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Abstract

Hypergraph neural networks have emerged as a powerful framework for
learning from higher-order structured data, where relationships among enti-
ties extend beyond pairwise connections. However, most current hypergraph
neural networks are black-boxes that rely on post-hoc explanation methods
to provide model insights. Such post-hoc explanations can be unreliable
in high-stakes scenarios and knowledge discovery tasks. We introduce an
inherently interpretable hypergraph neural additive network (HGNAN), an
extension of generalized additive models that facilitates interpretability in
complex, higher-order relational learning settings. HGNAN provides clear
visualizations of both global and local behaviors at the node and hyperedge
levels while preserving the expressive power of hypergraphs. We evaluate
HGNAN on node classification and hyperedge prediction across various
datasets, achieving competitive performance compared to state-of-the-art
methods. HGNAN also significantly outperforms existing approaches in re-
covering missing reactions in metabolic networks, while offering interpretable
biological insights into metabolic processes.

1 Introduction

Hypergraphs are effective in capturing complex interactions among multiple entities and
have been widely applied across various domains, such as metabolic, ecological, and social
networks (Battiston et al., 2020; Chen et al., 2023; Grilli et al., 2017; Zhu et al., 2018). Unlike
traditional graphs where each edge connects only two nodes, a hyperedge can link any number
of nodes, offering greater expressive power and flexibility in modeling multidimensional real-
world systems (Berge, 1984). Recent advances have led to significant success in tasks like
node classification and hyperedge prediction (Gao et al., 2020; Schölkopf et al., 2007). In
particular, hypergraph neural networks (HGNNs) have emerged as a state-of-the-art method
for representation learning, effectively leveraging higher-order structural patterns (Bai et al.,
2021; Feng et al., 2019). However, like many deep learning models, HGNNs operate as black
boxes, providing limited insight of their decision-making processes. This lack of transparency
raises concerns about trust, restricts their adoption in high-stakes applications, and impedes
scientific knowledge discovery.

Post-hoc explainability techniques, such as HyperEX (Maleki et al., 2023) and SHypX (Su
et al., 2024), have been proposed to open the black box. Inspired by graph-based counterparts
such as GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), and XGNN (Yuan
et al., 2020), both methods identify sub-hypergraphs that maximize mutual information
with the model’s output. These extracted patterns are designed to enhance the predicted
probability for a specific class, offering model-level explanations. However, both approaches
rely on an auxiliary explanatory model to interpret a trained HGNN. Such explanations can
be unreliable and may even undermine trust in the model’s decisions (Rudin, 2019). Recently,
inherently interpretable graph neural networks have been introduced by using prototype
reasoning (Dai & Wang, 2025) and generalized additive models (Bechler-Speicher et al.,
2024). Nevertheless, to the best of our knowledge, interpretable HGNNs remain unexplored.

In this paper, we introduce an inherently interpretable neural network designed for hypergraph
learning tasks, named hypergraph additive neural network (HGNAN) (see Figure 1). HGNAN
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integrates the principles of neural additive models (NAMs) (Agarwal et al., 2021) with HGNN
architectures. Specifically, it adds distance-based weights into NAMs to learn structural
information, adopting the message-passing mechanism of HGNNs to model higher-order
relationships. HGNAN can provide clear interpretations and visualizations of both global
and local behaviors at the node and hyperedge levels. Our experiments show that HGNAN
achieves performance comparable to various baselines in both node and hyperedge prediction
tasks while providing interpretations of exact decision-making process of the underlying
model. HGNAN also establishes a new state-of-the-art in identifying missing reactions in
genome-scale metabolic networks, and its interpretability enables the discovery of novel
biological insights that enhance our knowledge of metabolic processes.
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Figure 1: Overview of HGNAN. HGNAN takes a hypergraph and a feature matrix as
input (leftmost column) and processes them through two independent components: one
that captures distance-related information (mid-left column) and another that captures
feature-related patterns (mid-right column). For node prediction, HGNAN computes a
distance matrix and performs neighborhood aggregation. For hyperedge prediction, it builds
an intersection graph and applies a distance function between nodes. As in NAMs, each
feature-related function operates only on a single feature to ensure interpretability.

2 Related Works

Hypergraph neural networks. The concept of hypergraph neural networks (HGNNs)
was first introduced by Feng et al. (2019), using a spectral method to generalize graph
convolution to hypergraphs via the hypergraph Laplacian. Then various HGNN architectures
have been developed to improve expressiveness, scalability, and adaptability. HAN (Chen
et al., 2020) incorporates attention mechanisms into message passing to highlight node
importance within hyperedges. HyperGCN (Agarwal et al., 2021) approximates hyperedges
using pairwise connections via mediator nodes, enabling standard graph neural networks
(GNNs) to capture higher-order relationships. UniGNN (Huang & Yang, 2021) mitigates
over-smoothing in deep models by extending GCNII with residual connections and identity
mappings. AllSetTransformer (Chien et al., 2021) uses Deep Sets and Set Transformers
for permutation-invariant multiset message passing. More recently, HGNN+ (Gao et al.,
2023) unifies multi-modal features and hyperedge groups for heterogeneous hypergraphs,
while ED-HNN (Wang et al., 2023) combines star expansion with message passing to
approximate equivariant diffusion. Despite these advances, all these HGNN architectures
lack interpretability, limiting their ability to offer transparent insights.

GNN explainability. The two post-hoc HGNN explainability techniques, HyperEX (Maleki
et al., 2023) and SHypX (Su et al., 2024), have been proposed, both rooted in established GNN
explainability methods. GNNExplainer (Ying et al., 2019) identifies a compact subgraph
and a subset of node features that are most influential for a specific prediction, providing
instance-level explanations through optimization-based mask learning. Building on this,
PGExplainer (Luo et al., 2020) introduces a parametric approach that learns a probabilistic
edge mask generator, allowing for faster and more generalizable explanations across different
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instances. In contrast, XGNN (Yuan et al., 2020) takes a generative view by learning to
synthesize graphs that maximize the confidence of a target prediction class, offering a global
and class-level interpretability framework. However, they are post-hoc methods which can
be unreliable and, in some cases, may undermine user trust due to inconsistencies or lack of
fidelity to the model’s true reasoning process (Rudin, 2019).

Additive models. Additive models have long been valued in machine learning for their
interpretability and flexibility (Rudin et al., 2022). The most classical form, the generalized
additive model (GAM) (Hastie & Tibshirani, 1986), is a linear combination of univariate
shape functions which can be easily understood via 2D plots. Neural additive models
(NAMs) (Agarwal et al., 2021) were later introduced to learn a linear combination of neural
networks, each trained on a single input feature. NAMs leverage the expressive power of
deep neural networks to capture complex relationships between inputs and outputs, while
ensuring interpretability through a structured architecture. Graph neural additive networks
(GNANs) (Bechler-Speicher et al., 2024) extended these ideas to graph-structured data,
merging the interpretability of NAMs with the representational power of GNNs. However,
additive modeling on hypergraphs with HGNNs has yet to be explored.

3 Methods

A hypergraph generalizes the concept of traditional graphs by allowing each hyperedge to
connect an arbitrary subset of nodes, rather than being limited to pairwise connections.
Formally, a hypergraph H = {V, E} with n nodes and m hyperedges consists of a set of nodes
V = {v1, v2, . . . , vn} and a set of hyperedges E = {e1, e2, . . . , em}, where each hyperedge
ej ∈ E is a non-empty subset of V , i.e., ej ⊆ V . The structural relationships in a hypergraph
can be represented using an incidence matrix H, where each entry Hij = 1 if node vi is
contained in hyperedge ej , and it is equal to zero otherwise. Given a hypergraph H, its
intersection graph is defined upon hyperedge adjacency. Each node in the intersection graph
represents a hyperedge in E , and an edge is placed between two nodes if their corresponding
hyperedges share at least one common node in V. In other words, an edge between two
nodes ei and ej exists if ei ∩ ej ̸= ∅.
Building on the formulation of hypergraphs, we present a novel interpretable hypergraph
neural additive network (HGNAN), which consists of two parts: HGNAN-node for node-level
prediction and HGNAN-edge for hyperedge-level prediction. Both take the incidence matrix
H and node features as input to learn feature shape functions that capture the effects of
individual features. The key distinction is that HGNAN-node leverages the hypergraph
structure to perform neighborhood-level aggregation, whereas HGNAN-edge learns a separate
distance function defined over higher-order intersection graphs.

3.1 Distance on Hypergraphs

Given a hypergraph H = {V, E}, a pair of hyperedges ei, ej ∈ E is called s-adjacent if they
share at least s nodes in common, i.e., |ei ∩ ej | ≥ s. This allows us to extend intersection
graphs to s-intersection graphs by defining the s-hyperedge adjacency matrix A(s) as

A(s)ij = 1[|ei ∩ ej | ≥ s]

For any pair of hyperedges ei, ej ∈ E , we define the s-distance between the two hyperedges as
ds(ei, ej) =

{
minα ∈ Z+ | Aα(s)ij > 0

}
, where α can be interpreted as the shortest distance

between ei and ej . If no such α exists, we set ds(ei, ej) = ∞. In other words, ds(ei, ej) is the
minimum number of hops required to connect ei and ej via a chain of s-adjacent hyperedges.
Additionally, the s-distance between two nodes vi, vj ∈ V can be defined as

ds(vi, vj) = 1 + min
vi∈ep, vj∈eq

ds(ep, eq). (1)

If no connected pair of hyperedges that contain vi and vj can be found, we set ds(vi, vj) = ∞.
If ds(vi, vj) ≤ 2, we consider that node vi is in the neighborhood of node vj , i.e. vj ∈ Ni.
This implies that nodes on the same hyperedge and those one hop away are neighbors. We
denote smax as the highest order of adjacency considered and is introduced as a tunable
hyperparameter, enabling the model to learn higher-order adjacency from the hypergraph.
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3.2 Node Prediction Tasks

HGNAN-node generalizes NAMs to hypergraph-structured data by learning a set of feature-
wise shape functions {fk}pk=1, where p denotes the number of input features. Each shape
function fk transforms the kth feature independently across a node’s neighborhood and
contributes to a refined representation via neighborhood-level aggregation. This design
effectively suppresses noise from irrelevant neighbors, mitigates oversmoothing from repeated
mixing, and enhances both memory and computational efficiency. Let xi ∈ Rp denote the
original features and hs

i ∈ Rp the updated embedding for node i under s-adjacency. The kth

entry of the embedding hs
i using HGNAN-node is computed as

[hs
i ]k =

∑
vj∈N s

i

aij
#ds(vi, vj)

fk ([xj ]k) + λ||a||1, (2)

where N s
i denotes the neighborhood of node i under s-adjacency (the definition for neigh-

boorhood of node vi is the same as described in Section 3.1), and fk(·) is a feature-dependent
shape function associated with the kth feature. Each shape function is parameterized by
a multi-layer perceptron (MLP). A neighbor weight aij is assigned to each neighbor j of
the target node i and is calculated using a small neural network similar to graph attention
network (Velickovic et al., 2018). To encourage neighborhood-level sparsity, we apply an
L1-norm to neighbor weights. The term #ds(vi, vj) measures the number of nodes sharing
the same distance away from node i under s-adjacency, serving as a normalization factor.
HGNAN-node follows the formulation of NAMs and GNANs, where [hs

i ]k is a linear combi-
nation of the transformed features fk([xj ]k), representing the aggregated contribution of the
kth channel at node i.

For node-level prediction, we introduce an s-invariant weight vector w which learns how
each entry contributes to the prediction under s-adjacency [hs

i ], i.e.,

[hs
i ] =

p∑
k=1

wk[h
s
i ]k =

∑
vj∈N s

i

aij
ds(vi, vj)

p∑
k=1

wkfk ([xj ]k) , (3)

where wk is the kth element of w, which acts as a learnable weight for feature k and is
normalized using softmax so that

∑K
k=1 wk = 1. This wk could act as a relative feature

importance for feature k for the whole task. The final embedding for node i is a sum weighted
by learnable parameter β over {[hs

i ]}
smax
s=1 , which are embeddings learned under all high-order

adjacency:

[hi] =

smax∑
s=1

βs[h
s
i ], (4)

Eq (4) allows the model to flexibly learn each neighbor’s contribution to node i by considering
both high-order adjacency and feature-level importance. This representation can then be
passed through a sigmoid or softmax activation function to flexibly adjust for either binary or
multiclass classification or regression. Furthermore, HGNAN-node can be naturally extended
to hypergraph-level prediction by pooling the node-level aggregated scores into a single
hypergraph-level representation h, i.e.,

h =

N∑
i=1

[hi] (5)

3.3 Hyperedge Prediction Tasks

Hyperedge prediction methods usually first compute node embeddings for individual nodes
and then combine those node embeddings through a pooling layer to get an embedding
for the hyperedge. However, this pooling step can lead to several issues. For example,
max-pooling may cause non-smoothness and gradient instability, while average pooling
can lead to gradient dilution and reduced receptive-field gradients (Boureau et al., 2010).
Additionally, it may compromise model interpretability by offering node-level explanations
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for hyperedge predictions, rather than providing explanations directly from the hyperedge-
level perspective. More importantly, for most node classification datasets, they are highly
homophilic. 0-hop and 1-hop neighbors in these datasets usually covers most of the nodes.
In this away, deploying neighborhood aggregation can cover most of the valuable information.
In contrast, for hyperedge prediction tasks, they are highly heterophilic, which means that
neighborhood aggregation cannot capture enough information. To address these issues, we
propose HGNAN-edge, which leverages the concept of s-intersection graphs and uses overall
aggregation for hyperedge prediction. See Appendix B for more details.

In HGNAN-edge, we first transform the hypergraph into its corresponding s-intersection
graph, and then generate hyperedge embeddings directly from features of the nodes associated
with each hyperedge. By performing pooling on raw node features, this new method allows
us to design interpretable hyperedge embedding based on prior knowledge. As a result, the
model can provide hyperedge-level interpretation, which preserves better interpretability
compared to those that pool after node embedding. This new formulation turns hyperedge
prediction into a node prediction task on the s-intersection graph, thereby HGNAN-edge
can easily adapt GNAN to get hyperedge embeddings and make predictions.

Let xl ∈ Rp denote the original feature vector of node vl. The initial embedding for hyperedge
ei is yi = Pool({xl : vl ∈ ei}), where Pool(·) denotes a pooling function, such as average
pooling. HGNAN-edge computes the kth entry of the refined embedding gs

i ∈ Rp on the
s-intersection graph as follows:

[gs
i ]k =

m∑
j=1

1

ds(ei, ej)
ρs

(
1

1 + ds(ei, ej)

)
fk ([yj ]k) , (6)

where fk(·) as defined in Eq (2) is a feature-dependent shape function corresponding to the
kth feature, and ρs(·) is a distance-based weighting function that captures the cumulative
influence of hyperedges at varying distances from ei on the s-intersection graph. Both fk(·)
and ρs(·) are parameterized by MLP. To avoid division by zero, we add 1 to each distance
value in the denominator. Finally, we compute the refined hyperedge representation using
the same aggregation strategy as HGNAN-node, i.e.,

[gs
i ] =

p∑
k=1

wk[gi]k =

m∑
j=1

1

ds(ei, ej)
ρs

(
1

1 + ds(ei, ej)

) p∑
k=1

wkfk ([yj ]k) , [gi] =

smax∑
s=1

βs[g
s
i ],

(7)

where wk and βs are learnable weights. Similar to HGNAN-node, Eq (7) can also be inter-
preted through two independent parts: a distance-related part

∑m
j=1

1
ds(ei,ej)

ρs(
1

1+ds(ei,ej)
)

and a feature-related part
∑p

k=1 wkfk([yj ]k). However, unlike HGNAN-node, which em-
ploys neighborhood-level aggregation in the distance-related part, HGNAN-edge performs
graph-level aggregation using a distance-based weight function ρs(·).
Note that for most existing hyperedge prediction datasets, HGNAN-edge requires negative
sampling, meaning that we need to generate hypothesized hyperedges (also called negative
hyperedges) from existing hypergraph. However, when we calculate the distances, we only
use the information of the existing hypergraph structure without taking the new generated
negative hyperedge into consideration. Specifically, for a generated negative sample ẽi, we
first identify the positive hyperedges it connects to and then calculate the distance based
on those connections. Let Ei and Ej denote the sets of positive hyperedges connected to
the negative hyperedges ẽi and ẽj , respectively. The distance between the two sets Ei and
Ej is defined as ds(Ei, Ej) = minei,ej ds(ei, ej) such that ei ∈ Ei, ej ∈ Ej . Accordingly, the
distance between two negative hyperedges ẽi and ẽj is defined as ds(ẽi, ẽj) = ds(Ei, Ej) + 2.
If one hyperedge is positive and the other is negative, the distance generalizes naturally as
ds(ẽi, ej) = ds(Ei, ej) + 1.

4 Experiments

Our experiment aims to address the following two questions: (1) Can HGNAN achieve
performance comparable with black-box counterparts in terms of node prediction (Section
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4.1) and hyperedge prediction (Section 4.2)? (2) What do the interpretations from HGNAN-
node and HGNAN-edge look like (Section 4.3)?

4.1 Node Classification

We compare HGNAN-node with six hypergraph learning methods on four node classification
tasks. Specifically, we compare to the following baselines: HGNN (Feng et al., 2019),
HyperGCN (Yadati et al., 2019), AllDeepSets (Chien et al., 2021), AllSetTransformer (Chien
et al., 2021), UniGCNII (Huang & Yang, 2021), and ED-HNN (Wang et al., 2023). These
baselines represent diverse architectural designs for modeling high-order relationships and
have demonstrated strong performance on node classification tasks. We also compared with
MLP, which does not utilize any hypergraph structure to validate that the model learns and
benefits from structural information. We use three widely used homophilic hypergraph-level
node classification datasets: Zoo (Forsyth, 1990), Mushroom (mus, 1981), and NTU2012
(Chen et al., 2003). We also tested on Pokec and Actor, two heterophilic datasets introduced
by (Li et al., 2025). Details about these datasets are available in Appendix A. Each dataset
is randomly split into training, validation, and test sets with a 2:1:1 ratio, and this process
is repeated 10 times using different random seeds. To ensure a fair comparison, all models
are trained and evaluated using the same data splits and random seeds. We report the mean
and standard deviation of the test accuracy across these 10 runs.

Table 1 shows the test accuracy of HGNAN-node and baselines across six different datasets.
HGNAN-node achieves accuracy comparable to that of baseline methods. Notably, it
outperforms all baselines on two heterophilic node classifications datasets. While some
baselines slightly outperform HGNAN-node on homophilic datasets, the performance gap
remains relatively small. Crucially, unlike these black-box models, HGNAN offers the added
advantage of providing glass-box view of the decision making process, making it a compelling
choice in scenarios where both accuracy and transparency are essential.

Table 1: Comparison of test accuracy (mean ± standard deviation) between HGNAN-node
and baselines across node classification datasets. Bold indicates the highest test accuracy.
HGNAN-node performs comparably to the best-performing models on all these datasets.

Method Zoo Mushroom NTU2012 Pokec Actor Avg. Rank

MLP 0.887 ± 0.052 0.965 ± 0.006 0.853 ± 0.012 0.580 ± 0.019 0.827 ± 0.004 6

AllDeepSets 0.942 ± 0.042 0.999 ± 0.001 0.876 ± 0.014 0.567 ± 0.008 0.838 ± 0.003 4.8
AllSetTransformer 0.973 ± 0.032 0.999 ± 0.001 0.890 ± 0.011 0.572 ± 0.010 0.836 ± 0.002 3.4

ED-HNN 0.950 ± 0.035 0.998 ± 0.002 0.895± 0.013 0.618 ± 0.020 0.856 ± 0.006 3.2
HGNN 0.957 ± 0.022 0.998 ± 0.001 0.872 ± 0.014 0.553 ± 0.014 0.744 ± 0.004 5.6

HyperGCN 0.423 ± 0.000 0.482 ± 0.000 0.796 ± 0.033 0.538 ± 0.014 0.630 ± 0.000 8
UniGCNII 0.950 ± 0.048 0.999 ± 0.001 0.893 ± 0.016 0.570 ± 0.018 0.828 ± 0.003 4.2

HGNAN-node (ours) 0.953 ± 0.030 0.999 ± 0.001 0.890 ± 0.011 0.634 ± 0.012 0.857 ± 0.004 3

4.2 Hyperedge Prediction

Genome-scale metabolic models (GEMs) are essential tools for predicting cellular metabolism
and physiological states in organisms (Fang et al., 2020). However, due to incomplete
knowledge of metabolic processes, even well-curated GEMs often contain knowledge gaps,
such as missing reactions. Predicting these missing reactions can be naturally framed as a
hyperedge prediction task, where nodes represent metabolites and hyperedges correspond to
reactions (Chen et al., 2023; Chen & Liu, 2024). We compare HGNAN with the state-of-
the-art hyperedge prediction methods including HyperSAGNN (Zhang et al., 2020), NHP
(Yadati et al., 2020) and CHESHIRE (Chen et al., 2023), which have demonstrated strong
empirical performance in recovering missing reactions in metabolic networks. We evaluate
on four GEMs from the BiGG database (King et al., 2016): iAF1260b, iJR904, iJR904 and
iYO844. Appendix B gives a detailed introduction to these datasets.

Since BiGG models do not have inherent features for metabolites, we design a feature gener-
ation process by leveraging molecular fingerprints MACCS Keys(RDK, 2025) to represent

6
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the metabolites (see Appendix B). To perform hyperedge prediction, negative sampling is
required. For a given reaction in a GEM, a negative reaction is generated by replacing half
of its metabolites with random metabolites drawn from a metabolite pool. Other experiment
setups are identical to node prediction. We report the mean and standard deviation of the
test accuracy across these 10 runs. Additional metrics and further details on the tuning
process and parameter search space are available in Appendix C.

Table 2 summarizes the performance of various hyperedge prediction models on four GEM
datasets. HGNAN consistently outperforms all state-of-the-art methods across all datasets,
achieving the highest mean accuracy with notable margins. Notably, it outperforms the
second-best method by over 10% on iAF1260b, iJR904, and iSB619. These results underscore
the effectiveness of HGNAN in identifying missing reactions within complex metabolic
networks. In addition to its strong predictive performance, HGNAN offers interpretability
by linking metabolite chemical structures to prediction outcomes, providing valuable insights
into the underlying biochemical mechanisms. An additional experiment in Appendix D on a
synthetic hyperedge prediction dataset further validates our model’s ability to recover the
structural information.

Table 2: Comparison of hyperedge prediction accuracy (mean ± standard deviation) across
four BiGG GEM datasets: iAF1260b, iJR904, iSB619, and iYO844. Bold highlights the best
result for each dataset. HGNAN-edge outperforms all baseline models across all datasets.

Method iAF1260b iJR904 iSB619 iYO844

CHESHIRE 0.834 ± 0.050 0.732 ± 0.068 0.730 ± 0.038 0.893 ± 0.047
NHP 0.732 ± 0.076 0.690 ± 0.090 0.687 ± 0.055 0.747 ± 0.043

HyperSAGNN 0.730 ± 0.075 0.753 ± 0.056 0.729 ± 0.162 0.708 ± 0.045

HGNAN-edge (ours) 0.935 ± 0.069 0.958 ± 0.026 0.977 ± 0.008 0.952 ± 0.181

4.3 Interpretability

HGNAN provides a glass-box view of its decision-making process. According to Eqs (4)
and (7), our model can be fully explained by two parts: the feature-related part and
the distance-related part. The feature-related part, or Feature Contribution Score in
the context, is wkfk([xj ]k), which reflects how the input features influence the output
embedding. The distance-related part differs between HGNAN-node and HGNAN-edge. For
HGNAN-node, it is the neighborhood weight aij , while for HGNAN-edge, there are distance
functions {ρs(·)}smax

s=1 , which adjust the influence of features with learnt high-order structural
information. We can also learn relative feature importance for the whole task from wk (see
Appendix E).

Node-level interpretation. HGNAN-node can offer node-level interpretation for node
prediction tasks. Since we deploy neighborhood-level aggregation in HGNAN-node, the
feature contribution scores {wkfk}pk=1, provides a global explanation of how each input
feature contributes to the predictions. We use the Zoo dataset as an example. It contains
101 animals described by 15 binary features (e.g., whether an animal has feathers) and 1
continuous feature. Animals are grouped into seven classes: “Mammal”, “Bird”, “Reptile”,
“Fish”, “Amphibian”, “Bug”, and “Invertebrate”. Hyperedges connect animals that share
common attributes. The goal is to predict the class to which each animal belongs.

To interpret the contribution of each binary feature to the prediction of the “Mammal” class,
we plot the learned values wkfk(1) and wkfk(0) for each feature k, as shown in Figure 2.
The sign of wkfk(xk), xk ∈ {0, 1} indicates whether the presence or absence of a feature
increases or decreases the likelihood of an animal being classified as a mammal. For example,
the presence of the “milk” (fmilk(1)) strongly supports mammal classification as it’s value is
positive. However, the presence of “feathers” (ffeathers(1)) lowers the predicted probability of
being a mammal. Also, the magnitude of these values reflects absolute feature importance
for prediction of specific class: larger absolute values correspond to greater influence on the
prediction. As shown in Figure 2, the presence of “milk” fmilk(1) has the highest absolute
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contribution, making it the most important feature for identifying mammals. This aligns
with biological knowledge of mammalian traits.

f(1) f(0)
0.5
0.0
0.5

hair

f(1) f(0)
0.25

0.00

0.25
feathers

f(1) f(0)
1

0

1
eggs

f(1) f(0)

0.5
0.0
0.5

milk

f(1) f(0)
0.5

0.0

0.5
airborne

f(1) f(0)
0.1
0.0
0.1

aquatic

f(1) f(0)
0.05

0.00

0.05
predator

f(1) f(0)
0.5

0.0

0.5
toothed

f(1) f(0)
0.5

0.0

0.5
backbone

f(1) f(0)

0.25
0.00
0.25

breathes

f(1) f(0)
0.5

0.0

0.5
venomous

f(1) f(0)

0.025
0.000
0.025

fins

f(1) f(0)

0.1
0.0
0.1

tail

f(1) f(0)

0.1
0.0
0.1

domestic

f(1) f(0)
0.25

0.00

0.25
catsizeFe

at
ur

e C
on

tr
ib

ut
io

n 
Sc

or
e

Figure 2: Feature contribution scores for predicting the "Mammal" class in the Zoo dataset.
Each barplot shows the effect of a binary feature on the final prediction, where f(1) represents
the contribution when the feature is present and f(0) when it is absent.
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Figure 3: Visualization of the distance function (left) and Carbonyl group contribution score
(right) for the iAF1260b dataset. Linear interpolation is used to connect the points.

Hyperedge-level interpretation. HGNAN-edge can provide hyperedge-level interpretation
for hyperedge prediction. In this setting, the combination of distance functions {ρs(·)}smax

s=1
and the contribution of each feature, represented by wkfk could fully explain the model’s
prediction. We use the iAF1260b dataset from the BiGG database for illustration, where
each node feature corresponds to a certain function group. As mentioned in Section 3.3, we
generate an embedding for each hyperedge by using difference pooling of node features on
the hyperedge. Therefore, the hyperedge embedding represents the difference in the number
of functional groups before and after the reaction.

Figure 3 shows the distance function (left) and contribution of the Carbonyl group (C=O)
to prediction (right). The distance function ρ1(·) indicates structural information from
the hypergraph. For this dataset, the optimal smax is 1. Therefore we just provide one
distance function (ρ1(·)). The left subplot in Figure 3 shows that the model exhibits a
V-shaped pattern. Features associated with the node on the same hyperedge (distance = 0)
positively influence prediction, while features from immediate one-hop neighbors (distance =
1) have a strong negative effect. As the distance increases further, the negative influence
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diminishes and eventually becomes increasingly positive. This curve is a reasonable global
kernel for representation learning and could be justified from biological perspective. At
distance 0 (same reaction) stoichiometric coupling in steady state makes participants co-vary,
justifying a large positive weight. Distance 1 often captures branch-point competition for a
limited precursor; increasing flux down one branch reduces flow down the other, motivating
a negative weight. At distance 2 this competitive effect is indirect and attenuated. Beyond
two hops, local trade-offs diminish and pairs are more constrained by global objectives (e.g.,
biomass composition), so average associations become weakly positive, warranting positive
weights.

The term wkfk quantifies how feature k influences the model’s output. The right subplot
shows how the number of Carbonyl group (C=O) affect the prediction. The feature has a
minor impact when the input of function group "C=O" is below 0, but its influence increases
when k is above 0. It means that generating more Carbonyl group after the reaction would
have a huge impact on prediction. To compute the overall contribution to prediction, we have
to combine the feature contribution (wk · fk) with the structural weight from the distance
function (ρ1(·)). We visualize the combined contributions using heatmaps, as shown in Figure
4. Each cell in the heatmap represents the contribution of a particular feature-distance
combination. For example, when a reaction results in the loss of 4 Carbonyl groups, the
corresponding contribution is likely to be positive, as most values in the column of -4 are
positive. These explanations allow domain experts to apply their knowledge to debug the
model. For example, one can manually change the output of the distance function (e.g.
ρ1(1)) if it is not aligned with their domain knowledge and immediately get the prediction
without retraining the whole model. It can also reveal some biologically meaningful patterns
learned from the data, which may be valuable for downstream tasks.
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Figure 4: Heatmap for Carbonyl group: the horizontal axis stands for different feature value
inputs [yj ]C=O and the vertical axis stands for different distance inputs d1(ei, ej).

5 Conclusion

HGNAN provides an inherently interpretable model where the decision-making mechanism
can be visualized by 2D plots. In the meantime, HGNAN can achieve competitive or
superior performance compared to state-of-the-art hypergraph learning methods across
various node and hyperedge prediction tasks. This dual capability of delivering strong
predictive performance while offering transparent decision-making makes HGNAN a valuable
tool for scientific discovery in hypergraph-based applications, especially in fields such as
biotechnology, bioinformatics, and social network analysis. One limitation, however, is that
HGNAN constructs a separate neural network for each feature, which can lead to high
computational costs on datasets with very large dimensionality. Fortunately, such extreme
high-dimensional datasets are relatively uncommon in many real-world applications. Looking
forward, future work will explore extensions to dynamic hypergraphs, further broadening its
applicability and scalability.
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Reproducibility and Ethic Statement

An anonymous code is available at https://anonymous.4open.science/r/HGNAN-6029. We
strictly adhere to the ICLR Code of Ethics ( https://iclr.cc/public/CodeOfEthics).
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A Additional Details for Node Classification Datasets

We provide detailed information about the node classification datasets in this appendix.

Each node in the Mushroom and Zoo datasets represents a mushroom or an animal, respec-
tively mus (1981); Forsyth (1990). Hyperedges connect samples that share the same feature
values, where the features describe the characteristics of each sample and are usually binary
or categorical. The target variable for the Mushroom dataset is whether a mushroom is edible
or not, while in the Zoo dataset, we predict the type of animal. The NTU2012 dataset Chen
et al. (2003) is a 3D shape dataset consisting of 2012 objects across 67 distinct categories
(e.g., cars, chairs, chessboards, clocks). Each node represents an object and is described
by multi-view visual descriptors. Twitch-Gamers dataset requires binary classification of
explicit-content presence per channel with Twitch accounts as nodes and accounts co-created
within the same time window as hyperedges. Features include view counts, creation/update
timestamps, language, lifetime activity duration, and an inactive flag. Pokec is a binary
classification dataset of user gender. Nodes are users while each hyperedge is a user’s complete
friend set. Features span profile attributes such as age, hobbies/interests, education level,
region, and registration time. Actor is a multi-class classification dataset of production role
(actor/director/writer). Nodes are film-industry people while each hyperedge contains all
collaborators on a single film. Features there are keyword-based attributes extracted from
Wikipedia. Table 3 provides a more detailed summary about each dataset.

Table 3: Summary of node classification datasets. |E| stands for the number of nodes on a
hyperedge E and dv stands for the number of hyperedges that contains a node v.

NTU2012 Mushroom Zoo Pokec Actor

|V | 2012 8124 101 3200 15761
|E| 2012 298 43 2406 10164
# feature 100 22 16 65 50
# class 67 2 7 2 3
max |E| 5 1808 93 7 28
min |E| 5 2 2 2 1
avg |E| 4.0 29.5 64.5 2.3 5.3
max dv 5 1808 61 7 205
min dv 1 1 1 1 1
avg dv 2.2 1.8 27.2 1.7 3.4
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B Additional Details for Hyperedge Prediction Datasets

The BiGG (Biochemical Genetic and Genomic) dataset King et al. (2016) is a repository of
genome-scale metabolic models (GEMs) for various organisms, including bacteria, yeast, and
human cells. It provides high-quality, standardized models in the Systems Biology Markup
Language (SBML) format, facilitating metabolic network reconstruction and simulation. The
BiGG dataset consists of multiple components. First, it includes genome-scale metabolic
models that represent the biochemical processes of various organisms. It is stored as a
stoichiometric matrix. These models define metabolic reactions, describing the biochemical
transformations occurring within cells, and metabolites, which are the chemical compounds
involved in these reactions. Additionally, the dataset provides gene-protein-reaction (GPR)
associations, linking genes to their corresponding enzymes and metabolic functions.

Feature generation. BiGG models do not provide features for each metabolic. Common
approaches for feature generation include using node2vec embeddings or extracting molecular
fingerprints from SMILES. However, this method generate features that are not interpretable.
In our paper, we generate feature for each metabolite using MACCS Keys. MACCS Keys
are a type of molecular fingerprint that converts a molecule’s structure into a 167-dimension
binary vector. Each dimension indicates the presence or absence of a specific predefined
substructure or functional group(i.e. F or carbon ring). Because the substructures are
predefined by biologists, MACCS Keys offer a fast and interpretable way to vectorize
molecules. However, since MACCS Keys are based on molecule fingerprints, which do not
necessarily have one-to-one correspondence with each molecule, some molecules do not have
MACCS-key-based features. For these molecules, we pad their features using 0. We also
report this missing rate in Table 4.

Access. The BiGG dataset is publicly available at http://bigg.ucsd.edu/. MACCS
Keys are available at https://github.com/jAniceto/ml-knowledge-base/blob/main/
02-data-preparation/feature-engineering/maccs.md. Table 4 provides details about
the four models from the BiGG dataset used in our paper.

Table 4: Summary of four datasets from the BiGG dataset.

iAF1260b iJR904 iSB619 iYO844

|V | 2388 1075 743 1250
|E| 1668 761 655 990
Missing Rate 0.764 0.912 0.829 0.840
max |E| 67 56 61 63
min |E| 1 1 1 1
avg |E| 3.88 4.18 5.14 4.19
max dv 912 259 362 616
min dv 1 1 1 1
avg dv 5.55 4.77 5.83 5.29

To quantify homophily at different distances ddd on a hypergraph, we report the same-label
ratio:

SLR(d) =
1

|Vd|

∑N
j=1 1(yj = yi)1(dist(i, j) = d)∑N

j=1 1(dist(i, j) = d)

where Vd = {i : ∃j ≠ i, dist(i, j) = d}} is the set of nodes that have at least one neighbor
exactly d hops away. Since SLR(d) can be misleading when the number of nodes at that
distance is small, which is common when distance is large, we also provide coverage ratio
across distances for reference.

For homophilic node classification datasets (e.g., NTU2012, Mushroom): SLR(d) is high
at small d and drops sharply with distance, indicating that near-hop neighborhoods are
label-consistent while far-hop neighborhoods are not. In contrast, for heterophilic datasets
(e.g., Pokec, Actor): there is no early decay. Actor shows a clear increase with distance;
Pokec remains roughly flat around the mid-range hops and only declines later, consistent
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Figure 5: Same-label ratio by distance across all datasets

Figure 6: Coverage ratio by distance across all datasets

with weaker local homophily. For BiGG metabolic datasets (iAF1260b, iJR904, iYO844,
iSB619), SLR(d) increases with distance, often approaching 1 at larger hops, reflecting
strong assortativity among far-hop nodes. Note that while far-hop SLR(d) can be very high,
the coverage at those hops is small, so the practical mass of labeled pairs still concentrates
in the first few hops.
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C Details for Model Training

In this appendix, we provide a detailed description of the experimental setup.

C.1 Node classification tasks

We perform grid search for hyperparameter tuning for each model to ensure optimal
performance. We consider the following searching space for all methods: learning
rate= {0.01, 0.001}, weight decay= {0, 0.0005} and hidden channels= {64, 128, 256}. For
methods using multi-head attentions, we tune the number of heads = {1, 4, 8}. For ED-HNN,
we tune the number of layers ={0, 1} and restart rate ={0, 0.5}. For our method, we also
tune the number of layers ={3, 5}, dropout rate = {0, 0.5} and smax = {1, 2, 3}. We select
the hyperparameter configuration that achieves the best aggregated validation accuracy
across all four datasets to guarantee robustness. The selected hyperparameters are reported
in Table 5, and the corresponding evaluation result is in Table 1.

Table 5: Fixed best hyperparameters for node classification tasks

Method lr wd dropout n_layer hidden_channel Classifier_hidden heads smax restart_alpha

HGNAN 0.001 0 0.0 3 128 - - 1 -
AllDeepSets 0.001 0 - - 256 64 - - -

AllSetTransformer 0.001 0 - - 256 64 8 - -
ED-HNN 0.001 0 - 0,0,1 512 512 - - 0.5
HGNN 0.01 0.0005 - - 256 128 - - -

HyperGCN 0.01 0.0005 - - 64 128 - - -
UniGCNII 0.001 0 - - 64 256 8 - -

Following Chien et al. (2021) and Wang et al. (2023), we also select the best-performing
hyperparameter configuration for each dataset individually. The optimal hyperparameters
for each method–dataset combination and their corresponding performances on test set are
reported in Table 6. HGNAN-node achieves accuracy comparable to that of baseline methods
on most datasets. All experiments are run on NVIDIA V100 GPU.

Table 6: Best hyperparameters for each dataset for node classification tasks. The last column
reports the test accuracy (mean ± standard deviation).

Dataset Method lr wd dropout n_layer hidden_channel Classifier_hidden heads restart_ alpha smax Test Acc

NTU2012 HGNAN 0.001 0 0.5 3 256 - - - 3 0.896 ± 0.010
NTU2012 AllDeepSets 0.001 0 - - 256 64 - - - 0.878 ± 0.014
NTU2012 AllSetTransformer 0.001 0 - - 256 64 4 - - 0.887 ± 0.010
NTU2012 HGNN 0.01 0.0005 - - 256 256 - - - 0.873 ± 0.014
NTU2012 HyperGCN 0.01 0.0005 - - 64 128 - - - 0.796 ± 0.033
NTU2012 UniGCNII 0.001 0.0005 - - 128 64 4 - - 0.898 ± 0.015
NTU2012 ED-HNN 0.001 0 - 0,0,1 512 256 - 0.5 0.899 ± 0.011

Mushroom HGNAN 0.001 0 0 3 128 - - - 1 0.999 ± 0.001
Mushroom AllDeepSets 0.01 0.0005 - - 64 128 - - - 0.999 ± 0.001
Mushroom AllSetTransformer 0.01 0 - - 64 64 4 - - 0.999 ± 0.001
Mushroom HGNN 0.01 0.0005 - - 256 256 - - - 0.998 ± 0.001
Mushroom HyperGCN 0.001 0 - - 64 64 - - - 0.482 ± 0.000
Mushroom UniGCNII 0.001 0 - - 64 128 1 - - 0.999 ± 0.001
Mushroom ED-HNN 0.001 0 - 0,1,1 512 128 - 0 - 0.998 ± 0.002

zoo HGNAN 0.001 0 0 3 256 - - - 1 0.954 ± 0.033
zoo AllDeepSets 0.001 0 - - 256 64 - - - 0.942 ± 0.042
zoo AllSetTransformer 0.001 0 - - 64 64 1 - - 0.973 ± 0.036
zoo HGNN 0.01 0 - - 64 128 - - - 0.954 ± 0.030
zoo HyperGCN 0.001 0.0005 - - 256 256 - - - 0.423 ± 0.000
zoo UniGCNII 0.01 0 - - 256 64 4 - - 0.969 ± 0.016
zoo ED-HNN 0.001 0 - 0,0,1 256 128 - 0 - 0.965 ± 0.028

Actor HGNAN 0.001 0 0 3 64 - - - 1 0.863 ± 0.007
Actor AllDeepSets 0.01 0 - - 256 64 - - - 0.838 ± 0.003
Actor AllSetTransformer 0.001 0.0005 - - 256 64 8 - - 0.836 ± 0.002
Actor HGNN 0.01 0.0005 - - 128 64 - - - 0.748 ± 0.003
Actor HyperGCN 0.001 0 - - 64 64 - - - 0.630 ± 0.000
Actor UniGCNII 0.001 0 - - 128 128 4 - - 0.822 ± 0.003
Actor ED-HNN 0.001 0 - 0,1,1 512 256 - 0 - 0.857 ± 0.005

Pokec HGNAN 0.001 0 0 3 64 - - - 2 0.636 ± 0.010
Pokec AllDeepSets 0.01 0.0005 - - 128 256 - - - 0.578 ± 0.011
Pokec AllSetTransformer 0.001 0.0005 - - 256 64 8 - - 0.564 ± 0.010
Pokec HGNN 0.001 0 - - 64 64 - - - 0.552 ± 0.020
Pokec HyperGCN 0.01 0 - - 256 256 - - - 0.534 ± 0.012
Pokec UniGCNII 0.01 0.0005 - - 64 64 8 - - 0.573 ± 0.016
Pokec ED-HNN 0.001 0 - 0,1,1 512 256 - 0.5 - 0.628 ± 0.017
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C.2 Hyperedge prediction tasks

Following Chen & Liu (2024), we consider the following configurations for all methods:
learning rate = {0.001, 0.01} and weight decay = {0, 0.0005}.
For HGNAN, we set dropout rate = {0.0, 0.5}, number of hidden channels = {32, 64, 128}
and smax = {1, 2, 3}.
For CHESHIRE we set embedding dimension = {128, 256}, convolutional dimension =
{64, 128}, Chebyshev polynomial order k = {3, 5}, and dropout probability p = {0.1, 0.2}.
For NHP, we tune the embedding dimension = {128, 256} and convolutional dimension
= {64, 128}.
For HyperSAGNN. we tune the embedding dimension = {128, 256}, convolutional dimension
= {64, 128}, and number of attention heads = {1, 3}.
Meanwhile, we tune the hyperparameters separately for each dataset. The selected hyper-
parameters are reported in Table 7. We show the test accuracy in Table 2 and test AUC,
AUPRC, and F1-score in Table 8. HGNAN-edge outperforms all baseline models on all
evaluation metrics and datasets. All experiments are run on NVIDIA V100 GPU.

Table 7: Best hyperparameters for each dataset for hyperedge prediction tasks

Dataset Model lr wd emb_dim k heads dropout layer hidden_channel smax Test Acc

iAF1260b CHESHIRE 0.001 0.0005 256 5 - 0.5 - 128 - 0.834 ± 0.050
iAF1260b NHP 0.01 0.0005 128 - - - - 64 - 0.732 ± 0.076
iAF1260b HyperSAGNN 0.001 0.0005 256 - 4 - - 128 - 0.730 ± 0.075
iAF1260b HGNAN 0.001 0 - - - 0.5 3 32 1 0.935 ± 0.069

iJR904 CHESHIRE 0.001 0.0005 256 5 - 0.5 - 128 - 0.850 ± 0.068
iJR904 NHP 0.001 0 1 - - - - 128 - 0.690 ± 0.090
iJR904 HyperSAGNN 0.001 0.0005 128 - 4 - - 128 - 0.753 ± 0.056
iJR904 HGNAN 0.001 0 - - - 0 5 128 2 0.959 ± 0.018

iSB619 CHESHIRE 0.001 0.0005 128 5 - 0.5 - 128 - 0.831 ± 0.038
iSB619 NHP 0.001 0.0005 1 - - - - 128 - 0.687 ± 0.055
iSB619 HyperSAGNN 0.001 0 256 - 4 - - 64 - 0.729 ± 0.162
iSB619 HGNAN 0.001 0 - - - 0 5 64 1 0.970 ± 0.018

iYO844 CHESHIRE 0.001 0.0005 256 3 - 0.5 - 64 - 0.893 ± 0.047
iYO844 NHP 0.001 0 1 - - - - 128 - 0.747 ± 0.043
iYO844 HyperSAGNN 0.001 0.0005 256 - 4 - - 128 - 0.808 ± 0.045
iYO844 HGNAN 0.001 0 - - - 0.5 5 128 2 0.937 ± 0.058

Table 8: Additional testing metrics for hyperedge prediction tasks. Bold values highlight
the best result for each dataset. HGNAN-edge outperforms all baseline models across all
datasets.

iAF1260b iJR904 iSB619 iYO844

Model AUROC AUPRC F1 AUROC AUPRC F1 AUROC AUPRC F1 AUROC AUPRC F1

CHESHIRE 0.7844 0.7339 0.7012 0.7802 0.7497 0.7514 0.7591 0.7309 0.7427 0.8312 0.7934 0.7918
NHP 0.7566 0.7323 0.7130 0.7312 0.6901 0.7003 0.7183 0.6872 0.6961 0.7791 0.7470 0.7402
HyperSAGNN 0.7831 0.7303 0.7000 0.7843 0.7529 0.7505 0.7548 0.7290 0.7337 0.8424 0.8084 0.8085
HGNAN-edge 0.9951 0.9961 0.9774 0.9990 0.9991 0.9889 0.9954 0.9957 0.9726 0.9717 0.9717 0.9574
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D Experiment on Synthetic Dataset

To validate that our model could learn the complex feature shape and distance functions, we
build a hypergraph-level classification dataset whose data-generating process is isomorphic
to HGNAN-edge.

Construction of the hypergraph. The hypergraph is consistent of E = 2C+L hyperedges.
Hyperedge–hyperedge intersection graph G is created with two sparse clusters of size C
each, stitched by a chain of length L whose chain head connects to the left cluster, tail to
the right. Each node of G represents a hyperedge in the hypergraph. The node features
zi ∈ R2 are sampled i.i.d from U(−1, 1). The hyperedge feature is the mean of its member
node features: xe =

1
|Ve|

∑
i∈Ve

zi. The ground-truth mechanism is comprised of two fixed
feature transforms and weights: f1(x1) = −x1, f2(x2) = sin(πx2) and w1 = 2, w2 = 1. The
ground-truth distance function follows an exponential form: ρ(d) = exp(− 1

2d). For each
hyperedge, its logit is calculated using the same logic as (7). We standardize the logits
using z-score and add Guassian noise N (0, 0.1) to it. It is then passed through sigmoid and
threshold at 0.5 to produce hyperedge-level labels y ∈ {0, 1}E .

Measurements and Results. To align the scales, we deploy an affined transformation
to the results of our model. The coefficients of the transformation a and b are obtained by
solving this simple linear regression:

∑
i(a

ˆf(xi) + b− f(xi))
2, where where f is the ground

truth function. We plot the comparison and report the MSE, R2 and Pearson Correlation
on the aligned curve. We can see that HGNAM-edge successfully recovered most of the
underlying mechanism of this synthetic dataset.

Table 9: Alignment performance of HGNAM-
edge compared with ground-truth. Lower MSE
is better; higher R2 and Pearson correlation
are better.

Method MSE R2 Pearson Corr.

Feature1 0.0013 0.9899 0.9949
Feature2 0.0014 0.9943 0.9972
Distance 0.0005 0.9905 0.9952
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E Analysis of Relative Feature Importance

In Equation (4) and (7), we introduce a feature specific weight wk for each feature k. These
weights are passed through an exponential function to ensure positive and finally normalized
using softmax so that

∑k
i=1 wk = 1. In this way, the model could learn the weights in the

context of other features. In this way, we can interpret them as dataset-level relative feature
importance.

Figure 9 reports global feature importance for predicting the seven classes in the UCI Zoo
dataset, and the ordering is reasonable. The top variables—eggs, legs, backbone, breathes,
and toothed—create coarse, high-information splits: eggs cleanly separates mammals from
most other classes; legs distinguishes insects and some invertebrates from vertebrates ;
backbone isolates invertebrates; breathes helps separate fish; and toothed differentiates
mammals from birds. Mid-ranked features such as feathers, airborne, fins, aquatic, tail, and
catsize are very informative but mainly within specific subsets (e.g., feathers/airborne nearly
determine birds), so their global contribution is diluted. Milk or hair score lower because
they are strongly correlated with the higher-ranked variables (e.g., eggs/toothed/backbone).
Traits like predator and venomous are rare and cross multiple classes, so they naturally
receive low importance. Overall, the ranking mirrors both the dataset’s structure and known
biases of global importance metrics, making the plot reasonable and interpretable.

Figure 9: Relative feature importance wk for Zoo dataset
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F Cross-dataset Validation for BiGG Datasets

We conduct cross-dataset validation to evaluate the model’s ability to transfer knowledge
across different GEM models. Specifically, we apply a model trained on one dataset (e.g.,
iAF1260b) to test on another. Each model is the best performer selected as described in
Appendix C.2. After obtaining the best model trained on one dataset (e.g., iAF1260b), we
fine-tune it for one additional epoch using the training set of a target dataset (e.g., iYO844).
Since HGNAN is a NAM-based model, its feature-shape and distance functions maintain
the same dimension across datasets, allowing direct transfer of the trained model to another
dataset. Other baseline methods, however, may encounter input shape mismatches during
this procedure. Therefore, for these methods, we first extract each dataset’s incidence matrix,
compute the union of all metabolites (i.e., nodes) across the four datasets, and then pad
each incidence matrix with rows of value 0 for any metabolites that are absent. This ensures
that all matrices have the same dimension, enabling fair cross-dataset validation.

According to Table 10, HGNAN outperforms baseline methods across almost all test settings.
In one transfer setting, where the model trained on iAF1260b is applied to iJR904, HGNAN-
edge achieves near-perfect classification performance with an AUCROC of 0.988. Even for
the worst transfer, which is from iAF1260b to iYO844, the performance is above the average
among all models. On average, HGNAN-edge achieves an AUROC of approximately 0.818
across different transfer settings, significantly outperforming baseline methods. CHESHIRE
and NHP perform pooly on this task. While HyperSAGNN is competitive in some transfer
settings, it has higher variance compared to HGNAN-edge. These results demonstrate that
HGNAN-edge effectively captures the underlying metabolic network structure, enabling more
robust transfer learning performance.

Table 10: Cross-dataset validation results for the BiGG datasets. AUROC is used as the
performance metric. Bold values highlight the best result for each pair of transfers.

Training Data Testing Data NHP HyperSAGNN CHESHIRE HGNAN-edge

iAF1260b iJR904 0.6213±0.4679 0.7769±0.2035 0.6785±0.4400 0.9884±0.0216
iAF1260b iYO844 0.6284±0.3968 0.7479±0.2502 0.5059±0.3897 0.6254±0.1364
iAF1260b iSB619 0.6460±0.2731 0.7445±0.3905 0.5455±0.5925 0.8297±0.1204
iJR904 iAF1260b 0.6476±0.1190 0.7657±0.0308 0.6717±0.2569 0.8679±0.3468
iJR904 iYO844 0.6667±0.3766 0.7641±0.3306 0.6406±0.1578 0.8967±0.1469
iJR904 iSB619 0.6291±0.2954 0.7137±0.4300 0.5017±0.3161 0.6652±0.1125
iYO844 iAF1260b 0.6551±0.1080 0.7627±0.4770 0.6081±0.5619 0.9624±0.0153
iYO844 iJR904 0.6143±0.5227 0.8191±0.1564 0.6637±0.5340 0.6534±0.0866
iYO844 iSB619 0.6420±0.2554 0.7950±0.5768 0.5888±0.2448 0.7216±0.2165
iSB619 iAF1260b 0.6754±0.4719 0.7333±0.3460 0.5827±0.4503 0.8345±0.3116
iSB619 iJR904 0.5798±0.0419 0.8332±0.4215 0.5981±0.1856 0.8661±0.3416
iSB619 iYO844 0.6598±0.2153 0.8218±0.5518 0.6404±0.1902 0.9013±0.3363

G LLM use declaration

In this paper, we used LLM to help us only with polishing our writing.
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