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Abstract

Enabling digital humans to express rich emo-
tions has significant applications in dialogue
systems, gaming, and other interactive scenar-
ios. While recent advances in talking head
synthesis have achieved impressive results in
lip synchronization, they tend to overlook the
rich and dynamic nature of facial expressions.
To fill this critical gap, we introduce an end-
to-end text-to-expression model that explicitly
focuses on emotional dynamics. Our model
learns expressive facial variations in a continu-
ous latent space and generates expressions that
are diverse, fluid, and emotionally coherent.
To support this task, we introduce EmoAuva,
a large-scale and high-quality dataset contain-
ing 15,000 text—3D expression pairs. Exten-
sive experiments on both existing datasets and
EmoAva demonstrate that our method signif-
icantly outperforms baselines across multiple
evaluation metrics, marking a significant ad-
vancement in the field. !

1 Introduction

In recent years, the remarkable success of dialogue
systems has sparked a growing desire for face-to-
face interaction with digital humans (Park et al.,
2024). As emotional beings, humans rely heav-
ily on facial expressions as a primary means of
conveying emotions and intentions. Therefore, en-
abling digital humans to express emotions through
facial expressions holds substantial research and
application value (Sung-Bin et al., 2024).

A large portion of digital human (also referred to
as talking head) research (Li et al., 2024; He et al.,
2024), focuses primarily on the synchronization
between speech and lip movements, while largely
ignoring the rich emotional and expressive dynam-
ics of face-to-face communication. Although some
previous studies have recognized this limitation

'Resources are available at (https: //anonymous. 4open.
science/r/EmoAva).
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Figure 1: Top: The existing pipeline for synthesizing
emotional avatars, which can only generate limited ex-
pressions that lack of diversity. Bottom: The proposed
end-to-end system that directly maps text to facial ex-
pressions (codes), aims to generate diverse, emotionally
consistent, and temporally smooth expressions.
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and started investigating potential solutions, most
existing systems (He et al., 2024; Danecek et al.,
2023; Pan et al., 2024) still generate only coarse
facial expressions based on a limited set of dis-
crete emotion labels (e.g., “happy,” “sad”), usually
employing a pipeline architecture.

Following the current pipeline, one typically per-
forms sentiment analysis on the speech or text to
obtain a discrete emotion label, which is then used
to condition the facial expression generation (as
shown in Figure 1). However, this approach faces
at least two major limitations. First, emotion labels
are typically limited in number and struggle to cap-
ture the full richness and subtlety of human emo-
tional expression. Second, pipeline-based models
are susceptible to information loss and error propa-
gation across stages. End-to-end modeling could
be one promising strategy to address the above lim-
itations. By generating a continuous sequence of
3D facial expressions directly from the input ut-
terance, the output is expected to be more diverse,
natural, and emotionally consistent.

In this work, we present the first end-to-end work
for text-3D facial expression learning. Technically,
we propose a unified model, CTEG (Continuous
Text-to-Expression Generator). CTEG leverages a
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CVAE-based autoregressive architecture to model
expressive variations in a continuous latent space,
enabling smooth and natural expression synthesis.
To ensure emotional consistency between the input
text and generated expressions, CTEG adopts a
Latent Temporal Attention (LTA) mechanism that
enhances the latent representation at each timestep
by attending to historical context. Additionally, to
promote expressive richness, CTEG incorporates
an Expression-wise Attention (EwA) module that
captures spatial dependencies among facial regions,
enabling coordinated and varied facial movements.
To facilitate end-to-end training, we introduce
EmoAva, a high-quality, large-scale dataset com-
prising 15,000 text-to-3D expression mapping in-
stances, collected from multi-party dialogue scenes
in professionally acted video sources. EmoAva pro-
vides rich, emotionally diverse, and context-aware
expressive behaviors, offering a valuable founda-
tion for studying facial expression generation in
conversational Al. Extensive qualitative and quanti-
tative experiments on the EmoAva as well as other
representative existing datasets (Ng et al., 2023)
demonstrate the superiority of our CTEG model in
terms of expression diversity, naturalness, and emo-
tional consistency, establishing a strong baseline
for future research in text-to-expression generation.

In summary, our key contributions are as below.

* We propose a novel end-to-end model, CTEG,
which learns text-to-expression mapping in a
continuous latent space.

* We introduce EmoAva, a high-quality dataset
with 15,000 annotated instances, designed to
alleviate data scarcity in this domain.

» Extensive experiments demonstrate the effec-
tiveness of CTEG in capturing expression
diversity, naturalness, and emotional consis-
tency, establishing a strong baseline for future
research in this field.

2 Related work

Speech-driven Emotional Avatar Synthesis.
Extensive research has been conducted on the
synthesis of 3D talking heads (Richard et al.,
2021; Ji et al., 2021; Papantoniou et al., 2022;
Fan et al., 2022; Chu et al., 2018; Zhang et al.,
2023b; Liu et al., 2024), most of which are speech-
driven—generating lip-synced facial animations
from audio input. These works generally overlook
the modeling of facial expressions.

Recently, some approaches have started to in-

tegrate emotional context into the generation pro-
cess (He et al., 2024). EMOTE (Danecek et al.,
2023) addresses this by controlling expressions
with single emotional labels, but the limited cat-
egories do not capture the full range of human
emotions. Conversely, EmoTalk (Peng et al., 2023)
and LaughTalk (Sung-Bin et al., 2024) extract tonal
emotional features from speech to guide avatar syn-
thesis similarly to talking head tasks. Complemen-
tary to these approaches, our method explores text
as the sole source of emotional input since textual
dialogue inherently conveys rich affective informa-
tion and is more abundantly available than other
modalities (Narayanan et al., 2009).

Text-Driven Human Motion Generation. Text-
based human motion generation has significant
applications in areas such as gaming and virtual
reality. Much of the existing research in this do-
main focuses on generating sequences of human
body movements (Zhang et al., 2023a; Jiang et al.,
2023). In contrast, relatively little attention has
been paid to text-driven human facial expression
generation (Ng et al., 2023; Jung and Kim, 2025).

Our approach is most closely related to the re-
cent work LM-Listener (Ng et al., 2023), which
focuses on generating listener motions. In con-
trast, we concentrate on the more diverse and com-
plex expressions of speakers. While LM-Listener
employs a VQ-VAE-based framework, the use of
discrete modeling and a constrained latent space
may limit its ability to maintain temporal coher-
ence and capture the full range of speaker-driven
facial dynamics. In comparison, our method adopts
a CVAE framework, whose structured continuous
latent space is better suited for modeling the fluidity
and expressiveness of facial behaviors.

3  Our Approach

3.1 Task Definition

Given a text input X, our system gener-
ates a sequence of expression vectors ¥ =
{Eo,E1,...,Ep} over T time steps. The expres-
sion vectors are derived from 3D Morphable Face
Model (3DMM) frameworks (Cao et al., 2014;
Blanz and Vetter, 1999; Ng et al., 2023), which
parameterize facial geometry in a compact and in-
terpretable form. Among various 3DMMs, we fol-
low Ng et al. (2023) and adopt the widely used
FLAME model (Li et al., 2017), denoted as F.
Specifically, FLAME defines the parameter set



Previous Inference _ _ > g. %‘ “.%, ?l
Layer Only
@ Concat @ E,

Add

Llnear Llnear
Pretrained

Text —> Language —— 2 = AL )

Model ¢ Add & Norm \I

1
1 FFN 1
! 1
[ 1
: Add & Norm 1
1
: Cross Attentlon :
1 AV AK AQ 1
————————————— 1 1
l/' Ef ) B/ N ! %{ """ & ]
y EEEEEEEETT) H Py Q. !
! 1 1 1
i Linear  Linear ; d i
! ! ! I ! Add & Norm 1
i V¥ K ©Q ! { i !
! Cross Attention 1 1 Latent Temporal 1
I | 1 1 Attention 1

1

1 Add & Norm : : :
| 1 ! Add&Norm <« !
: PI’OJeCtIOn Layer Ew, AI :CVAD T 1
1 4 §3.3 I 1§ Cross Attention :
u ! AV AK AQ
Ne i _______ J T Ve 1
! Add & Norm 1
Projection Layer : i a
PEY | Masked Multi- :
@—@ I Head Attention i
A A A

________________

Figure 2: Architecture of the Continuous Text-to-
Expression Generator (CTEG). Given a text, the model
autoregressively generates a sequence of expression
vectors. The green block and pink block represent
the proposed Expression-wise Attention (EwA) module
and the core Conditional Variational Autoregressive De-
coder (CVAD) module, respectively.

F = {B,Av,0,0,9}, where 5 denotes shape,
Awv represents vertex offsets, o is global translation,
O denotes joint poses, and ¢ captures expression-
related deformations. FLAME decouples expres-
sion from the shape and other identity-related fac-
tors, allowing us to directly regress the expression
parameters 1) € R in an identity-agnostic manner,
where d (53 in this paper) denotes the dimension
of the expression space.

3.2 Opverall framework

The overview framework of the CTEG model is
shown in Figure 2. CTEG primarily consists of
the Expression-wise Attention (EwA) block at the
encode side, and the Conditional Variational Au-
toregressive Decoder (CVAD) block at the decode
side. From the perspective of architectural design,
the EwA module serves as a feature enhancement
module, while the CVAD functions as a hybrid of
a CVAE (Sohn et al., 2015) and a transformer de-
coder (Vaswani et al., 2017). Technically, we adopt
such an architecture for the following advantages.
1) CVAE is beneficial for maintaining a smooth
spatial distribution due to its nature of modeling

in continuous space (Kingma and Welling, 2014;
Sohn et al., 2015), which may help to model ex-
pression fluidity. 2) Transformer decoder excels at
modeling the long-range dependencies between se-
quences (Vaswani et al., 2017), which may help to
model the emotion-content consistency. 3) Due to
the richness of the facial expression sequence, even
within a single time step, facial expressions have
countless variations. The Variational Autoregres-
sive Decoder (VAD) may facilitate the modeling of
diverse, time-varying sequences (Du et al., 2018).
Given a text x as input, CTEG generates a sequence
of expression vectors 1) autoregressively.

3.3 Expression-wise Attention Module

In the input part, we introduce EwA to establish
connections between facial units and enhance the
richness of the input expression in the feature
space. This guides the subsequent CVAD mod-
ule to capture different and rich patterns and struc-
tures, thereby improving the overall diversity of the
model’s generation results.

The expression vector E is constructed by con-
catenating two components: the jaw part E/ and the
above-jaw part E/. Intuitively, these two parts are
not independent of each other because human fa-
cial units function as a whole. For example, when a
person laughs heartily, the jaw controls the opening
of the mouth. To establish a connection between
them, we first use a projection layer to map the raw
expression vector to a latent space. Then we let the
transfered E as the query, and let the transfered
E/ as the key and value, feeding them into a cross
attention module (Vaswani et al., 2017). After that,
we apply dimensionality reduction to the output of
the attention module and obtain E/' € RI¥’l. The
final recombined 3D expression codes E' € RIEl
are represented by: E/ = Concat(E/ E/ + E/').
Then we project it into a high dimension d,;,p4¢;. In
order to capture the order of expression sequence,
we add the Positional Embeddings (PE) to the out-
put of the EwA module. Specifically, we adopt the
sinusoidal version positional encodings introduced
in Vaswani et al. (2017).

3.4 Conditional Variational Autoregressive
Decoder

Given a text x as input, an expression se-
quence 1 as output, CVAE is to maximize
the conditional log-likelihood log p(1|x). To
better capture temporal dynamics, we model
the conditional probability distribution at each
time step. Formally, the log-likelihood in our



method is log Hle p(Yy | <, x), rather than
log p(vo,... 7 | x). To enhance the emotion-content
consistency, we explicitly model the historical
states of the latent variables. The resulting gen-
eration model can be formulated as:

p(¥ | 2,x) = [T/_, p(tr | Y<t, 24, %)

= Hf:l P(¢t ’ ht, fC(Z<t)7 X) )
where f, is the Latent Temporal Attention (LTA)
module, implemented by the masked multi-head
attention (Vaswani et al., 2017). 2.

Intuitively, we assume the prior distribution Fy
and conditional distribution ()4 to be multivariate
Gaussian distributions:

Q¢(Zt | wﬁtv X) = N(p‘r(wﬁtv X)7 O.T‘(wﬁtv X)) )

Py(zt | <t %) = N (pp(P<t, %), o'p(l/}<tax))(-2)
The two Gaussian distributions are parameterized
by two neural networks respectively:

[r, ov] = [1](0), hi(0)],

[p, op] = [h};(0), hy (0)], 3)

0= Amask[A(wSM X) )
where h denotes a linear layer, A,,.sx and A de-
note masked attention module and cross attention
module, respectively. As sampling z; from two dis-

tributions is non-differentiable, we employ the repa-
rameterization trick (Kingma and Welling, 2014):

z = it + 0t O e, e ~ N(0,I), “4)

z; is drawn from Q4(2z¢ | ¥<¢, X) in the training
stage, while drawn from Py(z; | ¥'<¢,x) in the in-
ference stage. After we obtain the sampled z;, we
learn the second conditional generation distribution
Py(Yy | <t,24,x). Similarly, we assume the dis-
tribution a multivariate Gaussian distribution, the
mean [, can be parameterized by the following
generation network:

uz = FFN(Concat(A(01),.A(02), ..., A(07))) ,

A0;) = A((Y<t + Z<t)W¢Q, xWH,xw), )
where [ is the number of cross attention heads. FFN
is the position-wise feed-forward network.

Note that the CVAD module can be stacked mul-
tiple layers deep, where the input of the first layer
comes from the EwA module, and the input of each
subsequent layer comes from p, obtained by the
previous layer. Specifically, the input at layer m is
sampled from A(p7" !, o). For simplicity, we pa-

ey

We also try another simple model, the details can be found
in the Appendix C

rameterize only 1, and set the o of the generative
distribution to a matrix where all entries are equal
to 1. Finally, we sample the predicted expression
codes in time step ¢ using the reparameterization
trick again: Uy = uzl’t +€,¢ ~ N(0,I). Our loss
function of CVAD is as follows:

Lovap =Y Lrec(r, ) + Y Lir(t), (6)
t t

where L. is the mean squared error (MSE) loss,
and the corresponding Kullback-Leibler (KL) di-
vergence term is defined as follows:

Lrr(t) =KL <Q¢(Zt | Y<t, %)

| Polo | e ). (D)
3.5 Target Guided Loss

Despite the excellent performance, CVAD is known
to suffer from a notorious issue referred to as model
collapse (Fu et al., 2019; Yang et al., 2017). When
this happens, the KL divergence term in the loss
function becomes very close to zero, and the latent
variable may be ignored by the decoder.

Some works have proposed various methods to
mitigate this issue (Fu et al., 2019; Yang et al.,
2017; Du et al., 2018). Among them, the most
common approach is to adjust the weight of the
KL term during the training process. However,
this method requires carefully selecting parameters
based on the specific training process of models,
which is time-consuming when the dataset is very
large or the model is very large. To this end, we
design a simple yet effective loss function £, to
guide the latent variables to learn a meaningful
structure. In this way, the latent variables may
guide the autoregressive model in its generation
process, thereby preventing the model from directly
ignoring the latent variables. Formally,

ﬁg == Zﬁrec(d}h f’y(ot» ’
t

N. (8)
o, = » FFN;(z%,),
i=1

where f, is a linear projection layer, N, is the
number of the CVAD layers.

3.6 Details of Training and Inference

The total loss function of CTEG is:

»Ctotal = ['CVAD + »Cg s (9)
We freeze the pretrained language model parame-
ters during training and update the remaining pa-
rameters using the backpropagation algorithm. We
use the teacher forcing (Williams and Zipser, 1989)



Dataset #Train  #Validation #Test Multi-person?
Ngetal. (2023) 2,366 222 543 X
EmoAva 12,000 1,500 1,500 v

Table 1: Comparisons of text-to-3D expression datasets.
EmoAuva is significantly larger and more diverse, featur-
ing characters from over 100 screen productions.

approach to train in parallel for speed, but decode
the expression codes sequentially during the infer-
ence phase. Adam (Kingma and Ba, 2015) opti-
mizer is adopted here. We train 100 epochs with
the maximum expression sequence length 256 and
maximum sentence length 128. We set the warm-
up steps warmup = 4000 and adopt the same learn-
ing rate scheduler in Vaswani et al. (2017):

Ir=d?%% . min(step_0'5, step - warmup

—-1.5
model ) .

(10)
Additionally, we also employ residual connection
(He et al., 2016) and layer normalization (Ba et al.,
2016) throughout our architecture, as detailed in
Figure 2. The number of heads in all our attention
modules is set to 12. The inner hidden dimension
for the FFN model is 2048. Following Ghosh et al.
(2021), we adopt the pretrained language model
BERT(Devlin et al., 2019) to obtain meaningful
sentence embeddings. Specifically, the last hidden
state of bert-base-cased is used here. Both the text
embedding and the expression embedding share
the same feature dimension d,,,qe; = 768. We
only use one single CVAD layer in this paper (i.e.,
N, = 1). More details about model analysis can
be found in the Appendix C.

To ensure smoothness in the predicted sequences,
an average expression—computed as the mean of
all expression parameters in the training set—is
prepended to each sequence. We treat an expres-
sion with all parameters set to zero as a terminator,
referred to as the “standard” face. Since sampling
in a continuous space differs from discrete space
sampling in language models, optimizing a sin-
gle point in continuous space as a terminator is
more challenging. One straightforward approach
involves setting a threshold (e.g., 1.0) during the
inference phase, stopping when the predicted ex-
pression is very close to the "standard" face based
on the Euclidean distance. We further employ a
length-constrained decoding method by setting a
maximum sequence length (MSL).

4 EmoAva Dataset

We expect each instance in EmoAuva to include a
piece of text to be spoken, and a corresponding

( What the hell are you ... ?

Figure 3: Samples from EmoAva dataset. Each instance
includes a textual dialogue spoken by an actor, a corre-
sponding head video, and a sequence of 3D expression
vectors (here visualized in 3D mesh).

sequence of 3D expression vectors, as illustrated
in Figure 3. To construct this data, we first gather
a large number of video clips from TV series and
movies with dialogues. We consider two existing
data sources for multimodal emotion analysis task,
MELD (Poria et al., 2019) and MEMOR (Shen
et al., 2020), both of which consist of television
show segments. Besides these, we also gather
numerous video clips from YouTube. A total of
21,390 such raw clips are collected, all in English.

We apply various preprocessing methods. A
brief overview is provided below, with details in
the Appendix A. We employ WhisperX (Bain et al.,
2023) to transcribe the audio, resulting in the corre-
sponding text and timestamps. Afterwards, we cut
the videos via the timestamps, creating dialogue
video segments corresponding to the texts. To ob-
tain clean headshot segments for each speaker, we
develop a two-stage speaker localization pipeline.
Specifically, we first apply FaceNet (Schroff et al.,
2015) for automatic face tracking. To handle the
challenges posed by complex visual scenes—such
as multiple characters in a single frame or fre-
quent speaker switches—we further perform man-
ual refinement to ensure accurate speaker segmen-
tation. After obtaining the head-videos, we adopt
a 3D face tracking model EMOCA-v2 (Danecek
et al., 2022) to extract the 3D expressions from 2D
videos.

We collect a total of 15,000 text-to-expression
pairs. A comparison with existing dataset is shown
in Table 1. The dataset contains 782,471 FLAME
frames. Among the 15,000 pairs, 2,270 exhibit



a one-to-many (1-to-N) relationship—where N
ranges from 2 to 76.

5 Experimental Setup

5.1 Evaluation Methods

As introduced in Section 1, our system aims to gen-
erate a sequence of expressions that are diverse,
fluid, and consistent with the conveyed emotional
content. To evaluate this, we adopt several eval-
uation metrics from prior studies and introduce
additional fine-grained evaluation criteria. The cal-
culation formulas for the following metrics are pre-
sented in the Appendix D.

Diversity measures the diversity of generated se-
quences without text as conditions (Zhang et al.,
2023a). We randomly sample N/2 sequence pairs
and calculate the average Euclidean distance be-
tween the expression vectors.

Multimodality (abbreviated as MModality)
measures the diversity of text-conditioned re-
sults (Zhang et al., 2023a). We generate two
expression sequences per text and compute their
average Euclidean distance.

Variation measures the diversity of a sequence
as it changes over time (Ng et al., 2023).

Fine-grained Diversity (abbreviated as FgD)
quantifies the subtle temporal fluctuations within
facial expression sequences that are not fully
captured by existing diversity metrics like Vari-
ation (Ng et al., 2023). While Variation mea-
sures overall sequence diversity over time, FgD
focuses specifically on the average Euclidean dis-
tance between adjacent frames to capture rapid,
fine-grained changes in expressions.

Diversity on Test (abbreviated as DoT) measures
the diversity of the expression sequences generated
from the test set texts from a macro perspective.

Continuous perplexity (abbreviated as Cppl)
evaluates how naturally an expression sequence
evolves over time, reflecting the smoothness of
the expression sequence and the uncertainty in a
model’s predictions. Contrary to the traditional dis-
crete perplexity metric (Jelinek et al., 1977), Cppl
is computed in continuous space.

Consistency assesses the extent to which the ex-
pressions accurately represent the emotions that
would naturally correspond to a given utterance.
Due to the absence of precise automatic tools to
evaluate this alignment, we rely on human evalua-
tion following Zhang et al. (2023a).

5.2 Experimental Settings

We mainly utilize the EmoAva dataset to validate
the CTEG. We also conduct experiments on ex-
isting listeners’ dataset (Ng et al., 2023) for refer-
ence in the Appendix C. The parameter settings
of CTEG are detailed in §3.6. For each compar-
ing method, we randomly sample 50 sentences
from the test set and generate the corresponding
expression sequence with a maximum length of
128. As mentioned in §5.1, there are currently no
suitable quantitative metrics for emotion-content
consistency evaluation. Instead, we adopt percep-
tual experiments following Guo et al. (2022). Each
sample is rendered as an avatar video at 24 frames
per second and shown to five participants. The par-
ticipants are instructed to rank the outputs based
on the emotional consistency between the facial
expressions and the corresponding text.

5.3 Baselines

LM-Listener. To the best of our knowledge, this
is the only open-sourced method applicable to the
text-to-3D expression task (Ng et al., 2023). We
implement the model with their released code, with
most parameters kept unchanged. To ensure a fair
comparison and obtain diverse outputs, we use top-
p sampling (fop-p=0.8) instead of greedy search.

Shuffle. Each expression sequence is randomly
shuffled along the temporal axis to rigorously test
the model’s sensitivity to temporal coherence and
expression fluency.

Random. Following Ng et al. (2023), we also
randomly select expression sequences from the
training set to assess the model’s ability to model
the emotion-content consistency.

6 Experimental Results

6.1 Main results

As shown in Table 2, CTEG outperforms the base-
lines across all diversity metrics by a large margin.
We also visualize the diversity of expressions gen-
erated by CTEG in Figure 10 and 12 (Appendix).
We randomly sample four sequences of expressions
given a text. These examples demonstrate that the
generated expressions exhibit a rich diversity.
Figure 4 illustrates an evaluation of user prefer-
ences. Participants are instructed to rank the expres-
sions according to how well their emotions aligned
with the input text. Compared with the random
setting, LM-Listener, and CTEG, we find that the
user preference for CTEG is higher than that of the



Cppl | DoT — FgDh — Diversity 1 MModality 1 Variation —
GT / 9.24 1.26 / / 0.28
Shuffle 9.90e6 / / / / /
LM-Listener (Ng et al., 2023)  / 7.99 1.04 + 0.0039 7.01 £0.0736 6.40 £ 0.0662 0.32 £ 0.0048
CTEG (M SL = 256) 262.19 9.96 1.22 £0.0020 8.18 +£0.0508 9.35 + 0.0430 0.72 %+ 0.0055
CTEG (M SL = 64) / 8.91 1.22 £+ 0.0021 7.75 + 0.0535 8.48 £ 0.0485 0.31 + 0.0059

Table 2: Main Quantitative results. CTEG significantly outperforms the LM-Listener across four diversity metrics
and achieves notably lower perplexity compared with the Shuffle setting. | indicates that a lower value is better
while 1 suggests that a higher value is preferable. — indicates that the closer the value is to the G7, the better. /
indicates not applicable. The standard error is estimated through bootstrap resampling with 1, 000 iterations.

Cppl | DoT — FgD — Diversity T MModality T Variation —
GT / 9.24 1.26 / / 0.28
w.0. EwA 205.65 6.97 1.14 £+ 0.0018 6.07 £ 0.0246 6.55 £+ 0.0293 0.40 + 0.0025
w.o. LTA 243.57 8.60 1.20 £ 0.0030 7.58 + 0.0484 8.01 £+ 0.0671 0.58 £ 0.0062
w.o. Lg 646.34 7.67 1.83 £ 0.0014 6.81 4+ 0.0268 7.30 4+ 0.0256 0.38 £ 0.0017
CTEG 262.19 9.96 1.22 4+ 0.0020 8.18 4+ 0.0508 9.35 4+ 0.0430 0.72 + 0.0055

Table 3: Quantitative results on the ablation study. CTEG model achieves the best overall performance compared
with other settings. More in-depth experiments are provided in the Appendix C.

O Most preferred

O Least preferred

Q\Q
Q'be
Figure 4: A quantitative evaluation of user preferences
regarding emotion-content consistency. The color bar
from blue to red indicates preference levels from lowest
to highest. Expressions from CTEG better match text

emotions than those from baselines.

other two methods. This indicates the effectiveness

of CTEG in modeling emotion-content consistency.

From Table 2, we observe that the Cppl metric
for the shuffle setting is several orders of magnitude
higher than that of the normal sequences, indicating
CTEG’s high sensitivity to the expression sequence
order. The lower Cppl value confirms CTEG’s
effectiveness in modeling expression smoothness.

6.2 Ablation Study

We conduct a quantitative experiment on three key
components (i.e., EWA module, LTA module and
L loss function) in CTEG model. As shown in
Table 3, removing the EwA module results in a

1.4
—e—w.0. L,

w. Lg

12
1.0
0.8
0.6

KL Term £ k1, (t)

0.4
0.2

10 15 20 25 30 35

Training Steps
Figure 5: The effect of £, loss (Eq. 8) on the KL term

in Eq. 6. L, loss mitigates the rapid decrease of the KL
term and prevents it from approaching zero.

40 45 50 55

significant drop in the four diversity metrics (DoT,
FgD, Diversity, and MModality). This indicates
that the EwA module makes a substantial contribu-
tion to the diversity of the generated sequences.

From Table 3 and Figure 4, we can observe that
removing the LTA module results in a decrease
in emotion-content consistency compared with the
full CTEG model. This highlights the importance
of the LTA module and supports the assumptions
of our method. As shown in Table 3, after remov-
ing the Lg loss function, only the Variation value
shows improvement, while the performance of all
other metrics declines. This indicates that remov-
ing the Lg loss function leads to a drop in the over-
all performance of CTEG, and also reflects a weak-
ened fitting ability of CTEG. These experimental
results indicate that the £, loss function effectively
mitigates this issue, enhancing the model’s gener-
alization ability and overall performance.
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Figure 6: Qualitative analysis of the comparative results on emotion-content consistency. Our model demonstrates
better consistency compared with the SOTA approach (LM-Listener).  represents the possible emotions conveyed

by our results. More results are shown in the Figure 11.

6.3 Discussion

How does the L, loss proposed in CTEG effec-
tively mitigate the model collapse problem? As
shown in Figure 5, we plot the changes in the KL
term in the loss function (Eq. 9) as the training
steps progress. It can be observed that after remov-
ing Lg, the KL term quickly drops and approaches
zero, whereas with Lg, the KL term decreases more
gradually, and the curve remains consistently above
that of the w.o. L, setting as the training steps in-
crease. This phenomenon provides indirect support
for the hypothesis proposed in §3.5.

Why does CTEG demonstrate stronger gen-
erative diversity in emotion? To understand why
CTEG shows stronger diversity, we randomly sam-
ple from the latent space of CVAD and visualize
the latent variable distribution (Figure 7). CTEG
models more pattern clusters (146), a 29% increase
compared to the w.o. EwA setting. This confirms
that the EwA module enriches input features, re-
sulting in a more diverse latent space in CVAD.
The latent variables capture more varied patterns,
which improves the diversity of generated outputs.

Figure 7: Comparison of latent variable distributions in
the CVAD latent space. The w.EwA model (right) cap-
tures a broader range of generative modes (146 clusters)
than the w.o. EwA model ( 113 clusters). This indicates
that the EwA module enriches the feature space, en-
abling CVAD to model more diverse emotional patterns.

7 Conclusion

This paper proposes a novel end-to-end text-to-
expression model, CTEG, which captures expres-
sive variations in a continuous latent space, en-
abling the generation of diverse, fluid, and emo-
tionally consistent facial expressions. To support
this task, we construct EmoAva, a large-scale and
high-quality dataset consisting of 15,000 instances.
Extensive experiments demonstrate that CTEG sig-
nificantly outperforms existing baselines across
multiple aspects, paving the way for more emo-
tionally aware digital humans.



Limitations

Limited language coverage. Currently, the
EmoAva dataset is limited to English due to re-
source constraints. Building a comprehensive mul-
tilingual text—expression dataset is inherently chal-
lenging, but we view it as a promising future direc-
tion. In the Appendix, we detail our data collection
pipeline, which we hope will serve as a foundation
for future expansion and community collaboration.
Although human languages are diverse, emotional
expression is largely universal. This motivates us
to extend our work toward multilingual emotional
expression modeling in future iterations.

Limited personalization or identity adaptation.
CTEG is identity-agnostic by design, aiming to
model generalizable human emotional states across
speakers. This design choice facilitates broader
generalization but does not account for person-
alized expressive styles or speaker-specific traits.
While personalized expression generation is an ex-
citing future direction, we believe that building a
strong foundation for modeling universal emotional
patterns is a necessary first step—one that our work
aims to establish.

Ethical Considerations

Annotator compensation. We employed three
crowd-sourced annotators, all of whom are under-
graduate students with strong English proficiency.
They were compensated at an approximate rate
of $10 per hour, which aligns with standard local
compensation for similar tasks.

Copyright and privacy. We provide two licens-
ing options for the dataset (detailed in A.1), defin-
ing the conditions under which it may be accessed
and used. The original video materials used to
construct the dataset are sourced from publicly
available television series, and their copyrights re-
main with the respective rights holders. In addi-
tion, the facial features extracted for our model
are identity-agnostic, meaning they do not retain
personally identifiable characteristics of the actors.
This serves as a form of de-identification, helping
to preserve the portrait rights and privacy of the
individuals appearing in the video content.
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In this appendix, we present the following
parts. Section A: more details about the EmoAva
dataset. Section B: supplementary related work
about dataset. Section C: in-depth analysis about
CTEG. Section D: details and formulas of some
evaluation metrics. Section E: additional visualiza-
tion results.

A More Details about EmoAva Dataset

Details of the dataset construction and license are
provided here. All processing code and the dataset
will be made available via the provided anonymous
GitHub repository.

A.1 License

We will provide two separate licenses for the
dataset: one for the video files and another for the
3D expression code. The latter is directly relevant
to the task presented in this paper and will be re-
leased under the CC BY-NC 4.0 license. The video
data, however, involves copyright considerations
related to film and television content. Since such
data can benefit a broader range of tasks beyond
our primary focus, we plan to release it under a
more restrictive license. We have consulted legal
experts regarding the conditions for releasing this
type of data. The full licensing documentation will
be made available in our GitHub repository.

A.2 Construction Pipeline

The dataset construction pipeline is shown in Fig-
ure 8. Given a raw video that may contain multiple
people and varying shots, our goal is to extract a
single talking-face video with a fixed camera view,
and then extract 3D coefficients.

To achieve the first step, we need to segment
each raw video both spatially and temporally. Spa-
tial segmentation involves isolating the talking face
from multiple possibly co-occurring faces, while
temporal segmentation involves extracting a con-
tinuous shot, typically where a person is speaking
a complete sentence or segment.

Specifically, for a raw video, the audio is ex-
tracted and transcribed using speech recognition
and ASR models (i.e., whisperX) (Bain et al.,
2023), to obtain timestamps and textual content.
These timestamps typically correspond to com-
plete utterances by individual actors. Utilizing
these timestamps, we segment the raw video tem-
porally, effectively achieving time-based segmen-
tation. Spatial segmentation, however, presents a
more complex challenge.
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Figure 8: Pipeline for constructing the EmoAva dataset.

EmoAva Statistics
# Train set 12,000
# Valid set 1,500
# Test set 1,500
# Dataset Total 15,000
Average sentence length 14
Average expression steps 52
Total frames of all expressions 782,471
# One-to-many instances 2270
# Expressions exceeding 256 frames 184

Table 4: Statistics of the EmoAva dataset.

To our best knowledge, no current method can
reliably identify the speaking face among multiple
faces in a frame. For the videos lacking speaker
identity information, we exclude frames containing
multiple detected faces. The construction algo-
rithm involves multiple Al-based models, none of
which can guarantee 100% accuracy. To ensure the
quality of the dataset, we perform a manual check
on the segmented videos. This process achieves
our initial objective. After obtaining the segmented
videos, we employ the widely-used FLAME track-
ing model EMOCA v2 (Danecek et al., 2022), to
extract 3D coefficients. Following this, we conduct
a manual check on the final instances to ensure
their accuracy and quality.

In conclusion, we proposes a semi-automated ap-
proach that leverages several algorithms to generate
large-scale instances. In this framework, human
annotators are primarily tasked with verifying the
algorithmic outputs and eliminating low-quality in-
stances, thereby significantly enhancing efficiency
and scalability.

A.3 Guidelines for Human Annotation

To maintain the data quality, we perform manual
checking. Specifically, we employ three annotators
to remove low-quality instances, where the criteria
are as follows: 1) The face should be clearly visi-
ble, without obstructions like masks or sunglasses.



2) The actor’s facial expression changes should be
continuous (i.e., no scene cuts). 3) The actor should
complete their sentence without being abruptly cut
off. 4) There should be only one person in the video
from start to finish. 5) The text should match what
the actor is saying. 6) The avatar expressions (mesh
format driven by tracked vectors) align with those
in the corresponding videos. We determine whether
to drop data samples through independent annota-
tion by the three annotators, followed by a majority
vote on the results. After annotation, we calcu-
late the Fleiss’ kappa score (Fleiss et al., 2013),
achieving a value of 0.86. This indicates minimal
disagreement among the annotators, reflecting the
high quality of the dataset’s annotations.

A.4 Ciriteria for Collecting the Raw Videos

Crucially, manual screening is necessary when se-
lecting television show segments from the internet
(i.e., YouTube). First, we need to avoid cartoons
or fantasy genres that do not feature real human
faces. Second, we must steer clear of videos that
may contain violence, gore, or explicit content that
is not appropriate for mainstream audiences.

A.5 Dataset Insights

We randomly partition all instances in the train-
ing set into three subsets: training/validation/test
sets, comprising 80%/10%/10% of the total, re-
spectively. We provide a brief summary of the
key characteristics of the EmoAva dataset in the
following and in Table 4.

Large-scale and High-quality. To ensure data
quality, we employ SoTA methods at every stage of
the dataset preprocessing algorithm. Additionally,
we manually check and remove the expressions
that lack fluidity or do not consistently match the
emotions expressed in the text. As a result, our
dataset comprises 15,000 text-3D expression in-
stances and a total of 782,471 FLAME frames.

Diverse Mapping. In a dataset of 15,000 text-
expression pairs, there are 2, 270 instances with a
1-to-N relationship (where N ranges from 2 to 76),
accounting for over 15%.

Diverse Expressions. EmoAva comes from a di-
verse range of sources and scenarios, i.e., including
over 100 movies and more than 5 TV shows, thus
resulting in a wide variety of expressions.
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Diverse Emotion. Expressions exhibit a good di-
versity of emotions, including Happy, Sad, Neutral,
Disgust, Fear, Surprise, and Angry.’

Rich and Varied Emotions. The emotions
within a single sequence are also quite diverse, ex-
hibiting significant variability. The proportion of
expressions containing two or more types of emo-
tions exceeds 95%.

Highly Scalable. The dataset includes raw
videos, raw audio files, and a semi-automated con-
struction algorithm, facilitating the extension to
additional modalities and tasks.

B Supplementary Related Work

3D Avatar Head Dataset. This work also closely
relates to the development and use of 3D Avatar
Head Datasets. Numerous benchmark datasets (Yin
et al., 2006; Cudeiro et al., 2019) exist within the
community, but there is limited focus on bench-
marks for emotion-aware dynamic 3D avatars. Cur-
rent dynamic 3D avatar benchmarks typically lack
language signals (e.g., text or speech) (Cosker et al.,
2011; Ranjan et al., 2018; Zhang et al., 2013), a
gap our research aims to fill.

To achieve Emotion-Content Consistency, an
ideal 3D face dataset pairs each text instance with
corresponding facial expression sequences as the
text is articulated. Existing datasets (He et al., 2024;
Zhang et al., 2016) often fall short, requiring an-
notators to read sentences with preset emotions,
thereby ignoring the text’s intrinsic emotional con-
tent. Notably, the MovieChat (Chu et al., 2018)
dataset also includes 3D expression sequences. Un-
fortunately, they only release FACS muscle fea-
tures, which can not reconstruct realistic facial de-
tails and significantly diverge from the current re-
search framework.

To overcome this, we collect 2D video clips of
actors’ dialogues from various films and TV scenes,
closely mirroring real conversational scenarios with
consistent emotion-language alignment. We then
use the SoTA FLAME tracking approach to extract
3D expression codes and meshes from 2D videos.

Talking Head Video Datasets. As introduced
before, our goal is to collect videos of talking faces
that exhibit rich, emotionally varied expressions in

The statistical analysis is performed using a widely
used emotion recognition framework DeepFace (Serengil and
Ozpinar, 2021).



naturalistic conversational settings. Several exist-
ing datasets are relevant, including those from the
talking head synthesis (Wang et al., 2021; Chung
et al., 2018; Rossler et al., 2019), multimodal emo-
tion analysis (Shen et al., 2020; Poria et al., 2019),
and text-video modeling (Yu et al., 2023).

Among these, we find MELD (Poria et al., 2019)
and MEMOR (Shen et al., 2020) to be the most suit-
able, as they are constructed from television show
segments and contain real conversational dynamics
with reasonably expressive faces. However, both
datasets have notable limitations: they include only
a small number of speakers, and their overall data
scale is limited, which restricts their usefulness for
training expressive generation models that aim for
generalization and diversity.

In contrast, other commonly used datasets
present further issues. For example, many talking
head synthesis datasets involve individuals speak-
ing directly to the camera with monotonous, emo-
tionally flat expressions, lacking the nuanced varia-
tions seen in real social interaction. Additionally,
several recent datasets collect videos from short-
form content platforms (e.g., TikTok), but such
self-recorded clips are often inconsistent in both
expressive quality and visual fidelity, making them
suboptimal for fine-grained expression modeling.

Based on this analysis, we find that movies and
TV shows offer the most suitable source material,
as they combine diverse emotional content, high
production quality, and natural dialogue. To ad-
dress the limitations in scale and speaker diver-
sity of MELD and MEMOR, we construct a new
dataset, further augmenting it with high-quality
conversational clips sourced from YouTube. This
hybrid strategy ensures a more scalable and emo-
tionally rich dataset for expressive facial behaviors.

C In-depth Analysis of CTEG

In this section, we present more experimental re-
sults about the analysis of CTEG. Specifically, we
investigate the following aspects:

% Q1: How does CTEG perform when evaluated on the
LM-Listener dataset?

% Q2: Should the projection layer be shared between
the input and the output of the CVAD module?

% Q3: Can the attention mechanism in the LTA module
be replaced with a simpler average pooling operation?

% Q4: Should the weights of the pretrained language
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L2y FD | Variation — P-FD |
GT / / 0.11 /
LM-Listener 0.43+0.02 18.22+£0.70  0.116 & 0.005 19.63 + 0.80
CTEG 0.37+£0.03 16.924+1.20 0.114+0.007 16.5540.90

Table 5: Quantitative results on the LM-Listener dataset.

model (i.e., BERT) be fixed?

* QS5: Does increasing the number of CVAD layers
yield better performance?

C.1 More Details and Experimental Settings

We make several variants of CTEG in this paper.
w. sharing refers to the model that shares the pro-
jection layers between the input and output of the
CVAD module. Compared with it, CTEG does
not share the projection layers. Based on w. shar-
ing, we also test the performance of two variants,
w. pooling and w. BERT fine-tuning. Compared
to w. sharing, w. pooling modifies the LTA mod-
ule by replacing the attention operation with an
average pooling operation (i.e., averaging the la-
tent variables from time steps 1 to s for time step
s). Compared to w. sharing, w. BERT fine-tuning
involves fine-tuning the BERT model during the
training process, while the former fixes the weights
of BERT. In addition to these, we also provide the
performance of the ground truth (GT) on certain
metrics for reference.

Our system is lightweight, with a total parameter
count under 130M. All experiments in this paper
are conducted on a single NVIDIA A100 GPU.

C.2 Results and Analysis

» Q1: How does CTEG perform when evalu-
ated on the LM-Listener dataset?

We conduct a comparative experiment on the
dataset used in Ng et al. (2023), following exactly
the same evaluation settings. The results are pre-
sented in Table 5. As shown, CTEG consistently
outperforms the LM-Listener model across all met-
rics, demonstrating its strong regression capability
in the text-to-expression generation task.

Notably, we do not apply our proposed evalua-
tion metrics to their dataset due to a fundamental
mismatch in data characteristics. Specifically, their
dataset lacks one-to-many mappings and includes
only a single character. As a result, it does not
account for emotional diversity—each input text
corresponds to only one facial expression.

» Q2: Should the projection layer be shared



Cppl | DoT — Fgbh — Diversity 1 MModality 1 Variation —
GT / 9.24 1.26 / / 0.28
w. sharing 241.28 8.53 1.27 4+ 0.0032 7.16 £+ 0.0436 8.01 + 0.0292 0.53 4+ 0.0027
w. pooling 300.10 7.89 1.30 + 0.0102 3.17 £ 0.0225 6.47 £+ 0.0605 0.32 + 0.0052
w. BERT fine-tuning 249.14 6.28 1.10 4+ 0.0022 6.29 £ 0.0552 6.28 4 0.0399 0.60 4= 0.0063
CTEG 262.19 9.96 1.22 4+ 0.0020 8.18 + 0.0508 9.35 + 0.0430 0.72 4 0.0055

Table 6: Quantitative results on some variants of CTEG. Lower values (|) and higher values (1) are preferred, while
values closer to the Ground Truth (GT) are indicated by —. The standard error is estimated through bootstrap

resampling with 1000 iterations.

between the input and the output of the CVAD
module?

As shown in Table 6, w. sharing achieves
the best results on the Cppl, DoT, and FgD
metrics. The Variation also outperforms CTEG
(w.o.sharing), but the Diversity and MModality met-
rics are lower than those of CTEG. Upon closer
inspection, we find that the improvements in the
Cppl and DoT metrics under the w. sharing set-
ting are minimal. The difference between CTEG
and GT for the DoT metric is 0.72(9.96 — 9.24),
while the difference between w. sharing and GT is
0.71(9.24 — 8.53). One possible explanation for
this phenomenon is the constraint on the generated
vector space introduced by sharing the input and
output mapping layers, which reduces diversity and
yields metrics similar to those of GT.

Although w. sharing closely approximates GT
on some metrics, we still remove the sharing opera-
tion in CTEG. The reason is that GT metrics serve
only as reference values, and there are inherent
differences between the test set used to compute
GT and real-world data. Therefore, we can not use
GT metrics (i.e., DoT, FgD, and Variation) as the
sole criterion for evaluating the quality of our meth-
ods. In contrast, the performance of w. sharing on
Diversity and MModality metrics is significantly
inferior to that of CTEG. Considering these trade-
offs, we believe that the sharing operation should
not be retained in CTEG.

» Q3: Can the attention mechanism in the LTA
module be replaced with a simpler average pool-
ing operation?

When comparing w. pooling and w. sharing in
Table 6, we observe a downward trend in many
diversity metrics. This indicates that the attention
operation in the LTA module is more effective than
the pooling operation, which aligns with our intu-
ition. For each current time step, a more reason-
able integration of historical attention is beneficial,
while simply averaging historical states may dimin-
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Figure 9: The performance of all three metrics shows a
downward trend with the increasing number of decoder
layers.

ish the meaningfulness of the feature representation
at the current moment, thereby weakening its rich
representational capacity.

» Q4: Should the weights of the pretrained lan-
guage model (i.e., BERT) be fixed?

In the comparison between w. BERT fine-tuning
and w. sharing, almost all metrics showed a decline
in performance in Table 6. We think this may be
due to the limited size of the training set, which
could have led to overfitting when fine-tuning the
text embedding model.

» QS: Does increasing the number of CVAD
layers yield better performance?

We set the number of decoder layers from 1 to 5
to observe the diversity and naturalness of the gen-
erated expressions. As shown in Figure 9, it is evi-
dent that as the number of decoder layers increases,
the model’s performance gradually declines. Par-
ticularly when the number of layers reaches 5, the
perplexity explodes, increasing by several orders



of magnitude compared to the 4-layer decoder, and
the diversity also becomes very poor. We find that
the model struggles to converge under many-layer
conditions. We speculate that this is because each
step s in every layer is independently sampled, and
N layers would generate s’V latent variable states,
introducing too much randomness. We refer to
this phenomenon as Cumulative Sampling Insta-
bility. Therefore, for the method described in this
paper, using a single-layer decoder is the optimal
configuration.

D Details of Evaluation Metrics

Diversity metric is calculated by the following
formula (Zhang et al., 2023a):

1
Diversity = H\p v
d =
i=1

, D

where ¥ and ¥’ denote a pair of randomly sampled
sequences of expression vectors that are generated
without giving any text. We set N, to 750 in this

paper.

MModality is calculated by the following for-
mula (Zhang et al., 2023a):
N,
1 m
MModality = — |
odality N ;

Wi — (12)

We set Ny, to 1500 in this paper. v; and v, repre-
sent two different sequences generated under the
same set of given texts.

Variation is calculated by the following formula
(Ngetal., 2023):

A
Variation = — — var(E;; , (13)
e PPN

where E;; denotes a frame in a sequence of expres-
sion vectors. n; is the length of the ¢-th sequence.
N, here is the number of sequences, which is set
to 1500. var(-) operation calculates the variance.

Fine-grained Diversity (FgD) is calculated by:

1 N T-1
FeD= —— E;, .. 1—E;;l.
g (T—l)N;JZ:%H J+1 Jll
(14)
Diversity on Test (DoT) is obtained by calculat-

ing the average Euclidean distance between each
pair of generated expression sequences:

DoT = > IE-E|. (15

N(N —1) £
1<i<j<N

)
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Continuous perplexity (Cppl). Given the i-th
expression sequence ¢, we define the following
entropy inspired by Jelinek et al. (1977).

T

1 ) )
Hi(§) = =5 > _loga pe(¥] | ¥4;,%), (16)
j=1

pe¢ here is a continuous conditional distribution
where modeled by a generation model. Multivari-
ate normal distribution is adopted in this paper and
it is calculated by:

Pe(Yj | Y<j,x) = ®(x + 5;;1%,021)
— Pz — & pf,0%T), (17)

where @ (-; z1¢, 02I) denotes the cumulative dis-
tribution function (CDF) of the multivariate normal
distribution with mean p and covariance matrix
o?1. Note that § and o are empirical values, which
are set to 0.8 and 0.2 here. Given N expression
sequences, Cppl is calculated by:
Cppl = on Lity Hi(€) (18)
E More Visualization Results

In this section we present extended visualization re-
sults of the expressions generated by CTEG and the
baseline method (Ng et al., 2023). As shown in Fig-
ure 11, we present several sequences of expressions
generated by CTEG and LM-Listener (Ng et al.,
2023). Compared with the LM-Listener, the expres-
sions we generated exhibit a greater alignment with
the emotions conveyed by the corresponding text.
For example, the text “Oh damn, I picked the wrong
side.” conveys emotions of pain, regret, and com-
plaint. The expressions we generated effectively
reflect these emotions. In contrast, the expressions
produced by LM-Listener appear to convey a smile,
which is inconsistent with the emotional tone of
the text. A similar observation is evident in the text
“What a beautiful story.” This statement conveys
feelings of joy and admiration, and the expressions
we generated reflect this joy. However, the expres-
sions produced by LM-Listener appear to convey a
sense of indifference. Many additional cases also
support this observation in Figure 11.

Figure 10 and 12 present the visual expressions
generated by CTEG with several different random
seeds. Taking the text “I thought I was pretty good
too.” as an example, this statement conveys emo-
tions of pride, joy, or happiness. In the first se-
quence of expressions, the portrayal is one of de-
light. The second sequence exhibits a more sub-
dued happiness, while the third sequence conveys a
sense of pride and self-satisfaction. Despite the sig-
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Figure 10: Visualization of the diversity generated by the CTEG model. Four sequences of expressions are generated
from the same text with different random seeds. CTEG exhibits excellent generative diversity.

nificant differences among these three sequences of
expressions, all align well with the emotions con-
veyed by the text. Similarly, taking the text “What
the hell?” as an example, this statement generally
conveys feelings of surprise, frustration, or disbe-
lief. The three generated sequences of expressions
all seem to convey these emotions. However, each
sequence exhibits varying degrees of intensity in
expressing surprise or frustration. In addition to
these, this phenomenon can also be observed in
other examples.
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Figure 11: Extended visual results generated by CTEG and LM-Listener (Ng et al., 2023). The expressions produced
by CTEG exhibit greater consistency with the emotions conveyed by the corresponding text.
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Figure 12: Visualization of the diversity generated by the CTEG model. Three sequences of expressions are
generated from the same text with different random seeds. CTEG exhibits excellent generative diversity.
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