extract the 3D expressions from 2D 392

videos. 393

We collect a total of 15,000 text-to-expression 394

pairs. A comparison with existing dataset is shown 395

in Table 1. The dataset contains 782,471 FLAME 396

frames. Among the 15,000 pairs, 2,270 exhibit 397
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a one-to-many (1-to-N) relationship—where N398

ranges from 2 to 76.399

5 Experimental Setup400

5.1 Evaluation Methods401

As introduced in Section 1, our system aims to gen-402

erate a sequence of expressions that are diverse,403

fluid, and consistent with the conveyed emotional404

content. To evaluate this, we adopt several eval-405

uation metrics from prior studies and introduce406

additional fine-grained evaluation criteria. The cal-407

culation formulas for the following metrics are pre-408

sented in the Appendix D.409

Diversity measures the diversity of generated se-410

quences without text as conditions (Zhang et al.,411

2023a). We randomly sample N/2 sequence pairs412

and calculate the average Euclidean distance be-413

tween the expression vectors.414

Multimodality (abbreviated as MModality)415

measures the diversity of text-conditioned re-416

sults (Zhang et al., 2023a). We generate two417

expression sequences per text and compute their418

average Euclidean distance.419

Variation measures the diversity of a sequence420

as it changes over time (Ng et al., 2023).421

Fine-grained Diversity (abbreviated as FgD)422

quantifies the subtle temporal fluctuations within423

facial expression sequences that are not fully424

captured by existing diversity metrics like Vari-425

ation (Ng et al., 2023). While Variation mea-426

sures overall sequence diversity over time, FgD427

focuses specifically on the average Euclidean dis-428

tance between adjacent frames to capture rapid,429

fine-grained changes in expressions.430

Diversity on Test (abbreviated as DoT) measures431

the diversity of the expression sequences generated432

from the test set texts from a macro perspective.433

Continuous perplexity (abbreviated as Cppl)434

evaluates how naturally an expression sequence435

evolves over time, reflecting the smoothness of436

the expression sequence and the uncertainty in a437

model’s predictions. Contrary to the traditional dis-438

crete perplexity metric (Jelinek et al., 1977), Cppl439

is computed in continuous space.440

Consistency assesses the extent to which the ex-441

pressions accurately represent the emotions that442

would naturally correspond to a given utterance.443

Due to the absence of precise automatic tools to444

evaluate this alignment, we rely on human evalua-445

tion following Zhang et al. (2023a).446

5.2 Experimental Settings 447

We mainly utilize the EmoAva dataset to validate 448

the CTEG. We also conduct experiments on ex- 449

isting listeners’ dataset (Ng et al., 2023) for refer- 450

ence in the Appendix C. The parameter settings 451

of CTEG are detailed in §3.6. For each compar- 452

ing method, we randomly sample 50 sentences 453

from the test set and generate the corresponding 454

expression sequence with a maximum length of 455

128. As mentioned in §5.1, there are currently no 456

suitable quantitative metrics for emotion-content 457

consistency evaluation. Instead, we adopt percep- 458

tual experiments following Guo et al. (2022). Each 459

sample is rendered as an avatar video at 24 frames 460

per second and shown to five participants. The par- 461

ticipants are instructed to rank the outputs based 462

on the emotional consistency between the facial 463

expressions and the corresponding text. 464

5.3 Baselines 465

LM-Listener. To the best of our knowledge, this 466

is the only open-sourced method applicable to the 467

text-to-3D expression task (Ng et al., 2023). We 468

implement the model with their released code, with 469

most parameters kept unchanged. To ensure a fair 470

comparison and obtain diverse outputs, we use top- 471

p sampling (top-p=0.8) instead of greedy search. 472

Shuffle. Each expression sequence is randomly 473

shuffled along the temporal axis to rigorously test 474

the model’s sensitivity to temporal coherence and 475

expression fluency. 476

Random. Following Ng et al. (2023), we also 477

randomly select expression sequences from the 478

training set to assess the model’s ability to model 479

the emotion-content consistency. 480

6 Experimental Results 481

6.1 Main results 482

As shown in Table 2, CTEG outperforms the base- 483

lines across all diversity metrics by a large margin. 484

We also visualize the diversity of expressions gen- 485

erated by CTEG in Figure 10 and 12 (Appendix). 486

We randomly sample four sequences of expressions 487

given a text. These examples demonstrate that the 488

generated expressions exhibit a rich diversity. 489

Figure 4 illustrates an evaluation of user prefer- 490

ences. Participants are instructed to rank the expres- 491

sions according to how well their emotions aligned 492

with the input text. Compared with the random 493

setting, LM-Listener, and CTEG, we find that the 494

user preference for CTEG is higher than that of the 495

6



Cppl ↓ DoT → FgD → Diversity ↑ MModality ↑ Variation →

GT / 9.24 1.26 / / 0.28
Shuffle 9.90e6 / / / / /
LM-Listener (Ng et al., 2023) / 7.99 1.04 ± 0.0039 7.01 ± 0.0736 6.40 ± 0.0662 0.32 ± 0.0048
CTEG (MSL = 256) 262.19 9.96 1.22 ± 0.0020 8.18 ± 0.0508 9.35 ± 0.0430 0.72 ± 0.0055
CTEG (MSL = 64) / 8.91 1.22 ± 0.0021 7.75 ± 0.0535 8.48 ± 0.0485 0.31 ± 0.0059

Table 2: Main Quantitative results. CTEG significantly outperforms the LM-Listener across four diversity metrics
and achieves notably lower perplexity compared with the Shuffle setting. ↓ indicates that a lower value is better
while ↑ suggests that a higher value is preferable. → indicates that the closer the value is to the GT, the better. /
indicates not applicable. The standard error is estimated through bootstrap resampling with 1, 000 iterations.

Cppl ↓ DoT → FgD → Diversity ↑ MModality ↑ Variation →

GT / 9.24 1.26 / / 0.28
w.o. EwA 205.65 6.97 1.14 ± 0.0018 6.07 ± 0.0246 6.55 ± 0.0293 0.40 ± 0.0025
w.o. LTA 243.57 8.60 1.20 ± 0.0030 7.58 ± 0.0484 8.01 ± 0.0671 0.58 ± 0.0062
w.o. Lg 646.34 7.67 1.83 ± 0.0014 6.81 ± 0.0268 7.30 ± 0.0256 0.38 ± 0.0017
CTEG 262.19 9.96 1.22 ± 0.0020 8.18 ± 0.0508 9.35 ± 0.0430 0.72 ± 0.0055

Table 3: Quantitative results on the ablation study. CTEG model achieves the best overall performance compared
with other settings. More in-depth experiments are provided in the Appendix C.
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Figure 4: A quantitative evaluation of user preferences
regarding emotion-content consistency. The color bar
from blue to red indicates preference levels from lowest
to highest. Expressions from CTEG better match text
emotions than those from baselines.

other two methods. This indicates the effectiveness496

of CTEG in modeling emotion-content consistency.497

From Table 2, we observe that the Cppl metric498

for the shuffle setting is several orders of magnitude499

higher than that of the normal sequences, indicating500

CTEG’s high sensitivity to the expression sequence501

order. The lower Cppl value confirms CTEG’s502

effectiveness in modeling expression smoothness.503

6.2 Ablation Study504

We conduct a quantitative experiment on three key505

components (i.e., EwA module, LTA module and506

Lg loss function) in CTEG model. As shown in507

Table 3, removing the EwA module results in a508
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Figure 5: The effect of Lg loss (Eq. 8) on the KL term
in Eq. 6. Lg loss mitigates the rapid decrease of the KL
term and prevents it from approaching zero.

significant drop in the four diversity metrics (DoT, 509

FgD, Diversity, and MModality). This indicates 510

that the EwA module makes a substantial contribu- 511

tion to the diversity of the generated sequences. 512

From Table 3 and Figure 4, we can observe that 513

removing the LTA module results in a decrease 514

in emotion-content consistency compared with the 515

full CTEG model. This highlights the importance 516

of the LTA module and supports the assumptions 517

of our method. As shown in Table 3, after remov- 518

ing the Lg loss function, only the Variation value 519

shows improvement, while the performance of all 520

other metrics declines. This indicates that remov- 521

ing the Lg loss function leads to a drop in the over- 522

all performance of CTEG, and also reflects a weak- 523

ened fitting ability of CTEG. These experimental 524

results indicate that the Lg loss function effectively 525

mitigates this issue, enhancing the model’s gener- 526

alization ability and overall performance. 527
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Emotion: optimistic / excited Emotion: confused / annoyed

Emotion: painful / exhausted Emotion: trusting / inspiring

 Emotion: admiring / satisfied Emotion: exhausted / despairing

 Emotion: proud / delighted Emotion: angry / confused

Figure 6: Qualitative analysis of the comparative results on emotion-content consistency. Our model demonstrates
better consistency compared with the SoTA approach (LM-Listener). † represents the possible emotions conveyed
by our results. More results are shown in the Figure 11.

6.3 Discussion528

How does the Lg loss proposed in CTEG effec-529

tively mitigate the model collapse problem? As530

shown in Figure 5, we plot the changes in the KL531

term in the loss function (Eq. 9) as the training532

steps progress. It can be observed that after remov-533

ing Lg, the KL term quickly drops and approaches534

zero, whereas with Lg, the KL term decreases more535

gradually, and the curve remains consistently above536

that of the w.o. Lg setting as the training steps in-537

crease. This phenomenon provides indirect support538

for the hypothesis proposed in §3.5.539

Why does CTEG demonstrate stronger gen-540

erative diversity in emotion? To understand why541

CTEG shows stronger diversity, we randomly sam-542

ple from the latent space of CVAD and visualize543

the latent variable distribution (Figure 7). CTEG544

models more pattern clusters (146), a 29% increase545

compared to the w.o. EwA setting. This confirms546

that the EwA module enriches input features, re-547

sulting in a more diverse latent space in CVAD.548

The latent variables capture more varied patterns,549

which improves the diversity of generated outputs.550
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Figure 7: Comparison of latent variable distributions in
the CVAD latent space. The w.EwA model (right) cap-
tures a broader range of generative modes (146 clusters)
than the w.o.EwA model ( 113 clusters). This indicates
that the EwA module enriches the feature space, en-
abling CVAD to model more diverse emotional patterns.

7 Conclusion 551

This paper proposes a novel end-to-end text-to- 552

expression model, CTEG, which captures expres- 553

sive variations in a continuous latent space, en- 554

abling the generation of diverse, fluid, and emo- 555

tionally consistent facial expressions. To support 556

this task, we construct EmoAva, a large-scale and 557

high-quality dataset consisting of 15,000 instances. 558

Extensive experiments demonstrate that CTEG sig- 559

nificantly outperforms existing baselines across 560

multiple aspects, paving the way for more emo- 561

tionally aware digital humans. 562
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Limitations563

Limited language coverage. Currently, the564

EmoAva dataset is limited to English due to re-565

source constraints. Building a comprehensive mul-566

tilingual text–expression dataset is inherently chal-567

lenging, but we view it as a promising future direc-568

tion. In the Appendix, we detail our data collection569

pipeline, which we hope will serve as a foundation570

for future expansion and community collaboration.571

Although human languages are diverse, emotional572

expression is largely universal. This motivates us573

to extend our work toward multilingual emotional574

expression modeling in future iterations.575

Limited personalization or identity adaptation.576

CTEG is identity-agnostic by design, aiming to577

model generalizable human emotional states across578

speakers. This design choice facilitates broader579

generalization but does not account for person-580

alized expressive styles or speaker-specific traits.581

While personalized expression generation is an ex-582

citing future direction, we believe that building a583

strong foundation for modeling universal emotional584

patterns is a necessary first step—one that our work585

aims to establish.586

Ethical Considerations587

Annotator compensation. We employed three588

crowd-sourced annotators, all of whom are under-589

graduate students with strong English proficiency.590

They were compensated at an approximate rate591

of $10 per hour, which aligns with standard local592

compensation for similar tasks.593

Copyright and privacy. We provide two licens-594

ing options for the dataset (detailed in A.1), defin-595

ing the conditions under which it may be accessed596

and used. The original video materials used to597

construct the dataset are sourced from publicly598

available television series, and their copyrights re-599

main with the respective rights holders. In addi-600

tion, the facial features extracted for our model601

are identity-agnostic, meaning they do not retain602

personally identifiable characteristics of the actors.603

This serves as a form of de-identification, helping604

to preserve the portrait rights and privacy of the605

individuals appearing in the video content.606
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In this appendix, we present the following829

parts. Section A: more details about the EmoAva830

dataset. Section B: supplementary related work831

about dataset. Section C: in-depth analysis about832

CTEG. Section D: details and formulas of some833

evaluation metrics. Section E: additional visualiza-834

tion results.835

A More Details about EmoAva Dataset836

Details of the dataset construction and license are837

provided here. All processing code and the dataset838

will be made available via the provided anonymous839

GitHub repository.840

A.1 License841

We will provide two separate licenses for the842

dataset: one for the video files and another for the843

3D expression code. The latter is directly relevant844

to the task presented in this paper and will be re-845

leased under the CC BY-NC 4.0 license. The video846

data, however, involves copyright considerations847

related to film and television content. Since such848

data can benefit a broader range of tasks beyond849

our primary focus, we plan to release it under a850

more restrictive license. We have consulted legal851

experts regarding the conditions for releasing this852

type of data. The full licensing documentation will853

be made available in our GitHub repository.854

A.2 Construction Pipeline855

The dataset construction pipeline is shown in Fig-856

ure 8. Given a raw video that may contain multiple857

people and varying shots, our goal is to extract a858

single talking-face video with a fixed camera view,859

and then extract 3D coefficients.860

To achieve the first step, we need to segment861

each raw video both spatially and temporally. Spa-862

tial segmentation involves isolating the talking face863

from multiple possibly co-occurring faces, while864

temporal segmentation involves extracting a con-865

tinuous shot, typically where a person is speaking866

a complete sentence or segment.867

Specifically, for a raw video, the audio is ex-868

tracted and transcribed using speech recognition869

and ASR models (i.e., whisperX) (Bain et al.,870

2023), to obtain timestamps and textual content.871

These timestamps typically correspond to com-872

plete utterances by individual actors. Utilizing873

these timestamps, we segment the raw video tem-874

porally, effectively achieving time-based segmen-875

tation. Spatial segmentation, however, presents a876

more complex challenge.877

TV series 
& Movies

Videos

Audios

00:10:23 00:15:34

Text

Timestamp

Dialogue clips

Single face
clips

3DMM 

Figure 8: Pipeline for constructing the EmoAva dataset.

EmoAva Statistics
# Train set 12,000
# Valid set 1,500
# Test set 1,500
# Dataset Total 15,000
Average sentence length 14
Average expression steps 52
Total frames of all expressions 782,471
# One-to-many instances 2270
# Expressions exceeding 256 frames 184

Table 4: Statistics of the EmoAva dataset.

To our best knowledge, no current method can 878

reliably identify the speaking face among multiple 879

faces in a frame. For the videos lacking speaker 880

identity information, we exclude frames containing 881

multiple detected faces. The construction algo- 882

rithm involves multiple AI-based models, none of 883

which can guarantee 100% accuracy. To ensure the 884

quality of the dataset, we perform a manual check 885

on the segmented videos. This process achieves 886

our initial objective. After obtaining the segmented 887

videos, we employ the widely-used FLAME track- 888

ing model EMOCA v2 (Danecek et al., 2022), to 889

extract 3D coefficients. Following this, we conduct 890

a manual check on the final instances to ensure 891

their accuracy and quality. 892

In conclusion, we proposes a semi-automated ap- 893

proach that leverages several algorithms to generate 894

large-scale instances. In this framework, human 895

annotators are primarily tasked with verifying the 896

algorithmic outputs and eliminating low-quality in- 897

stances, thereby significantly enhancing efficiency 898

and scalability. 899

A.3 Guidelines for Human Annotation 900

To maintain the data quality, we perform manual 901

checking. Specifically, we employ three annotators 902

to remove low-quality instances, where the criteria 903

are as follows: 1) The face should be clearly visi- 904

ble, without obstructions like masks or sunglasses. 905
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2) The actor’s facial expression changes should be906

continuous (i.e., no scene cuts). 3) The actor should907

complete their sentence without being abruptly cut908

off. 4) There should be only one person in the video909

from start to finish. 5) The text should match what910

the actor is saying. 6) The avatar expressions (mesh911

format driven by tracked vectors) align with those912

in the corresponding videos. We determine whether913

to drop data samples through independent annota-914

tion by the three annotators, followed by a majority915

vote on the results. After annotation, we calcu-916

late the Fleiss’ kappa score (Fleiss et al., 2013),917

achieving a value of 0.86. This indicates minimal918

disagreement among the annotators, reflecting the919

high quality of the dataset’s annotations.920

A.4 Criteria for Collecting the Raw Videos921

Crucially, manual screening is necessary when se-922

lecting television show segments from the internet923

(i.e., YouTube). First, we need to avoid cartoons924

or fantasy genres that do not feature real human925

faces. Second, we must steer clear of videos that926

may contain violence, gore, or explicit content that927

is not appropriate for mainstream audiences.928

A.5 Dataset Insights929

We randomly partition all instances in the train-930

ing set into three subsets: training/validation/test931

sets, comprising 80%/10%/10% of the total, re-932

spectively. We provide a brief summary of the933

key characteristics of the EmoAva dataset in the934

following and in Table 4.935

Large-scale and High-quality. To ensure data936

quality, we employ SoTA methods at every stage of937

the dataset preprocessing algorithm. Additionally,938

we manually check and remove the expressions939

that lack fluidity or do not consistently match the940

emotions expressed in the text. As a result, our941

dataset comprises 15, 000 text-3D expression in-942

stances and a total of 782, 471 FLAME frames.943

Diverse Mapping. In a dataset of 15, 000 text-944

expression pairs, there are 2, 270 instances with a945

1-to-N relationship (where N ranges from 2 to 76),946

accounting for over 15%.947

Diverse Expressions. EmoAva comes from a di-948

verse range of sources and scenarios, i.e., including949

over 100 movies and more than 5 TV shows, thus950

resulting in a wide variety of expressions.951

Diverse Emotion. Expressions exhibit a good di- 952

versity of emotions, including Happy, Sad, Neutral, 953

Disgust, Fear, Surprise, and Angry.3 954

Rich and Varied Emotions. The emotions 955

within a single sequence are also quite diverse, ex- 956

hibiting significant variability. The proportion of 957

expressions containing two or more types of emo- 958

tions exceeds 95%. 959

Highly Scalable. The dataset includes raw 960

videos, raw audio files, and a semi-automated con- 961

struction algorithm, facilitating the extension to 962

additional modalities and tasks. 963

B Supplementary Related Work 964

3D Avatar Head Dataset. This work also closely 965

relates to the development and use of 3D Avatar 966

Head Datasets. Numerous benchmark datasets (Yin 967

et al., 2006; Cudeiro et al., 2019) exist within the 968

community, but there is limited focus on bench- 969

marks for emotion-aware dynamic 3D avatars. Cur- 970

rent dynamic 3D avatar benchmarks typically lack 971

language signals (e.g., text or speech) (Cosker et al., 972

2011; Ranjan et al., 2018; Zhang et al., 2013), a 973

gap our research aims to fill. 974

To achieve Emotion-Content Consistency, an 975

ideal 3D face dataset pairs each text instance with 976

corresponding facial expression sequences as the 977

text is articulated. Existing datasets (He et al., 2024; 978

Zhang et al., 2016) often fall short, requiring an- 979

notators to read sentences with preset emotions, 980

thereby ignoring the text’s intrinsic emotional con- 981

tent. Notably, the MovieChat (Chu et al., 2018) 982

dataset also includes 3D expression sequences. Un- 983

fortunately, they only release FACS muscle fea- 984

tures, which can not reconstruct realistic facial de- 985

tails and significantly diverge from the current re- 986

search framework. 987

To overcome this, we collect 2D video clips of 988

actors’ dialogues from various films and TV scenes, 989

closely mirroring real conversational scenarios with 990

consistent emotion-language alignment. We then 991

use the SoTA FLAME tracking approach to extract 992

3D expression codes and meshes from 2D videos. 993

Talking Head Video Datasets. As introduced 994

before, our goal is to collect videos of talking faces 995

that exhibit rich, emotionally varied expressions in 996

3The statistical analysis is performed using a widely
used emotion recognition framework DeepFace (Serengil and
Ozpinar, 2021).
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naturalistic conversational settings. Several exist-997

ing datasets are relevant, including those from the998

talking head synthesis (Wang et al., 2021; Chung999

et al., 2018; Rossler et al., 2019), multimodal emo-1000

tion analysis (Shen et al., 2020; Poria et al., 2019),1001

and text-video modeling (Yu et al., 2023).1002

Among these, we find MELD (Poria et al., 2019)1003

and MEMOR (Shen et al., 2020) to be the most suit-1004

able, as they are constructed from television show1005

segments and contain real conversational dynamics1006

with reasonably expressive faces. However, both1007

datasets have notable limitations: they include only1008

a small number of speakers, and their overall data1009

scale is limited, which restricts their usefulness for1010

training expressive generation models that aim for1011

generalization and diversity.1012

In contrast, other commonly used datasets1013

present further issues. For example, many talking1014

head synthesis datasets involve individuals speak-1015

ing directly to the camera with monotonous, emo-1016

tionally flat expressions, lacking the nuanced varia-1017

tions seen in real social interaction. Additionally,1018

several recent datasets collect videos from short-1019

form content platforms (e.g., TikTok), but such1020

self-recorded clips are often inconsistent in both1021

expressive quality and visual fidelity, making them1022

suboptimal for fine-grained expression modeling.1023

Based on this analysis, we find that movies and1024

TV shows offer the most suitable source material,1025

as they combine diverse emotional content, high1026

production quality, and natural dialogue. To ad-1027

dress the limitations in scale and speaker diver-1028

sity of MELD and MEMOR, we construct a new1029

dataset, further augmenting it with high-quality1030

conversational clips sourced from YouTube. This1031

hybrid strategy ensures a more scalable and emo-1032

tionally rich dataset for expressive facial behaviors.1033

C In-depth Analysis of CTEG1034

In this section, we present more experimental re-1035

sults about the analysis of CTEG. Specifically, we1036

investigate the following aspects:1037

Explorations on CTEG

★ Q1: How does CTEG perform when evaluated on the
LM-Listener dataset?

★ Q2: Should the projection layer be shared between
the input and the output of the CVAD module?

★ Q3: Can the attention mechanism in the LTA module
be replaced with a simpler average pooling operation?

★ Q4: Should the weights of the pretrained language
1038

L2 ↓ FD ↓ Variation → P-FD ↓

GT / / 0.11 /
LM-Listener 0.43± 0.02 18.22± 0.70 0.116± 0.005 19.63± 0.80
CTEG 0.37± 0.03 16.92± 1.20 0.114± 0.007 16.55± 0.90

Table 5: Quantitative results on the LM-Listener dataset.

model (i.e., BERT) be fixed?

★ Q5: Does increasing the number of CVAD layers
yield better performance?

1039

C.1 More Details and Experimental Settings 1040

We make several variants of CTEG in this paper. 1041

w. sharing refers to the model that shares the pro- 1042

jection layers between the input and output of the 1043

CVAD module. Compared with it, CTEG does 1044

not share the projection layers. Based on w. shar- 1045

ing, we also test the performance of two variants, 1046

w. pooling and w. BERT fine-tuning. Compared 1047

to w. sharing, w. pooling modifies the LTA mod- 1048

ule by replacing the attention operation with an 1049

average pooling operation (i.e., averaging the la- 1050

tent variables from time steps 1 to s for time step 1051

s). Compared to w. sharing, w. BERT fine-tuning 1052

involves fine-tuning the BERT model during the 1053

training process, while the former fixes the weights 1054

of BERT. In addition to these, we also provide the 1055

performance of the ground truth (GT) on certain 1056

metrics for reference. 1057

Our system is lightweight, with a total parameter 1058

count under 130M. All experiments in this paper 1059

are conducted on a single NVIDIA A100 GPU. 1060

C.2 Results and Analysis 1061

▶ Q1: How does CTEG perform when evalu- 1062

ated on the LM-Listener dataset? 1063

We conduct a comparative experiment on the 1064

dataset used in Ng et al. (2023), following exactly 1065

the same evaluation settings. The results are pre- 1066

sented in Table 5. As shown, CTEG consistently 1067

outperforms the LM-Listener model across all met- 1068

rics, demonstrating its strong regression capability 1069

in the text-to-expression generation task. 1070

Notably, we do not apply our proposed evalua- 1071

tion metrics to their dataset due to a fundamental 1072

mismatch in data characteristics. Specifically, their 1073

dataset lacks one-to-many mappings and includes 1074

only a single character. As a result, it does not 1075

account for emotional diversity—each input text 1076

corresponds to only one facial expression. 1077

▶ Q2: Should the projection layer be shared 1078
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Cppl ↓ DoT → FgD → Diversity ↑ MModality ↑ Variation →

GT / 9.24 1.26 / / 0.28
w. sharing 241.28 8.53 1.27 ± 0.0032 7.16 ± 0.0436 8.01 ± 0.0292 0.53 ± 0.0027

w. pooling 300.10 7.89 1.30 ± 0.0102 3.17 ± 0.0225 6.47 ± 0.0605 0.32 ± 0.0052
w. BERT fine-tuning 249.14 6.28 1.10 ± 0.0022 6.29 ± 0.0552 6.28 ± 0.0399 0.60 ± 0.0063

CTEG 262.19 9.96 1.22 ± 0.0020 8.18 ± 0.0508 9.35 ± 0.0430 0.72 ± 0.0055

Table 6: Quantitative results on some variants of CTEG. Lower values (↓) and higher values (↑) are preferred, while
values closer to the Ground Truth (GT) are indicated by →. The standard error is estimated through bootstrap
resampling with 1000 iterations.

between the input and the output of the CVAD1079

module?1080

As shown in Table 6, w. sharing achieves1081

the best results on the Cppl, DoT, and FgD1082

metrics. The Variation also outperforms CTEG1083

(w.o.sharing), but the Diversity and MModality met-1084

rics are lower than those of CTEG. Upon closer1085

inspection, we find that the improvements in the1086

Cppl and DoT metrics under the w. sharing set-1087

ting are minimal. The difference between CTEG1088

and GT for the DoT metric is 0.72(9.96 − 9.24),1089

while the difference between w. sharing and GT is1090

0.71(9.24 − 8.53). One possible explanation for1091

this phenomenon is the constraint on the generated1092

vector space introduced by sharing the input and1093

output mapping layers, which reduces diversity and1094

yields metrics similar to those of GT.1095

Although w. sharing closely approximates GT1096

on some metrics, we still remove the sharing opera-1097

tion in CTEG. The reason is that GT metrics serve1098

only as reference values, and there are inherent1099

differences between the test set used to compute1100

GT and real-world data. Therefore, we can not use1101

GT metrics (i.e., DoT, FgD, and Variation) as the1102

sole criterion for evaluating the quality of our meth-1103

ods. In contrast, the performance of w. sharing on1104

Diversity and MModality metrics is significantly1105

inferior to that of CTEG. Considering these trade-1106

offs, we believe that the sharing operation should1107

not be retained in CTEG.1108

▶ Q3: Can the attention mechanism in the LTA1109

module be replaced with a simpler average pool-1110

ing operation?1111

When comparing w. pooling and w. sharing in1112

Table 6, we observe a downward trend in many1113

diversity metrics. This indicates that the attention1114

operation in the LTA module is more effective than1115

the pooling operation, which aligns with our intu-1116

ition. For each current time step, a more reason-1117

able integration of historical attention is beneficial,1118

while simply averaging historical states may dimin-1119

Performance Ground Truth

1 2 3 4 5
200

250

300

350

400

450

500

Decoder layer

C
Pe

rp
le

xi
ty

1 2 3 4 5
0

2

4

6

8

10

Decoder layer

M
M

od
al

ity

1 2 3 4 5
0
1
2
3
4
5
6
7
8

Decoder layer

D
iv

er
si

ty

1 2 3 4 5
1.0

1.05

1.1

1.15

1.2

1.25

1.3

Decoder layer

Fg
D

1 2 3 4 5
2
3
4
5
6
7
8
9

10

Decoder layer
D

oT
0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Decoder layer

V
ar

ia
tio

n

Figure 9: The performance of all three metrics shows a
downward trend with the increasing number of decoder
layers.

ish the meaningfulness of the feature representation 1120

at the current moment, thereby weakening its rich 1121

representational capacity. 1122

▶ Q4: Should the weights of the pretrained lan- 1123

guage model (i.e., BERT) be fixed? 1124

In the comparison between w. BERT fine-tuning 1125

and w. sharing, almost all metrics showed a decline 1126

in performance in Table 6. We think this may be 1127

due to the limited size of the training set, which 1128

could have led to overfitting when fine-tuning the 1129

text embedding model. 1130

▶ Q5: Does increasing the number of CVAD 1131

layers yield better performance? 1132

We set the number of decoder layers from 1 to 5 1133

to observe the diversity and naturalness of the gen- 1134

erated expressions. As shown in Figure 9, it is evi- 1135

dent that as the number of decoder layers increases, 1136

the model’s performance gradually declines. Par- 1137

ticularly when the number of layers reaches 5, the 1138

perplexity explodes, increasing by several orders 1139
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of magnitude compared to the 4-layer decoder, and1140

the diversity also becomes very poor. We find that1141

the model struggles to converge under many-layer1142

conditions. We speculate that this is because each1143

step s in every layer is independently sampled, and1144

N layers would generate sN latent variable states,1145

introducing too much randomness. We refer to1146

this phenomenon as Cumulative Sampling Insta-1147

bility. Therefore, for the method described in this1148

paper, using a single-layer decoder is the optimal1149

configuration.1150

D Details of Evaluation Metrics1151

Diversity metric is calculated by the following1152

formula (Zhang et al., 2023a):1153

Diversity =
1

Nd

Nd∑
i=1

∥∥∥Ψi −Ψ
′
i

∥∥∥ , (11)1154

where Ψ and Ψ′ denote a pair of randomly sampled1155

sequences of expression vectors that are generated1156

without giving any text. We set Nd to 750 in this1157

paper.1158

MModality is calculated by the following for-1159

mula (Zhang et al., 2023a):1160

MModality =
1

Nm

Nm∑
i=1

∥∥∥ψi − ψ
′
i

∥∥∥ . (12)1161

We set Nm to 1500 in this paper. ψi and ψ′
i repre-1162

sent two different sequences generated under the1163

same set of given texts.1164

Variation is calculated by the following formula1165

(Ng et al., 2023):1166

Variation =
1

Nv

Nv∑
i=1

 1

ni

ni∑
j=1

var(Eij)

 , (13)1167

where Eij denotes a frame in a sequence of expres-1168

sion vectors. ni is the length of the i-th sequence.1169

Nv here is the number of sequences, which is set1170

to 1500. var(·) operation calculates the variance.1171

Fine-grained Diversity (FgD) is calculated by:1172

FgD =
1

(T − 1)N

N∑
i=1

T−1∑
j=0

∥Ei,j+1 −Ei,j∥ .

(14)1173

Diversity on Test (DoT) is obtained by calculat-1174

ing the average Euclidean distance between each1175

pair of generated expression sequences:1176

DoT =
2

N(N − 1)

∑
1≤i<j≤N

∥Ei −Ej∥ . (15)1177

Continuous perplexity (Cppl). Given the i-th 1178

expression sequence ψi, we define the following 1179

entropy inspired by Jelinek et al. (1977). 1180

Hi(ξ) ≈ − 1

T

T∑
j=1

log2 pξ(ψ
i
j | ψi

<j ,x) , (16) 1181

pξ here is a continuous conditional distribution 1182

where modeled by a generation model. Multivari- 1183

ate normal distribution is adopted in this paper and 1184

it is calculated by: 1185

pξ(ψj | ψ<j ,x) ≈ Φ(x+ δ;µjξ, σ
2I) 1186

− Φ(x− δ;µjξ, σ
2I) , (17) 1187

where Φ(·;µξ, σ2I) denotes the cumulative dis- 1188

tribution function (CDF) of the multivariate normal 1189

distribution with mean µ and covariance matrix 1190

σ2I. Note that δ and σ are empirical values, which 1191

are set to 0.8 and 0.2 here. Given N expression 1192

sequences, Cppl is calculated by: 1193

Cppl = 2
1
N

∑N
i=1 Hi(ξ) . (18) 1194

E More Visualization Results 1195

In this section we present extended visualization re- 1196

sults of the expressions generated by CTEG and the 1197

baseline method (Ng et al., 2023). As shown in Fig- 1198

ure 11, we present several sequences of expressions 1199

generated by CTEG and LM-Listener (Ng et al., 1200

2023). Compared with the LM-Listener, the expres- 1201

sions we generated exhibit a greater alignment with 1202

the emotions conveyed by the corresponding text. 1203

For example, the text “Oh damn, I picked the wrong 1204

side.” conveys emotions of pain, regret, and com- 1205

plaint. The expressions we generated effectively 1206

reflect these emotions. In contrast, the expressions 1207

produced by LM-Listener appear to convey a smile, 1208

which is inconsistent with the emotional tone of 1209

the text. A similar observation is evident in the text 1210

“What a beautiful story.” This statement conveys 1211

feelings of joy and admiration, and the expressions 1212

we generated reflect this joy. However, the expres- 1213

sions produced by LM-Listener appear to convey a 1214

sense of indifference. Many additional cases also 1215

support this observation in Figure 11. 1216

Figure 10 and 12 present the visual expressions 1217

generated by CTEG with several different random 1218

seeds. Taking the text “I thought I was pretty good 1219

too.” as an example, this statement conveys emo- 1220

tions of pride, joy, or happiness. In the first se- 1221

quence of expressions, the portrayal is one of de- 1222

light. The second sequence exhibits a more sub- 1223

dued happiness, while the third sequence conveys a 1224

sense of pride and self-satisfaction. Despite the sig- 1225
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Text: I am so dead.

Text: Fortunately, I have a lot of experience 
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Text: It was wonderful.
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Figure 10: Visualization of the diversity generated by the CTEG model. Four sequences of expressions are generated
from the same text with different random seeds. CTEG exhibits excellent generative diversity.

nificant differences among these three sequences of1226

expressions, all align well with the emotions con-1227

veyed by the text. Similarly, taking the text “What1228

the hell?” as an example, this statement generally1229

conveys feelings of surprise, frustration, or disbe-1230

lief. The three generated sequences of expressions1231

all seem to convey these emotions. However, each1232

sequence exhibits varying degrees of intensity in1233

expressing surprise or frustration. In addition to1234

these, this phenomenon can also be observed in1235

other examples.1236
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Figure 11: Extended visual results generated by CTEG and LM-Listener (Ng et al., 2023). The expressions produced
by CTEG exhibit greater consistency with the emotions conveyed by the corresponding text.
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Text: I thought I was pretty good too.

Text: I'm sorry, honey.

Text: What the hell?

Text: That'd be great! 
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Figure 12: Visualization of the diversity generated by the CTEG model. Three sequences of expressions are
generated from the same text with different random seeds. CTEG exhibits excellent generative diversity.
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