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ABSTRACT

In an era of rapid technological advancements, computer systems play a crucial
role in early Violence Detection (VD) and localization, which is critical for timely
human intervention. However, existing VD methods often fall short, lacking ap-
plicability to surveillance data, and failing to address the localization and social
dimension of violent events. To address these shortcomings, we propose a novel
approach to integrate social subgroups into VD. Our method recognizes and tracks
subgroups across frames, providing an additional layer of information in VD. This
enables the system to not only detect violence at video-level, but also to iden-
tify the groups involved. This adaptable add-on module can enhance the applica-
bility of existing models and algorithms. Through extensive experiments on the
SCFD and RWF-2000 surveillance datasets, we find that our approach improves
social awareness in VD by localizing the people involved in an act of violence.
The system offers a small performance boost on the SCFD dataset and maintains
performance on RWF-2000, reaching 91.3% and 87.2% accuracy respectively,
demonstrating its practical utility while performing close to state-of-the-art meth-
ods. Furthermore, our method generalizes well to unseen datasets, marking a
promising advance in early VD.

1 INTRODUCTION

Surveillance cameras are ubiquitous in modern society, and they play a crucial role in maintaining
public safety. However, the sheer volume of footage captured by these cameras can be overwhelming
for human analysts to review. CCTV operators face multiple challenges in their work such as a high
camera to operator ratio, distractions in the workplace, and long working hours (Hodgetts et al.,
2017; Keval & Sasse, [2010), making it difficult to concentrate on all cameras at all times. As a
result, there is a pressing need for automated tools that can quickly and accurately detect but also
localize instances of violence in surveillance footage. Such a system would benefit from providing
meaningful results, explicitly including individuals and the groups they are a part of.

Existing methods for Violence Detection (VD) often depend on training data that is staged or con-
tains very specific situations such as hockey fights or kickboxing (Bermejo Nievas et al.| 2011}
Kwan-Loo et al.|[2022), with larger surveillance datasets emerging in recent years (Akt1 et al., 2019
Cheng et al.,|2021). Additionally, the focus lies either on detection but not localization, or localiza-
tion is not explicitly based on persons or groups, leaving a gap between frameworks and interpretable
real-world applications.

We therefore propose to incorporate subgroups into the task of VD, serving two purposes: it will
increase interpretability of the outcome, by indicating where violence was detected, as well as in-
creasing appropriateness for safety systems by enabling tracking and analysis of subgroups for VD.
Furthermore, since it is an add-on module, it can be combined with any model or system. Acknowl-
edging the importance of both interpersonal (Rota et al.,|2015) and contextual (Freire-Obregon et al.,
2022) information, we combine full video analysis with subgroup analysis, automatically extracting
and tracking subgroups.

Our contributions are as follows:

* We propose the integration of a subgroup analysis module into violence detection methods,
addressing the need for increased interpretability and applicability of safety systems.
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* This subgroup module detects and localizes violent events by automatically extracting and
tracking groups across frames, while enabling a slight improvement or maintained perfor-
mance on the overall task.

* The system proves to generalize well to unseen surveillance data, furthermore underlining
its utility for safety systems working with real-world data and its potential to reduce the
workload of human analysts.

The remainder of this paper is structured as follows. A brief summary of related work is provided
in Section[2] followed by an overview of the methods employed in Section[3] Experiments and their
results are discussed in Section[d] after which the paper is concluded in Section [5}

2 RELATED WORK

2.1 VIDEO VIOLENCE DETECTION

The VD research field is rapidly expanding, with recent developments including the creation of
specialized datasets for violence recognition from surveillance footage. In 2019, |Akt1 et al.| (2019)
proposed the SCFD dataset, together with a framework using a CNN for feature extraction and a
bidirectional LSTM with an attention layer for classification. [Cheng et al.| (2021) introduced the
RWEF-2000 dataset and a pipeline combining RGB and optical flow data, emphasizing movement in
RGB areas. Optical flow is also utilized in [Ullah et al.| (2022b)) for CNN-based anomaly detection
in IoT environments, whereas [[slam et al.| (2021) work with cost-effective alternatives of optical
flow. Another approach for VD on small devices is described in |Vijeikis et al.| (2022)), combining
a spatial feature extractor with an LSTM temporal feature extractor. |[Kang et al.| (2021)) apply 2D
CNNs, merging three consecutive frames into one by averaging the RGB channels per frame, with
a temporal attention module. The work of [Tan & Liu| (2022) proposes to employ anomaly detec-
tion to find training data for supervised action recognition, thereby using both tasks iteratively. [Su
et al. (2022) highlight the importance of hyperparameter tuning, with an efficient general action
recognition CNN outperforming techniques created specifically for VD. Kwan-Loo et al.| (2022)
track individuals across frames by finding the largest Intersection over Union of bounding boxes,
combining pose information from past and current frames for classification.

2.2  VIOLENCE LOCALIZATION

While most studies primarily address VD, recent research has shown a growing interest in violence
localization. In[Roman & Chavez|(2020), a masking model generates motion saliency masks from
dynamic images, merging salient regions near detected individuals to identify the main violent area.
Mohammadi & Nazerfard| (2023) employ a reinforcement learning model to assess the significance
of RGB and optical flow frame regions, recursively cropping the highest-scoring area for final clas-
sification. This is done recursively, classifying the final cropped region. |Asad et al. (2022) use
spatiotemporal attention modules and bidirectional convolutional LSTMs to learn masks for each
video, creating a heatmap overlay indicating important classification regions. Something similar is
done in the previously discussed |Su et al.| (2022) and |[Kang et al.| (2021), where Grad-CAM (Sel-
varaju et al.,|2017) is employed to visualize the regions on which the classification model focuses.

2.3 SUBGROUP ANALYSIS FOR VD

Some research has explored subgroups within VD.|Chang et al.|(2010) track individuals using mul-
tiple cameras for non-violent group actions, such as the formation of groups, grouping them per
frame. VD is a separate component, for which motion features are extracted from the foreground of
frames and fed to an SVM for classification. [Freire-Obregon et al.|(2022) investigate the influence of
context by tracking individuals, and applying a threshold to determine the percentage of overlap the
bounding boxes of two people should have to not be removed as background, effectively grouping
people together. Finally, in the work of Rota et al|(2015), violence is both detected and localized
by only considering movements happening in the space between two people. When criteria for this
interpersonal movement are met, visual features are classified with an SVM.
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2.4 COMPARING PREVIOUS WORK TO THE PROPOSED FRAMEWORK

Most studies on surveillance VD do not incorporate localization, making the output less interpretable

(Akt1 et all 2019; [Cheng et al., 2021 [Islam et al., 2021} [Kang et al.l 2021} [Ullah et al.l 2022b}
Su et al., [2022; Tan & Liu, 2022; |Vijeikis et al., [2022). Those who do either provide heatmaps

that are not guaranteed to have social meaning (Asad et all [2022; [Kang et al. 2021}, [Su et al.
2022), or they are unable to point out more than one violent area (Asad et al., 2022} [Mohammadil

& Nazerfard, 2023). While such heatmaps serve interpretability, they are not guaranteed to include
people or to localize multiple distinct regions. Research involving explicit group inclusion either
groups individuals per frame using multi-camera tracking (Chang et al.,[2010) or focuses solely on
groups or the entire video, without combining these aspects (Freire-Obregon et al.l 2022} Rota et al.}
[2015). Bridging these gaps, our proposed system detects and localizes violence from single-camera
surveillance footage, by incorporating the full video as well as cropped subgroups from that video.
This enables generation of a socially-aware output, where multiple subgroups are tracked throughout
the video and classified as depicting violence or not.

3 METHODOLOGY

An overview of the model is presented in Figure [I] Each video serves as input for two streams:
one for full-video violence recognition, and one for subgroup violence recognition. For the latter,
location and optical flow information are extracted as features for each detected person. These
features, and thus the individuals they are retrieved from, are then clustered per frame. People are
tracked across frames, to go from frame-level subgroups to video-level subgroups. Each subgroup
is then fed to a VD network, the output being fused with the violence prediction of the entire video.
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Figure 1: Overview of the proposed method.

3.1 GENERAL DESIGN CHOICES

Incorporating information from both the entire scene and cropped subgroups within a video is mo-
tivated by their individual significance in VD (Freire-Obregén et all, 2022} [Rota et all 2015), and
the interpretability gained through subgroup-based analysis. Analyzing groups, instead of individu-
als, is chosen due to previous work showing that visual information from the interpersonal space of
multiple people greatly contributes to behavior classification 2015). Furthermore, it is
worth noting that analyzing solitary individuals adds little value to the analysis of individuals close
together (Freire-Obregon et al. [2022)), since violence tends to involve multiple people. We focus
on detection over prediction to avoid prediction bias, a serious issue where present inequalities are
projected onto the future (Kang et all, 2021; [Mayson, 2019). Our subgroup detection approach is
similar to that of [Veltmeijer et al.| (2022), with the main difference being our use of motion features

instead of face features, reducing privacy concerns and potential data biases (Kang et al., 2021)).
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3.2 DATA

The model was trained and evaluated on two datasets, the Surveillance Camera Fight Dataset
(SCFD) (Akt1 et al.| 2019) and the Real-World Fighting (RWF-2000) dataset (Cheng et al.l |2021)),
two of the main violence datasets that consist of general surveillance footage only (Ullah et al.,
2023). SCFD contains 300 surveillance video clips, 150 of which contain violence and 150 not.
Each clip is 2 seconds long. RWF-2000 contains 2000 surveillance video clips, 1000 violent clips
and 1000 non-violent clips, each clip lasting 5 seconds. Since both datasets mainly contain physical
fights, the words ‘violence’ and ‘fight’ will be used interchangeably in the remainder of this work.

We extend the existing dataset annotations, by assigning labels to subgroups from videos in the fight
classes. Since the non-fight videos are already labeled as such, we assume that none of the videos
nor subgroups will contain fights. For the fight videos, on the other hand, individual subgroups are
not guaranteed to contain fights. A label of fight or non-fight is assigned to each individual subgroup
detected within that video. The SCFD subgroups are annotated by two different annotators. From
this an inter-rater reliability (IRR) is calculated, giving a Cohen’s kappa value of x=0.90(Cohen,
1960). This indicates an ‘almost perfect’(Landis & Kochl|1977) or ‘strong’ (McHughl 2012) agree-
ment, allowing for the remainder of data being assigned to one of the annotators. This results in
94 (SCFD) and 481 (RWF-2000) subgroups being labeled as violent, versus 205 (SCFD) and 594
(RWF-2000) labeled as non-violent.

Since the network requires a square input, data is resized in two different ways: center cropping
and zero padding, both combined with resizing the resulting square frame to 160x160. For the
full videos, all training data is augmented in both ways, resulting in two square videos per original
video. SCFD results are reported on test data that is cropped, RWF-2000 results that is padded,
generalization results on both combined. Subgroup videos from both datasets are padded only, so
as not to further crop the already cropped subgroup. The only other data augmentation applied
is flipping, which is done for the subgroups videos (SCFD) and full videos and subgroup videos
(RWF-2000) of the training sets.

3.3 FRAME-LEVEL SUBGROUP FORMATION
3.3.1 FEATURE EXTRACTION

For each video, we extract frames and dense optical flow information (pixel-wise angle and mag-
nitude) using OpenCV (Bradskil [2000) and sample eight frames per video. Pose estimation is per-
formed on the remaining frames using AlphaPose (Fang et al., 2022), a recognized framework for
precise and robust keypoint detection (Inturi et al., 2023; [Zwolfer et al., 2023). Frames are retained
if they contain detected individuals with assigned poses.

We utilize the pose estimation’s inferred center coordinates of bounding boxes as location features,
following the methodology of |Veltmeijer et al.| (2022). We aim to extract meaningful motion fea-
tures, where individuals moving in a similar direction have more similar motion features. To achieve
this, we calculate the average gradient over all pixels within each individual’s bounding box in the
optical flow output as the motion feature.

3.3.2 CLUSTERING

Following the procedure of [Veltmeijer et al.[(2022), we employ hierarchical clustering for forming
meaningful subgroups from the individuals in each frame. The coordinates of each person together
with the movement information form the elements of the feature vector to be used for clustering. The
feature vector of each individual consists of three elements: [z, y, gradient]. 2 and y are normalized
by dividing them by the image size in their respective dimension, and the gradient value is converted
to range from O to 360 degrees. The optimal number of clusters for each frame is determined from
the resulting dendrogram in an automated fashion.

For each cluster, we save a bounding box encompassing all individuals within that cluster, based
on their original pose estimation bounding boxes. To ensure accuracy for training, a bounding box
should only contain individuals assigned to that specific subgroup. Therefore, if one subgroup is
interrupted by another, we split the interrupted subgroup to eliminate the interruption, focusing on
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interruptions along the horizontal axis (x-values). Specifically, cluster A is split up when a cluster
B exists with:

B, C A, (1)

In this case cluster A, is split up into clusters recursively until none of the from A, derived clusters
are a superset of any other cluster.

3.4 VIDEO-LEVEL SUBGROUP FORMATION

So far, we discussed person detection and subgroup formation at frame-level. The next step is
to track individuals throughout the video and find video-level subgroups. Establishing video-level
subgroups based on the clustered subgroup per frame will smooth frame-level predictions. While

Alphapose 2022)) offers tracking options, we find them to be unstable for our purpose
due to temporal consistency issues. Tracking methods often involve calculating the smallest distance

in a person’s location between two frames (Chang et al., 2010; [Kwan-Loo et al,[2022). However,
in scenes with clutter or fast movements, often encountered in fight scenes, this can result in fre-
quent mismatches. Consequently, tracking and analyzing movement in violent scenarios remain
challenging, with existing algorithms frequently falling short (Rota et all,[2015} [Ullah et al.,[2023).

Instead, in this work individuals are tracked by predicting their future location and finding the closest
match, if possible, to that predicted location. The center coordinates of an individual’s bounding box
are used as location, rather than the (size of the) bounding box itself, to increase stability. For all
individuals with center location C,, = (z,,y,) in frame n, optical flow gradient and magnitude
are used to calculate the predicted center location Py, 11 = (%41, Yn+1) of that individual in frame
n+ 1. A distance matrix Myg;s; contains the Euclidean distance between the predicted center location
Poi1 = (@41, Ynt1) of individuals detected in frame n and the actual center location Cj, 11 =
(Zn+15Yn+1) of individuals detected in frame n + 1. The distance matrix is then used for matching
individuals between frame n and frame n + 1, by solving it as a linear sum assignment problem,
implemented with SciPy (Jonker & Volgenant, [1988; [Virtanen et al.| [2020). It is possible that an
individual in frame n is not detected or present in frame n + 1, or vice versa. To account for
this, the distance matrix is padded with a threshold value, to ensure that individuals that have no
plausible match will be matched to a padded value. This threshold value is set to 40, which is
empirically found to generally distinguish between the same person moving and two people close
together moving. When no match is found for an individual in frame n 4+ 1, a match is sought with
a non-matched individual in frame n — 1. In this case, the threshold is set to 50, meaning that a
match can only be made if the Euclidean distance is below 50. If an individual is not matched for
two consecutive frames, the tracking of that individual stops. In the end, only tracked individuals
that have been identified in at least four of the eight frames are further considered.

After tracking and grouping individuals per frame, we use pairwise majority voting to infer video-
level subgroups, in a way similar to |Veltmeijer et al.| (2022). Instead of finding consensus across

multiple subgroup annotations for the same image, we propose to reach subgroup consensus over
multiple frames. Following their approach, we consider a pair of individuals to be in the same video-
level subgroup if they are part of the same frame-level subgroups for a majority of frames This is
visualized in Figure 2]

frame frame 2 frame 3 final subgroups

Figure 2: Approach for merging subgroups across frames. Person 1 and 2 are in the same subgroup
for a majority of frames, and are therefore put together in the same video-level subgroup. Person 3
and 4 are on their own for a majority of frames, the latter not being detected in frame 3.
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3.5 NETWORK TRAINING

For the detection of violence in both the full videos and the subgroup videos, we employ the X3D
network (Feichtenhofer| [2020), an efficient network for video recognition, as adjusted and provided
by Su et al.|(2022); Su| (2022)) and pretrained on the kinetics dataset (Kay et al.,[2017)). For training,
we leave most hyperparameters as they are, changing only the values of clip_len (8), alpha (1) and
tau (1). The number of training epochs is changed from 1 to 10, saving the model after the epoch in
which it performs best on the test set. The learning rate is kept at 1 x 10~%. The network is trained
separately for detecting violence in the full videos and for detecting violence in subgroup videos.

For SCFD, we perform 5-fold cross-validation, using the same fold division as |Su et al.| (2022)
to ensure a fair comparison. For this division, videos were randomly divided into the folds while
ensuring a fair balance between fight and non-fight clips, and assigning all videos originating from
the same original (longer) video to the same fold to avoid data leakage. For RWF-2000, we use the
training and test sets as originally provided by |Cheng et al.[(2021)), which also prevent data leakage
by assigning all clips from the same original video to the same fold.

3.6 PREDICTION FUSION

The prediction resulting from the model trained on the full videos serves as a baseline, and as the
foundation on which the trained subgroup model should build. Since not all people are recognized
or tracked successfully, the absence of violent subgroups is no reliable indicator of the original video
to not depict any violence. The opposite, however, holds: once one of the subgroups from a video
is classified as showing violence, we hypothesize that this is a strong indicator for the full video to
depict violence (Mohammadi & Nazerfard, 2023). A non-fight prediction for a video, ¥yigeo = 0,
can therefore change to a fight prediction, %yigeo = 1, if the probability peupe, of at least one of the
subgroups from that video showing violence is 0.8 or higher. This means that

1, if Pyigeo > 0.5 or maxProb(psuber) > 0.8
Yvideo = 2

0, otherwise.

4 EXPERIMENTS

4.1 SCFD

This section will describe and discuss the performed experiments and their results on SCFD, the
main dataset under analysis on which most experiments are performed. For the first baseline, vio-
lence detection is performed based on the full video analysis only, results of which are given in the
first row of Table(I| These values show that the network is already performing quite well on the task
of VD in the SCFD dataset, which is similar to the results and findings presented in|Su et al.[(2022).

For the next experiment, the network is not trained on full videos, but only on subgroup videos for
violence detection. Results are presented in the second row of Table[T} Note that these performances
cannot be directly compared to those of the full model, since a subgroup originating from a ‘fight’
video might be part of the ‘non-fight’ subgroup set when none of the individuals in that subgroup
are displaying violent behaviour.

To validate that any performance gain obtained from combining the full video with subgroup pre-
diction would be a result of the subgroups themselves, rather than simply resulting from analysing
separate crops of the video, we perform a final baseline experiment. For this experiment we replace
each subgroup video with a random crop video of the original video, with the same size as the origi-
nal subgroup video. The best performing trained subgroup model is then employed to evaluate these
random rectangle videos, and the results are combined with the full video predictions as described
in[3.6] The fold-wise results of this are included in Table[I] showing that the outcome is the same
as the baseline model, which suggests that the improved performance of the subgroup model is not
a result of cropping parts of the video in itself, but of what is present in those crops.

Finally, full video predictions are combined with subgroup predictions in the way described in Sec-
tion completing Table [l These results show that adding subgroups to the full video analysis
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Table 1: Weighted accuracy per fold and average weighted accuracy and F1-score of the baseline
model, random rectangle model, subgroups only model, and full video and subgroups combined.

fold1l fold2 fold3 fold4 foldS avg F1

full video 913% 92.1% 91.7% 833% 91.5% 90.0% 0.90
subgroups 853% 855% 82.6% 84.4% 81.1% 84.1% 0.85
full video + rectangles 91.3% 92.1% 91.7% 833% 91.5% 90.0% 0.90
full video + subgroups 93.1% 93.7% 91.7% 86.7% 91.5% 913% 091

improves performance for three of the folds, and performs on par with the full video only for two of
the folds. When considering the violent class only, performance increases more, but this is tempered
by an increase of false positives decreasing the performance of non-violence. Furthermore, adding
random rectangles to the full video analysis instead has no influence on the final result whatsoever.
This makes clear that even though the overall increase in accuracy for the proposed model is quite
small, it is consistent throughout different folds and can be attributed to the nature of the subgroups,
therefore being a meaningful addition. Output of the system is visualized in Figure 3] depicting
violent subgroups with red bounding boxes.

Figure 3: Output of the proposed method, violent subgroups are indicated with red bounding boxes.

4.2 RWF-2000

This section will describe and discuss the experiments on RWF-2000. This dataset is used for val-
idating the model and testing the generalizability.To validate the proposed system, it is also trained
and tested on the RWF-2000 surveillance dataset. Results are presented in Table 2] indicating a
minuscule difference in performance between the baseline and the proposed model, the addition of
subgroups leading to a performance loss of 0.3%. Since the original dataset comes with a fixed
training and testing splits, no cross-validation is performed to enable valid comparisons to other
frameworks. It should be noted that the proposed architecture was built for SCFD, as the main
dataset used in this work. This could explain that the performance gain found for SCFD does not
extrapolate when training and testing on RWF-2000. Furthermore, it should be noted that the RWF-
2000 dataset is generally considered to be more challenging. Not only because of the highly variable
resolution of the surveillance footage, which can also be said for SCFD, but also due to some videos
being modified versions rather than raw surveillance footage (Vijeikis et al), [2022). Furthermore,
while annotating the subgroups, the researchers noticed that the video-level annotations are not fully
correct: all clips originating from the same video have been given the same video-level annotation
of violence, while clips from the start or end of the original video do not show violence themselves.
No video-level annotations were changed for the sake of comparison, but future work could analyse
this to further improve this important and relevant dataset.

4.3 BENCHMARK RESULTS

Performance of our proposed combined model is compared to the baseline and to other benchmark
results in Table [3] It can be seen the baseline model, similar to the implementation of
(2022), already scores relatively high. For both datasets, multiple clips in the dataset originate from
the same original video, meaning that a random split is likely to contain clips from the same video
in both the training and test set. This is called data leakage, and causes the model to overfit, thereby
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Table 2: Average weighted accuracy and F1-score of the full video only, subgroups only, and full
video + subgroups prediction on the RWF-2000 dataset.

acc,, F1
full video only 87.5% 0.87
subgroups only 75.4% 0.75

full video + subgroups 87.2% 0.86

Table 3: Accuracy of previously published models on violence detection, as reported in their respec-
tive papers, compared to our baseline and proposed subgroup model. Models under the line, marked
with an *, were trained and tested on the same data splits, and that there was no data leakage.

method SCFD RWF-2000
acc F1 acc F1
Akt1 et al.|(2019) 72.0% - - -
Ullah et al.|(2022al) 74.0% 073 - -
Vijeikis et al.[(2022) - - 82.0% 0.78
Ullah et al.[(2021) 75.9% 0.75 88.2% 0.89
Kang et al.|(2021) 92.0% - - -
Tan & Liu/(2022) 95.6% - - -
Islam et al.|(2021) - - 89.8% -
Ullah et al.[(2022b)) - - 93.3% -
Transfer model baseline (ours) 86.3% 0.86 83.3% 0.83
Transfer model proposed model (ours) 88.3% 0.88 82.4% 0.82
" [Cheng et al.[(2021)) - - 87.3%* -
Mohammadi & Nazerfard|(2023) - - 90.4%* -
Kang et al.[(2021) - - 92.0%* -
Su et al.[(2022) 88.7%* - 94.0% * -
Baseline (ours) 90.0%*  0.90* 87.5%%* 0.87*
Proposed model (ours) 91.3%* 091* 87.2%* 0.86*

giving a distorted view of the actual performance of the model. It should be noted that for SCFD, |Su
et al.|(2022) are the first and (to the best of our knowledge) only ones to have explicitly mentioned
this, splitting the dataset into five balanced splits actively preventing data leakage. We have used
their division into folds. This means that for none of the other works in Table [3]reporting on SCFD,
we can state with certainty that there was no data leakage, therefore our work can only fairly be
compared to that of [Su et al| (2022). This is indicated in Table [3] by placing comparable works
under the horizontal line. We encourage researchers to use the same fold division and share more
information on the data splits used, for fair comparison as well as data leakage prevention. RWF-
2000 was published with a predefined training and test set. Those papers that mention using this
split, as was done in this study, are placed under the horizontal line in Table 3]

4.4 GENERALIZABILITY TO UNSEEN DATASETS

For a VD framework to be applicable in real-life scenarios, it is important to be robust to highly
variable inputs. Specifically, this means that it should be able to generalize to unseen surveillance
data. To test the generalizability of the proposed framework, we perform two experiments: training
on SCFD data and testing on RWF-2000 data, and vice versa. Results are presented in the two
rows just above the line in Table [3] showing that the model generalizes exceptionally well. Trained
on (all of) RWF-2000 and tested on (all of) SCFD, we see that accuracy even increases with 2%
when adding the subgroup module, to a decent score of 88.3%. The model that is trained on (all of)
SCFD and tested on (all of) RWF-2000 shows a pattern similar to that of the model both trained and
tested on RWF-2000, in that addition of the subgroup model leads to a slight drop in performance.
However, it is noteworthy that even when trained on the relatively small SCFD, performance on
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RWEF-2000 still reaches an accuracy of around 83%. It should be noted that our transfer models do
not fully meet the aforementioned criteria of data leakage prevention: they are trained on one entire
dataset and tested on the other entire dataset. They are therefore placed above the horizontal line.

5 CONCLUSION

In this paper, an innovative approach for incorporating subgroup analysis into VD was proposed.
While there is a vast body of research on VD, little work has been done on socially meaningful and
interpretable VD in surveillance footage. Our adaptable add-on module automatically extracts and
tracks subgroups across frames for violence detection and localization in safety systems. As such,
it can help bridge the gap between theory and practice, by alerting when violence is detected and
indicating what group of people is or are involved.

We trained an efficient network, X3D, and performed experiments on two of the main violence
surveillance datasets: SCFD and RWF-2000. Results indicate that our subgroup module consis-
tently increases or stabilizes the performance on SCFD with on average +1.3%, while leading to a
small decrease in performance on RWF-2000 (-0.3%), needing as little as eight frames per video.
In the proposed system, subgroup analysis can only change a non-violent label to a violent one,
increasing true positives and false positives for the violence class. In practical use cases, we rec-
ommend prioritizing false positives over false negatives since having to rewatch a fragment will
have fewer consequences than missing a violent event. Models trained on either dataset demonstrate
strong generalizability to the other, promising broader applicability. Figure [3|illustrates model out-
puts, showing meaningful and actionable information for CCTV operators. These results suggest
the framework’s potential to enhance public safety and reduce human analyst workload.

A main limitation is that subgroup formation and therefore system performance rely heavily on the
initial pose estimation. Individuals without assigned keypoints will not be part of any subgroup
and thus not influence the final prediction. This poses challenges in VD, as fighting individuals are
often blurred, occluded, or in less detectable positions. We see that missed keypoints are typically
associated with individuals engaged in fights, which are crucial for violence detection. This led
to the decision of only allowing the module to change a non-fight label to a fight-label, as the
absence of detected fighting subgroups may indicate missed individuals rather than their absence
in the entire video. Improving person detection could pave the way for a more refined subgroup
analysis influencing the overall prediction.

While the current work focused on building the subgroup module and how it influenced the baseline,
reaching state of the art performance was not a main motive. Future work should experiment with
adding this module to other frameworks, including those outperforming the models described here.
Another direction for future work is to include temporal attention for detecting which frames of a
video are most important for the final classification. While our system could readily be extended to
this, by feeding it multiple blocks of eight consecutive frames from the same video, integrating it
into the framework would further enhance its practical utility.
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